
Waurick, Marcus and Trostorff, S and Franz, Sebastian (2016) Numerical 

methods for changing type systems. Working paper. arXiv.org, Ithica, NY. 

, 

This version is available at https://strathprints.strath.ac.uk/61487/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any correspondence concerning this service should be sent to the Strathprints administrator: 

strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research 

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the 

management and persistent access to Strathclyde's intellectual output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/84590376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


Numerical methods for changing type systems

Sebastian Franz∗ Sascha Trostorff† Marcus Waurick‡

November 9, 2016

Abstract

In this note we develop a numerical method for partial differential equations with

changing type. Our method is based on a unified solution theory found by Rainer

Picard for several linear equations from mathematical physics. Parallel to the solu-

tion theory already developed, we frame our numerical method in a discontinuous

Galerkin approach in space-time with certain exponentially weighted spaces.
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1 Introduction

Following the rationale presented in [9], most of the classical linear partial differential
equations arising in mathematical physics share a common form, namely the form of an
evolutionary problem. That is, we consider equations of the form

(∂tM0 +M1 + A)U = F, (1.1)

where F is a given source term, ∂t stands for the derivative with respect to time, M0,M1

are bounded linear operators on some Hilbert space H and A is an unbounded skew-
selfadjoint operator in H. We are seeking for a unique solution U of the above equation.
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We remark here that we do not impose initial conditions, since we consider the whole real
line as time horizon, and hence, we implicitly assume a vanishing initial value at “−∞”.
To illustrate the setting, we begin with presenting some examples.

Example 1.1. Let Ω ⊆ R
n an open non-empty set, where n ∈ N, but, typically n ∈

{1, 2, 3}. We define the following two differential operators

∇0 : H
1
0 (Ω) ⊆ L2(Ω) → L2(Ω)n,

assigning each function u ∈ H1
0 (Ω) its gradient, that is, the column-vector of its partial

derivatives in each coordinate direction. Moreover, we set

div := −(∇0)
∗ : D(div) ⊆ L2(Ω)n → L2(Ω),

which is nothing but the operator assigning each L2 vector-field its distributional diver-
gence with maximal domain, that is,

D(div) = {v ∈ L2(Ω)n :
n∑

i=1

∂ivi ∈ L2(Ω)}.

Since both the operators ∇0 and div are closed and skew-adjoints of one another, we infer
that the operator

A :=

(
0 div

∇0 0

)
: D(∇0)×D(div) ⊆ L2(Ω)× L2(Ω)n → L2(Ω)× L2(Ω)n

is skew-selfadjoint on the Hilbert space H = L2(Ω) × L2(Ω)n. Choosing M0 = 1 and
M1 = 0 in (1.1), the corresponding evolutionary problem reads as

(
∂t +

(
0 div

∇0 0

))(
u
v

)
=

(
f
g

)
.

If g = 0, this is nothing but the wave equation. Indeed, the second line then gives
∂tv = −∇0u, and hence, differentiating the first line with respect to time, we obtain

∂2t u− div∇0u = ∂ttu+ div ∂tv = ∂tf.

Note that div∇0 = ∆D is the classical Dirichlet–Laplace operator on L2(Ω).

Choosing M0 =

(
1 0
0 0

)
and M1 =

(
0 0
0 1

)
in (1.1), the corresponding problem reads as

(
∂t

(
1 0
0 0

)
+

(
0 0
0 1

)
+

(
0 div

∇0 0

))(
u
v

)
=

(
f
g

)
.

Setting again g = 0, the latter gives the heat equation. Indeed, the second line reads
v = −∇0u and hence the first line yields

∂tu− div∇0u = ∂t + div v = f.

2
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Finally, choosing M0 = 0 and M1 = 1 in (1.1), we get

(
1 +

(
0 div

∇0 0

))(
u
v

)
=

(
f
g

)
,

which in the case g = 0 gives the elliptic equation

u− div∇0u = f.

Remark 1.2. We note that we can treat the case of homogeneous Neumann boundary
conditions in the same way. The only difference is that we define ∇ as the distributional
gradient on H1(Ω) and div0 := −(∇)∗. Replacing now ∇0 by ∇ and div by div0 yields the
same hyperbolic, parabolic and elliptic type problem above, but now with homogeneous
Neumann boundary conditions.

Example 1.1 shows that evolutionary problems cover all three classical types of partial
differential equations, elliptic, parabolic and hyperbolic. However, also problems of mixed
type are covered as the next example shows.

Example 1.3. Recall the setting of Example 1.1. We decompose Ω into three measurable,

disjoint sets Ωell,Ωpar and Ωhyp and set M0 =

(
χΩhyp∪Ωpar

0
0 χΩhyp

)
as well as M1 =

(
χΩell

0
0 χΩpar∪Ωell

)
. The resulting evolutionary problem then is of mixed type. More

precisely, on Ωell we get an equation of elliptic type, on Ωpar the equations becomes
parabolic while on Ωhyp the problem is hyperbolic.

Remark 1.4. The interested reader might wonder that there is not imposed any trans-
mission condition on the unknown quantities along the interfaces of Ωell,Ωpar and Ωhyp.
However, this can be implemented automatically by being in the domain of the corre-
sponding operator sum, as can be seen, for instance, in [23, Remark 3.2], see also [13, An
illustrative Example]. Another example of a mixeed tyoe problem in contral theory can
be found in [12, Remark 6.2]

In [9], the well-posedness of problems of the form (1.1) has been addressed. In fact, it was
shown that these probolems also cover the classical Maxwell’s equations, the equations of
linearized elasticity or a general class of coupled phenomena, see, for instance, [7, 8, 11].
All these problems are indeed well-posed (see Section 2 for the precise statement). The
purpose of the present article is to provide numerical methods for such problems. In this
article, for the applications to follow, we will focus, however, on problems of mixed type
of the form sketched in Example 1.3. Moreover, as the spatial discretisation has to be
developed for each problem separately, anyway, in this work, we will put an emphasize
on the time-discretisation. Furthermore, we want to stress that the null-space of M0 in
(1.1) might be infinite-dimensional. Hence, we seek to develop a numerical scheme, which
in particular allows for the treatment of a certain class of (partial) differential-algebraic
equations.

3
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For the numerical treatment of the time derivatives we use a discontinuous Galerkin (dG)
method, see also Section 3. The first dG-method was published in 1973 on neutron
transport [15]. Later the methodology was developed further for classical hyperbolic,
parabolic and elliptic problems, see also the survey article [4] and the book [16]. Note
that there is a strong connection between dG-methods and Runge-Kutta (collocation)
methods, see [2] for parabolic problems.
In Section 2, for convenience, we will recall some essentials for evolutionary equations. In
particular, we recall the solution theory of problems of the type of equation (1.1). We will
introduce a semi-dicretised version, Equation (3.1), of equation (1.1) at the beginning of
Section 3. We will also provide a solution theory for this semi-discretised variant with
general underlying (spatial) Hilbert spaceH (Proposition 3.1). The remainder of Section 3
is devoted to estimate difference of the exact solution of (1.1) and the approximate solution
of (3.1): In Subsection 3.1, we bound the error by solely in terms of the interpolation
error, which will eventually be estimated in Subsection 3.2. As our prime example, we
address the full space-time discretisation of Example 1.3 and derive corresponding error
estimates. We verify our theoretical findings in Section 5 by means of a 1 + 1- and a
1 + 2-dimensional numerical example. This article is attached an appendix (Section 6),
where, for the convenience of the reader, we recall some well-known results on the Gauß–
Radau quadrature rule including the fact that the choice of Gauß–Radau points depends
continuously on the weighting function. We will need some implications of the fact just
mentioned in our a-priori analysis in Subsection 3.1.

2 The setting of evolutionary problems

In this section we briefly recall the well-posedness result stated in [9]. For doing so, we
need to specify the functional analytic setting. Throughout, let H be a real Hilbert space.

Definition. Let ρ > 0 and define the space

Hρ(R;H) := {f : R → H : f meas.,

∫

R

|f(t)|2H exp(−2ρt) dt <∞},

where we as usual identify functions which are equal almost everywhere. The space
Hρ(R;H) is a Hilbert space endowed with the natural inner product given by

〈f, g〉ρ :=
∫

R

〈f(t), g(t)〉H exp(−2ρt) dt (f, g ∈ Hρ(R;H)).

Moreover, we define ∂t to be the closure of the operator

∂t : C
∞
c (R;H) ⊆ Hρ(R;H) → Hρ(R;H) : ϕ 7→ ϕ′,

where by C∞
c (R;H) we denote the space of infinitely differentiable H-valued functions on

R with compact support. We denote the domain of ∂kt by Hk
ρ (R;H) for k ∈ N.

4
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Within the setting introduced, we can formulate the well-posedness for evolutionary equa-
tions of the form (1.1).

Theorem 2.1 ( [9, Solution Theory]). Let M0,M1 : H → H be bounded linear operators,
M0 selfadjoint and A : D(A) ⊆ H → H skew-selfadjoint. Moreover, assume that there is
some ρ0 > 0 such that

∃γ > 0∀ρ ≥ ρ0, x ∈ H : 〈(ρM0 +M1)x, x〉H ≥ γ〈x, x〉H .

Then, for each ρ ≥ ρ0 and each F ∈ Hρ(R;H) there exists a unique U ∈ Hρ(R;H) such
that

(∂tM0 +M1 + A)U = F, (2.1)

where the closure is taken in Hρ(R;H). Moreover, the following continuity estimate holds

|U |ρ ≤
1

γ
|F |ρ.

If F ∈ Hk
ρ (R;H) for k ∈ N, then so is U and we can omit the closure bar in (2.1).

Remark 2.2.

(a) Note that the positive definiteness condition in the latter theorem especially implies
〈M0x, x〉H ≥ 0 for each x ∈ H.

(b) We remark that H1
ρ(R;H) →֒ Cρ(R;H) by a variant of the Sobolev embedding theo-

rem [10, Lemma 3.1.59] or [5, Lemma 5.2]. Here,

Cρ(R;H) := {f : R → H : f cont., sup
t∈R

|f(t)| exp(−ρt) <∞}.

(c) If F ∈ H1
ρ(R;H) then U ∈ H1

ρ(R;H) and hence

AU = F − ∂tM0U −M1U ∈ Hρ(R;H),

which yields that U(t) ∈ D(A) for almost every t ∈ R. If even F, U ∈ H2
ρ(R;H) the

latter gives AU ∈ H1
ρ(R;H) and hence, using the Sobolev embedding result (see part

(b)), U ∈ Cρ(R;D(A)).

(d) The original result in [9] treat a general class of time-translation invariant coeffi-
cients. We refer to [13, 22] for non-autonomous variants as well as to [19, 20] for
non-autonomous and/or non-linear versions of Theorem 2.1.

We note that the equations treated in Example 1.1 and Example 1.3 satisfy the conditions
of the previous theorem and hence, are well-posed.

5
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3 Semi-discretisation in time

In this section, we discretise (1.1) with respect to time and do the a-priori analysis. We
assume that A,M0,M1 satisfy the assumptions of Theorem 2.1. Let ρ ≥ ρ0 and fix T > 0
and consider the time interval [0, T ] instead of the whole real line. We partition the time-
interval [0, T ] into subintervals Im = (tm−1, tm] of length τm for m ∈ {1, 2, . . . ,M} with
t0 = 0 and tM = T . Let q ∈ N. We define the space

U τ := {u ∈ Hρ(R;H) : ∀m ∈ {1, . . . ,M} : u|Im ∈ Pq(Im;H)},

where we denote by

Pq(Im;H) := lin {Im ∋ t 7→ tkζ ∈ H; k ∈ {0, . . . , q}, ζ ∈ H}

the space ofH-valued polynomials of degree at most q defined on Im. We endow Pq(Im;H)
with the scalar product

〈p, q〉ρ,m :=

tm∫

tm−1

〈p(t), q(t)〉H exp(−2ρ(t− tm−1)) dt

turning the space Pq(Im;H) into a Hilbert space.
The time integrals have to be evaluated numerically. We choose on each time interval Im
a right-sided weighted Gauß–Radau quadrature formula. To this end, denote by ωm

i and
t̂mi , i ∈ {0, . . . , q}, the weights and nodes of the weighted Gauß–Radau formula with q+1

nodes on the reference time interval Î = (−1, 1], such that

∫

Î

e−ρτm(t+1)p(t) dt =

q∑

i=0

ωm
i p(t̂

m
i )

holds for all polynomials p of degree at most 2q. Note that the weights and nodes can
always be numerically computed as shown for instance in [14, Chapter 4.6], see also the
appendix (Section 6) for some basic facts on the Gauß–Radau quadrature. With the
following standard transformation

Tm : Î → Im, t̂ 7→
tm−1 + tm

2
+
τm
2
t̂,

we define by

Qm [v] :=
τm
2

q∑

i=0

ωm
i v(tm,i)

with the transformed Gauß–Radau points tm,i := Tm(t̂
m
i ), i = {0, . . . , q}, a quadrature

formula on Im. Note that

Qm [p] =

∫

Im

p(t)e−2ρ(t−tm−1) dt

6
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for all polynomials of degree at most 2q.
Using

Qm [a, b]ρ := Qm [〈a, b〉H ]
instead of the scalar products 〈a, b〉ρ we employ the following discrete quadrature for-

mulation:
For given F ∈ U τ and x0 ∈ H, find U ∈ U τ , such that for all Φ ∈ U τ andm ∈ {1, 2, . . . ,M}
it holds

Qm [(∂tM0 +M1 + A)U,Φ]ρ + 〈M0[[U ]]
x0

m−1,Φ
+
m−1〉H = Qm [F,Φ]ρ . (3.1)

Here, we denote by

[[U ]]x0

m−1 :=

{
U(tm−1+)− U(tm−1−), m ∈ {2, . . . ,M}
U(t0+)− x0, m = 1,

and by Φ+
m−1 := Φ(tm−1+).

Proposition 3.1. Let F ∈ U τ , x0 ∈ H. Then there exists a unique solution of (3.1).

Proof. Let m ∈ {1, . . . ,M} and recall that Pq(Im;H) is a Hilbert space with the afore-
mentioned scalar product. We note that

∂t : Pq(Im;H) → Pq(Im;H) : p 7→ p′

and
δm−1 : Pq(Im;H) → R : p 7→ p(tm−1+)

are bounded linear operators. Consequently, the mapping

Pq(Im;H) → R : p 7→ 〈x, δm−1p〉H

is linear and bounded for each x ∈ H and thus, by the Riesz representation theorem,
there is a unique Ψ(x) ∈ Pq(Im;H) such that

〈Ψ(x), p〉ρ,m = 〈x, δm−1p〉H .

Moreover, the mapping Ψ : H → Pq(Im;H) is linear and bounded, since

|Ψ(x)|2ρ,m = 〈Ψ(x),Ψ(x)〉ρ,m = 〈x, δm−1Ψ(x)〉H ≤ |x|H‖δm−1‖|Ψ(x)|ρ,m (x ∈ H).

We now prove that for each g ∈ Pq(Im;H) there is a unique u ∈ Pq(Im;D(A)) such that

(∂tM0 +M1 + A)u+ΨM0δm−1u = g.

7
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For doing so, we first compute using integration by parts

〈∂tM0v, v〉ρ,m
=

1

2
〈∂tM0v, v〉ρ,m +

1

2
〈v, ∂tM0v〉ρ,m

=
1

2
〈∂tM0v, v〉ρ,m +

1

2

tm∫

tm−1

〈v(t),M0v
′(t)〉H exp(−2ρ(t− tm−1)) dt

=
1

2
〈∂tM0v, v〉ρ,m − 1

2

tm∫

tm−1

〈M0v
′(t), v(t)〉H exp(−2ρ(t− tm−1)) dt

+ ρ

tm∫

tm−1

〈M0v(t), v(t)〉H exp(−2ρ(t− tm−1)) dt+
1

2
〈M0v(tm), v(tm)〉H exp(−2ρτm)

− 1

2
〈M0v(tm−1), v(tm−1)〉H

≥ ρ〈M0v, v〉ρ,m − 1

2
〈ΨM0δm−1v, v〉ρ,m

for each v ∈ Pq(Im;H). Next, from A∗ = −A it follows 〈Ax, x〉H = 0 for each x ∈ D(A).
Therefore, for all u ∈ Pq(Im;D(A)) we get

〈(∂tM0 +M1 + A)u+ΨM0δm−1u, u〉ρ,m
= 〈∂tM0u, u〉ρ,m + 〈M1u, u〉ρ,m + 〈ΨM0δm−1u, u〉ρ,m
≥ 〈(ρM0 +M1)u, u〉ρ,m +

1

2
〈ΨM0δm−1u, u〉ρ,m

≥ γ〈u, u〉ρ,m,

where we have used

〈ΨM0δm−1u, u〉ρ,m = 〈M0u(tm−1+), u(tm−1)〉H ≥ 0.

In particular, both B := (∂tM0+M1)+ΨM0δm−1 and B+A are strictly positive definite.
Moreover, since B is bounded, B∗ is strictly positive definite, as well. Hence, from

(B + A)∗ = B∗ − A

we read off that (B+A)∗ is strictly positive definite as well. Thus, for each g ∈ Pq(Im;H)
there is a unique u ∈ Pq(Im;D(A)) = D(A+B) such that

(∂tM0 +M1 + A)u+ΨM0δm−1u = g (3.2)

Thus, we are in the position to define a solution for (3.1) by induction on m. For this,
we put U(t0−) := x0. Next, assume we have solved (3.1) for U on Im−1 for some m ∈
{1, . . . ,M} (I0 := {t0} and the equation is void). Then, let u ∈ Pq(Im;D(A)) be such

8
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that (3.2) holds for g = F |Im − ΨM0U(tm−1−). We put U |Im := u. The thus defined
function U solves (3.1): We observe

〈(∂tM0 +M1 + A)U,Φ〉ρ,m + 〈ΨM0δm−1U,Φ〉ρ,m
= 〈F −ΨM0U(tm−1−),Φ〉ρ,m = 〈F,Φ〉ρ,m + 〈ΨM0U(tm−1−),Φ〉ρ,m,

by definition for all Φ ∈ U τ and m ∈ {1, . . . ,M}. The latter is the same as saying

〈(∂tM0 +M1 + A)U,Φ〉ρ,m + 〈M0U(tm−1+),Φ(tm−1+)〉H
= 〈F,Φ〉ρ,m + 〈M0U(tm−1−),Φ(tm−1+)〉H .

But, since the quadrature is exact for polynomials up to degree 2q, the latter equation in
turn is equivalent to

Qm [(∂tM0 +M1 + A)U,Φ]ρ + 〈M0[[U ]]
x0

m−1,Φ
+
m−1〉H = Qm [F,Φ]ρ ,

which yields existence of U . Uniqueness follows from the uniqueness of u satisfying (3.2).

3.1 On some a-priori error estimates in time

After having proved the unique solvability of (3.1), we address the error estimates in the
following. In our analysis we will use the discretised norms

|||v|||2Q,ρ,m := Qm [v, v]ρ and |||v|||2Q,ρ :=
M∑

m=1

Qm [v, v]ρ e
−2ρtm−1

as approximations of |||v|||2ρ,m :=
∫
Im

|v(t)|2H exp(−2ρ(t− tm−1)) dt and |v|2ρ. Note that for
v ∈ U τ the approximation is exact.
Let us start by defining an interpolation operator into U τ and define by ϕm,i with i ∈
{0, . . . , q} the associated Lagrange basis functions to the nodes tm,i. Then we obtain for
a function v ∈ C([0, T ], H) by

(Pv)(0) = v(0), (Pv)
∣∣
Im
(t) =

q∑

i=0

v(tm,i)ϕm,i(t), m ∈ {1, . . . ,M}, (3.3)

an interpolation operator in time.
In the analysis to follow, we will consider the problem (2.1). In particular, we emphasize
that we assume that

the hypotheses of Theorem 2.1 are in effect.

Furthermore, we fix a right-hand side

F ∈ H2
ρ(R;H).

9
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Thus, by Theorem 2.1 (and Remark 2.2(c)) there exists a unique solution

U ∈ H2
ρ(R;H) with (∂tM0 +M1 + A)U = F. (3.4)

Also, by Remark 2.2(c), we obtain F ∈ Cρ(R;H) and U ∈ Cρ(R;D(A)). Moreover, we
set

U τ ∈ U τ to satisfy (3.1) for the right-hand side PF ∈ U τ and x0 := U(0+).

We consider the following splitting

U τ − U = ξ − η, where ξ = U τ − PU ∈ U τ and η = U − PU.

Note that for almost every t ∈ [0, T ] we have that

(∂tM0 +M1 + A)U(t) = F (t)

and thus,
〈(∂tM0 +M1 + A)U(t),Φ(t)〉H = 〈F (t),Φ(t)〉H

for each Φ ∈ U τ and almost every t ∈ [0, T ], which gives

Qm [(∂tM0 +M1 + A)U,Φ]ρ + 〈M0[[U ]]
x0

m−1,Φ
+
m−1〉H = Qm [F,Φ]ρ = Qm [PF,Φ]ρ ,

where we have used M0[[U ]]
x0

m−1 = M0[[U ]]
U(0+)
m−1 = 0, due to the continuity of U and

Qm [F,Φ]ρ = Qm [PF,Φ]ρ, since the PF is interpolates at the Gauß–Radau points used
in the quadrature. Hence, U solves the same semi-discretised problem as U τ . Thus, we
obtain with χ ∈ U τ as test function the error equation

Qm [(∂tM0 +M1 + A)ξ, χ]ρ + 〈M0[[ξ]]
0
m−1, χ

+
m−1〉H

= Qm [(∂tM0 +M1 + A)η, χ]ρ + 〈M0[[η]]
0
m−1, χ

+
m−1〉H . (3.5)

For the special case χ = ξ (use A = −A∗) we obtain

Em
d := Qm [(∂tM0 +M1)ξ, ξ]ρ + 〈M0[[ξ]]

0
m−1, ξ

+
m−1〉H

= Qm [(∂tM0 +M1 + A)η, ξ]ρ + 〈M0[[η]]
0
m−1, ξ

+
m−1〉H =: Em

i (3.6)

for all m ∈ {1, . . . ,M}, where the subscripts d and i should remind of discretisation and
interpolation, respectively.

Lemma 3.2. For all m ∈ {1, . . . ,M}, we have

Em
d ≥ 1

2

[
〈M0ξ

−
m, ξ

−
m〉He−2ρτm − 〈M0ξ

−
m−1, ξ

−
m−1〉H + 〈M0[[ξ]]

0
m−1, [[ξ]]

0
m−1〉H

]
+ γ |||ξ|||2Q,ρ,m ,

where ξ−m := ξ(tm−) and ξ−0 := 0.

10
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Proof. Let m ∈ {1, . . . ,M}. Since ξ is a (piece-wise) polynomial of order q in time, we
obtain

Qm [∂tM0ξ, ξ]ρ = 〈∂tM0ξ, ξ〉ρ,m

=
1

2

∫

Im

e−2ρ(t−tm−1)∂t〈M0ξ, ξ〉H dt

=
1

2

[
〈M0ξ

−
m, ξ

−
m〉He−2ρτm − 〈M0ξ

+
m−1, ξ

+
m−1〉H

]
+ ρ〈M0ξ, ξ〉ρ,m.

Further, we compute

〈M0[[ξ]]
0
m−1, ξ

+
m−1〉H =

1

2

[
〈M0ξ

+
m−1, ξ

+
m−1〉H − 〈M0ξ

−
m−1, ξ

−
m−1〉H + 〈M0[[ξ]]

0
m−1, [[ξ]]

0
m−1〉H

]
.

Therefore, we have

Em
d = Qm [(∂tM0 +M1)ξ, ξ]ρ + 〈M0[[ξ]]

0
m−1, ξ

+
m−1〉H

=
1

2

[
〈M0ξ

−
m, ξ

−
m〉He−2ρτm − 〈M0ξ

−
m−1, ξ

−
m−1〉H + 〈M0[[ξ]]

0
m−1, [[ξ]]

0
m−1〉H

]

+ 〈(ρM0 +M1)ξ, ξ〉ρ,m.

Together with
〈(ρM0 +M1)ξ, ξ〉ρ,m ≥ γ |||ξ|||2ρ,m = γ |||ξ|||2Q,ρ,m

the lemma is proved.

In order to analyse Em
i we introduce another interpolation operator, that enables us to

estimate the time derivative of the interpolation error with a higher order. This operator
utilises tm,−1 := tm−1 in addition to tm,i, i ∈ {0, . . . , q} as interpolation points. Denoting
the associated Lagrange basis functions by ψm,i, i ∈ {−1, 0, . . . , q}, this interpolation
operator is given by

(P̂ v)
∣∣
Im
(t) :=

q∑

i=−1

v(tm,i)ψm,i(t), m ∈ {1, . . . ,M}. (3.7)

Note the P̂ maps to functions that are continuous in time (recall that tm,q = tm) while
the image of P is allowed to be discontinuous at the time mesh points.

Lemma 3.3. For m ∈ {1, . . . ,M} and ψ ∈ U τ , we have

Qm [∂tM0η, ψ]ρ + 〈M0[[η]]
0
m−1, ψ

+
m−1〉H = Qm

[
∂tM0(U − P̂U), ψ

]
ρ
+R(U, ψ),

where
|R(U, ψ)| ≤ Cατm|M0η

+
m−1|2H + β |||ψ|||2Q,ρ,m

for all α, β > 0 satisfying αβ = 1/4 and with C ≥ 0 depending on T (the finite time
horizon) and ρ only.

11
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Proof. With U being continuous in time, we only have to consider the discrete part.
Using the exactness of the quadrature rule for polynomials of degree 2q, we obtain for
m ∈ {1, . . . ,M}

Qm [∂tM0PU, ψ]ρ + 〈M0[[PU ]]
x0

m−1, ψ
+
m−1〉H︸ ︷︷ ︸

=:a

= 〈∂tM0PU, ψ〉ρ,m + a

= −〈M0PU, ∂tψ〉ρ,m + 2ρ〈M0PU, ψ〉ρ,m + 〈e−2ρ(t−tm−1)M0PU, ψ〉H
∣∣tm
tm−1︸ ︷︷ ︸

=:b

+a

= −Qm [M0PU, ∂tψ]ρ + 2ρ〈M0PU, ψ〉ρ,m + a+ b

= −Qm

[
M0P̂U, ∂tψ

]
ρ
+ 2ρ〈M0PU, ψ〉ρ,m + a+ b

= −〈M0P̂U, ∂tψ〉ρ,m + 2ρ〈M0PU, ψ〉ρ,m + a+ b

= 〈∂tM0P̂U, ψ〉ρ,m + 2ρ(〈M0PU, ψ〉ρ,m − 〈M0P̂U, ψ〉ρ,m)
+ a+ b− 〈e−2ρ(t−tm−1)M0P̂U, ψ〉H

∣∣tm
tm−1︸ ︷︷ ︸

=:c

.

Using (PU)−m−1 = (P̂U)+m−1 (m ≥ 2), (P̂U)+0 = U(0+) = x0 and (PU)−m = (P̂U)−m
(m ≥ 1), we have

a+ b− c = 0.

Furthermore, it holds

2ρ(〈M0PU, ψ〉ρ,m − 〈M0P̂U, ψ〉ρ,m) = 2ρ〈M0(P − P̂ )U, ψ〉ρ,m
= 2ρ〈M0((P − P̂ )U)(t+m−1)χ, ψ〉ρ,m
= 2ρ〈M0(PU − U)(t+m−1)χ, ψ〉ρ,m =: R(U, ψ),

where χ ∈ Pq+1(Im) with χ(tm−1) = 1 and χ(tm,i) = 0, i ∈ {0, . . . , q}. By Corollary 6.5
for K = T (note that 0 < τm = |Im| ≤ T ), we obtain

∫

Im

|χ(t)|2e−2ρ(t−tm−1)dx ≤ Cτm

for some C ≥ 0. Thus, we get

|R(U, ψ)| ≤ 2ρ
∣∣∣∣∣∣M0(PU − U)(t+m−1)χ

∣∣∣∣∣∣
ρ,m

|||ψ|||ρ,m
= 2ρ |M0(PU − U)(t+m−1)|H |||χ|||ρ,m |||ψ|||ρ,m
≤ C2(2ρ)2ατm|M0(PU − U)(t+m−1)|2 + β |||ψ|||2Q,ρ,m ,

where αβ = 1/4. Combining above transformations we are done.

Lemma 3.4. For all m ∈ {1, . . . ,M}, we have for all ψ ∈ U τ

Qm [M1η, ψ]ρ = 0 = Qm [Aη, ψ]ρ .

12
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Proof. These equalities follow from the fact that η(tm,i) = PU(tm,i)−U(tm,i) = 0 for each
i ∈ {0, . . . , q} and M1, A are purely spatial operators.

Combining the previous lemmas gives a first result.

Theorem 3.5. There exists a C ≥ 0 depending on T , ρ and γ, only, such that

〈M0ξ
−
M , ξ

−
M〉H + e2ρT |||ξ|||2Q,ρ ≤ Ce2ρT

( ∣∣∣
∣∣∣
∣∣∣∂tM0(U − P̂U)

∣∣∣
∣∣∣
∣∣∣
2

Q,ρ

+ T max
1≤m≤M

{
|M0η

+
m−1|2He−2ρtm−1

})
=: g(U).

Proof. Combining Lemmas 3.2 to 3.4 for ψ = ξ we have for some C ≥ 1 depending on T
and ρ only

|Em
d | ≥ 1

2

[
〈M0ξ

−
m, ξ

−
m〉He−2ρτm − 〈M0ξ

−
m−1, ξ

−
m−1〉H + 〈M0[[ξ]]

0
m−1, [[ξ]]

0
m−1〉H

]
+ γ |||ξ|||2Q,ρ,m ,

|Em
i | ≤ Cα

( ∣∣∣
∣∣∣
∣∣∣∂tM0(U − P̂U)

∣∣∣
∣∣∣
∣∣∣
2

Q,ρ,m
+ τm|M0η

+
m−1|2H

)
+ 2β |||ξ|||2Q,ρ,m .

Summing with weights e−2ρtm−1 for m ∈ {1, . . . ,M} we obtain

M∑

m=1

e−2ρtm−1 |Em
d | ≥ 1

2

[
〈M0ξ

−
M , ξ

−
M〉He−2ρtM − 〈M0ξ

−
0 , ξ

−
0 〉H

]

+
1

2

M∑

m=1

e−2ρtm−1〈M0[[ξ]]
0
m−1, [[ξ]]

0
m−1〉H + γ |||ξ|||2Q,ρ ,

≥ 1

2
〈M0ξ

−
M , ξ

−
M〉He−2ρT + γ |||ξ|||2Q,ρ ,

by ξ−0 = 0 and neglecting the positive jump-contributions, and

M∑

m=1

e−2ρtm−1 |Em
i | ≤ Cα

( ∣∣∣
∣∣∣
∣∣∣∂tM0(U − P̂U)

∣∣∣
∣∣∣
∣∣∣
2

Q,ρ
+ T max

1≤m≤M
{|M0η

+
m−1|2He−2ρtm−1}

)

+ 2β |||ξ|||2Q,ρ .

Thus for β < γ/2 the result is proved upon the equality Em
i = Em

d .

Remark 3.6. Let m ∈ {1, . . . ,M}. Note that the estimate in Theorem 3.5 remains valid,
if one respectively replaces T by tm, ξ

−
M by ξ−m as well as the |||·|||Q,ρ by |||·χĨ |||Q,ρ with χĨ

being the characteristic function of Ĩ =
⋃m

k=1 Ik.

In the following, we want to improve Theorem 3.5. In order to do so, we will need
the following technical lemmas. They are adaptations of [1, Lemma 2.1 and Corollary

13
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2.1]. For the upcoming result and the corresponding proof, we recall for polynomials
a, b ∈ Pq(0, 1;H)

〈a, b〉ρ =
∫ 1

0

〈a(t), b(t)〉H e−2ρt dt

and the corresponding integration by parts formula

〈a′, b〉ρ = −〈a, b′〉ρ + 2ρ〈a, b〉ρ + e−2ρt〈a, b〉H
∣∣∣
1

0
. (3.8)

Lemma 3.7. Let ti, wi, i ∈ {0, . . . , q} be the points and weights of the right-sided Gauß-
Radau quadrature rule of order q on (0, 1] with weighting function t 7→ e−2ρt.
Let p ∈ Pq(0, 1;H) and p̃ the Lagrange interpolant w.r.t. (ti)i∈{0,...,q} of ϕ : (0, 1] ∋ t 7→
p(t)/t. Then

〈p′, p̃〉ρ + 〈p(0), p̃(0)〉H ≥ 1

2

(
|p(1)|2He−2ρ + 〈p̃, p̃〉ρ

)
+ ρ〈p, p̃〉ρ

≥ 1

2

(
|p(1)|2He−2ρ + 〈p, p〉ρ

)
+ ρ〈p, p〉ρ.

Proof. Define v ∈ Pq−1((0, 1);H) by v(t) = (p(t)− p(0))/t and Λ ∈ Pq[0, 1] by

Λ(ti) =
1

ti
, i ∈ {0, . . . , q}.

Then
p(t) = p(0) + tv(t) and p̃(t) = v(t) + p(0)Λ(t).

Thus,

〈p′, p̃〉ρ = 〈v +mv′, v + p(0)Λ〉ρ
= 〈v, v〉ρ + 〈v,mv′〉ρ + 〈v, p(0)Λ〉ρ + 〈v′, p(0)mΛ〉ρ,

where we denote by m the multiplication-with-the-argument, that is, (mf)(t) := tf(t).
With (3.8) we obtain for the second term

〈v′,mv〉ρ =
1

2

(
e−2ρ|v(1)|2H + 2ρ〈mv, v〉ρ − 〈v, v〉ρ

)
.

From mv′Λ ∈ P2q−1 and mΛ′Λ ∈ P2q together with the exactness of the quadrature rule
it follows that

〈v′, p(0)mΛ〉ρ =
q∑

i=0

wi〈v′(ti), p(0)〉Hti
1

ti

= 〈v′, p(0)〉ρ
= 2ρ〈v, p(0)〉ρ + e−2ρ〈v(1), p(0)〉H − 〈v(0), p(0)〉H ,

and in the same way

〈Λ′,mΛ〉ρ = 2ρ〈Λ, 1〉ρ + e−2ρ − Λ(0). (3.9)

14
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We have thus this far

〈p′, p̃〉ρ =
1

2

(
e−2ρ|v(1)|2H + 〈v, v〉ρ + 2ρ〈mv, v〉ρ

)
+

+ 〈v, p(0)Λ〉ρ + 2ρ〈v, p(0)〉ρ + e−2ρ〈v(1), p(0)〉H − 〈v(0), p(0)〉H .

Using v(1) = p(1)− p(0) and 〈p(0), p̃(0)〉H = 〈p(0), v(0)〉H + Λ(0)|p(0)|2H we obtain

〈p′, p̃〉ρ + 〈p(0), p̃(0)〉H =
1

2

(
e−2ρ|p(1)|2H + 〈v, v〉ρ + 2ρ〈mv, v〉ρ

)

+ 〈v, p(0)Λ〉ρ + 2ρ〈v, p(0)〉ρ + |p(0)|2H
(
Λ(0)− e−2ρ

2

)
.

Next, (3.9) yields

Λ(0) = 2ρ〈Λ, 1〉ρ + e−2ρ − 〈Λ′,mΛ〉ρ
= 2ρ〈Λ, 1〉ρ − ρ〈Λ,mΛ〉ρ +

1

2

(
e−2ρ + 〈Λ,Λ〉ρ

)

and hence

〈p′, p̃〉ρ + 〈p(0), p̃(0)〉H =
1

2

(
e−2ρ|p(1)|2H + 〈v, v〉ρ + 2ρ〈mv, v〉ρ

)

+ 〈v, p(0)Λ〉ρ + 2ρ〈v, p(0)〉ρ + |p(0)|2H
(
ρ〈Λ, 2−mΛ〉ρ +

1

2
〈Λ,Λ〉ρ

)

With

1

2
〈v, v〉ρ + 〈v, p(0)Λ〉ρ +

1

2
|p(0)|2H〈Λ,Λ〉ρ =

1

2
〈v + p(0)Λ, v + p(0)Λ〉ρ =

1

2
〈p̃, p̃〉ρ

it follows

〈p′, p̃〉ρ + 〈p(0), p̃(0)〉H =
1

2

(
e−2ρ|p(1)|2H + 〈p̃, p̃〉ρ

)

+ ρ
(
〈mv, v〉ρ + 2〈v, p(0)〉ρ + |p(0)|2H〈Λ, 2−mΛ〉ρ

)
.

Finally,

〈mv, v〉ρ + 2〈v, p(0)〉ρ + |p(0)|2〈Λ, 1〉ρ =
q∑

i=0

wi
1

ti
(t2i |v(ti)|2H + 2ti〈v(ti), p(0)〉H + |p(0)|2H)

=

q∑

i=0

wi
1

ti
|p(ti)|2H

=

q∑

i=0

wi〈p(ti), p̃(ti)〉H

= 〈p, p̃〉ρ

15
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gives

〈p′, p̃〉ρ + 〈p(0), p̃(0)〉H =
1

2

(
e−2ρ|p(1)|2H + 〈p̃, p̃〉ρ

)
+ ρ

(
〈p, p̃〉ρ + |p(0)|2H〈Λ, 1−mΛ〉ρ

)
.

Using 〈Λ, 1 −mΛ〉ρ ≥ 0, which we provide in Lemma 3.8, the first result is proved. The
second one follows upon using the exactness of the quadrature rule and t−1

i > 1.

Lemma 3.8. Let Λ ∈ Pq[0, 1] such that Λ(ti) =
1
ti
for i ∈ {0, . . . , q}, where ti is chosen

as in Lemma 3.7. Then
〈Λ, 1−mΛ〉ρ ≥ 0,

where (mΛ)(t) := tΛ(t).

Proof. We rewrite the scalar product as a quadrature error:

〈Λ, 1−mΛ〉ρ =
q∑

i=0

wi
1

ti
−
∫ 1

0

e−2ρttΛ2(t) dt = Q[f ]− I[f ]

for f given by f(t) = tΛ2(t), where Q[g] =
∑q

i=0wig(ti) and I[g] =
∫ 1

0
g for suitable g.

There exists a constant α ∈ R and a polynomial w0 ∈ Pq−1[0, 1], such that

Λ(t) = αtq + w0(t) which implies f(t) = α2t2q+1 + w1(t),

where w1 ∈ P2q[0, 1]. Thus, setting g(t) = t2q+1, we have that

〈Λ, 1−mΛ〉ρ = α2 (Q[g]− I[g]) ,

due to the exactness of the quadrature rule for polynomials of degree 2q.
Let Πw ∈ P2q[0, 1] be an Hermite-interpolant of a given function w satisfying

Πw(ti) = w(ti), i ∈ {0, . . . , q},
(Πw)′(ti) = w′(ti), i ∈ {0, . . . , q − 1}.

Then it follows

Q[g] =

q∑

i=0

wit
2q+1
i =

q∑

i=0

wi(Πg)(t
2q+1
i ) = Q[Πg] = I[Πg].

Using that for each t ∈ [0, 1] there is ζ ∈ (0, 1) such that

(Πg)(t)− g(t) = −g
(2q+1)(ζ)

(2q + 1)!
(t− 1)

q−1∏

i=0

(t− ti)
2 = (1− t)

q−1∏

i=0

(t− ti)
2

see, for instance, [18, Section 2.1.5], we infer that

〈Λ, 1−mΛ〉ρ = α2I[Πg − g]

= α2

∫ 1

0

e−2ρt

(
q−1∏

i=0

(t− ti)
2

)
(1− t) dt ≥ 0.
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Now we are able to improve Theorem 3.5 following [1, Corollary 2.1] and [21].

Theorem 3.9. There exists C ≥ 0 depending on T , q, ‖M0‖, ‖M1‖, γ, and ρ such that

sup
t∈[0,T ]

〈M0ξ(t), ξ(t)〉H ≤ Cg(U),

with g(U) defined as in Theorem 3.5.

Proof. For the discrete error ξ = U τ − PU ∈ U τ we define ϕ by

ϕ|Im = P

(
t 7→ τm

t− tm−1

ξ(t)

)
(m ∈ {1, . . . ,M}).

Then for all m ∈ {1, . . . ,M} and i ∈ {0, . . . , q} we have

〈M0ϕ(tm,i), ϕ(tm,i)〉H =
τm

tm,i − tm−1

〈M0ξ(tm,i), ξ(tm,i)〉H ≥ 〈M0ξ(tm,i), ξ(tm,i)〉H

and by Lemma 3.7 (apply the lemma to the functions p =
√
M0ξ and p̃ =

√
M0ϕ rescaled

on [0, 1])

Qm [∂tM0ξ, 2ϕ]ρ + 〈M0ξ
+
m−1, 2ϕ

+
m−1〉H ≥ 1

τm
Qm [M0ϕ, ϕ]ρ ≥

1

τm
Qm [M0ξ, ξ]ρ .

By the equivalence of norms on Pq([0, 1]), there exists K1 ≥ 0 depending on q only, such
that

sup
t∈[0,1]

|p(t)| ≤ K1

1∫

0

|p(t)| dt (p ∈ Pq([0, 1])).

Consequently, we obtain for all m ∈ {1, . . . ,M}

sup
t∈Im

〈M0ξ(t), ξ(t)〉H ≤ K1

τm
e2ρτmQm [M0ξ, ξ]ρ ≤

K

τm
Qm [M0ξ, ξ]ρ

where K := K1e
2ρT ≥ max

m∈{1,...,M}
{e2ρτm} ≥ K1. Moreover, we have

Qm [Aξ, 2ϕ]ρ =
τm
2

q∑

i=0

ωm
i 〈Aξ(tm,i), 2ϕ(tm,i)〉H

=
τm
2

q∑

i=0

ωm
i

2τm
tm,i − tm−1

〈Aξ(tm,i), ξ(tm,i)〉H = 0

upon A = −A∗. Together, it follows for all m ∈ {1, . . . ,M}
sup
t∈Im

〈M0ξ(t), ξ(t)〉H

≤ K
(
Qm [(∂tM0 +M1 + A)ξ, 2ϕ]ρ + 〈M0ξ

+
m−1, 2ϕ

+
m−1〉H −Qm [M1ξ, 2ϕ]ρ

)

= K

(
Qm [(∂tM0 +M1 + A)ξ, 2ϕ]ρ + 〈M0[[ξ]]

0
m−1, 2ϕ

+
m−1〉H

+ 〈M0ξ
−
m−1, 2ϕ

+
m−1〉H −Qm [M1ξ, 2ϕ]ρ

)
.
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Using the error equation (3.5) with χ = 2ϕ (recall η = U − PU), we obtain

sup
t∈Im

〈M0ξ(t), ξ(t)〉H ≤ K

(
Qm [(∂tM0 +M1 + A)η, 2ϕ]ρ + 〈M0[[η]]m−1, 2ϕ

+
m−1〉H

+ 〈M0ξ
−
m−1, 2ϕ

+
m−1〉H −Qm [M1ξ, 2ϕ]ρ

)
.

Using Lemma 3.3, Lemma 3.4 with ψ = 2ϕ and Theorem 3.5, we estimate further with
some C1 ≥ 1 depending on q, T , and ρ such that

sup
t∈Im

〈M0ξ(t), ξ(t)〉H ≤ K

(
Qm

[
∂tM0(U − P̂U), 2ϕ

]
ρ
+R(U, 2ϕ)

+ 〈M0ξ
−
m−1, 2ϕ

+
m−1〉H −Qm [M1ξ, 2ϕ]ρ

)

≤ C1α1

( ∣∣∣
∣∣∣
∣∣∣∂tM0(U − P̂U)

∣∣∣
∣∣∣
∣∣∣
2

Q,ρ,m
+ |M0(PU − U)(t+m−1)|2

)

+ C1α2〈M0ξ
−
m−1, ξ

−
m−1〉H + C1α1‖M1‖2 |||ξ|||2Q,ρ,m

+ 3β1Qm [2ϕ, 2ϕ]ρ + β2〈2M0ϕ
+
m−1, 2ϕ

+
m−1〉H ,

where αiβi =
1
4
, i ∈ {1, 2} and we used that

〈M0u, v〉 = 〈
√
M0u,

√
M0v〉 ≤ 〈M0u, u〉〈M0v, v〉

for all u, v ∈ H, by the non-negativity and selfadjointness ofM0. Using Theorem 3.5 (and
Remark 3.6), we, thus, get

sup
t∈Im

〈M0ξ(t), ξ(t)〉H ≤ C(α1+α2)g(U)+3β1Qm [2ϕ, 2ϕ]ρ+β2〈2M0ϕ
+
m−1, 2ϕ

+
m−1〉H (3.10)

for some C ≥ 1 depending on q, T , ρ, and ‖M1‖, where g(U) is defined in Theorem 3.5.
Next, by Corollary 6.6, we find c > 0 depending on ρ and T only such that

τm
tm,i − tm−1

≤ τm
tm,0 − tm−1

≤ 1

c
(m ∈ {1, . . . ,M}).

Hence, for all m ∈ {1, . . . ,M},

Qm [2ϕ, 2ϕ]ρ ≤ LQm [ξ, ξ]ρ = (4/c) |||ξ|||2Q,ρ,m

and 〈2M0ϕ
+
m−1, 2ϕ

+
m−1〉H ≤ (4/c) sup

t∈Im

〈M0ξ(t), ξ(t)〉H .

Next, we choose β2 = (4/c)1
2
. Thus, appealing to (3.10), we obtain for all m ∈ {1, . . . ,M}

1

2
sup
t∈Im

〈M0ξ(t), ξ(t)〉H = sup
t∈Im

〈M0ξ(t), ξ(t)〉H − 1

2
sup
t∈Im

〈M0ξ(t), ξ(t)〉H

≤ C(α1 + α2)g(U) + 3β1(4/c) |||ξ|||2Q,ρ,m ,

using Theorem 3.5 (i.e. Remark 3.6) again for the second term on the right-hand side und
computing the supremum over m ∈ {1, . . . ,M} in the latter inequality, we obtain the
assertion.
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3.2 Estimating the interpolation error in time

In the previous section we showed that the discrete error is bounded in terms of the
interpolation errors. We finalize the error estimates in time in this section focussing on
the interpolation error. The aim and, thus, main theorem of this section is Theorem 3.13,
where we estimate the difference between the exact solution U of (3.4) and the solution
U τ of the quadrature formulation (3.1) with right-hand side PF and initial value U(0+).
We use the same notation as in the previous section. In addition, we set τ := max{τm :
m ∈ {1, . . . ,M}}. Moreover, shall further assume that the hypotheses of Theorem 2.1
are in effect.

Lemma 3.10. There exists C ≥ 0 depending on q and T such that for all V ∈ Hq+3
ρ (R;H)

∣∣∣
∣∣∣
∣∣∣∂t(V − P̂ V )

∣∣∣
∣∣∣
∣∣∣
Q,ρ

≤ Cτ q+1|∂q+3
t V |ρ.

Proof. First we note that Hq+3
ρ (R;H) →֒ Cq+2

ρ (R;H) by the Sobolev-embedding theorem.
By the definition of |||·|||Q,ρ we have that

∣∣∣
∣∣∣
∣∣∣∂t(V − P̂ V )

∣∣∣
∣∣∣
∣∣∣
2

Q,ρ
=

M∑

m=1

Qm

[
|∂t(V − P̂ V )|2He−2ρt

]

=
M∑

m=1

τm
2

q∑

i=0

ωm
i |(∂t(V − P̂ V ))(tm,i)|2He−2ρtm,i .

Using the standard result from interpolation theory

sup
t∈Im

|(v − P̂ v)′(t)| ≤ Cτ q+1
m sup

t∈Im

|v(q+2)(t)|,

for all v ∈ W q+2,∞(0, T ) we obtain

∣∣∣
∣∣∣
∣∣∣∂t(V − P̂ V )

∣∣∣
∣∣∣
∣∣∣
2

Q,ρ
≤ C2

M∑

m=1

τm
2
τ 2(q+1)
m

q∑

i=0

ωm
i sup

t∈Im

|∂p+2
t V (t)|2He−2ρtm,i

≤ C2τ 2(q+1) sup
t∈[0,T ]

|∂p+2
t V (t)|2H .

For the next two lemmas, we recall the standard result from interpolation theory

sup
t∈Im

|(v − Pv)(t)| ≤ Cτ q+1
m sup

t∈Im

|v(q+1)(t)|, (3.11)

for all v ∈ W q+1,∞(0, T ), see, for instance, [18, Section 2.1.4].

Lemma 3.11. There exists C ≥ 0 depending on q and T such that for all V ∈ Hq+2
ρ (R;H)

|(V − PV )(t+m−1)|H ≤ Cτ q+1
m |∂q+2

t V |ρ.

19



CTS_12 November 9, 2016

Proof. We obtain

|(V − PV )(t+m−1)|H ≤ sup
t∈Im

|(V − PV )(t)|H

≤ Cτ q+1
m sup

t∈Im

|∂q+1
t V (t)|H .

The claim follows from the Sobolev-embedding theorem.

With the previous lemmas we can already estimate g(U). Now let us estimate the final
term needed to estimate the error U − U τ .

Lemma 3.12. There exists C ≥ 0 depending on T and q such that for all U ∈ Hq+2
ρ (R;H)

sup
t∈[0,T ]

〈M0(U − PU)(t), (U − PU)(t)〉H

≤ Cτ 2(q+1)|∂q+2
t U |2ρ.

Proof. Using the Cauchy–Schwarz and Young inequality we derive

sup
t∈[0,T ]

〈M0(U − PU)(t), (U − PU)(t)〉H

≤ 1

2

(
sup

t∈[0,T ]

|M0(U − PU)(t)|2H + sup
t∈[0,T ]

|(U − PU)(t)|2H

)
.

Using (3.11) with v =M0U and v = U we obtain

sup
t∈[0,T ]

|M0(U − PU)(t)|H ≤ Cτ q+1 sup
t∈[0,T ]

|∂q+1
t M0U(t)|H ,

sup
t∈[0,T ]

|(U − PU)(t)|H ≤ Cτ q+1 sup
t∈[0,T ]

|∂q+1
t U(t)|H .

Combining these results the claim follows from the Sobolev-embedding theorem.

Combining the previous lemmas, Theorem 3.5 and Theorem 3.9, we can bound the discrete
error in time.

Theorem 3.13. Assume that U ∈ Hq+3
ρ (R;H). Then there exists C ≥ 0 depending on

‖M0‖, ‖M1‖, ρ, T , γ, q such that

sup
t∈[0,T ]

〈M0(U − U τ )(t), (U − U τ )(t)〉H + |||U − U τ |||2Q,ρ ≤ Cτ 2(q+1)|∂q+3
t U |2ρ.

Proof. By Lemma 3.10 and Lemma 3.11 applied to V =M0U we have that

g(U) ≤ C1τ
2(q+1)|∂q+3

t U |2ρ
for some C1 ≥ 0. We note that |||U − U τ |||Q,ρ ≤ |||η|||Q,ρ + |||ξ|||Q,ρ = |||ξ|||Q,ρ and hence,
by Theorem 3.5 we obtain

|||U − U τ |||2Q,ρ ≤ g(U).
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Moreover,

〈M0(U − U τ )(t), (U − U τ )(t)〉H ≤ 2〈M0η(t), η(t)〉H + 2〈M0ξ(t), ξ(t)〉H
and thus, by Theorem 3.9 and Lemma 3.12 we infer

sup
t∈[0,T ]

〈M0(U − U τ )(t), (U − U τ )(t)〉H ≤ C(τ 2(q+1)|∂q+2
t U |2ρ + g(U))

for some C ≥ 0. Combining these estimates, the claim follows.

Remark 3.14. The above analysis holds for all evolutionary problems and gives error
bounds for the semi-discrete solution of order q + 1, assuming enough regularity in time.
For a fully discrete method, a spatial discretisation has to be defined too. This step,
however, has to be done for each problem considered separately.

4 Full discretisation for Example 1.3

Let us assume a regular, quasi uniform and shape-regular triangulation Ωh of Ω into
triangular open cells σ with maximal cell diameter h. Moreover, we assume that the
interfaces between Ωell, Ωpar and Ωhyp are polygonal such that the triangulation Ωh fits to
these interfaces.
As the whole article is mainly concerned with the correct time-discretization, in this
section, we will employ the custom of the “generic constant” C ≥ 0 that may vary from
line to line, which, however, depends on T , ρ, ‖M1‖, ‖M0‖, q, and γ and on k, the order
of the assumed spatial regularity, only.
Then the fully discretised counterpart U τ

h to U is given by

U τ
h := {(uh, vh) ∈ U τ : uh|Im ∈ Pq(Im, V1(Ω)), vh|Im ∈ Pq(Im, V2(Ω)), m ∈ {1, . . . ,m}} ,

where the spatial spaces are

V1(Ω) :=
{
v ∈ H1

0 (Ω); ∀σ : v|σ ∈ Pk(σ)
}
,

V2(Ω) := {w ∈ H(div,Ω); ∀σ : w|σ ∈ RTk−1(σ)} .
Here Pk(σ) is the space of polynomials of degree up to k on the cell σ and RTk−1(σ) is a
the Raviart-Thomas-space, defined by

RTk−1(σ) = (Pk−1(σ))
n + xPk−1(σ).

Note that

Pk−1(σ) ⊂ RTk−1(σ) ⊂ Pk(σ),

div(RTk−1(σ)) ⊂ Pk−1(σ) and

RTk−1(σ) · n|∂σ ⊂ Pk−1(∂σ).

Furthermore, if the mesh consists of quadrilateral or hexahedral cells, in above defini-
tions and statements the polynomials space Pk(σ) can be replaced by Qk(σ) including all
polynomials of total degree k over σ.
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Remark 4.1 (Solvability of the fully discrete system). We can apply the general existence
theory that was also used in Proposition 3.1. More precisely, the positive definiteness still
holds, since the triangulation fits to the interfaces and hence, the uniqueness of the system
is warranted. However, since the problem is finite-dimensional, the uniqueness implies the
existence of a solution of the fully discretised problem.

Let us come to the interpolation operator I = (I1, I2). For I1 : C(Ω) → V1 we use the
Scott–Zhang interpolant on each cell σ, see [17] for a precise definition, that is patched
together continuously. Here local interpolation error estimates can be given using L2-
norms also in 3d, which is not possible for standard Lagrange interpolation. For I2 :
W → V2 with

W (σ) =
{
q ∈ (Ls(σ))n : div q ∈ L2(σ)

}
, s > 2,

we also use the standard interpolator, defined via moments, see [3]. Note that in the
following, in order to avoid a cluttered notation as much as possible, we will not ex-
plicitly keep track on the number of components of the L2(Ω)- or Hk(Ω)-spaces under
consideration, as it will be obvious from the context.
Standard local interpolation error estimates yield for all v ∈ H1

0 (Ω) ∩Hr(Ω)

‖v − I1v‖0,Ω ≤ Chr‖v‖r,Ω,
‖∇(v − I1v)‖0,Ω ≤ Chr−1‖v‖r,Ω,

where 1 ≤ r ≤ k + 1 and for all q ∈ Hs(Ω) such that div q ∈ Hs(Ω)

‖q − I2q‖0,Ω ≤ Chs‖q‖s,Ω,
‖div(q − I2q)‖0,Ω ≤ Chs‖div q‖s,Ω,

where 1 ≤ s ≤ k, see [3].
Let U τ

h ∈ U τ
h be the solution of the fully discretised system and PIU ∈ U τ

h be the
interpolated solution of (1.1) for the operators M0,M1 given in Example 1.3 and A given
as in Example 1.1. Then we obtain analogously to the derivation of the errors of the
semi-discretisation

sup
t∈[0,T ]

〈M0(PIU − U τ
h )(t), (PIU − U τ

h )(t)〉H + |||PIU − U τ
h |||2Q,ρ

≤ C

(∣∣∣
∣∣∣
∣∣∣∂tM0(U − P̂ IU)

∣∣∣
∣∣∣
∣∣∣
2

Q,ρ
+ |||M1(U − PIU)|||2Q,ρ + |||A(U − PIU)|||2Q,ρ

+ T max
1≤m≤M

{
|M0(PIU − IU)(t+m−1)|2He−2ρtm−1

}
)
, (4.1)

where we remark that in contrast to Theorem 3.5 the terms |||M1(U − PIU)|||2Q,ρ and

|||A(U − PIU)|||2Q,ρ do not vanish, since we also interpolate with respect to space. In
the following group of lemmas we estimate the terms on the right-hand side of (4.1) and
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start with a term partcularly needed for the final convergence estimate in Theorem 4.7.
Beforehand, let us introduce

‖u‖2Q,ρ,k,D =
M∑

m=1

Qm

[
|u|2k,D

]
e−2ρtm−1

where D ⊆ Ω is measurable.

Lemma 4.2. It holds for U = (u, v) ∈ Hρ(R;H
k(Ω)×Hk(Ω))

|||U − PIU |||Q,ρ ≤ Chk
(
‖u‖Q,ρ,k,Ω + hk‖v‖Q,ρ,k,Ω

)
,

Moreover, if U = (u, v) ∈ Hρ(R;D(A)) such that AU ∈ Hρ(R;H
k(Ω)×Hk(Ω)), then

|||A(U − PIU)|||Q,ρ ≤ Chk (‖u‖Q,ρ,k+1,Ω + ‖div v‖Q,ρ,k,Ω) .

Proof. By the definition of Qm [·]ρ we have

|||U − PIU |||2Q,ρ = |||U − IU |||2Q,ρ

=
M∑

m=1

Qm

[
‖U − IU‖20,Ω

]
e−2ρtm−1

=
M∑

m=1

Qm

[
‖u− I1u‖20,Ω + ‖v − I2v‖20,Ω

]
e−2ρtm−1

≤ C
M∑

m=1

Qm

[
h2(k+1)|u(·)|2k+1,Ω + h2k|v(·)|2k,Ω

]
e−2ρtm−1

= C
(
h2(k+1)‖u‖2Q,ρ,k+1,Ω + h2k‖v‖2Q,ρ,k,Ω

)
.

Very similarly we have for the second norm

|||A(U − PIU)|||2Q,ρ = |||A(U − IU)|||2Q,ρ

=
M∑

m=1

Qm

[
‖∇(u− I1u)‖20,Ω + ‖div(v − I2v)‖20,Ω

]
e−2ρtm−1

≤ C

M∑

m=1

Qm

[
h2k|u|2k+1,Ω + h2k| div v|2k,Ω

]
e−2ρtm−1

= Ch2k
(
‖u‖2Q,ρ,k+1,Ω + ‖div v‖2Q,ρ,k,Ω

)
.

Lemma 4.3. It holds for U = (u, v) ∈ Hρ(R;H
k(Ω)×Hk(Ω))

|||M1(U − PIU)|||2Q,ρ ≤ Ch2k (‖u‖Q,ρ,k,Ω + ‖v‖Q,ρ,k,Ω)
2

Proof. The assertion follows from Lemma 4.2 and the boundedness of M1.
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Lemma 4.4. For U = (u, v) ∈ H1
ρ(R;H

k(Ω)×Hk(Ω))∩Hq+2
ρ (R;L2(Ω)×L2(Ω)) we have

that

sup
t∈[0,T ]

〈M0(U − PIU)(t), (U − PIU)(t)〉H

≤ C

(
h2k sup

t∈[0,T ]

(|u(t)|k,Ω + |v(t)|k,Ω)2 + τ 2(q+1)|∂q+2
t IU |ρ

)
.

Proof. The operator M0 is selfadjoint and non-negative. Thus it follows that

〈M0(U − PIU)(t), (U − PIU)(t)〉L2(Ω)

= |
√
M0(U − PIU)(t)|2L2(Ω)

≤ 2
(
|
√
M0(U − IU)(t)|2L2(Ω) + |

√
M0(IU − PIU)(t)|2L2(Ω)

)

for each t ∈ [0, T ]. The second term can be estimated by

|
√
M0(IU − PIU)(t)|2L2(Ω) ≤ Cτ 2(q+1)|∂q+2

t IU |2ρ

according to Lemma 3.12, while the first term can be estimated by

|
√
M0(U − IU)(t)|2L2(Ω) ≤ Ch2k

(
|u(t)|2k,Ω + |v(t)|2k,Ω

)
,

due to the boundedness of
√
M0. Hence, the assertion follows.

Lemma 4.5. For U = (u, v) ∈ H1
ρ(R;H

k(Ω)×Hk(Ω)) ∩Hq+3
ρ (R;L2(Ω)× L2(Ω)) we get

∣∣∣
∣∣∣
∣∣∣∂tM0(U − P̂ IU)

∣∣∣
∣∣∣
∣∣∣
2

Q,ρ
≤ C

(
h2k (‖∂tu‖Q,ρ,k,Ω + ‖∂tv‖Q,ρ,k,Ω)

2 + τ 2(q+1)|∂q+3
t IU |ρ

)
.

Proof. We have that

∣∣∣
∣∣∣
∣∣∣∂tM0(U − P̂ IU)

∣∣∣
∣∣∣
∣∣∣
Q,ρ

≤ |||∂tM0(U − IU)|||Q,ρ +
∣∣∣
∣∣∣
∣∣∣∂t(M0IU − P̂M0IU)

∣∣∣
∣∣∣
∣∣∣
Q,ρ

≤ |||M0(∂tU − I∂tU)|||Q,ρ + Cτ q+1|∂q+3
t IU |ρ,

by Lemma 3.10. For the first term we have by Lemma 4.2

|||M0(∂tU − I∂tU)|||2Q,ρ ≤ Ch2k
(
‖∂tu‖2Q,ρ,k,Ω + ‖∂tv‖2Q,ρ,k,Ω

)
.

Lemma 4.6. It holds for U = (u, v) ∈ Hq+2
ρ (R;L2(Ω)× L2(Ω))

max
1≤m≤M

{
|M0(PIU − IU)(t+m−1)|L2(Ω)e

−ρtm−1
}
≤ Cτ q+1|∂q+2

t IU |ρ.

Proof. This is a direct consequence of Lemma 3.11.
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Lemma 4.2 to 4.6 give us all needed estimates for the final convergence result for Exam-
ple 1.3.

Theorem 4.7. We assume for the solution U = (u, v) of Example 1.3 the regularity

U ∈ H1
ρ(R;H

k(Ω)×Hk(Ω)) ∩Hq+3
ρ (R;L2(Ω)× L2(Ω))

as well as
AU ∈ Hρ(R;H

k(Ω)×Hk(Ω)).

Then we have for the error of the numerical solution by (3.1)

sup
t∈[0,T ]

〈M0(U − U τ
h )(t), (U − U τ

h )(t)〉H + |||U − U τ
h |||2Q,ρ ≤ C(τ 2(q+1) + Th2k).

5 Numerical examples

In the following section we consider some examples to verify numerically our theoretical
findings.

5.1 Changing type system – one space dimension

Let Ω = (−π
2
, π
2
) ⊂ R

1, Ωh = (−π
2
, 0) and Ωp = (0, π

2
). The problem is given on R×Ω by

(
∂t

(
1 0
0 χh

)
+

(
0 0
0 χp

)
+

(
0 ∂x
∂x 0

))(
u
v

)
=

(
f
g

)
(5.1a)

with u(t,−π
2
) = u(t, π

2
) = 0, g = 0 and

f(t, x) = χR≥0
(t)(2et − 1− tχ(−π

2
,0)(x)) cos(x). (5.1b)

The solution can be derived as

u(t, x) = χR≥0
(t)(et − 1) cos(x),

v(t, x) = χR≥0
(t)(et − 1− tχ(−π

2
,0)(x)) sin(x).

Note that a priori, we impose no transmission condition. However, as in [23, Remark 3.2],
they can be derived for u satisfying (5.1) as

u(t, 0+) = u(t, 0−), ∂xu(t, 0+) =

∫ t

0

∂xu(s, 0−)ds.

The solution up to a time T = 1 is shown in Figure 1. For the numerical solution we use
again T = 1, an equidistant mesh of M cells in time and an equidistant mesh of N cells
in space. In order to resolve the boundary S = Ωh ∩ Ωp = {0} we assume N to be even.
Note that we can use ρ = 1 for the given solution u.
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Figure 1: Solution u (left) and v (right) of problem (5.1)

Table 1: Convergence results for U − Uh of problem (5.1)

N =M Esup(U − Uh) |||U − Uh|||Q,ρ |||U − Uh|||ρ
p = 2, q = 1

8 8.727e-03 7.766e-04 1.855e-03
16 2.335e-03 1.90 1.939e-04 2.00 4.638e-04 2.00
32 6.039e-04 1.95 4.851e-05 2.00 1.160e-04 2.00
64 1.535e-04 1.98 1.213e-05 2.00 2.899e-05 2.00
128 3.871e-05 1.99 3.032e-06 2.00 7.248e-06 2.00
256 9.717e-06 1.99 7.580e-07 2.00 1.812e-06 2.00
512 2.434e-06 2.00 1.895e-07 2.00 4.530e-07 2.00

p = 3, q = 2
8 6.963e-05 3.079e-06 1.717e-05
16 8.705e-06 3.00 1.898e-07 4.02 2.120e-06 3.02
32 1.088e-06 3.00 1.182e-08 4.00 2.642e-07 3.00
64 1.360e-07 3.00 7.383e-10 4.00 3.300e-08 3.00
128 1.700e-08 3.00 4.614e-11 4.00 4.124e-09 3.00
256 2.125e-09 3.00 2.883e-12 4.00 5.155e-10 3.00
512 2.657e-10 3.00 1.803e-13 4.00 6.444e-11 3.00

Defining

Esup(v) =

(
sup

t∈[0,T ]

〈M0v(t), v(t)〉H
)1/2

, E(v) =

(
sup

t∈[0,T ]

〈M0v(t), v(t)〉H + |||v|||2Q,ρ

)1/2

we consider in Table 1 the convergence behaviour of Uh forN =M and polynomial degrees
q = p+1 = 2 and q = p+1 = 3. Note that we also show the norm |||U − Uh|||ρ estimated
by a refined quadrature rule in the last columns. The estimated rates of convergence
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support our theoretical result in Theorem 4.7, that the error E is of order min{p, q + 1}.
For odd polynomial degrees p the component |||U − Uh|||Q,ρ shows a convergence order of
one order higher, hinting at a superconvergence property.
In Table 2 the estimated convergence rates for all combinations of polynomial degrees

Table 2: Convergence rates for E(U −Uh) of problem (5.1) and several polynomial orders

p \ q 1 2 3 4 5
1 2 2 2 2 2
2 2 2 2 2 2
3 2 3 4 4 4
4 2 3 4 4 4
5 2 3 4 5 6

{p, q} ⊆ {1, . . . , 5} are given. Clearly the rates for even p follow the predicted min{p, q+
1}, while for odd p the rates are min{p+ 1, q + 1}. Thus there might be dragons1.
Let us modify problem (5.1), by taking Ω =

[
−3π

2
, 3π

2

]
, Ωh =

[
−3π

2
, 0
]
, Ωp =

[
0, 3π

2

]
and

right-hand sides only in L2. To be more precise, let

f(t, x) = χR≥0
(t)

(
− (2et − t− 1)χ(−π

2
,0)(x) cos(x) + et

(
χ(π

2
, 3π
2 )

(x)− χ(0,π2 )
(x)
)
cos(x)+

χ(0,π)(x)− χ(π, 3π2 )
(x)

)
,

g(t, x) = χR≥0
(t)

(
χ(0,π)(x)x+ χ(π, 3π2 )

(x)(2π − x)

− (et − 1)(χ(π
2
, 3π
2 )

(x)− χ(0,π2 )
(x)) sin(x)

)
.

Figure 2 shows the right-hand sides f and g for t = 1.
Again the exact solution can be found and is given by

u(t, x) = χR≥0
(t)(et − 1)(χ(π

2
, 3π
2 )

(x)− χ(− 3π
2
,π
2 )
(x)) cos(x),

v(t, x) = χR≥0
(t)
(
−(et − t− 1)χ(− 3π

2
,0)(x) sin(x) + χ(0,π)(x)x+ χ(π, 3π2 )

(x)(2π − x)
)
.

Note that u and v are non-differentiable, but piece-wise smooth. Figure 3 shows the
solutions for t ∈ [0, 1].
Note that a priori, we impose no transmission condition. However, as in [23, Remark 3.2],
they can be derived for u satisfying (5.1) as

u(t, 0+) = u(t, 0−), ∂xu(t, 0+) =

∫ t

0

∂xu(s, 0−)ds.

1superconvergence phenomena
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Figure 2: Right-hand sides f and g of modified problem (5.1)
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Figure 3: Solution u (left) and v (right) of the modified problem (5.1)

For the numerical solution we use T = 1, an equidistant mesh of M cells in time and an
equidistant mesh of N cells in space, thus τ = 1/M and h = 1/N . In order to capture the
jumps of f and g, and to resolve the boundary S = Ωh ∩Ωp = {0} we use an equidistant
mesh in space with the number of cells N divisible by 6. Note that we can use ρ = 1 for
the given solution u.
Defining

Esup(v)
2 := sup

t∈[0,T ]

〈M0v(t), v(t)〉H , E(v)2 := sup
t∈[0,T ]

〈M0v(t), v(t)〉H + |||v|||2Q,ρ

we consider in Table 3 we observe a convergence behaviour similar to the previous smooth
case.
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Table 3: Convergence results for U − Uh of problem modified (5.1)

N =M Esup(U − Uh) |||U − Uh|||Q,ρ |||U − Uh|||ρ
p = 2, q = 1

12 2.159e-02 3.953e-03 4.110e-03
24 5.490e-03 1.98 1.017e-03 1.96 1.055e-03 1.96
48 1.409e-03 1.96 2.557e-04 1.99 2.651e-04 1.99
96 3.577e-04 1.98 6.400e-05 2.00 6.637e-05 2.00
192 9.010e-05 1.99 1.601e-05 2.00 1.660e-05 2.00
384 2.261e-05 1.99 4.002e-06 2.00 4.150e-06 2.00
768 5.662e-06 2.00 1.001e-06 2.00 1.037e-06 2.00

p = 3, q = 2
12 1.334e-04 2.629e-05 2.734e-05
24 5.921e-06 4.49 7.802e-07 5.07 1.220e-06 4.49
48 5.585e-07 3.41 2.408e-08 5.02 1.197e-07 3.35
96 6.981e-08 3.00 7.500e-10 5.00 1.468e-08 3.03
192 8.726e-09 3.00 2.343e-11 5.00 1.833e-09 3.00
384 1.091e-09 3.00 7.329e-13 5.00 2.291e-10 3.00
768 1.363e-10 3.00 2.474e-14 4.89 2.864e-11 3.00

Table 4: Convergence rates for E(U − Uh) of the modified problem (5.1) and several
polynomial orders

p \ q 1 2 3 4 5
1 2 3 3 3 3
2 2 2 2 2 2
3 2 3 5 5 5
4 2 3 4 4 4
5 2 3 4 7 7

5.2 Changing type system – two space dimensions

This time we consider a problem with unknown solution. Let Ω = (0, 1)2 ⊂ R
2, Ωh =(

1
4
, 3
4

)2
, Ωe = Ω \ Ω̄h and Ωp = ∅. The problem is given on (0, T )× Ω by

(
∂t

(
1 0
0 χh

)
+

(
0 0
0 χp

)
+

(
0 div

∇0 0

))(
u
v

)
=

(
f
0

)
, (5.2)

where
f(t, x) = 2 sin(πt)χR<1/2×R(x).

For T = 1.875 Figure 4
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Figure 4: Solution u at times t = 5k/16 for k ∈ {1, . . . , 6} (top left to bottom right) of
problem (5.2) for T = 1.875

Table 5: Convergence results for Ũ − Uh of problem (5.2)

N =M Esup(Ũ − Uh)
∣∣∣
∣∣∣
∣∣∣Ũ − Uh

∣∣∣
∣∣∣
∣∣∣
Q,ρ

∣∣∣
∣∣∣
∣∣∣Ũ − Uh

∣∣∣
∣∣∣
∣∣∣
ρ

p = 2, q = 1
4 1.660e-02 8.121e-03 8.703e-03
8 5.595e-03 1.57 2.425e-03 1.74 2.781e-03 1.65
16 1.666e-03 1.75 7.445e-04 1.70 8.517e-04 1.71
32 5.260e-04 1.66 2.790e-04 1.42 3.012e-04 1.50
64 1.926e-04 1.45 1.300e-04 1.10 1.331e-04 1.18

p = 3, q = 2
4 4.895e-03 1.778e-03 2.028e-03
8 1.117e-03 2.13 5.510e-04 1.69 5.748e-04 1.82
16 4.015e-04 1.48 2.414e-04 1.19 2.419e-04 1.25
32 1.430e-04 1.49 1.175e-04 1.04 1.175e-04 1.04
64 5.245e-05 1.45 5.075e-05 1.21 5.072e-05 1.21

shows some snapshots of the component u of the solution U , approximated by a numerical
simulation.
In order to investigate the error-behaviour upon refinement of the discretisation, we use
a numerically computed reference solution Ũ instead of the real one U . For this we set
T = 1 and use an equidistant mesh of 128×128 rectangular cells in space and 128 cells
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in time, and polynomial degrees p = 3 and q = 2. Thus u is approximated in space by
piece-wise Q3 elements, v by RT2-elements and both in time by P2-elements.
In Table 5 we see the results of our numerical simulation for two pairs of polynomial
order. We observe, that the error rates are independent of the polynomial order and
furthermore less than the optimal orders given in Theorem 4.7. The reason for this
decrease in convergence order lies in the reduced regularity of the solution to this given
problem. The interior boundaries where the type of the problem changes introduces
corners, where it is very likely for singular solution components to arise.
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6 Appendix – On the Gauß–Radau Quadrature

In this appendix we shall gather some results on the right-sided Gauß–Radau quadrature,
which are known in principle, but are included for the convenience of the reader. We
adopted the rational given in [6]. For this, we introduce a set of weighting functions:

W := {w ∈ L1(−1, 1) : w > 0 a.e.}.

Note that the bilinear form

〈·, ·〉w : (f, g) 7→
∫ 1

−1

f(x)g(x)w(x)dx

introduces a scalar product on its natural domain

D := {f ∈ L1
loc(−1, 1);

∫

(−1,1)

|f(x)|2w(x) dx <∞}.

Furthermore, for all w ∈ W we set w̃ : x 7→ (1−x)w(x). We observe w̃ ∈ W . Throughout,
let q ∈ N.

Definition. Let w ∈ W . A pair (ω, r) = ((ωj)j∈{0,...,q}, (rj)j∈{0,...,q}) ∈ R
q+1× [−1, 1]q+1 is

called (right-sided) w-Gauß–Radau quadrature (of order q), if−1 ≤ r0 ≤ r1 ≤ · · · ≤ rq = 1
and for all p ∈ P2q(−1, 1) we have

∫ 1

−1

p(x)w(x)dx =

q∑

j=0

ωjp(rj).

Proposition 6.1. Let w ∈ W , (ω, r) a w-Gauß–Radau quadrature. Then the following
properties are satisfied:

1. the set {rj; j ∈ {0, . . . , q}} consists of q + 1 elements;

2. for all j ∈ {0, . . . , q} we have 0 < ωj ≤
∫
(−1,1)

w(x)dx;

3. for all j ∈ {0, . . . , q} we have with Ij(x) :=
∏

k∈{0,...,q}\{j}
x−rk
rj−rk

ωj =

∫ 1

−1

Ij(x)w(x)dx;

4. if (ω(1), r(1)) is a w-Gauß-quadrature, then (ω, r) = (ω(1), r(1)).

Proof. For the proof (1), we assume that Z := {rj; j ∈ {0, . . . , q}} has strictly less than
q + 1 elements. Then we find a polynomial p of degree at most q such that Z is the set
of zeros of p. Furthermore, for z ∈ Z there exists a polynomial pz of degree at most q− 1
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with the property pz(z) = 1 and pz = 0 on Z \ {z}. Thus, by exactness of the quadrature
and w > 0 a.e., we obtain

0 <

∫ 1

−1

pz(x)
2w(x)dx =

∑

j∈{k;rk=z}

ωjpz(rj)
2 =

∑

j∈{k;rk=z}

ωj.

Consequently, as p2 has degree at most 2q, we infer

0 <

∫ 1

−1

p(x)2w(x)dx =
∑

j∈{0,...,q}

ωjp(rj)
2

=
∑

z∈Z

∑

j∈{k;rk=z}

ωjp(rj)
2 =

∑

z∈Z

p(z)2
∑

j∈{k;rk=z}

ωj = 0,

a contradiction.
Next, for (2), by (1), we observe that Ij(x) in (3) is well-defined for all j ∈ {0, . . . , q}.
Thus, for j ∈ {0, . . . , q}, we obtain

0 <

∫ 1

−1

Ij(x)
2w(x)dx = ωj.

Hence, we get for all j ∈ {0, . . . , q}

ωj ≤
∑

ℓ∈{0,...,q}

ωℓ =

∫ 1

−1

w(x)dx.

The proof of (3) is obvious.
For the proof of (4), by the Gram–Schmidt orthonormalization procedure, we choose a
polynomial pq ∈ Pq(−1, 1) such that pq is orthogonal to Pq−1(−1, 1) with respect to 〈·, ·〉w̃.
Let p ∈ Pq−1(−1, 1). Then the polynomial (1− ·)ppq has degree at most 2q. Thus, by the
choice of pq and the exactness of the quadrature, we obtain

0 = 〈p, pq〉w̃

=

∫ 1

−1

(1− x)p(x)pq(x)w(x)dx

=
∑

j∈{0,...,q}

ωj(1− rj)p(rj)pq(rj)

=
∑

j∈{0,...,q−1}

ωj(1− rj)p(rj)pq(rj) = ωi(1− ri)pq(ri),

if p = Ii for one i ∈ {0, . . . , q − 1}. From (1) and (2), we get ωi(1 − ri) 6= 0 (recall that
rq = 1). Hence, pq(ri) = 0 for all i ∈ {0, . . . , q−1}. As pq has degree q, we obtain r = r(1).
Hence, the assertion follows from the formula for ω in statement (3).

The next proposition is concerned with the existence of the quadrature:
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Proposition 6.2. Let w ∈ W , pq ∈ Pq(−1, 1) such that pq⊥Pq−1(−1, 1) with respect to
〈·, ·〉w̃. Then the following assertions hold true:

1. pq has exactly q distinct real roots all contained in (−1, 1);

2. if −1 < r0 < r1 < . . . < rq−1 < 1 denote the roots of pq, then a w-Gauß–Radau
quadrature is given by ((ωj)j∈{0,...,q}, (rj)j∈{0,...,q}), where rq = 1 and

ωj =

∫ 1

−1

∏

k∈{0,...,q}\{j}

x− rk
rj − rk

w(x)dx (j ∈ {0, . . . , q}).

Proof. For the proof of (1), let O ⊆ (−1, 1) be the set of roots of pq contained in (−1, 1)
with odd multiplicity. Define p(x) :=

∏
z∈O(x− z), x ∈ [−1, 1] (p = 1, if O = ∅). We are

done, once we show that |O| = q. Assume |O| < q. Then p ∈ Pq−1(−1, 1). Moreover,
the polynomial p∗ : x 7→ (1 − x)p(x)pq(x) is non-zero and has no sign-change in (−1, 1).
Without restriction, we assume p∗ ≥ 0. From

0 <

∫ 1

−1

p∗(x)w(x)dx = 〈p, pq〉w̃ = 0,

we obtain a contradiction.
In order to proof (2), let p ∈ P2q(−1, 1). We find polynomials f ∈ Pq−1(−1, 1) and
g ∈ Pq(−1, 1) with the property p = (x 7→ f(x)(1− x)pq(x)) + g. Since g is of degree at
most q, we obtain

g(x) =

q∑

j=0

g(rj)
∏

k∈{0,...,q}\{j}

x− rk
rj − rk

(x ∈ (−1, 1)).

Then, using that 〈f, pq〉w̃ = 0, we compute

∫ 1

−1

pw =

∫ 1

−1

(f(x)(1− x)pq(x) + g(x))w(x)dx

=

∫ 1

−1

g(x)w(x)dx

=

∫ 1

−1

q∑

j=0

g(rj)
∏

k∈{0,...,q}\{j}

x− rk
rj − rk

w(x)dx

=

q∑

j=0

g(rj)

∫ 1

−1

∏

k∈{0,...,q}\{j}

x− rk
rj − rk

w(x)dx

=

q∑

j=0

g(rj)ωj.

Since p(rj) = f(rj)(1 − rj)pq(rj) + g(rj) = g(rj) for all j ∈ {0, . . . , q}, the assertion is
proved.
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We address the continuous dependence of the Gauß–Radau points on the weighting func-
tion as follows.

Theorem 6.3. The mapping

(W, ‖ · ‖L1(−1,1)) → R
q+1 × (−1, 1]q+1, w 7→ (ω(w), r(w)) (6.1)

is continuous, where (ω(w), r(w)) denotes the w-Gauß–Radau quadrature.

Proof. Let (wn)n∈N be a sequence in W and w ∈ W such that wn → w in L1(−1, 1). By
definition and by Theorem 6.1,

(ω(wn), r(wn)) ∈ [0, sup
k∈N

‖wk‖L1(−1,1)]
q+1 × [−1, 1]q+1

for all n ∈ N. Thus, there exists a convergent subsequence for which we re-use the name
with limit (ω, r). Note that rq = 1. Next, let p ∈ P2q(−1, 1). Then, for n ∈ N, we obtain

∫ 1

−1

pw = lim
n→∞

∫ 1

−1

pwn

= lim
n→∞

q∑

j=0

ω(wn)jp(r(wn)j)

=

q∑

j=0

ωjp(rj).

Hence, by Theorem 6.1, we infer (ω, r) = (ω(w), r(w)), which eventually implies the
assertion.

Corollary 6.4. For τ ∈ R denote wτ : x 7→ exp(−ρτ(x+ 1))(∈ W ) and let (ω(τ), r(τ)) be
the wτ -Gauß–Radau quadrature. For τ ∈ R, let χτ ∈ Pq+1(−1, 1) such that

χτ (r
(τ)
j ) = 0 (j ∈ {0, . . . , q}), χτ (−1) = 1.

Then, for every compact set K ⊂ R, we have

sup
τ∈K

∫ 1

−1

χ2
τwτ <∞.

Proof. Assume by contradiction that there exists (τn)n convergent to some τ with the
property ∫ 1

−1

χ2
τnwτn → ∞.
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Using Theorem 6.3, we compute for n ∈ N

∫ 1

−1

χ2
τnwτn =

∫ 1

−1

q∏

j=0

( x− r
(τn)
j

−1− r
(τn)
j

)2
wτn(x)dx

≤
∫ 1

−1

q−1∏

j=0

( x− r
(τn)
j

−1− r
(τn)
j

)2
wτn(x)dx

=

q∑

ℓ=0

ω
(τn)
ℓ

q−1∏

j=0

(r(τn)ℓ − r
(τn)
j

1 + r
(τn)
j

)2

= ω(τn)
q

q−1∏

j=0

(1− r
(τn)
j

1 + r
(τn)
j

)2

→ ω(τ)
q

q−1∏

j=0

(1− r
(τ)
j

1 + r
(τ)
j

)2
(n→ ∞).

But,

0 ≤ ω(τ)
q

q−1∏

j=0

(1− r
(τ)
j

1 + r
(τ)
j

)2
=

∫ 1

−1

q−1∏

j=0

( x− r
(τ)
j

−1− r
(τ)
j

)2
wτ (x)dx <∞,

which contradicts the assumption.

The next two corollaries are the ones needed in Subsection 3.1, that is, for the error
estimate with respect to the time-discretization. Beforehand, we introduce for a bounded
interval I ⊆ R the mapping

ϕI : (−1, 1) → I,

x 7→ a+ b

2
+
b− a

2
x,

where a := inf I, b := sup I. Further, we set |I| := b− a.

Corollary 6.5. For τ ∈ R let χτ be as in Corollary 6.4. Let K ≥ 0. Then

sup
I⊆R interval,|I|≤K

1

|I|

∫

I

(
χ|I|(ϕ

−1
I (t))

)2
e−2ρ(t−inf I)dt <∞.

Proof. For I = (a, b) ⊆ R we compute

1

b− a

∫ b

a

(
χ|I|(ϕ

−1
I (t))

)2
e−2ρ(t−a)dt =

1

b− a

∫ 1

−1

(
χ|I|(x)

)2
e−2ρ(ϕI(t)−a)ϕ′

I(x)dx

=
1

2

∫ 1

−1

(
χ|I|(x)

)2
e−ρ((b−a)(x+1))dx.

Hence, the assertion follows from Corollary 6.4.
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The next corollary is concerned with the lowest Gauß–Radau point for different weights:

Corollary 6.6. For τ ∈ R let wτ and (ω(τ), r(τ)) be given as in Corollary 6.4. Let T > 0.
Then there exists c > 0 such that for all intervals I ⊆ R with |I| ≤ T and 0 ≤ τ ≤ T we
have

ϕI(r
(τ)
0 )− inf I ≥ c|I|.

Proof. We observe that R ∋ τ 7→
(
t 7→ e−ρτ(t+1)

)
∈ (W, ‖ · ‖L1(−1,1)) is continuous. Hence,

the set
{
(
t 7→ e−ρτ(t+1)

)
; τ ∈ [0, T ]} ⊆ (W, ‖ · ‖L1(−1,1))

is compact. Thus, by the continuous dependence of the Gauß–Radau point on the weight-
ing function (see (6.1)), we obtain that

{(ω(τ), r(τ)); τ ∈ [0, T ]} ⊆ R
q+1 × (−1, 1]q+1

is compact, as well. In particular, there exists c > 0 with the property r
(τ)
0 − (−1) ≥ c.

Hence, we obtain for all τ ∈ [0, T ] and intervals I ⊆ R with |I| ≤ T

ϕI(r
(τ)
0 )− inf I = ϕI(r

(τ)
0 )− ϕI(−1) = |I|(r(τ)0 − (−1)) ≥ c|I|.
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