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Abstract The numerical solutions of stochastic differential delay equations

(SDDEs) under the generalized Khasminskii-type condition were discussed by Mao

(Appl. Math. Comput. 217, 5512–5524 2011), and the theory there showed that the

Euler–Maruyama (EM) numerical solutions converge to the true solutions in proba-

bility. However, there is so far no result on the strong convergence (namely in Lp) of

the numerical solutions for the SDDEs under this generalized condition. In this paper,

we will use the truncated EM method developed by Mao (J. Comput. Appl. Math.

290, 370–384 2015) to study the strong convergence of the numerical solutions for

the SDDEs under the generalized Khasminskii-type condition.

Keywords Brownian motion · Stochastic differential delay equation · Itô’s

formula · Truncated Euler–Maruyama · Khasminskii-type condition
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1 Introduction

In the study of stochastic differential delay equations (SDDEs), the classical

existence-and-uniqueness theorem requires that the coefficients of the SDDEs sat-

isfy the local Lipschitz condition and the linear growth condition (see, e.g., [1, 6,

9, 12, 20]). However, there are many SDDEs which do not satisfy the linear growth
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condition. In 2002, Mao [14] generalized the the well-known Khasminskii test [7]

from stochastic differential equations (SDEs) to SDDEs. The Khasminskii-type the-

orem established in [14] for SDDEs gives the conditions, in terms of Lyapunov

functions, under which the solutions to SDDEs will not explode to infinity at a finite

time. The Khasminskii-type theorem enables us to verify if a given nonlinear SDDE

has a unique global solution under the local Lipschitz condition but without the linear

growth condition. In 2005, Mao and Rassias [17] demonstrated that there are many

important SDDEs which are not covered by the Khasminskii-type theorem given in

[14] and established a generalized Khasminskii-type theorem which covers a very

wide class of nonlinear SDDEs.

On the other hand, there are in general no explicit solutions to nonlinear SDDEs,

whence numerical solutions are required in practice. The numerical solutions under

the linear growth condition plus the local Lipschitz condition have been discussed

intensively by many authors (see, e.g., [3–5, 8, 11, 19, 21]). The numerical solutions

of SDDEs under the generalized Khasminskii-type condition were discussed by Mao

[15], and the theory there showed that the Euler–Maruyama (EM) numerical solu-

tions converge to the true solutions in probability. However, there is so far no result

on the strong convergence (namely in Lp) of the numerical solutions for the SDDEs

under the generalized Khasminskii-type condition.

Recently, Mao [16] develops a new explicit numerical method, called the truncated

EM method, for SDEs under the Khasminskii-type condition plus the local Lipschitz

condition and establishes the strong convergence theory. In this paper, we will use this

new truncated EM method to study the strong convergence of the numerical solutions

for the SDDEs under the generalized Khasminskii-type condition.

This paper is organized as follows: We will introduce necessary notion, state

the generalized Khasminskii-type condition, and define the truncated EM numerical

solutions for SDDEs in Section 2. We will establish the strong convergence theory

for the truncated EM numerical solutions in Sections 3 and 4 and discuss the con-

vergence rates in Section 5. In each of these three sections, we will illustrate our

theory by examples. We will see from these examples that the truncated EM numer-

ical method can be applied to approximate the solutions of many highly nonlinear

SDDEs. We will finally conclude our paper in Section 6.

2 The truncated Euler-Maruyama method

Throughout this paper, unless otherwise specified, we use the following notation.

Let | · | be the Euclidean norm in R
n. If A is a vector or matrix, its transpose is

denoted by AT . If A is a matrix, its trace norm is denoted by |A| =
√

trace(AT A).

Let R+ = [0, ∞) and τ > 0. Denote by C([−τ, 0];Rn) the family of contin-

uous functions from [−τ, 0] to R
n with the norm ‖ϕ‖ = sup−τ≤θ≤0 |ϕ(θ)|. Let

(�,F, {Ft }t≥0,P) be a complete probability space with a filtration {Ft }t≥0 satisfy-

ing the usual conditions (i.e., it is increasing and right continuous while F0 contains

all P-null sets). Let B(t) = (B1(t), · · · , Bm(t))T be an m-dimensional Brownian

motion defined on the probability space. Moreover, for two real numbers a and b, we

use a ∨ b = max(a, b) and a ∧ b = min(a, b). If G is a set, its indicator function is
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denoted by IG, namely IG(x) = 1 if x ∈ G and 0 otherwise. If a is a real number,

we denote by ⌊a⌋ the largest integer which is less or equal to a, e.g., ⌊−1.2⌋ = −2

and ⌊2.3⌋ = 2.

Consider a nonlinear SDDE

dx(t) = f (x(t), x(t − τ))dt + g(x(t), x(t − τ))dB(t), t ≥ 0, (2.1)

with the initial data given by

{x(θ) : −τ ≤ θ ≤ 0} = ξ ∈ C([−τ, 0];Rn). (2.2)

Here

f : Rn × R
n → R

n and g : Rn × R
n → R

n×m.

We assume that the coefficients f and g obey the Local Lipschitz condition:

Assumption 2.1 For every positive number R, there is a positive constant KR such

that

|f (x, y) − f (x̄, ȳ)|2 ∨ |g(x, y) − g(x̄, ȳ)|2 ≤ KR(|x − x̄|2 + |y − ȳ|2)

for those x, y, x̄, ȳ ∈ R
n with |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ R.

The classical existence-and-uniqueness theorem does not only require this local

Lipschitz condition but also the linear growth condition (see, e.g., [10, 12, 13, 20]). In

this paper, we shall retain the local Lipschitz condition but replace the linear growth

condition by a generalized Khasminskii-type condition.

Assumption 2.2 There are constants K1 > 0, K2 ≥ 0 and β > 2 such that

xT f (x, y) +
1

2
|g(x, y)|2 ≤ K1(1 + |x|2 + |y|2) − K2|x|β + K2|y|β (2.3)

for all (x, y) ∈ R
n × R

n.

To have a feeling about what type of nonlinear SDDEs to which our theory may

apply, please consider, for example, the scalar SDDE

dx(t) = [a1+a2|x(t−τ)|4/3−a3x
3(t)]dt+[a4|x(t)|3/2+a5x(t−τ)]dB(t), t ≥ 0,

where a3 > 0 and a1, a2, a4, a5 ∈ R (see Example 4.8 for the details) or the 2-

dimensional SDDE in Example 3.7. The following result, established in [17], is

a generalized Khasminskii-type theorem on the existence and uniqueness of the

solution to the SDDE.

Lemma 2.3 Let Assumptions 2.1 and 2.2 hold. Then, for any given initial data (2.2),

there is a unique global solution x(t) to (2.1) on t ∈ [−τ,∞). Moreover, the solution

has the property that

sup
−τ≤t≤T

E|x(t)|2 < ∞, ∀T > 0. (2.4)

It has been shown (see, e.g., [15]) that under Assumptions 2.1 and 2.2, the EM

numerical solutions converge to the true solution in probability. But, to our best
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knowledge, there is so far no result on the strong convergence under these assump-

tions. In this paper, we will use the truncated EM method developed in [16] and show

that the truncated EM solutions will converge to the true solution in Lq for some

q ≥ 1.

To define the truncated EM numerical solutions, we first choose a strictly increas-

ing continuous function μ : R+ → R+ such that μ(r) → ∞ as r → ∞

and

sup
|x|∨|y|≤r

(

|f (x, y)| ∨ |g(x, y)|
)

≤ μ(r), ∀r ≥ 1. (2.5)

Denoted by μ−1is the inverse function of μ and we see that μ−1 is a strictly

increasing continuous function from [μ(0), ∞) to R+. We also choose a constant

�∗ ∈ (0, 1] and a strictly decreasing function h : (0, �∗] → (0, ∞) such that

h(�∗) ≥ μ(1), lim
�→0

h(�) = ∞ and �1/4h(�) ≤ 1, ∀� ∈ (0, �∗]. (2.6)

For example, we may choose �∗ ∈ (0, 1) sufficiently small such that 1/�∗ ≥

(μ(1))4 and define h(�) = �−1/4 for � ∈ (0, �∗]. For a given step size � ∈

(0, �∗], let us define a mapping π� from R
n to the closed ball {x ∈ R

n : |x| ≤

μ−1(h(�))} by

π�(x) = (|x| ∧ μ−1(h(�)))
x

|x|
,

where we set x/|x| = 0 when x = 0. That is, π� will map x to itself when |x| ≤

μ−1(h(�)) and to μ−1(h(�))x/|x| when |x| > μ−1(h(�)). We then define the

truncated functions

f�(x, y) = f (π�(x), π�(y)) and g�(x, y) = g(π�(x), π�(y)) (2.7)

for x, y ∈ R
n. It is easy to see that

|f�(x, y)| ∨ |g�(x, y)| ≤ μ(μ−1(h(�))) = h(�), ∀x, y ∈ R
n. (2.8)

That is, both truncated functions f� and g� are bounded although f and g may not.

More usefully, these truncated functions preserve the generalized Khasminskii-type

condition to a very nice degree as described in the following lemma.

Lemma 2.4 Let Assumption 2.2 hold. Then, for every � ∈ (0, �∗], we have

xT f�(x, y) +
1

2
|g�(x, y)|2 ≤ 2K1(1 + |x|2 + |y|2) − K2|π�(x)|β + K2|π�(y)|β

(2.9)

for all x, y ∈ R
n.

Proof Fix any � ∈ (0, �∗]. Recalling that h(�∗) ≥ μ(1), we see that

μ−1(h(�∗)) ≥ 1. But h is decreasing while μ−1 is increasing, so μ−1(h(�))4

≥ 1.
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For x ∈ R
n with |x| ≤ μ−1(h(�)) and any y ∈ R

n, we have, by (2.3),

xT f�(x, y) +
1

2
|g�(x, y)|2

= π�(x)T f (π�(x), π�(y)) +
1

2
|g(π�(x), π�(y))|2

≤ K1(1 + |π�(x)|2 + |π�(y)|2) − K2|π�(x)|β + K2|π�(y)|β

≤ K1(1 + |x|2 + |y|2) − K2|π�(x)|β + K2|π�(y)|β , (2.10)

which implies the desired assertion (2.9). On the other hand, for x ∈ R
n with |x| >

μ−1(h(�)) and any y ∈ R
n, we have

xT f�(x, y) +
1

2
|g�(x, y)|2

= π�(x)T f (π�(x), π�(y)) +
1

2
|g(π�(x), π�(y))|2

+(x − π�(x))T f (π�(x), π�(y))

≤ K1(1 + |π�(x)|2 + |π�(y)|2) − K2|π�(x)|β + K2|π�(y)|β

+
( |x|

μ−1(h(�))
− 1

)

π�(x)T f (π�(x), π�(y)), (2.11)

where (2.3) has been used. But once again we see from (2.3) that

π�(x)T f (π�(x), π�(y))

≤ K1(1 + |π�(x)|2 + |π�(y)|2) − K2[μ
−1(h(�))]β + K2|π�(y)|β

≤ K1(1 + |π�(x)|2 + |π�(y)|2),

where we have used the property |π�(y)| ≤ μ−1(h(�)) by the definition of π(·).

Substituting this into (2.11) yields

xT f�(x, y) +
1

2
|g�(x, y)|2

≤
K1|x|

μ−1(h(�))
(1 + |π�(x)|2 + |π�(y)|2) − K2|π�(x)|β + K2|π�(y)|β

≤ K1|x|(1 + |x| + |y|) − K2|π�(x)|β + K2|π�(y)|β

≤ 2K1(1 + |x|2 + |y|2) − K2|π�(x)|β + K2|π�(y)|β . (2.12)

Namely, we have showed that the required assertion (2.9) also holds for x ∈ R
n with

|x| > μ−1(h(�)) and any y ∈ R
n. The proof is hence complete.

From now on, we will let the step size � be a fraction of τ . That is, we will use

� = τ/M for some positive integer M . When we use the terms of a sufficiently

small �, we mean that we choose M sufficiently large.

Let us now form the discrete-time truncated EM solutions. Define tk = k� for k =

−M, −(M−1), · · · , 0, 1, 2, · · · . Set X�(tk) = ξ(tk) for k = −M, −(M−1), · · · , 0

and then form

X�(tk+1) = X�(tk) + f�(X�(tk), X�(tk−M))� + g�(X�(tk), X�(tk−M))�Bk

(2.13)
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for k = 0, 1, 2, · · · , where �Bk = B(tk+1)−B(tk). In our analysis, it is more conve-

nient to work on the continuous-time approximations. There are two continuous-time

versions. One is the continuous-time step process x̄�(t) on t ∈ [−τ,∞) defined by

x̄�(t) =

∞
∑

k=−M

X�(tk)I[k�,(k+1)�)(t), (2.14)

where I[k�,(k+1)�)(t) is the indicator function of [k�, (k + 1)�) (please recall the

notation defined in the beginning of this section). The other one is the continuous-

time continuous process x�(t) on t ∈ [−τ,∞) defined by x�(t) = ξ(t) for t ∈

[−τ, 0] while for t ≥ 0

x�(t) = ξ(0)+

∫ t

0

f�(x̄�(s), x̄�(s−τ))ds+

∫ t

0

g�(x̄�(s), x̄�(s−τ))dB(s). (2.15)

We see that x�(t) is an Itô process on t ≥ 0 with its Itô differential

dx�(t) = f�(x̄�(t), x̄�(t − τ))dt + g�(x̄�(t), x̄�(t − τ))dB(t). (2.16)

It is useful to know that X�(tk) = x̄�(tk) = x�(tk) for every k ≥ −M , namely they

coincide at tk . Of course, x̄�(t) is computable but x�(t) is not in general. However,

the following lemma shows that x�(t) and x̄�(t) are close to each other in the sense

of Lp. This indicates that it is sufficient to use x̄�(t) in practice. On the other hand,

in our analysis, it is more convenient to work on both of them.

Lemma 2.5 For any � ∈ (0, �∗] and any p ≥ 2, we have

E|x�(t) − x̄�(t)|p ≤ cp�p/2(h(�))p, ∀t ≥ 0, (2.17)

where cp is a positive constant dependent only on p. Consequently

lim
�→0

E|x�(t) − x̄�(t)|p = 0, ∀t ≥ 0. (2.18)

Proof In what follows, we will use cp to stand for generic positive real con-

stants dependent only on p and its values may change between occurrences. Fix

� ∈ (0, �∗] arbitrarily. For any t ≥ 0, there is a unique integer k ≥ 0 such that

tk ≤ t < tk+1. By (2.8) as well as the Hölder inequality (see, e.g., [13, page 5]) and

the moment property of the Itô integral (see, e.g., [13, Theorem 7.1 on page 39]), we

can derive from (2.16) that

E|x�(t) − x̄�(t)|p = E|x�(t) − x�(tk)|
p

≤ cp

(

E

∣

∣

∣

∫ t

tk

f�(x̄�(s), x̄�(s − τ))ds

∣

∣

∣

p

+ E

∣

∣

∣

∫ t

tk

g�(x̄�(s), x̄�(s − τ))dB(s)

∣

∣

∣

p)

≤ cp

(

�p−1
E

∫ t

tk

|f�(x̄�(s), x̄�(s − τ))|pds

+ �(p−2)/2
E

∫ t

tk

|g�(x̄�(s), x̄�(s − τ))|pds
)

≤ cp�p/2(h(�))p,
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which is (2.17). Noting from (2.6) that �p/2(h(�))p ≤ �p/4, we obtain (2.18) from

(2.17) immediately.

3 Convergence in Lq for q ∈ [1, 2)

From now on, we will fix T > 0 arbitrarily. In this section, we will show that

lim
�→0

E|x�(T ) − x(T )|q = 0 and lim
�→0

E|x̄�(T ) − x(T )|q = 0

for every 1 ≤ q < 2. By (2.8), we see that for any given � ∈ (0, �∗], both coeffi-

cients f� and g� are bounded. It therefore follows easily from (2.15) that for every

p ≥ 2,

E|x�(t)|p < ∞, ∀t ≥ 0.

The following lemma gives an (uniformly) upper bound, independent of �, for the

second moment.

Lemma 3.1 Let Assumptions 2.1 and 2.2 hold. Then,

sup
0<�≤�∗

sup
0≤t≤T

E|x�(t)|2 ≤ C, (3.1)

where, and from now on, C stands for generic positive real constants dependent on

T , K1, K2, ξ (and p̄, K3 etc. as well in the next sections) but independent of � and

its values may change between occurrences.

Proof Fix � ∈ (0, �∗] and the initial data ξ arbitrarily. By the Itô formula, we derive

from (2.16) that for 0 ≤ t ≤ T ,

E|x�(t)|2 = |ξ(0)|2 + E

∫ t

0

(

2xT
�(s)f�(x̄�(s), x̄�(s − τ))

+|g�(x̄�(s), x̄�(s − τ))|2
)

ds

= |ξ(0)|2 + E

∫ t

0

(

2x̄T
�(s)f�(x̄�(s), x̄�(s − τ))

+|g�(x̄�(s), x̄�(s − τ))|2
)

ds

+E

∫ t

0

2(x�(s) − x̄�(s))T f�(x̄�(s), x̄�(s − τ))ds.

By Lemma 2.4, we get

E|x�(t)|2 ≤ |ξ(0)|2 + 4K1E

∫ t

0

(1 + |x̄�(s)|2 + |x̄�(s − τ)|2)ds

−2K2E

∫ t

0

|π�(x̄�(s))|βds + 2K2E

∫ t

0

|π�(x̄�(s − τ))|βds

+2E

∫ t

0

|x�(s) − x̄�(s)||f�(x̄�(s), x̄�(s − τ))|ds. (3.2)
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However,

|ξ(0)|2 + 4K1E

∫ t

0

(1 + |x̄�(s)|2 + |x̄�(s − τ)|2)ds

≤ |ξ(0)|2 + 4K1

∫ t

0

(

1 + sup
0≤u≤s

E|x̄�(u)|2 + sup
0≤u≤s

E|x̄�(u − τ)|2
)

ds

≤ 4K1

∫ t

0

(

1 + ‖ξ‖2 + 2 sup
0≤u≤s

E|x�(u)|2
)

ds

≤ C + 8K1

∫ t

0

(

sup
0≤u≤s

E|x�(u)|2
)

ds. (3.3)

Moreover,

−2K2E

∫ t

0

|π�(x̄�(s))|βds + 2K2E

∫ t

0

|π�(x̄�(s − τ))|βds

= −2K2E

∫ t

0

|π�(x̄�(s))|βds + 2K2E

∫ t−τ

−τ

|π�(x̄�(s))|βds

≤ 2K2

∫ 0

−τ

|π�(x̄�(s))|βds ≤ 2τK2‖ξ‖β . (3.4)

Furthermore, by Lemma 2.5 with p = 2 and inequalities (2.8) and (2.6), we derive

that

E

∫ t

0

|x�(s) − x̄�(s)||f�(x̄�(s), x̄�(s − τ))|ds

≤ h(�)

∫ T

0

E|x�(s) − x̄�(s)|ds

≤ h(�)

∫ T

0

(E|x�(s) − x̄�(s)|2)1/2ds

≤ C(h(�))2�1/2 ≤ C. (3.5)

Substituting (3.3)–(3.5) into (3.2) yields

E|x�(t)|2 ≤ C + 8K1

∫ t

0

(

sup
0≤u≤s

E|x�(u)|2
)

ds.

As this holds for any t ∈ [0, T ] while the sum of the right-hand-side (RHS) terms is

non-decreasing in t , we then see

sup
0≤u≤t

E|x�(u)|2 ≤ C + 8K1

∫ t

0

(

sup
0≤u≤s

E|x�(u)|2
)

ds.

The well-known Gronwall inequality yields that

sup
0≤u≤T

E|x�(u)|2 ≤ C.

As this holds for any � ∈ (0, �∗] while C is independent of �, we obtain the

required assertion (3.1).
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Let us present two more lemmas before we state one of our main results in this

paper.

Lemma 3.2 Let Assumptions 2.1 and 2.2 hold. For any real number R > ‖ξ‖, define

the stopping time

τR = inf{t ≥ 0 : |x(t)| ≥ R},

where throughout this paper, we set inf ∅ = ∞ (and as usual ∅ denotes the empty

set). Then,

P(τR ≤ T ) ≤
C

R2
. (3.6)

(Recall that C stands for generic positive real constants dependent on T , K1, K2, ξ

so C here is independent of R.)

Proof By the Itô formula and Assumption 2.2, we derive that for 0 ≤ t ≤ T ,

E|x(t ∧ τR)|2 ≤ |ξ(0)|2 + 2K1E

∫ t∧τR

0

(1 + |x(s)|2 + |x(s − τ)|2)ds

−2K2E

∫ t∧τR

0

|x(s)|βds + 2K2E

∫ t∧τR

0

|x(s − τ)|βds

≤ |ξ(0)|2 + 2K1T + 2K1E

∫ t

0

(

|x(s ∧ τR)|2 + |x((s − τ) ∧ τR)|2
)

ds

+2K2

∫ 0

−τ

|ξ(s)|βds

≤ C + 2K1

∫ t

0

(

E|x(s ∧ τR)|2 + E|x((s − τ) ∧ τR)|2
)

ds

≤ C + 4K1

∫ t

0

(

sup
0≤u≤s

E|x(u ∧ τR)|2
)

ds

But the sum of the RHS terms is non-decreasing in t , we hence have

sup
0≤u≤t

E|x(u ∧ τR)|2 ≤ C + 4K1

∫ t

0

(

sup
0≤u≤s

E|x(u ∧ τR)|2
)

ds.

The Gronwall inequality shows

sup
0≤u≤T

E|x(u ∧ τR)|2 ≤ C.

In particular, we have

E|x(T ∧ τR)|2 ≤ C.

This implies, by the Chebyshev inequality,

R2
P(τR ≤ T ) ≤ C

and the assertion follows.

Lemma 3.3 Let Assumptions 2.1 and 2.2 hold. For any real number R > ‖ξ‖ and

� ∈ (0, �∗], define the stopping time

ρ�,R = inf{t ≥ 0 : |x�(t)| ≥ R}.
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Then

P(ρ�,R ≤ T ) ≤
C

R2
. (3.7)

(Please recall that C is independent of � and R.)

Proof We simply write ρ�,R = ρ. In the same way as (3.2) was obtained, we can

show that for 0 ≤ t ≤ T ,

E|x�(t ∧ ρ)|2 ≤ |ξ(0)|2 + 4K1E

∫ t∧ρ

0

(1 + |x̄�(s)|2 + |x̄�(s − τ)|2)ds

−2K2E

∫ t∧ρ

0

|π�(x̄�(s))|βds + 2K2E

∫ t∧ρ

0

|π�(x̄�(s−τ))|βds

+2E

∫ t∧ρ

0

|x�(s) − x̄�(s)||f�(x̄�(s), x̄�(s − τ))|ds. (3.8)

In the same way, as we performed in the proofs of Lemmas 3.1 and 3.2, we can then

show that

E|x�(t ∧ ρ)|2 ≤ C + 8K1

∫ t

0

(

sup
0≤u≤s

E|x̄�(u ∧ ρ)|2
)

ds

+2E

∫ t

0

|x�(s) − x̄�(s)||f�(x̄�(s), x̄�(s − τ))|ds. (3.9)

This, together with (3.5), implies

E|x�(t ∧ ρ)|2 ≤ C + 8K1

∫ t

0

(

sup
0≤u≤s

E|x̄�(u ∧ ρ)|2
)

ds.

Noting that the sum of the RHS terms is increasing in t while

sup
0≤u≤s

E|x̄�(u ∧ ρ)|2 ≤ sup
0≤u≤s

E|x�(u ∧ ρ)|2,

we get

sup
0≤u≤t

E|x�(u ∧ ρ)|2 ≤ C + 8K1

∫ t

0

(

sup
0≤u≤s

E|x�(u ∧ ρ)|2
)

ds.

The Gronwall inequality shows

sup
0≤u≤T

E|x�(u ∧ ρ)|2 ≤ C.

This implies the required assertion (3.7) easily.

For the numerical solutions to converge to the true solution in Lq , we need to

assume that the initial data are Hölder continuous with exponent γ (or γ -Hölder

continuous). This is a standard condition which is also needed for the classical EM

method under the global Lipschitz condition (see, e.g., [18, 22]).

Assumption 3.4 There is a pair of constants K3 > 0 and γ ∈ (0, 1] such that the

initial data ξ satisfies

|ξ(u) − ξ(v)| ≤ K3|u − v|γ , −τ ≤ v < u ≤ 0.
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We can now show one of our main results in this paper.

Theorem 3.5 Let Assumptions 2.1, 2.2 and 3.4 hold. Then, for any q ∈ [1, 2),

lim
�→0

E|x�(T ) − x(T )|q = 0 and lim
�→0

E|x̄�(T ) − x(T )|q = 0. (3.10)

Proof Let τR and ρ�,R be the same as before. Set

θ�,R = τR ∧ ρ�,R and e�(T ) = x�(T ) − x(T ).

Obviously,

E|e�(T )|q = E

(

|e�(T )|qI{θ�,R>T }

)

+ E

(

|e�(T )|qI{θ�,R≤T }

)

. (3.11)

Let δ > 0 be arbitrary. Using the Young inequality

uαv(1−α) ≤ αu + (1 − α)v ∀u, v > 0, α ∈ (0, 1), (3.12)

we see that

aqb = (δa2)q/2
(b2/(2−q)

δq/(2−q)

)(2−q)/2
≤

qδ

2
a2 +

2 − q

2δq/(2−q)
b2/(2−q), ∀a, b > 0,

and hence have

E

(

|e�(T )|qI{θ�,R≤T }

)

≤
qδ

2
E|e�(T )|2 +

2 − q

2δq/(2−q)
P(θ�,R ≤ T ).

By Lemmas 2.3 and 3.1, we have

E|e�(T )|2 ≤ C,

while by Lemmas 3.2 and 3.3,

P(θ�,R ≤ T ) ≤ P(τR ≤ T ) + P(ρ�,R ≤ T ) ≤
C

R2
.

We hence have

E

(

|e�(T )|qI{θ�,R≤T }

)

≤
Cqδ

2
+

C(2 − q)

2R2δq/(2−q)
.

Substituting this into (3.11) yields

E|e�(T )|q ≤ E

(

|e�(T )|qI{θ�,R>T }

)

+
Cqδ

2
+

C(2 − q)

2R2δq/(2−q)
. (3.13)

Now, let ε > 0 be arbitrary. Choose δ sufficiently small for Cqδ/2 ≤ ε/3 and then

choose R sufficiently large for

C(2 − q)

2R2δq/(2−q)
≤

ε

3
.

We then see from (3.13) that for this particularly chosen R,

E|e�(T )|q ≤ E

(

|e�(T )|qI{θ�,R>T }

)

+
2ε

3
. (3.14)

If we can show that for all sufficiently small �,

E

(

|e�(T )|qI{θ�,R>T }

)

≤
ε

3
, (3.15)
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we have

lim
�→0

E|e�(T )|q = 0,

and then by Lemma 2.5, we also have

lim
�→0

E|x(T ) − x̄�(T )|q = 0.

In other words, to complete our proof, all we need is to show (3.15). For this purpose,

we define the truncated functions

FR(x, y) = f
(

(|x| ∧ R)
x

|x|
, (|y| ∧ R)

y

|y|

)

and

GR(x, y) = g
(

(|x| ∧ R)
x

|x|
, (|y| ∧ R)

y

|y|

)

for x, y ∈ R
n. Without loss of any generality, we may assume that �∗ is already

sufficiently small for μ−1(h(�∗)) ≥ R. Hence, for all � ∈ (0, �∗], we have that

f�(x, y) = FR(x, y) and g�(x, y) = GR(x, y)

for those x, y ∈ R
n with |x| ∨ |y| ≤ R. Consider the SDDE

dz(t) = FR(z(t), z(t − τ))dt + GR(z(t), z(t − τ))dB(t) (3.16)

on t ≥ 0 with the initial data z(u) = ξ(u) on u ∈ [−τ, 0]. By Assumption 2.1, we see

that both FR(x, y) and GR(x, y) are globally Lipschitz continuous with the Lipschitz

constant KR . So the SDDE (3.16) has a unique global solution z(t) on t ≥ −τ . It is

straightforward to see that

P{x(t ∧ τR) = z(t ∧ τR) for all 0 ≤ t ≤ T } = 1. (3.17)

On the other hand, for each step size � ∈ (0, �∗], we can apply the (classical) EM

method to the SDDE (3.16) and we denote by z�(t) the continuous-time continuous

EM solution. It is again straightforward to see that

P{x�(t ∧ ρ�,R) = z�(t ∧ ρ�,R) for all 0 ≤ t ≤ T } = 1. (3.18)

However, it is well known (see, e.g., [18]) that

E

(

sup
0≤t≤T

|z(t) − z�(t)|q
)

≤ H�q(0.5∧γ ), (3.19)

where H is a positive constant dependent on KR, T , ξ, q but independent of �.

Consequently,

E

(

sup
0≤t≤T

|z(t ∧ θ�,R) − z�(t ∧ θ�,R)|q
)

≤ H�q(0.5∧γ ).
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Using (3.17) and (3.18), we then have

E

(

sup
0≤t≤T

|x(t ∧ θ�,R) − x�(t ∧ θ�,R)|q
)

≤ H�q(0.5∧γ ), (3.20)

which implies

E

(

|x(T ∧ θ�,R) − x�(T ∧ θ�,R)|q
)

≤ H�q(0.5∧γ ).

Finally,

E

(

|e�(T )|qI{θ�,R>T }

)

= E

(

|e�(T ∧ θ�,R)|qI{θ�,R>T }

)

≤ E

(

|x(T ∧ θ�,R) − x�(T ∧ θ�,R)|q
)

≤ H�q(0.5∧γ ). (3.21)

This implies (3.15) as desired. The proof is therefore complete.

Lets make a useful remark which will be used in next sections before we discuss

an example to illustrate our theory.

Remark 3.6 It is known (see, e.g., [18]) that (3.19) holds for any q ≥ 2. We hence

see from the proof above that both (3.20) and (3.21) hold for any q ≥ 2 too.

Example 3.7 Consider a two-dimensional SDDE

{

dx1(t)=x1(t)
(

[a11+a12x2(t−τ)−a13x
2
1(t)]dt+[a14x1(t)+a15x2(t−τ)]dB(t)

)

,

dx2(t)=x2(t)
(

[a21+a22x1(t−τ)−a23x
2
2(t)]dt+[a24x1(t)+a25x1(t−τ)]dB(t)

)

,

(3.22)

on t ≥ 0 with the initial data {(x1(θ), x2(θ))T : −τ ≤ θ ≤ 0} = ξ ∈

C([−τ, 0]; (0, ∞)2), where B(t) is a scalar Brownian motion and aij (i = 1, 2 and

1 ≤ j ≤ 5) are all positive numbers. Let aj = a1j ∨ a2j for j = 1, 2, 4, 5 and

a3 = a13 ∧ a23 and assume that

a3 > a2
4 + 1.5a2

5 . (3.23)

This is an SDDE population model for two species (see, e.g., [2]). Our method can

be applied to a more general SDDE model for multiple species. We only consider

the two species case here in order to avoid the notation becoming too complicated

but our method is illustrated fully. It is known (see, e.g., [2]) that given the ini-

tial data ξ ∈ C([−τ, 0]; (0, ∞)2), the solution will remain positive for all t ≥ 0

with probability 1. We can therefore regard (3.22) as an SDDE in R
2 with the

coefficients

f (x, y) =

(

x1(a11 + a12y2 − a13x
2
1)

x2(a21 + a22y1 − a23x
2
2)

)

and

g(x, y) =

(

a14x1 + a15y2

a24x2 + a25y1

)

for x, y ∈ R
2.
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It is obvious that these coefficients are locally Lipschitz continuous, namely, they

satisfy Assumption 2.1. We also assume that the initial data satisfy Assumption 3.4.

Moreover, let δ = a3 − a2
4 − 1.5a2

5 , which is positive by (3.23). We then derive

xT f (x, y) +
1

2
|g(x, y)|2

= a11x
2
1 + a12x

2
1y2 − a13x

4
1 + a2

14x
4
1 + a2

15x
2
1y2

2

+a21x
2
2 + a22x

2
2y1 − a23x

4
2 + a2

24x
4
2 + a2

25x
2
2y2

1

≤ a1x
2 + (a2

2/4δ)y2 − (a3 − δ − a2
4 − 0.5a2

5)(x4
1 + x4

2) + 0.5a2
5(y4

1 + y4
2)

≤ a1x
2 + (a2

2/4δ)y2 − 0.5(a3 − δ − a2
4 − 0.5a2

5)|x|4 + 0.5a2
5 |y|4

≤ (a1 ∨ (a2
2/4δ))(1 + x2 + y2) − 0.5a2

5x4 + 0.5a2
5y4.

That is, Assumption 2.2 is satisfied as well. We can therefore apply the truncated EM

method to obtain the numerical solutions of the SDDE (3.22). For this purpose, we

observe that, for r ≥ 1,

sup
|x|∨|y|≤r

(|f (x, y)| ∨ |g(x, y)|) ≤ 2[(a1r + a2r
2 + â3r

3) ∨ ((a4 + a5)r
2)] ≤ ar3,

where â3 = a13 ∨a23 and a = 2[(a1 +a2 + â3)∨ (a4 +a5)]. We can therefore define

μ : R+ → R+ by

μ(r) = ar3, r ≥ 0.

Its inverse function μ−1 : R+ → R+ has the form

μ−1(r) =
( r

a

)1/3
, r ≥ 0.

Let ρ ∈ (0, 1/4] and �∗ = (1 ∨ (8a))−1/ρ ∈ (0, 1]. Define h(�) = �−ρ for

� ∈ (0, �∗]. We then see that h(�∗) ≥ 8a = μ(2), lim�→0 h(�) = ∞ and

�1/4h(�) = �1/4−ρ ≤ 1, ∀� ∈ (0, �∗]

as required by (2.6). With these chosen functions μ and h, we can then apply the

truncated EM method to obtain the numerical solutions x�(t) and x̄�(t) of the SDDE

(3.22). Moreover, Theorem 3.5 shows that these numerical solutions will converge to

the true solution x(t) in the sense that

lim
�→0

E|x�(t) − x(t)|q = 0 and lim
�→0

E|x̄�(t) − x(t)|q = 0

for any q ∈ [1, 2).

4 Convergence in Lq for q ≥ 2

In the previous section, we showed that the truncated EM solutions x�(T ) and x̄�(T )

will converge to the true solution x(T ) in Lq for any q ∈ [1, 2). This is sufficient for

some applications, for example, when we need to approximate the mean value of the

solution or the European call option value (see, e.g., [10]). However, we sometimes
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need to approximate the variance or higher moment of the solution. In these situa-

tions, we need to have the convergence in Lq for q ≥ 2. For this purpose, we impose

a stronger Khasminskii-type condition.

Assumption 4.1 There is a pair of constants p̄ > 2 and K1 > 0 such that

xT f (x, y) +
p̄ − 1

2
|g(x, y)|2 ≤ K1(1 + |x|2 + |y|2) (4.1)

for all (x, y) ∈ R
n × R

n.

Once again, the truncated functions f� and g� preserve this condition nicely.

Lemma 4.2 Let Assumption 4.1 hold. Then, for every � ∈ (0, �∗], we have

xT f�(x, y) +
p̄ − 1

2
|g�(x, y)|2 ≤ 2K1(1 + |x|2 + |y|2) (4.2)

for all x, y ∈ R
n.

This lemma can be proved in the same way as Lemma 2.4 was proved. We also

cite a stronger result than Lemma 2.3 from [17].

Lemma 4.3 Let Assumptions 2.1 and 4.1 hold. Then for any given initial data (2.2),

there is a unique global solution x(t) to (2.1) on t ∈ [−τ,∞). Moreover, the solution

has the property that

sup
−τ≤t≤T

E|x(t)|p̄ < ∞. (4.3)

Let us now establish a stronger result than Lemma 3.1.

Lemma 4.4 Let Assumptions 2.1 and 4.1 hold. Then,

sup
0<�≤�∗

sup
0≤t≤T

E|x�(t)|p̄ ≤ C. (4.4)

Proof Fix any � ∈ (0, �∗]. By the Itô formula, we derive from (2.16) that, for

0 ≤ t ≤ T ,

E|x�(t)|p̄ ≤ |ξ(0)|p̄ + E

∫ t

0

p̄|x�(s)|p̄−2

×
(

xT
�(s)f�(x̄�(s), x̄�(s − τ)) +

p̄ − 1

2
|g�(x̄�(s), x̄�(s − τ))|2

)

ds

= |ξ(0)|p̄ + E

∫ t

0

p̄|x�(s)|p̄−2

×
(

x̄T
�(s)f�(x̄�(s), x̄�(s − τ)) +

p̄ − 1

2
|g�(x̄�(s), x̄�(s − τ))|2

)

ds

+E

∫ t

0

p̄|x�(s)|p̄−2(x�(s) − x̄�(s))T f�(x̄�(s), x̄�(s − τ))ds.
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Noting from the Young inequality (3.12) that

ap̄−2b ≤
p̄ − 2

p̄
ap̄ +

2

p̄
bp̄/2, ∀a, b ≥ 0,

as well as using Lemma 4.2, we then have

E|x�(t)|p̄ ≤ |ξ(0)|p̄ + E

∫ t

0

2p̄K1|x�(s)|p̄−2(1 + |x̄�(s)|2 + |x̄�(s − τ)|2)ds

+(p̄ − 2)E

∫ t

0

|x�(s)|p̄ds

+2E

∫ t

0

|x�(s) − x̄�(s)|p̄/2|f�(x̄�(s), x̄�(s − τ))|p̄/2ds

≤ C + C

∫ t

0

(

E|x�(s)|p̄ + E|x̄�(s)|p̄ + E|x̄�(s − τ)|p̄
)

ds

+2E

∫ T

0

|x�(s) − x̄�(s)|p̄/2|f�(x̄�(s), x̄�(s − τ))|p̄/2ds.

But, by Lemma 2.5 with p = p̄ and inequalities (2.8) and (2.6), we have

E

∫ T

0

|x�(s) − x̄�(s)|p̄/2|f�(x̄�(s), x̄�(s − τ))|p̄/2ds

≤ (h(�))p̄/2

∫ T

0

E(|x�(s) − x̄�(s)|p̄/2)ds

≤ (h(�))p̄/2

∫ T

0

(E|x�(s) − x̄�(s)|p̄)1/2ds

≤ cp̄T (h(�))p̄�p̄/4 ≤ cp̄T . (4.5)

We therefore have

E|x�(t)|p̄ ≤ C + C

∫ t

0

(

E|x�(s)|p̄ + E|x̄�(s)|p̄ + E|x̄�(s − τ)|p̄
)

ds

≤ C + C

∫ t

0

(

sup
0≤u≤s

E|x�(u)|p̄
)

ds.

As this holds for any t ∈ [0, T ] while the sum of the RHS terms is non-decreasing in

t , we then see

sup
0≤u≤t

E|x�(u)|p̄ ≤ C + C

∫ t

0

(

sup
0≤u≤s

E|x�(u)|p̄
)

ds.

The well-known Gronwall inequality yields that

sup
0≤u≤T

E|x�(u)|p̄ ≤ C.

As this holds for any � ∈ (0, �∗] while C is independent of �, we see the required

assertion (4.4).

The following two lemmas are the analogues of Lemmas 3.2 and 3.3.
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Lemma 4.5 Let Assumptions 2.1 and 4.1 hold. For any real number R > ‖ξ‖, define

the stopping time τR = inf{t ≥ 0 : |x(t)| ≥ R}. Then

P(τR ≤ T ) ≤
C

R
p̄
. (4.6)

Lemma 4.6 Let Assumptions 2.1 and 4.1 hold. For any real number R > ‖ξ‖ and

� ∈ (0, �∗], define the stopping time ρ�,R = inf{t ≥ 0 : |x�(t)| ≥ R}. Then

P(ρ�,R ≤ T ) ≤
C

R
p̄
. (4.7)

Their proofs are similar to those of Lemmas 3.2 and 3.3, respectively, so are

omitted. We can now state our main result in this section.

Theorem 4.7 Let Assumptions 2.1, 3.4 and 4.1 hold. Then, for any q ∈ [2, p̄),

lim
�→0

E|x�(T ) − x(T )|q = 0 and lim
�→0

E|x̄�(T ) − x(T )|q = 0. (4.8)

Proof We use the same notation as in the proof of Theorem 3.5. Fix any q ∈ [2, p̄).

Using the Young inequality (3.12), we can show that for any δ > 0,

E|e�(T )|q ≤ E

(

|e�(T )|qI{θ�,R>T }

)

+
qδ

p̄
E|e�(T )|p̄ +

p̄ − q

p̄δq/(p̄−q)
P(θ�,R ≤ T ).

(4.9)

By Lemmas 4.3 and 4.4, we have

E|e�(T )|p̄ ≤ C, (4.10)

while by Lemmas 4.5 and 4.6,

P(θ�,R ≤ T ) ≤ P(τR ≤ T ) + P(ρ�,R ≤ T ) ≤
C

R
p̄
. (4.11)

Using these and (3.21) (please recall Remark 3.6), we obtain

E|e�(T )|q ≤ H�q(0.5∧γ ) +
Cqδ

p̄
+

C(p̄ − q)

p̄R
p̄
δq/(p̄−q)

. (4.12)

Now, for any ε > 0, we first choose δ sufficiently small for Cqδ/p̄ ≤ ε/3 and then

choose R sufficiently large for

C(p̄ − q)

p̄R
p̄
δq/(p̄−q)

≤
ε

3
,

and further then choose � sufficiently small for H�q(0.5∧γ ) ≤ ε/3 to get that

E|e�(T )|q ≤ ε. (4.13)

In other words, we have shown that

lim
�→0

E|e�(T )|q = 0.
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This, along with Lemma 2.5, implies another assertion

lim
�→0

E|x(T ) − x̄�(T )|q = 0.

The proof is therefore complete.

Let us now discuss an example to illustrate this theorem before we study the

convergence rates.

Example 4.8 Consider the scalar SDDE

dx(t) = f (x(t), x(t − τ))dt + g(x(t), x(t − τ))dB(t), t ≥ 0, (4.14)

with the initial data {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈ C([−τ, 0];R) which satisfy

Assumption 3.4, where

f (x, y) = a1 + a2|y|4/3 − a3x
3 and g(x, y) = a4|x|3/2 + a5y, x, y ∈ R,

and a1, · · · , a5 are all real numbers with a3 > 0. Clearly, the coefficients f and g

are locally Lipschitz continuous, namely, they satisfy Assumption 2.1. Moreover, for

any p̄ > 2, we have

xf (x, y) +
p̄ − 1

2
|g(x, y)|2 ≤ |a1||x| + |a2||x||y|4/3 − a3|x|4

+(p̄ − 1)(|a4||x|3 + |a5||y|2).

But, by the Young inequality (3.12),

|x||y|4/3 = (|x|3)1/3(|y|2)2/3 ≤ |x|3 + |y|2.

We therefore have

xf (x, y) +
p̄ − 1

2
|g(x, y)|2

≤ |a1||x| + (|a2| + |a4|(p̄ − 1))|x|3 − a3|x|4 + (|a2| + a5(p̄ − 1))|y|2

≤ K1(1 + |y|2),

where K1 = (|a2| + |a5|(p̄ − 1)) ∨ K and

K = sup
u≥0

[

|a1|u + (|a2| + |a4|(p̄ − 1))u3 − a3u
4
]

< ∞.

That is, Assumption 4.1 is satisfied for any p̄ > 2. To apply Theorem 4.7, we still

need to design functions μ and h satisfying (2.5) and (2.6). Note that

sup
|x|≤u

(|f (x)| ∨ |g(x)|) ≤ âu3, ∀u ≥ 1,

where â = (|a1| + |a2| + a3) ∨ (|a4| + |a5|). We can hence have μ(u) = âu3 and

its inverse function μ−1(u) = (u/â)1/3 for u ≥ 0. For ε ∈ (0, 1/4], we define

h(�) = �−ε for � > 0. Letting �∗ ∈ (0, 1] be sufficiently small, we can make

(2.6) hold. By Theorem 4.7, we can then conclude that the truncated EM solutions

will converge to the true solution x(t) in the sense that

lim
�→0

E|x�(T ) − x(T )|q = 0 and lim
�→0

E|x̄�(T ) − x(T )|q = 0

for every q ≥ 2.
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5 Convergence rates

In the previous sections, we showed the convergence in Lq of the truncated EM

solutions to the true solution. However, the convergence was in the asymptotic form

without the convergence rate. In this section, we will discuss the rate. To avoid the

notation becoming too complicated, we will only discuss the convergence rate in L2

but the technique developed here can certainly be applied to study the rate in Lq .

Recall that we use two functions μ(·) and h(·) to define the truncated EM method.

The choices of these functions are independent as long as they satisfy (2.5) and (2.6),

respectively. It is interesting to see that they will satisfy a related condition in order

for us to obtain the convergence rate.

We need an additional condition. To state it, we need a new notation. Let U denote

the family of continuous functions U : Rn × R
n → R+ such that for each b > 0,

there is a positive constant κb for which

U(x, x̄) ≤ κb|x − x̄|2, ∀x, x̄ ∈ R
n with |x| ∨ |x̄| ≤ b.

Assumption 5.1 Assume that there is a positive constant H1 and a function U ∈ U

such that

(x − x̄)T (f (x, y) − f (x̄, ȳ)) +
1

2
|g(x, y) − g(x̄, ȳ)|2

≤ H1(|x − x̄|2 + |y − ȳ|2) − U(x, x̄) + U(y, ȳ) (5.1)

for all x, y, x̄, ȳ ∈ R
n.

Let us first present a key lemma.

Lemma 5.2 Let Assumptions 2.1, 3.4 and 5.1 hold. Let R > ‖ξ‖ be a real number

and let � ∈ (0, �∗) be sufficiently small such that μ−1(h(�)) ≥ R. Let θ�,R and

e�(t) be the same as defined in Section 3. Then,

E|e�(T ∧ θ�,R)|2 ≤ C(�2γ ∨ [�1/2(h(�))2]), (5.2)

where, as before, C is the generic constant independent of R and �.

Proof We write θ�,R = θ for simplicity. The Itô formula shows that

E|e�(t ∧ θ)|2 = E

∫ t∧θ

0

(

2eT
�(s)[f (x(s), x(s − τ)) − f�(x̄�(s), x̄�(s − τ))]

+|g(x(s), x(s − τ)) − g�(x̄�(s), x̄�(s − τ))|2
)

ds

(5.3)

for 0 ≤ t ≤ T . We observe that for 0 ≤ s ≤ t ∧ θ ,

|x̄�(s)| ∨ |x̄�(s − τ)| ∨ |x(s)| ∨ |x(s − τ)| ≤ R.

But we have the condition that μ−1(h(�)) ≥ R, so

|x̄�(s)| ∨ |x̄�(s − τ)| ∨ |x(s)| ∨ |x(s − τ)| ≤ μ−1(h(�)).
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Recalling the definition of the truncated functions f� and g� as well as (2.5), we

hence have that

f�(x̄�(s), x̄�(s − τ)) = f (x̄�(s), x̄�(s − τ)), g�(x̄�(s), x̄�(s − τ))

= g(x̄�(s), x̄�(s − τ))

and

|f (x(s), x(s − τ))| ∨ |f (x̄�(s), x̄�(s − τ))| ≤ h(�) (5.4)

for 0 ≤ s ≤ t ∧ θ . It therefore follows from (5.3) that

E|e�(t ∧ θ)|2

= E

∫ t∧θ

0

(

2eT
�(s)[f (x(s), x(s − τ)) − f (x̄�(s), x̄�(s − τ))]

+|g(x(s), x(s − τ)) − g(x̄�(s), x̄�(s − τ))|2
)

ds (5.5)

= E

∫ t∧θ

0

(

2(x(s) − x̄�(s))T [f (x(s), x(s − τ)) − f (x̄�(s), x̄�(s − τ))]

+|g(x(s), x(s − τ)) − g(x̄�(s), x̄�(s − τ))|2
)

ds

+E

∫ t∧θ

0

2(x̄�(s) − x�(s))T [f (x(s), x(s − τ)) − f (x̄�(s), x̄�(s − τ))]ds.

By Assumption 5.1 and (5.4), we then derive that

E|e�(t ∧ θ)|2 ≤ 2H1E

∫ t∧θ

0

(

|x(s) − x̄�(s)|2 + |x(s − τ) − x̄�(s − τ)|2
)

ds

+E

∫ t∧θ

0

(

− U(x(s), x̄�(s)) + U(x(s − τ), x̄�(s − τ))
)

ds

+4h(�)E

∫ t∧θ

0

|x̄�(s) − x�(s)|ds. (5.6)

But, by Assumption 3.4 and Lemma 2.5, we derive that

E

∫ t∧θ

0

(

|x(s) − x̄�(s)|2 + |x(s − τ) − x̄�(s − τ)|2
)

ds

≤ 2E

∫ t∧θ

0

(

|e�(s)|2 + |e�(s − τ)|2 + |x�(s) − x̄�(s)|2

+|x�(s − τ) − x̄�(s − τ)|2
)

ds

≤ 4E

∫ t

0

|e�(s ∧ θ)|2ds + 4

∫ T

0

E|x�(s) − x̄�(s)|2ds

+

∫ 0

−τ

|ξ(s) − ξ(⌊s/�⌋�)|2ds

≤ 4

∫ t

0

E|e�(s ∧ θ)|2ds + C�(h(�))2 + τK2
3 �2γ . (5.7)
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Moreover, by the property of the U -class function U and Assumption 3.4, we have

E

∫ t∧θ

0

(

− U(x(s), x̄�(s)) + U(x(s − τ), x̄�(s − τ))
)

ds

≤

∫ 0

−τ

U(ξ(s), ξ(⌊s/�⌋�))ds ≤

∫ 0

−τ

κb|ξ(s) − ξ(⌊s/�⌋�)|2ds

≤ τκbK
2
3�2γ , (5.8)

where b = ‖ξ‖. Furthermore , by Lemma 2.5,

E

∫ t∧θ

0

|x̄�(s) − x�(s)|ds ≤

∫ T

0

E|x̄�(s) − x�(s)|ds ≤ C�1/2h(�). (5.9)

Substituting (5.7)–(5.9) into (5.6), we get

E|e�(t ∧ θ)|2 ≤ 8H1

∫ t

0

E|e�(s ∧ θ)|2ds + C(�2γ ∨ [�1/2(h(�))2]).

By the Gronwall inequality, we obtain the required assertion (5.2).

Let us now state our first result on the convergence rate, where we reveal a strong

relation between functions μ(·) and h(·), which are used to define the truncated EM

method.

Theorem 5.3 Let Assumptions 2.1, 5.1, 4.1 and 3.4 hold. Assume that

h(�) ≥ μ
(

(�2γ ∨ [�1/2(h(�))2])−1/(p̄−2)
)

(5.10)

for all sufficiently small � ∈ (0, �∗). Then, for every such small �,

E|x(T ) − x�(T )|2 ≤ C(�2γ ∨ [�1/2(h(�))2]) (5.11)

and

E|x(T ) − x̄�(T )|2 ≤ C(�2γ ∨ [�1/2(h(�))2]). (5.12)

Proof We use the same notation as in the proof of Theorem 4.7. It follows from

(4.9)–(4.11) with q = 2 that the inequality

E|e�(T )|2 ≤ E

(

|e�(T ∧ θ�,R)|2
)

+
2Cδ

p̄
+

C(p̄ − 2)

p̄R
p̄
δ2/(p̄−2)

(5.13)

holds for any � ∈ (0, �∗), R > ‖ξ‖ and δ > 0. In particular, choosing

δ = �2γ ∨ [�1/2(h(�))2] and R = (�2γ ∨ [�1/2(h(�))2])−1/(p̄−2),

we get

E|e�(T )|2 ≤ E|e�(T ∧ θ�,R)|2 + C(�2γ ∨ [�1/2(h(�))2]). (5.14)

But, by condition (5.10), we have

μ−1(h(�)) ≥ (�2γ ∨ [�1/2(h(�))2])−1/(p̄−2) = R.

We can hence apply Lemma 5.2 to obtain

E|e�(T ∧ θ�,R)|2 ≤ C(�2γ ∨ [�1/2(h(�))2]). (5.15)
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Substituting this into (5.14) yields the first assertion (5.11) . The second assertion

(5.12) follows from (5.11) and Lemma 2.5.

Let us discuss an example to illustrate Theorem 5.3 and to motivate our further

results on the convergence rates.

Example 5.4 Consider the same SDE in Example 4.8. We need to verify Assumption

5.1. For x, y, x̄, ȳ ∈ R, it is easy to show that

(x− x̄)(f (x, y)−f (x̄, ȳ)) ≤ a2
2 |x− x̄|2+(|y|4/3−|ȳ|4/3)2−0.5a3|x− x̄|2(x2+ x̄2).

(5.16)

But, by the mean value theorem,

(|y|4/3 − |ȳ|4/3)2 ≤
16

9
|y − ȳ|2(|y|1/3 + |ȳ|1/3)2 ≤ 4|y − ȳ|2(|y|2/3 + |ȳ|2/3).

Let a6 := supu≥0(8u2/3 − 0.5a3u
2). Then 0 ≤ a6 < ∞ and

(|y|4/3 − |ȳ|4/3)2 ≤ a6|y − ȳ|2 + 0.25a3|y − ȳ|2(y2 + ȳ2).

Substituting this into (5.16) yields

(x − x̄)(f (x, y) − f (x̄, ȳ))

≤ (a6 ∨ a2
2)(|x − x̄|2 + |y − ȳ|2)

−0.5a3|x − x̄|2(x2 + x̄2) + 0.25a3|y − ȳ|2(y2 + ȳ2). (5.17)

Similarly, we can show that

0.5|g(x, y)− g(x̄, ȳ)|2 ≤ (a7 ∨ a2
5)(|x − x̄|2 + |y − ȳ|2)+ 0.25a3|x − x̄|2(x2 + x̄2),

(5.18)

where a7 := supu≥0(9a2
4u − 0.5a3u

2) ∈ (0, ∞). It then follows from (5.17) and

(5.18) that

(x − x̄)(f (x, y) − f (x̄, ȳ)) + 0.5|g(x, y) − g(x̄, ȳ)|2

≤ H1(|x − x̄|2 + |y − ȳ|2) − U(x, x̄) + U(y, ȳ), (5.19)

where H1 = (a6 ∨ a2
2) + (a7 ∨ a2

5) and U(x, x̄) = 0.25a3|x − x̄|2(x2 + x̄2). It is

obvious that U ∈ U . In other words, we have shown that Assumption 5.1 is satisfied

too. To apply Theorem 5.3, we use the same functions μ(·) and h(·) as defined in

Example 4.8. We observe that inequality (5.10) becomes

�−ε ≥ â�−3[(2γ )∧(1/2−2ε)]/(p̄−2). (5.20)

But, for any ε ∈ (0, 1/4], we can choose p̄ sufficiently large such that ε > 3[(2γ ) ∧

(1/2 − 2ε)]/(p̄ − 2) and hence (5.20) holds for all sufficiently small �. We can

therefore conclude by Theorem 5.3 that the truncated EM solutions of the SDE (4.14)

satisfy

E|x(T )−x�(T )|2 =O(�(2γ )∧(1/2−2ε)) and E|x(T )−x̄�(T )|2 =O(�(2γ )∧(1/2−2ε)).

(5.21)

It is known that for every α ∈ (0, 0.5), the Brownian motion is α-Hölder continu-

ous (see, e.g., [10]). If we regard the initial data ξ(u), u ∈ [−τ, 0] as an observation of
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the state during the time interval [−τ, 0], it is reasonable to assume that γ ∈ (0, 0.5).

If γ is close to 0.5, then (5.21) shows the order of convergence is close to 0.25. Can

we improve the order? The answer is yes though we need stronger conditions.

Assumption 5.5 Assume that there are positive constants α and H2 and a function

U ∈ U such that

(x − x̄)T (f (x, y) − f (x̄, ȳ)) +
1 + α

2
|g(x, y) − g(x̄, ȳ)|2

≤ H2(|x − x̄|2 + |y − ȳ|2) − U(x, x̄) + U(y, ȳ) (5.22)

for all x, y, x̄, ȳ ∈ R
n.

Assumption 5.6 Assume that there is a pair of positive constants r and H3 such that

|f (x, y) − f (x̄, ȳ)|2 ∨ |g(x, y) − g(x̄, ȳ)|2

≤ H3(|x − x̄|2 + |y − ȳ|2)(1 + |x|r + |x̄|r + |y|r + |ȳ|r) (5.23)

for all x, y, x̄, ȳ ∈ R
n.

Lemma 5.7 Let Assumptions 2.1, 3.4, 4.1, 4.1 and 3.4 hold and p̄ > r . Let R > ‖ξ‖

be a real number and let � ∈ (0, �∗) be sufficiently small such that μ−1(h(�)) ≥ R.

Let θ�,R and e�(t) be the same as defined in Section 3. Then

E|e�(T ∧ θ�,R)|2 ≤ C(�2γ ∨ [�(h(�))2]). (5.24)

Proof We use the same notation as in the proof of Lemma 5.2. It follows from (5.5)

that

E|e�(t ∧ θ)|2 ≤ E

∫ t∧θ

0

(

2eT
�(s)[f (x(s), x(s − τ)) − f (x�(s), x�(s − τ))]

+(1 + α)|g(x(s), x(s − τ)) − g(x�(s), x�(s − τ))|2

+2eT
�(s)[f (x�(s), x�(s − τ)) − f (x̄�(s), x̄�(s − τ))]

+(1 + α−1)|g(x�(s), x�(s − τ)) − g(x̄�(s), x̄�(s − τ))|2
)

ds.

(5.25)

By Assumptions 3.4, 4.1 and 3.4, we can then show

E|e�(t ∧ θ)|2 ≤ (4H2 + 1)

∫ t

0

E|e�(s ∧ θ)|2ds + 2τκbK
2
3�2γ + J, (5.26)

where (5.8) has been used and

J := E

∫ t∧θ

0

H3(2 + α−1)(|x�(s) − x̄�(s)|2 + |x�(s − τ) − x̄�(s − τ)|2)

×(1 + |x�(s)|r + |x̄�(s)|r + |x�(s − τ)|r + |x̄�(s − τ)|r)ds.
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But, by the Hölder inequality, Lemmas 2.5 and 4.3 and Assumption 3.4, we can

derive that

J ≤ C

∫ T

0

(

E|x�(s)− x̄�(s)|2p̄/(p̄−r) + E|x�(s − τ) − x̄�(s − τ)|2p̄/(p̄−r)
)(p̄−r)/p̄

×
(

1 + E|x�(s)|p̄ + E|x̄�(s)|p̄ + E|x�(s − τ)|p̄ + E|x̄�(s − τ)|p̄
)r/p̄

ds

≤ C(�2γ ∨ [�(h(�))2]).

Substituting this into (5.26) gives

E|e�(t ∧ θ)|2 ≤ (4H2 + 1)

∫ t

0

E|e�(s ∧ θ)|2ds + C(�2γ ∨ [�(h(�))2]),

which implies the required assertion (5.24).

The following theorem gives a better convergence rate than Theorem 5.3.

Theorem 5.8 Let Assumptions 2.1, 3.4, 4.1, 4.1 and 3.4 hold and p̄ > r . Assume that

h(�) ≥ μ
(

(�2γ ∨ [�(h(�))2])−1/(p̄−2)
)

(5.27)

for all sufficiently small � ∈ (0, �∗). Then, for every such small �,

E|x(T ) − x�(T )|2 ≤ C(�2γ ∨ [�(h(�))2]) (5.28)

and

E|x(T ) − x̄�(T )|2 ≤ C(�2γ ∨ [�(h(�))2]). (5.29)

Proof We use the same notation as in the proof of Theorem 5.3. Choosing

δ = �2γ ∨ [�(h(�))2] and R = (�2γ ∨ [�(h(�))2])−1/(p̄−2),

we get from (5.13) that

E|e�(T )|2 ≤ E|e�(T ∧ θ�,R)|2 + C(�2γ ∨ [�(h(�))2]). (5.30)

But, by condition (5.27), we have

μ−1(h(�)) ≥ (�2γ ∨ [�(h(�))2])−1/(p̄−2) = R.

We can hence apply Lemma 5.2 to obtain

E|e�(T ∧ θ�,R)|2 ≤ C(�2γ ∨ [�(h(�))2]). (5.31)

Substituting this into (5.30) yields the first assertion (5.28) . The second assertion

(5.29) follows from (5.28) and Lemma 2.5.

Example 5.9 Let us return to Example 4.8 once again. Instead of (5.18), we can have

the following alternative estimate

|g(x, y) − g(x̄, ȳ)|2 ≤ 2(a8 ∨ a2
5)(|x − x̄|2 + |y − ȳ|2) + 0.25a3|x − x̄|2(x2 + x̄2),

(5.32)
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where a8 := supu≥0(9a2
4u − 0.25a3u

2) ∈ (0, ∞). It then follows from (5.17) and

(5.32) that

(x − x̄)(f (x, y) − f (x̄, ȳ)) + |g(x, y) − g(x̄, ȳ)|2

≤ H2(|x − x̄|2 + |y − ȳ|2) − U(x, x̄) + U(y, ȳ), (5.33)

where H2 = (a6 ∨ a2
2) + 2(a8 ∨ a2

5) and U(x, x̄) = 0.25a3|x − x̄|2(x2 + x̄2). In

other words, we have shown that Assumption 4.1 is satisfied with α = 1. It is also

straightforward to show that

|f (x, y)−f (x̄, ȳ)|2 ≤ 8a2
2 |y−ȳ|2(1+|y|4+|ȳ|4)+16a2

3 |x−x̄|2(|x|4+|x̄|4). (5.34)

We hence see from (5.32) and (5.34) that Assumption 3.4 is also satisfied with r = 4.

In other words, we have shown that Assumptions 2.1, 4.1, 3.4, 4.1, and 3.4 hold for

every p̄ > r = 4. Let μ(·) and h(·) be the same as before. We can then conclude by

Theorem 5.8 that the truncated EM solutions of the SDE (4.14) satisfy

E|x(T ) − x�(T )|2 = O(�(2γ )∧(1−2ε)) and E|x(T ) − x̄�(T )|2 = O(�(2γ )∧(1−2ε)).

(5.35)

In particular, if γ is close to 0.5 (or bigger than half), this shows that the order of

convergence is close to 0.5.

6 Conclusion

In this paper, we have used the new explicit method, called the truncated EM method,

to study the strong convergence of the numerical solutions for nonlinear SDDEs. For

a given stepsize �, we define the discrete-time truncated EM numerical solution and

then form two versions of the continuous-time truncated EM solutions, namely the

continuous-time step-process truncated EM solution x̄�(t) and the continuous-time

continuous-process truncated EM solution x�(t). Under the local Lipschitz condi-

tion plus the generalized Khasminskii-type condition, we have successfully shown

the strong convergence of both continuous-time truncated EM solutions to the true

solution in the sense that

lim
�→0

E|x�(T ) − x(T )|q = 0 and lim
�→0

E|x̄�(T ) − x(T )|q = 0

for any T > 0 and q ∈ [1, 2). Under a slightly stronger Khasminskii-type condition,

we have showed the above convergence for some q ≥ 2. We have also discussed

the convergence rates in L2 under some additional conditions. We have used several

examples to illustrate our theory throughout the paper.
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