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Abstract— The foreseen high penetration levels of wind 

energy will have serious implications on frequency stability, 

hence developed control methods of wind turbine and 

alternative technologies including energy storage should 

enable the provision of frequency support by wind power. 

Active research is ongoing to investigate the possibility of 

collecting and transmitting offshore wind power through 

low frequency alternating current systems (LFAC). This 

paper develops a novel method to enhance frequency 

support capability of generators connected to a LFAC 

system. The leveraged frequency regulation ability of the 

generators at LFAC system is emphasized. The voltage is 

proportional to the frequency of the LFAC system, so that 

the transformers can be protected when frequency drops. 

Then the generators at LFAC system acquire sufficient time 

for frequency regulation.   In this paper, a hydro generator 

at LFAC system is regarded as an energy storage plant, 

which is connected to the LFAC system rather than normal 

frequency grid.  

Index Terms— Frequency regulation, Low frequency AC 

systems (LFAC),  hydropower, wind power. 

I. INTRODUCTION  

The high penetration levels of wind energy will 
challenge system stability, which will cause voltage 
fluctuation, harmonics, frequency deviations and power 
flow congestions [1, 2]. Recently, there are many methods 
to alleviate such challenges, where batter energy storage is 
a key to resolve active power imbalance problem, but 
there is still some financial barriers to expand the 
integration of energy storage, mainly battery-based 
stations [3-5]. Demand side management is an economical 
alternative, but since the penetration levels of wind 
increase, more curtailable load is required, which may 
influence users’ behavior in some extent [6-8]. FACTS 
based on power electronics expand transmission capacity 
of existing infrastructure and alleviate power flow 
congestions, hence more wind energy could be integrated 
into grid [9-11]. 

Low Frequency AC system (LFAC) is also known as 
the Fractional Frequency Transmission System (FFTS). 
This idea was raised by Wang in 1990s [12, 13] . 
Compared to high voltage direct and alternating current 
(HVDC and HVAC), LFAC has economic advantages, 
when the distance to shore is between 50 km to 200 km 
[14-17]. Most papers focus on the simulation of frequency 
changer including transformer saturation ability and 

thyristor-based cyclo-converters. In this paper, Voltage-
Sourced Converter (VSC) is integrated to step down the 
frequency to match the LFAC. 

It is preferred to run hydropower synchronous 
generators at lower speeds compared to thermal power 
plants due to the nature of the machine stator, which is 
commonly a salient one in hydro generators [18]. Hence 
this paper integrates a hydropower plant at LFAC (50/3 
Hz in this paper) to act as an energy storage station. This 
makes full use of the LFAC system inertia and potential 
frequency regulation ability of hydro generators, so that 
more renewable energy can be collected and transmitted 
through LFAC system with an improved capability to 
provide frequency ancillary services [16, 19, 20]. The 
LFAC system will achieve a compromise between the 
sensitivity of normal frequency synchronous generators, 
which are more vulnerable to large frequency deviation 
and HVDC links which are decoupled from grid 
frequency fluctuations. The frequency stability at utility 
grid (50 Hz in this paper) systems is of higher priority 
than at LF systems. Thus, frequency deviation margin at 
LFAC system is relatively higher compared to utility grid.  

In this context, the paper proposes a new concept to 
enhance frequency regulation at utility grid utilizing the 
generators at LFAC system to allow ‘bonus time’ to 
conventional generators at utility grid to respond to 
frequency events. This concept could enable the wind 
power to provide frequency support, and also improves 
the recovery period of wind turbines (e.g. recovery to 
nominal rotor speed in case of kinetic energy extraction 
[21]) after they provide frequency support to avoid the 
excavation of further events.  

II. METHODLOGY 

LFAC is used for long distance and large scale power 
transmission. VSC-converters are integrated to connect 
LFAC system and utility grid via High Voltage Direct 
Current links (HVDC). Hence, frequency events at each 
system do not have an impact on each other, since they are 
decoupled through the HVDC link. In addition, this 
reflects the possibility of having a wind power cluster 
connected via HVDC link, however the generation assets 
at LFAC system are still able to provide frequency 
support, on behalf or in coordination with the wind power 
cluster. Frequency events can be tolerated at LFAC 
system to the favor of securing active power support to the 



utility grid. Relatively larger frequency drops could be 
allowed at LFAC system, if all the equipment such as 
generators, transformers, power transmission lines and 
VSC can tolerate this frequency event. In utility grid, the 
frequency regulation is limited by the finite time, because 
it has to comply with more strict frequency deviations 
margin and time frame according to grid code [22].  

A. Bonus time 

Bonus time is the additional time to be provided for 
frequency support at utility grid. The main idea is to allow 
a certain margin of frequency drop at the LFAC system to 
provide active power surge to the utility grid and tackle 
the frequency incident at the utility grid (i.e. mitigate 
frequency nadir and rate of change of frequency; 
ROCOF). To illustrate this concept, an assumption is 
made where an identical frequency event happens at two 
systems one is LFAC and the other is NFAC (i.e. per unit 
parameters of generators, transformers and power 
transmission lines are identical), hence the p.u. values of 
ROCOF at both systems are equal. The bonus time (Tbonus) 
can be obtained using (1); 
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where fo
LF and fo

NF are the nominal frequencies at LFAC 
system and NFAC system respectively, while fc

LF and fc
NF 

are the critical frequencies, ROCOFLF and ROCOFNF are 
the ROCOFs at LFAC system and NFAC system 
respectively. When fc

LF < fc
NF, Tbonus > 0 which allows 

more time to synchronous generators at utility grid to 
provide frequency support and mitigate the impact of 
reduced inertia due to the integration of wind energy. 

Bonus time can be produced by increasing the total 
system inertia constant (H) at LFAC system, i.e. large 
rotating mass levels up the system inertia and/or reducing 
fc

LF. As an illustration, the NFAC system can operate 
within 49.5-50.5 Hz as statutory limits, comparably, 
LFAC system can be operated within 16.5-16.8 Hz. 
Likewise, when the frequency range at LFAC system is 
(16-17.3 Hz), it is equivalent to (48-52 Hz) at the NFAC 
50Hz system. This means that frequency margins at 
LFAC system are slightly refrained from grid code 
requirements i.e. the LFAC system is considered to be 
‘behind the meter’. The adaptability of the equipment at 
LFAC system to tolerate larger frequency drops is 
investigated through the next sections.  

B. Cooperation enhancement 

Cooperation enhancement provides a new control 
strategy to make all equipment change operating state to 
support each other instead of each element individually. 
To most of the transformers at LFAC system, the power 
flow is unidirectional, from hydro and wind generators to 
frequency converter side. The primary voltage of the 
transformer is obtained using (2); 
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where UT, UG, and e are the primary voltage of the 
transformer, output voltage and induced electromotive 
force of the synchronous generator respectively. System 
frequency (f) has direct impact on B and A which are the 
number of turns, magnetic field density and area of the 
coil respectively.  

Pm
T is the maximum active power of the transformer, 

which can be assumed proportional to UG since the 
excitation current (im) is almost constant. In cooperation 
enhancement control depicted in Fig.1, when frequency 
drops, UT is controlled to be proportional to frequency by 
adjusting field voltage (Uf), so that the transformer is not 
saturated. The primary voltage of the transformer, 
according to cooperation enhancement, is curtailed to 0.94 
per unit, hence The Pm

T is limited, but the actual 
transferred power is not amended as long as it does not 
violate the curtailed value of Pm

T. Consequently, the 
proposed cooperation enhancement control at LFAC 
system, Pm

T of transformer is proportional to frequency 
according to (2), while the delivered power is not 
influenced, when the transformer is not under full 
loading condition, where a numerical example is 
presented in Table I.  

III. TEST SYSTEMS 

Two Matlab®/Simulink models are developed to 
compare the frequency regulation of systems with/without 
LFAC frequency support. Both models rely on the 
accredited SimPowerSystems examples of Hydro 
generator and VSC-HVDC transmission with three-level 
Neutral Point Clamped (NPC) VSC with single phase 
carrier Sinusoidal Pulse Width Modulation (SPWM) 
switching. The integrated power electronics converters 
models are detailed and accurate not average or phasor 
models. Active and reactive power control is adopted in 
converter station at hydro side, meanwhile, DC voltage 
and reactive power control is adopted in converter station 
at utility grid. The simulation time step is 7µs to capture 
all the system transients. And this is the first time to 
research the frequency transient stability of LFAC systems 
including hydro generator and VSC station according to 
authors’ knowledge. 

TABLE I. KEY PARAMETERS VALUES BEFORE AND DURING EVENT 

Parameter Initial values During frequency drop 

frequency 1 per unit 0.94 per unit 

Magnetic flux density 1 per unit 1 per unit 

Transformer terminal voltage 1 per unit 0.94 per unit 

Excitation current 1 per unit 1 per unit 

 

 
Figure 1. Schematic of cooperation enhancement control (U: generator 

terminal voltage, Uf: field voltage, f: network frequency) 
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(a) 

 

(b) 

 

Figure 2. LFAC system + VSC-HVDC + Utility grid (Model 1);  b) 

NFAC system + VSC-HVDC + Utility grid (Model 2) 

In Model 1 depicted in Fig.2.a, the new control 
method is applied to the hydropower plant connected to a 
LFAC system. In Model 2 shown in Fig.2.b, conventional 
control is applied to the hydropower plant connected to a 
NFAC system. Frequency regulation in different scenarios 
will be compared to prove the feasibility and test the 
ability of the proposed control method. The values of the 
key parameters of both models are found in the Appendix; 
Tables III, IV and V. 

IV. SCENARIOS AND RESULTS 

This section describes the three applied scenarios and 
the corresponding results of each scenario. 

A. Scenarios 

The applied scenarios are explained in Table II, where 
models 1 and 2 are displayed in Fig.2.a and Fig.2.b. 
Scenario 1 is designed to show how cooperation 
enhancement works when frequency drops. Scenario 2 
examines whether all the equipment is still functional, 
when the frequency deviation is over large within a certain 
range, while Scenario 3 compares the depth of frequency 
drop in NFAC with LFAC under similar event. And the 
frequency event in all the scenarios is triggered by the 
sudden active power change of VSC station at LFAC or 
NFAC system. 

TABLE II. APPLIED SCENARIOS 

Scenario Event Location Model 

1 
Active power set-point 

(0.45ĺ0.55 at t = 50s) 

VSC-HVDC converter 

station at LFAC 
1 

2 
Active power set-point 

(0.45ĺ0.6 at t = 50s) 

VSC-HVDC converter 

station at LFAC 
1 

3 
Active power set-point 

(0.45ĺ0.6 at t = 50s) 

VSC-HVDC converter 

station at NFAC  
2 

B. Results 

In Fig.3.a, the voltages of hydro generator and 

converter station at LFAC side are proportional to 

frequency at LFAC side (Fig.3.c) to protect transformers 

from saturation. Due to the lack of secondary frequency 

regulation in the model, the frequency is not exactly 1 p.u 

before the events, and it does not recover to 1 p.u. after the 

event. 

(a) 

 
(b) 

 
(c) 

 

Fig.3. a) Voltage response b) Active and reactive power, and c) 

Frequency response at the LFAC system in Scenario 1 

In Fig.3.b, to make long distance and large scale 

power transmission more economic, the delivered reactive 

power should be as small as possible, hence the 

configuration of the LFAC system power factor dependent 

on converter station is constant at unity. VSC -HVDC 

converter station can be regarded as a non-linear load, 

which can maintain the active power, when the voltage of 

LFAC system drops. In addition, active power and 

reactive power are controlled independently. The 

proposed cooperation enhancement can only be adopted 

when VSC-HVDC converter is the integrated power 

electronics interface to connect between the two systems 

of different frequencies. Otherwise, the voltage of 



transformer connected to either hydro generator or VSC 

converter station, will be higher enough to cause 

saturation problem, when the reactive power of frequency 

changer cannot be maintained around 0 p.u i.e. unity 

power factor. 

When frequency event occurs, triggered by the sudden 

change in demand power, and due to the presence of DC 

link which decouples the grid from the LFAC, the voltage 

at grid is marginally affected as shown in Fig.3.a. In 

addition, the frequency of the grid is at its nominal level as 

shown in Fig.3.c, which ensures that the grid is not 

influenced by this frequency event and electricity quality 

of grid meets requirements in terms of frequency and 

voltage stability [23].  

For Scenario 2, in Fig.4.a, since the voltage of the 

hydro generator is kept proportional to frequency by the 

modified set-point of the excitation system. However, 

when the frequency deviation excavates, the voltage drops 

leading to a change of reactive power of the converter 

station as shown in Fig.4.b. Comparing Scenarios 1 and 2, 

when the voltage of the converter station at LFAC system 

is below 0.95 p.u, the delivered reactive power is forced to 

be changed to maintain the voltage of converter station at 

LFAC system.  

For Scenario 3, Fig.5 compares frequency responses of 

LFAC system in Scenario 2 where the cooperation 

enhancement is not able to reduce the time of primary 

frequency regulation in NFAC system. Conversely, the 

transformers at LFAC system can tolerate the frequency 

deviation for longer time under the proposed cooperation 

enhancement with the response of NFAC system in 

Scenario 3. It is equivalent to that the frequency regulation 

at LFAC is more flexible and safe to the integrated 

transformers under the proposed cooperation enhancement 

method. 

In all the scenarios, the grid stability is marginally 

affected. However, the transformers at the hydropower 

station avoid saturation. In addition, the frequency at 

LFAC is able to tolerate a worse frequency dip to enable 

the provision of active power support to the grid applying 

the proposed cooperation enhancement control, which will 

be further investigated in future work. 

(a) 

 

(b) 

 
Fig.4. a) Voltage response and b) Active and reactive power in Scenario 

2 

 

Fig.5. Frequency responses in all scenarios 

V. CONCLUSIONS 

A new control strategy named cooperation 

enhancement provides an alternative approach to 

maintaining the frequency stability in Low Frequency AC 

system (LFAC). In the Simulink model, the VSC-HVDC 

is adopted as a frequency changer to connect LFAC 

system and utility grid. Two case studies of LFAC system 

and one case study of NFAC system presented in this 

paper, show how cooperation enhancement control 

strategy strengths the frequency regulation ability of hydro 

generator at LFAC system. The results of various studies 

show feasibility of this control strategy, when a large 

frequency event happened at LF side: 1) the equipment at 

LFAC system is protected 2) the LFAC system recover to 

steady state 3) the electricity quality at utility grid is 

slightly influenced. 

The benefits of this proposed concept is emphasizing 

the potential of frequency regulation ability of LFAC 

system; in addition, from the viewpoint of demand side, 

the hydropower plant behind VSC station can be regarded 

as an energy storage station. The future work includes an 

economic cost/benefit assessment to compare the 

proposed method to other conventional energy storage 

solutions. 
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VII. APPENDIX 

TABLE III. KEY PARAMETERS OF THE HYDRO TURBINE GENERATOR 

MODEL 

Automatic voltage regulator and exciter Turbine and governor 

Gain (Voltage regulator) 300 Inertia coefficient 3.2s 

Time constant Ta 0.001s Proportional gain 1.163 

Gain Ke (Exciter) 1 Integrator gain 0.105 

Time constant Te 0 s Permanent droop  0.5 

Damping filter gain Kf 0.001   

Time constant Tf 0.1s   

 

TABLE IV. KEY PARAMETERS OF THE INTEGRATED CONVERTERS 

MODELS 

LFAC system NFAC and Utility Grid 

Snubber resistance 5000 ȍ Snubber resistance 5000 ȍ 

Snubber capacitance 1e-6 F Snubber capacitance 1e-6 F 

Internal resistance 1e-3 ȍ Internal resistance 1e-3 ȍ 

DC Capacitor 2.1e-04 F DC Capacitor 2.1e-04 F 

Phase reactor 

(Resistance) 
0.0750 ȍ 

Phase reactor 

(Resistance) 
0.0750 ȍ 

Phase reactor 

(Inductance) 
0.0716 H 

Phase reactor 

(Inductance) 
0.0239 H 

 
TABLE V. PLL SETTINGS AT DIFFERENT NETWORKS 

Parameter/Network LFAC NFAC Grid 

Frequency  16.67 Hz 50Hz 50 Hz 

Proportional gain 10 20 60 

Integrator gain 170 10 1400 
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