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Summary
This paper puts forward a methodology for applying the frequency domain Factorisation Method to time domain
experimental data arising from ultrasonic phased array inspections in a limited aperture setting. Application to
both synthetic and experimental data is undertaken and a multi-frequency approach is explored to address the
difficulty encountered in empirically choosing the optimum frequency at which to operate. Additionally, a trun-
cated singular value decomposition (TSVD) approach is implemented in the case where the flaw is embedded in
a highly scattering medium, to regularise the scattering matrix and minimise the contribution of microstructural
noise to the final image. It is shown that when the Factorisation Method is applied to multi-frequency scatter-
ing matrices, it can better characterise crack-like scatterers than in the case where the data arises from a single
frequency. Finally, a volumetric defect and a lack-of-fusion crack are both successfully reconstructed from ex-
perimental data, where the resulting images exhibit only 3% and 10% errors respectively in their measurement.

© 2017 The Author(s). Published by S. Hirzel Verlag · EAA. This is an open access article under the terms of the
Creative Commons Attribution (CCBY4.0) license (https://creativecommons.org/licenses/by/4.0/).

PACS no. 43.35.-c, 43.35.Zc

1. Introduction

Ultrasonic nondestructive testing uses high frequency me-
chanical waves to inspect components of safety criti-
cal structures, ensuring that they operate reliably without
compromising their integrity. It is routinely used within
the non-destructive testing (NDT) industry due to the rel-
atively inexpensive and portable equipment it requires and
its potential for automation and real-time results. The pro-
duction and implementation of ultrasonic phased array
transducers (which are capable of simultaneously trans-
mitting and receiving ultrasound signals across multiple
array elements) has surged in the last ten years [1]. These
multi-element transducers allow for greater coverage (and
potentially faster inspection times) than that afforded by
single probe inspections, and provide the possibility of
performing inspections with ultrasonic beams at various
angles and focal lengths, giving rise to a richer set of data.
When each of the N elements are fired sequentially, the
N2 time traces arising from each transmit-receive pair of
elements (N being the number of elements, usually be-
tween 32 and 256) can be processed and stored in a 3D
matrix (N × N × T , where T is the number of sample
points in the time domain), usually termed the Full Matrix
Capture (FMC) [2].

Received 23 February 2017,
accepted 7 August 2017.

The current industry benchmark for interpreting the
FMC is the Total Focussing Method (TFM) [2]; a de-
lay and sum imaging technique based in the time domain
where the area of inspection is discretised into a grid and
the signals from every transmit-receive pair are subse-
quently focussed at each pixel and summed. In its most
basic form, the TFM can struggle with the detection and
characterisation of flaws embedded in highly heteroge-
neous media. However, efforts have been made to improve
the algorithm so that it can handle such environments.
Modifications include the implementation of frequency fil-
tering [3], the incorporation of the directional dependence
of the ultrasonic velocity (caused by anisotropy) [4], and
the consideration of multiple wave modes [5].

An alternative approach to analysing the FMC could be
to operate in the frequency domain. Assuming that the lo-
cation of the flaw is known a priori, a discrete Fourier
transform can be taken over the relevant time interval, al-
lowing examination of the frequency spectrum of the wave
scattered by the flaw. This information can be presented in
the form of scattering matrices, and analysis of these ma-
trices has become more prevalent in the non-destructive
testing literature in recent years [6, 7, 8, 9]. One method
which could be used to exploit this frequency domain in-
formation is the Factorisation Method [10, 11, 12, 13].
The Factorisation Method is the continuous analogue of
the MUSIC algorithm [14, 15] and belongs to a class
of non-iterative methods known as sampling methods,
which deal with the inverse problem of shape identifi-
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cation. Other such methods include the Linear Sampling
Method [16, 17], the Probe Method [17, 18] and the Sin-
gular Sources Method [17, 19]. These sampling methods
are so named since they work on the basis of determining
whether sampled points within an imaging domain meet
some criteria which determines whether they fall within
the support of the flaw domain D.

The NDT community have yet to fully explore the po-
tential of the Factorisation Method for improved flaw char-
acterisation and this paper endeavours to put forward a
framework for applying it to time domain experimental
data arising from limited aperture phased array inspec-
tions. Some interesting work has already been carried out
in [13, 20], where sampling methods were used to image
cracks in acoustic waveguides, which of course has im-
portant implications for the NDT of pipelines. However
this work showed only results from simulated data with
Gaussian noise and is limited to the inspection of plate-like
structures. One important contribution of the work shown
in this paper is that it presents a framework for interro-
gating time domain ultrasonic phased array data arising
from the inspection of welds, by the Factorisation Method.
Application of sampling methods to time domain data has
been studied before in [20, 21, 22, 23, 24] however the
authors believe that this paper presents application of the
Factorisation Method to experimentally collected time do-
main ultrasonic phased array data in a limited aperture set-
ting for the first time. The case where the host medium
is inhomogeneous (resulting in poor signal to noise ra-
tio) is first considered via synthetically generated data.
The phased array inspection of a weld with a highly scat-
tering material microstructure (taken from experimental
electron backscatter diffraction (EBSD) measurements) is
modelled within a finite element package. This allows us
to study noisy signals which closer resemble the data aris-
ing from experiment than those created when the simula-
tion is run with a homogeneous host medium and then ret-
rospectively perturbed by random noise. Note that the im-
plementation of the factorisation methodology used in this
paper assumes a homogeneous host medium and receives
no information on the scattering host microstructure and
so any inverse crimes are avoided. The reconstructions of
both volumetric and crack-like scatterers embedded in this
heterogeneous environment are presented. Crack-specific
adaptations to the Factorisation method and the linear sam-
pling method have been developed in [13, 25, 26, 27].
In the study by Boukari et al. [27], an expression for
the far-field pattern of a smooth non intersecting open
arc is presented and employed within the indicator func-
tion used to reconstruct the scatterer. However, in [25], an
open arc scatterer with Dirichlet boundary conditions is
reconstructed using the far-field pattern for a point source.
In this paper, on the grounds of simplicity, we will take
the second approach. To begin, a brief overview of the
method is given. The truncated singular value decompo-
sition (TSVD) is used to regularise the scattering matrices
that arise from the FMC data in the cases where the flaw
is embedded in a highly scattering host medium. It is well
known that the largest scatterers can be associated with the

Figure 1. Scattering problem geometry where D is a volumetric
scatterer with boundary Γ, ui is the incident plane wave and us is
the resulting scattered field.

largest eigenvalues of the scattering matrix [28] and so, by
using the TSVD to set the smallest eigenvalues to zero,
interference from microstructural heterogenetites (which
can be thought of as noise) can be reduced, enhancing the
signal to noise ratio of the resulting image.

Additionally, a multi-frequency approach, as previously
explored in [29], is adopted. In taking a time windowed
Fourier transform of collected time domain data, a range of
scattering matrices spanning multiple frequencies is made
available. Choosing the center frequency of the transducer
does not necessarily give rise to the optimal reconstruction
of the flaw and an empirical strategy to choose the most
appropriate frequency requires a priori knowledge of the
defect’s characteristics. To avoid this, a multi-frequency
approach is proposed, where the scattering matrices are
summed over the range of frequencies which span the
bandwidth of the transducer. As this approach allows in-
creased exploitation of the available data, improved char-
acterisation is subsequently facilitated.

2. The Factorisation Method

The forward scattering problem states that there is an in-
cident plane wave, ui(x, θ) = e ikx·θ, x ∈ R, travelling in
direction θ ∈ S2, where S2 = {x ∈ R3 : |x| = 1} is the
unit sphere in R3. On encountering a defect, in this case
the region D with boundary Γ, the wave scatters, giving
rise to the scattered field us (see Figure 1). The sum of
the incident and scattered fields results in the total field u,
which satisfies the Helmholtz equation

Δu + k2u = 0 outside D, (1)

subject to u = 0 on Γ,

where k is the wavenumber. Although we are primarily
interested in the elastodynamic case for the purposes of
NDT, by considering only longitudinal waves (mode con-
version does occur however the method we use to extract
the scattering matrices is based on first times of arrival and
so is dominated by the longitudinal waves – see Section 3)
then it is sufficient to study the Helmholtz equation. The
scattered field us satisfies the Sommerfeld radiation con-
dition

∂us

∂r
− ikus = O(r−1) for r = |x| → ∞ (2)
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uniformly in all directions x̂ = x/|x|, ensuring that the
wave is radiating outwards and decays sufficiently fast so
that there are no sources at infinity.

The scattered field us also solves the exterior Dirichlet
problem

Δv + k2v = 0 outside D, (3)

subject to v = f on Γ,

where f = −ui and v satisfies the Sommerfeld radiation
condition given in (2).

The Factorisation Method [10, 11, 12] attempts to solve
the inverse problem of determining the shape of D from
the scattered field. The methodology exploits the relation-
ship between the data-to-pattern operator G and the shape
of the scatterer. To begin with, let usph be the fundamen-
tal, radiating solution to the Helmholtz equation in R3 (a
spherical wave generated at a point source z and measured
at point x, in a homogeneous host medium) given by

usph(x, z) =
e ik|x−z|

4π|x − z| , x, z ∈ R3, x = z. (4)

As the distance between x and z gets large (far-field), the
spherical wave begins to resemble a plane wave at point x.
This can be approximated by

u∞(x̂) = e−ikx̂·z, x̂ ∈ S2, (5)

where u∞ is the far-field pattern when we have an incident
wave arising from a point source.

The Herglotz wave function describes the superposition
of plane waves

Hg (x) :=
S2

e ikx·θg(θ) dθ, x ∈ Γ, (6)

with density g ∈ L2(S2). The far-field pattern arising from
an incident plane wave applied to some function g is the
far-field pattern of the Herglotz wave function with density
g. By denoting the far-field pattern of the scattered field
(obtained from our measured data), by u∞s , we can define
the far-field operator F by

Fg(x̂) =
S2

u∞s (x̂, θ)g(θ) ds(θ) for x̂ ∈ S2. (7)

Note that F is a normal operator and compact in L2(S2).
Deriving the following factorisation of the operator F [10,
Theorem 1.15],

F = −GP ∗G∗, (8)

is the basis for the Factorisation Method. Here P ∗ :
H−1/2(Γ) → H1/2(Γ) is the L2 adjoint of the single layer
boundary operator P : H−1/2(Γ) → H1/2(Γ)

Pϕ(x) =
Γ
usph(x, y)ϕ(y) ds(y), x ∈ Γ. (9)

and effectively converts the incoming wave to an outgoing
wave on the defect boundary. The operatorG∗ : L2(S2) →

H−1/2(Γ) is the L2 adjoint of G : H1/2(Γ) → L2(S2), the
data-to-pattern operator, defined by

Gf = u∞. (10)

Critically, the range R(G) of the operator G has a direct
relationship to the shape of the domain D. For z ∈ R3,
φz ∈ L2(S2) is defined by

φz(x̂) = e−ikx̂·z, x̂ ∈ S2. (11)

It follows that if z ∈ D, then, from equations (5) and (11),
φz = u∞ and so, from equation (10), φz ∈ R(G) when
z ∈ D.

The converse is also true according to Theorem 1.12
in [10]. To gain an exact characterisation of R(G) in
terms of the known operator F , we can relate G to F by
equation (8). To proceed, some further technical assump-
tions are required. It is assumed that F , for the Dirichlet
boundary conditions (Equation 1), is normal, the operator
I+ ikF/8π2 is unitary and k2 is not a Dirichlet eigenvalue
of −Δ in D (these conditions are justified in [10]). It then
holds that the range of (F ∗F )1/4 coincides with that of G.
Hence, the sampling point z ∈ R3 lies in D if and only if

F ∗F
1/4

g = φz (12)

for some g ∈ L2(S2).
By Picard’s criterion, equation (12) is solvable if and

only if the condition φz ∈ R((F ∗F )1/4) is satisfied (this is
shown to hold by equations (5)–(10)). It then follows that,
z ∈ D if and only if

∞

j=1

|(φz, ψj)L2(S2)|2
|λj|

< ∞, (13)

where {λj, ψj} forms an eigensystem of the normal op-
erator F such that the eigenvectors define a complete or-
thonormal system in L2(S2) and the Fourier coefficients
decay to zero faster than the eigenvalues. Using the spec-
tral theory of a normal operator, [10, equation 1.74] it is
observed

(F ∗F )−1/4φz =
∞

j=1

1

|λj|
(φz, ψj)ψj (14)

⇐⇒
∞

j=1

1

|λj|
(φz, ψj)

2

< ∞, (15)

and so equation (13) does indeed hold. From equations
(12) and (14), the solution g is given by

g =
j

φz, ψj L2(S2)

|λj|
ψj, (16)

and the following result is obtained

z ∈ D ⇐⇒ φz ∈ R((F ∗F )1/4) (17)

⇐⇒ W (z) =
j

|(φz, ψj)L2(S2)|2
|λj|

−1

> 0.
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In practice, we use the N × N scattering matrix in place
of our operator F (where N is the number of array ele-
ments). Assuming F is normal (and thus diagonalizable),
it holds that there exist N linearly independent eigenvec-
tors. Thus, when using this discrete, limited aperture, we
truncate equation (17) to

w(z) =
N

j=1

|(φz, ψj)L2(S2)|2
|λj|

−1

> ε, z ∈ D, (18)

where ε > 0. By plotting w(z) for all sampling points, z,
it is possible to recover the shape and size of the defect.

2.1. The F# Operator

It was shown above that a sampling point z lies within the
domain D of the scatterer if and only if there exists a so-
lution in L2(S2) to equation (12). However, this criterion
only holds if the far-field operator F is normal, which is
not always the case when limited angles of inspection or
heterogeneous host materials are present. To circumvent
this, the positive, self-adjoint operator F# is introduced
[10, 30] where

F# = |Re(F )| + |Im(F )|, (19)

and

Re(F ) =
1
2
(F + F ∗) and Im(F ) =

1
2i

(F − F ∗). (20)

It is helpful to note here that for a given self-adjoint oper-
ator J , if

J =
+∞

−∞
λ dEλ, (21)

then

d J :=
+∞

−∞
λ dEλ, (22)

where Eλ is the spectral family of the operator J [13].
As F is compact in L2(S2) it follows that F ∗ is compact
in L2(S2) and thus so is F# [31]. It can be subsequently
shown that a sample point z belongs to the domain D if
and only if the integral equation

F
1/2
# g = φz (23)

has a solution in L2(S2) [10] (here φz is as defined in
equation (11)). It follows that, by plotting

W (z) =
N

j=1

|(φz, ψ
#
j )L2(S2)|2

|λ#
j |

−1

, z ∈ R2, (24)

where {λ#
j , ψ

#
j }j∈N forms an eigensystem of the self-

adjoint operator F# such that the eigenvectors define a
complete orthonormal system in L2(S2), an image of the
scatterer can be reconstructed.

2.2. Truncated SVD of the Scattering Matrix

From equation (24), we can see that W (z) is large when
φz is orthogonal to the eigenvectors of F#, which occurs
when the sampling point lies within the spatial domain oc-
cupied by the flaw. The other occasion when W (z) could
be large is when λ#

j is large for some j = 1, . . . ,N , even
when z ∈ D and so (φz, ψ

#
j )L2(S2) = 0.

To minimise the contribution of these cases, an artificial
nullspace is created. This is achieved by taking the singu-
lar value decomposition (SVD) of the N × N scattering
matrix, F ∗, and approximating it using the m largest sin-
gular values via

F ∗ =
m

n=1

σnunvn, (25)

thus creating a nullspace with dimension N − m. In the
case of subwavelength non-isotropic scatterers, the largest
eigenvalue is associated with the spherically symmetric
part of the scattering amplitude and there are three eigen-
values associated with the directional part [32, 33]. Where
the scatterer is larger than the wavelength, there exist many
singular values associated with it. And so, in the work be-
low we make the constraint that m ≥ 4. Aside from this
lower bound, we typically assume that the singular val-
ues which are greater than 10% of the largest singular
value correspond to scattering by the defect and those be-
low this threshold correspond to noise and scattering by
the microstructure [15, 34]. However, by studying the dis-
tributions of the singular values it can be observed that
this threshold may not always be optimal and may require
some tuning subject to the system parameters.

3. Application to NDT

The results in this paper arise from application of the Fac-
torisation Method to data collected (or modelled) in the
time domain. To interrogate the data using the Factori-
sation Method, we require a frequency domain represen-
tation of the scattered signals over a time interval corre-
sponding to the wave’s interaction with the flaw. To ensure
that the flaw scattering dominates in the frequency domain
and that other experimental artifacts (such as the back wall
of the sample) don’t obscure the flaw’s scattering signa-
ture, the time domain FMC data must be processed. Firstly
the location of the flaw is required a priori (it must be re-
membered that the Factorisation Method is being applied
here as a post-imaging tool for flaw characterisation). In
this paper, the defect is located using an image generated
by the standard TFM [2]

I (x, z) = (26)
N

s,r=1

As,r

(xs − x)2 + z2 + (xr − x)2 + z2

c
,

where I (x, z) is the image intensity at the pixel with co-
ordinates (x, z), As,r denotes the A-scan (that is, the time
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Figure 2. Processing of time domain FMC data for extraction of scattering matrices. Firstly the flaw is located using the standard
TFM. Then, the distance of the defect from the array coupled with the estimated wave speed gives rise to a time interval pertaining to
scattering by the defect. The Fourier transform is applied to the FMC data in this interval. Then, the amplitude at a specified frequency
is plotted for each transmit-receive pair to generate the scattering matrix.

series data) when a wave is emitted at location xs and re-
ceived at location xr and c is the estimated constant wave
speed throughout the host medium. When the distance of
the defect from the array is known, it can be coupled with
the estimated wave speed c to give rise to a time pertaining
to scattering by the defect. Some interval is taken around
this value and a discrete Fourier transform is applied. From
the resulting spectral data a scattering matrix can be gen-
erated at a chosen frequency by plotting the amplitude of
the power spectrum at that frequency for every transmit-
rece ive pair. The scattering matrix is then assigned as the
operator F and the Factorisation Method can be applied

accordingly. This process is depicted in Figure 2 and can
be summarised in four key steps:
1. Apply the TFM algorithm (see equation (26)) to the

raw FMC data to find the location of the defect.
2. For each pair of transmit-receive elements, calculate the

distance from the transmitter xs to the centre of the de-
fect in the TFM image and back to the receiver xr. Cou-
pled with the wavespeed in the material, c, calculate the
point of interest in time, ts,r. Take an interval centered
round ts,r on each set of time series data As,r.

3. Take a discrete Fourier transform over this interval to
obtain the frequency spectrum Ys,r.
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4. The amplitude of Ys,r at a specific frequency f is as-
signed as the element Fs,r of the scattering matrix F at
that frequency.

Note that the size of the time interval depends on the
size of the defect and its proximity to other scatterers (we
would ideally not incorporate data arising from other scat-
terers within the interval). It is clear that, for every FMC
dataset there exists a set of scattering matrices, each one
at a different frequency. Choosing a frequency at which
to operate is not straightforward: the best reconstructions
rarely arise from the scattering matrix generated at the
center frequency of the transducer. Identifying which sin-
gle frequency results in the optimal reconstruction of the
flaw requires a priori knowledge of the defect dimensions.
Hence, a multi-frequency approach (where scattering ma-
trices spanning at least the −6 dB bandwidth of the trans-
ducer are summed at regular intervals) is introduced, ex-
ploiting more of the information made available by the
bandwidth of the transducer whilst removing the subjec-
tive aspect of identifying the frequency which affords the
best flaw reconstruction.

3.1. Simulated and Experimental Data Sets

In this paper, the Factorisation Method is applied to data
arising from two sources. Firstly, the scattering of an ultra-
sonic wave by a flaw is simulated using a time domain fi-
nite element method in the software package PZFlex [35].
In this paper, three FMC datasets generated using this
method are examined (the parameters are listed in Tables
I and II). Firstly the scattering by a 5mm crack with 40◦

orientation (relative to the horizontal axis) embedded in a
homogeneous medium was simulated. The same flaw was
then placed in a heterogeneous environment where the lo-
cally anisotropic microstructure of an austenitic steel weld
(derived from experimental electron backscatter diffrac-
tion measurements [36]) was embedded in the simulation
(see Figure 3). In both instances the domain was meshed
with elements of dimension λ/15, where lambda is the
wavelength. The 1.5MHz sinusoidal excitation used thus
gave rise to elements approximately 200 µm square, which
is sufficient to accurately model the wave propagation. In
the heterogeneous case, the weld structure consisted of
grains where contigious crystallites with similar orienta-
tions were grouped together to form locally anisotropic
regions. The correlation length [37] was estimated as λ/8
and the RMS longitudinal velocity through this heteroge-
neous medium was estimated as 5758m/s with a standard
deviation of 146m/s (calculated using the times corre-
sponding to the backwall echo in the A-scans where trans-
mission and reception took place on the same element).
The location of the flaw and this estimated average wave
speed were then used to isolate the time interval pertaining
to the flaw and the relevant scattering matrices were thus
obtained (see Section 3 and Figure 2). Note that by isolat-
ing the time interval using the estimated longitudinal ve-
locity, shear wave scattering (which should occur at a later
time) is neglected, as is secondary scattering which occurs
after the wave has reflected off the back wall and interacts

Table I. Parameters used in the FE simulation of an ultrasonic
phased array inspection of an embedded 5mm crack. H.M.: Ho-
mogeneous Medium, M.I.: Microstructure Included.

H.M. M. I.

Number of Array Elements 64 64
Pitch 2mm 2mm
Transducer Center Frequency 1.5MHz 1.5MHz
Depth of Flaw 50mm 50mm
Depth of Sample 78.4mm 78.4mm
Material Density 7874 kg/m3 7874 kg/m3

Estimated wave speed 5900m/s 5758m/s
(from TFM)

Table II. Parameters used in the FE simulation of an ultrasonic
phased array inspection of an 2.5mm diameter side-drilled hole.

Value Unit

Number of Array Elements 128 -
Pitch 0.7 mm
Transducer Center Frequency 2.25 MHz
Sample Rate 25 MHz
Depth of Sample 50 mm
Depth of Flaw from Array 30 mm
Flaw diameter 2.5 mm
Estimated wave speed 5801 m/s

Figure 3. Geometry input to the finite element simulation where
a 5mm crack with 40◦ orientation (relative to the horizontal axis)
is embedded in an austenitic weld microstructure. The 128 ele-
ment 2.25MHz array is placed directly above the flaw over the
weld material. The white box depicts the sampling domain.

with the defect on its return journey. The third simulated
dataset examines an alternative scenario where a 2.5mm
side-drilled hole is embedded in the parent stainless steel
material to the left of the weld microstructure, at a depth of
30mm from the array (this is similar to the experimental
sample as detailed in Table III). A schematic is shown in
Figure 4, with parameters recorded in Table II. The RMS
longitudinal velocity through this sample medium was es-
timated as 5801m/s with a standard deviation of 363m/s
(relatively large as approximately N/2 elements lay over
the homogeneous parent material and the others over the
anisotropic weld structure).
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Table III. System parameters for the experimental phased array
inspection of a 3mm diameter side-drilled-hole embedded next
to an ultrasonically noisy MMA weld.

Value Unit

Number of Array Elements 128 -
Pitch 0.7 mm
Transducer Center Frequency 2.25 MHz
Sample Rate 25 MHz
Depth of Sample 50 mm
Depth of Flaw from Array 30 mm
Flaw diameter 3 mm
Estimated wave speed 5580 m/s

Figure 4. Geometry input to the finite element simulation where a
2.5mm diameter side-drilled hole is embedded in the parent ma-
terial (stainless steel) close to a highly scattering polycrystalline
region which represents an austenitic steel weld. The 128 ele-
ment 2.25MHz array is placed directly above the flaw over the
parent and weld materials. The white box depicts the sampling
domain.

Secondly, the Factorisation Method was applied to ex-
perimental data. The first test sample considered in this
paper is a steel block containing an ultrasonically noisy
manual metal arc (MMA) weld. The defect of interest is
a 3mm diameter side drilled hole lying to the left of the
weld, 30mm from the front face of the 50mm thick sam-
ple, as shown in Figure 5. The inspection was carried out
by a 2.25MHz linear array (Vermon, France) as specified
in Table III combined with the Zetec DYNARAY® (Zetec,
Canada) array controller. The RMS longitudinal veloc-
ity through this heterogeneous medium was estimated as
5580m/s with a standard deviation of 192m/s. Note that
these values differ from the comparable simulation de-
scribed in Table II as the weld geometry used in the simu-
lation does not come from this particular sample and pro-
vides only an estimate of the effects of multiple scattering
in the ultrasonically noisy MMA weld present in the ex-
periment. TFM images were constructed using this exper-
imentally derived phase velocity to identify the location
of the defect before scattering matrices were generated as
discussed in Section 3.

The second experimental test sample considered was
manufactured from welded austenitic steel plates with im-
planted defects. The defect of interest is a 7.8mm lack-of-
fusion crack between the weld and steel plate, lying at a

Table IV. System parameters for the experimental phased array
inspection of a 7.8mm lack-of-fusion crack on the boundary of
an austenitic double V weld.

Value Unit

Number of Array Elements 128 -
Pitch 0.7 mm
Transducer Center Frequency 5 MHz
Sample Rate 100 MHz
Depth of Sample 22 mm
Depth of Flaw from Array 16 mm
Estimated wave speed 5820 m/s

Figure 5. This schematic depicts a cross section (the x-z plane
in which we are interested) of a steel sample containing an ultra-
sonically noisy MMA weld. A 3mm diameter flaw is embedded
in the parent material to the left of the the weld (marked by the
hatched area) and the 128 element 2.25MHz array is placed cen-
trally above the defect, over the parent and weld materials.

Figure 6. This schematic depicts a cross section (the x-z plane
in which we are interested) of the stainless steel test sample con-
structed from welded austenitic plates of 22mm depth. A lack-
of-fusion crack of 7.8mm length lies along the left hand side of
the weld (marked by the shaded area) at an angle of 50◦ (relative
to the horizontal axis).

50◦ angle, relative to the horizontal axis, in close proxim-
ity to the back surface of the sample (see Figure 6). The in-
spection was carried out by a 5MHz linear array (Vermon,
France) as specified in Table IV, combined with the Zetec
DYNARAY® (Zetec, Canada) array controller. The RMS
longitudinal velocity through this heterogeneous medium
was estimated as 5820m/s. As before, relevant time in-
tervals were isolated using TFM imaging and scattering
matrices were thus generated.
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3.2. Application to FMC Data Generated by the Fi-
nite Element Method

In [10] it is indicated that in the case of limited aperture
data, where the far-field pattern u∞(x̂, θ) is known only for
x̂, θ ∈ U , U ⊂ S2 (that is, where there is a limited angle of
inspection), the far-field operator F is not normal. As the
FMC data used in this paper arises from ultrasonic inspec-
tions by a linear phased array, the Factorisation Method is
applied to the F# operator here (see Section 2.1).

Figure 7 depicts reconstructions of a 5mm crack orien-
tated at 40◦ to the horizontal axis, embedded in a homo-
geneous medium, using FMC data generated by the time
domain finite element method (see Section 3.1, Table I).
Note that the sampling domain is a 20mm2 region cen-
tered on the flaw (see Figures 3 and 4) and this remains
constant for all reconstructions shown in this paper. As
discussed in Section 3, only a subset of the FMC dataset
(arising from the central 44 elements) has been considered
in order to exclude scattering by the backwall. This offers
an angular aperture of only 83◦, less than one quarter of
the full aperture (360◦) at which the Factorisation Method
performs optimally. No TSVD has been taken here as the
flaw is embedded in a completely homogeneous medium
and the null space of the scattering matrix already ex-
ists. The image is plotted over a 6 dB dynamic range (a
standard threshold for measuring defects larger than one
wavelength) where the outermost contour is aligned to this
limit. Figure 7a shows the known geometry and size of
the defect. Image (b) depicts the reconstruction generated
by applying the Factorisation Method to the single fre-
quency (1.5MHz) scattering matrix. Although the result-
ing image is oversized (11.7mm in length) and includes
two lower amplitude artefacts, the method has identified
the defect as a tilted ellipse-like scatterer. As discussed in
Section 3, it is possible that improved reconstructions of
the flaw may be achieved at different frequencies. How-
ever, without a priori knowledge of the flaw’s dimensions,
the optimal frequency cannot be deduced. Thus the multi-
frequency approach was adopted to generate image (c)
where scattering matrices were generated over the range
0.75MHz–2.25MHz, at intervals equal to the sampling
frequency fs, and then summed. Again, the result is a tilted
ellipse although this time the additional artifacts have dis-
appeared and an improved crack length estimate of 9.6mm
is achieved.

To further assess the suitability of the Factorisation
Method for application in NDT, it has been applied to
data arising from the FEM simulation of an ultrasonic
wave scattered by a 5mm crack of 40◦ orientation (rela-
tive to the horizontal axis) embedded in a heterogeneous
medium (see Section 3.1 for details and Figure 7a for the
defect size and geometry). Again, to exclude the signals
where the flaw scattering is conflated with that of the back
wall, only the data arising from the central 44 array el-
ements is considered (an angular aperture of only 83◦).
In Figure 8, results from application of the Factorisation
Method to variants of the scattering matrix are plotted.
Image (a) shows the reconstruction arising from the sin-
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Figure 7. Crack reconstructions from FMC data arising from fi-
nite element simulation of the scattering of ultrasonic waves by
a 5mm crack with 40◦ orientation embedded in a homogeneous
medium. Image (a) depicts the known defect size and geometry.
This was reconstructed by (b) the Factorisation Method applied
to the scattering matrix arising at 1.5MHz and (c) the Factorisa-
tion Method applied to the multi-frequency scattering matrix.

gle frequency (1.5MHz), non regularised (m = 44) scat-
tering matrix, measuring 7.3mm. Image (b), demonstrates
the result when only the first four largest singular values
are used to approximate a smoother single frequency scat-
tering matrix at 1.5MHz (m = 4). Although the measure-
ment is 9mm, the method has correctly determined that
we are dealing with a crack-like flaw. Image (c) arises
from the multi-frequency (spanning the range 0.75MHz-
2.25MHz at intervals of fs), non-regularised (m = 44)
scattering matrix, and the 6dB contour measures 5.03mm
across. Unfortunately, the fact that the crack is tilted is al-
most entirely lost in this reconstruction. When the multi-
frequency approach is combined with the TSVD (m = 4),

961



ACTA ACUSTICA UNITED WITH ACUSTICA Tant et al.: Application of Factorisation Method
Vol. 103 (2017)

-0.01 -0.005 0 0.005 0.01

Width (m)

(a)

-0.01

-0.005

0

0.005

0.01

D
e
p
th

(m
)

-0.01 -0.005 0 0.005 0.01

Width (m)

(b)

-0.01

-0.005

0

0.005

0.01

D
e
p
th

(m
)

-0.01 -0.005 0 0.005 0.01

Width (m)

(c)

-0.01

-0.005

0

0.005

0.01

D
e
p
th

(m
)

-0.01 -0.005 0 0.005 0.01

Width (m)

(a)

-0.01

-0.005

0

0.005

0.01

D
e
p
th

(m
)

Figure 8. Crack reconstructions from FMC data arising from finite element simulation of the scattering of ultrasonic waves by a 5mm
crack with 40◦ orientation embedded in a heterogeneous medium by the Factorisation Method applied to (a) the scattering matrix
arising at 1.5MHz, (b) the scattering matrix arising at 1.5MHz regularised by the TSVD (m = 10), (c) the multi-frequency scattering
matrix and (d) the multi-frequency scattering matrix regularised by the TSVD (m = 4).

image (d) is obtained which better represents the nature
of the tilted crack defect. However, at the −6 dB thresh-
old, the diameter of the reconstructed flaw is 8mm and its
orientation is 69◦, both presenting significant errors when
compared to the known 5mm length and 50◦ orientation.

A final simulated dataset where a 2.5mm diameter disc
was embedded in the parent material to the left of the weld
was also interrogated. Here data arising from the central 64
elements of the 128 element linear array was used to gen-
erate the scattering matrices for inspection by the Factori-
sation Method, affording an angular aperture of 112◦. The
exact defect geometry is shown in Figure 9 (a). Image (b)
shows the results from interrogation of the scattering ma-
trix arising at 2.25 MHz whilst image (c) arises from the
multi-frequency scattering matrix generated over the fre-
quency range 1.125MHz-3.375MHz. In this case, taking
the TSVD of the scattering matrix inhibited the method’s
ability to characterise the flaw. This can be attributed to the
fact that the flaw is embedded in a homogeneous medium
and since its scattering has been successfully isolated from
that of the weld by limiting the aperture of inspection,
taking the TSVD only serves to remove data relevant to
the flaw. Additionally, the question of how many singu-
lar values should be considered can be avoided (although
we have a suggested a thresholding technique in Section
2.2, how to optimally truncate the SVD remains an open
question). The diameters of the disc (measured along the
longest dimension) are 3.4mm and 2.8mm respectively.

By using the multi-frequency scattering matrix, not only
is the flaw size estimate improved but a lower aspect ratio
ellipse is yielded and thus the disc nature of the defect is
better defined.

To comment on the potential of the Factorisation
Method as a tool for improved flaw characterisation,
the standard time domain imaging algorithm, the Total
Focussing Method (TFM) [2], has been applied to the
datasets which gave rise to the reconstructions shown in
Figures 8 and 9, and the results are plotted in Figure 10.
On initial examination, it can be observed that the image
of the crack in 10a better captures the 40◦ orientation of
the defect. However, the −6 dB threshold gives rise to a
crack length estimation of 9.8mm, which compares poorly
to the measurements obtained by each version of the Fac-
torisation Method presented in Figure 8. Additionally, we
observe two distinct peaks, a side effect which is inherent
to the TFM imaging algorithm. This effect can also be ob-
served (to a lesser extent) in plot 10 (b), which shows the
reconstruction of the side-drilled hole embedded to the left
of the austenitic weld. The reconstructed defect measures
6.7mm along the horizontal, which compares poorly to the
2.8mm measurement obtained using the multi-frequency
factorisation method (recall the flaw has a diameter of
2.5mm). Through further comparison of Figures 8, 9 and
10, it is also observed that the Factorisation Method bet-
ter distinguishes between the crack defect and disc defect
when the multi-frequency data are interrogated (images 8b

962



Tant et al.: Application of Factorisation Method ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 103 (2017)

-0.01 -0.005 0 0.005

Width (m)

(a)

-0.01

-0.005

0

0.005

0.01

D
e
p
th

(m
)

-0.01 -0.005 0 0.005 0.01

Width (m)

(b)

-0.01

-0.005

0

0.005

0.01

D
e
p
th

(m
)

-0.01 -0.005 0 0.005 0.01

Width (m)

(c)

-0.01

-0.005

0

0.005

0.01

D
e
p
th

(m
)

Figure 9. Reconstructions of a 2.5mm diameter disc as shown in
image (a) from FMC data arising from finite element simulation
(see Table III) by the Factorisation Method applied to (b) the
scattering matrix arising at 2.25MHz and (c) the multi-frequency
scattering matrix.

and 8d and 9c). This improved flaw identification comple-
ments previous work on flaw classification [38, 39] where
the primary objective is to distinguish between crack de-
fects and volumetric scatterers.

3.3. Application to Experimental FMC Data

Figure 11 depicts reconstructions of the 3mm disc from
the experimental data as detailed in Table III. Once again,
the aperture had to be cropped to exclude interference of
the flaw scattering by that of the back wall and so the
scattering matrix used arises from the central 64 elements
placed directly above the flaw (again affording an angular
aperture of 112◦). Image (a) shows the known defect size
and geometry, image (b) arises from application of the fac-
torisation method to the single frequency scattering matrix
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Figure 10. Reconstructions plotted at the −6 dB threshold of (a)
the 5mm crack embedded within the anisotropic steel weld and
(b) the 2.5mm diameter disc embedded to the left of the weld
(see Tables I and II respectively) by the Total Focussing Method.

at 2.25MHz and image (c) presents a similar reconstruc-
tion, this time arising from the multi-frequency scattering
matrix generated by summing over the range 1.125MHz–
3.375MHz at intervals equal to the sampling frequency,
fs. Note that the TSVD was not employed here as the flaw
lies within the homogeneous parent material and so inter-
ference by the microstructue does not dominate the scat-
tering matrix. Measuring the defects along their longest
dimension gives rise to defect measurements of 4mm and
2.9mm respectively.

Figure 12 depicts reconstructions of the 7.8mm crack
from the experimental data as detailed in Table IV. Once
again, the aperture had to be cropped to exclude interfer-
ence of the flaw scattering by that of the back wall and
so the scattering matrix used arises from the 42 elements
placed directly above the flaw. This gives rise to an an-
gular aperture of 122◦. Note that due to the close prox-
imity of the flaw to the backwall, it was not possible to
entirely separate the scattering by the flaw from that of
the backwall. Image (a) shows the known defect geome-
try and size. Image (b) arises from the single frequency
scattering matrix at 5MHz and image (c) arises from the
multi-frequency scattering matrix generated by summing
over the range 2.5MHz–7.5MHz at intervals equal to the
sampling frequency, fs. Measuring the defects along their
longest dimension gives rise to defect measurements of
9.3mm and 8.6mm respectively, exhibiting relative errors
of 19% in the case where the scattering matrix at a single
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Figure 11. The geometry of the 3mm diameter disc is plotted in
(a). Reconstructions from FMC data arising from the phased ar-
ray inspection of a steel block (see Table II) by the Factorisation
Method applied to (b) the scattering matrix arising at 2.25MHz
and (b) the multi-frequency scattering matrix.

frequency is examined and an improved 10% error where
multiple frequencies are considered. Furthermore, by us-
ing the multi-frequency scattering matrix, the defect can
be better identified as crack like than from the image aris-
ing from the data at a single frequency: the ratio of the
crack length to crack width (which should be large) is ap-
proximately 3.8 in the single frequency case, increasing to
5.2 in the multi-frequency case.

4. Conclusions

This paper has put forward a framework for using the Fac-
torisation Method as a tool for flaw characterisation in the
ultrasonic NDT industry. A brief derivation was provided

-0.01 -0.005 0 0.005

Width (m)

(a)

-0.01

-0.005

0

0.005

0.01

D
e
p
th

(m
)

-0.01 -0.005 0 0.005 0.01

Width (m)

(b)

-0.01

-0.005

0

0.005

0.01

D
e

p
th

(m
)

-0.01 -0.005 0 0.005 0.01

Width (m)

(c)

-0.01

-0.005

0

0.005

0.01

D
e
p
th

(m
)

Figure 12. Reconstructions of the 7.8mm crack orientated at 50◦

with respect to the x-axis shown in (a) from FMC data arising
from the phased array inspection of welded austenitic plates (see
Table IV) by the Factorisation Method applied to (b) the scatter-
ing matrix arising at 5MHz and (c) the multi-frequency scatter-
ing matrix.

to introduce the algorithm and subsequent application to
synthetic time domain data as modelled in the software
package PZFlex was carried out. Every case considered
in this paper arose from limited aperture inspections with
angles of inspection ranging between 83◦ and 122◦ (com-
pared to the ideal 360◦ full aperture cases at which this
method optimally performs). A method for isolating flaw
scattering in the time domain before converting it to fre-
quency domain scattering matrices was presented. Due to
the time domain nature of the data, information was then
made available for a range of frequencies at which scatter-
ing matrices could be generated and subsequently interro-
gated by the Factorisation Method. Initial implementation
of the algorithm was carried out at the center frequency
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of the transducer array before a multi-frequency approach
was adopted. In the case where the flaw was embedded in
highly scattering medium it was shown that by using only
a subset of the singular values, interference by noise could
be minimised. Additionally, the method outperformed the
standard imaging algorithm (the total focussing method,
TFM) in sizing and differentiating between two different
types of flaws: a volumetric side-drilled hole and an an-
gled crack-like scatterer. The algorithm was applied to two
experimental data sets, one in which a side-drilled hole lay
next to a weld and the other where a lack-of-fusion crack
lay on the boundary of the weld. In both cases, taking the
TSVD inhibited the Factorisation Method’s performance
(this can be attributed to the exclusion of valuable data).
However, the multi-frequency approach yielded good flaw
size estimates with errors of 0.1mm for the 3mm diameter
side drilled hole and 0.7mm for the 7.8mm crack. And so,
there remains much work to be done in order for the Fac-
torisation Method to be adopted by end-users. However,
this paper proposes a framework in which time domain,
limited aperture data can be brought into the Factorisation
Method domain. One natural direction to extend this work
would be to consider the elastodynamic equations (rather
than the Helmholtz equation). Also, it would be of interest
to investigate the use of the Factorisation Method in the
time-frequency domain [40].
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978c-2c35cdbfcf87
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