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Abstract—Diffusion modeling is essential in understanding 

many physical phenomena such as heat transfer, moisture 

concentration, electrical conductivity, etc.  In the presence of 

material and geometric discontinuities, and non-local effects, a 

non-local continuum approach, named as peridynamics, can be 

advantageous over the traditional local approaches. 

Peridynamics is based on integro-differential equations without 

including any spatial derivatives.  In general, these equations are 

solved numerically by employing meshless discretization 

techniques. Although fundamentally different, commercial finite 

element software can be a suitable platform for peridynamic 

simulations which may result in several computational benefits.  

Hence, this study presents the peridynamic diffusion modeling 

and implementation procedure in a widely used commercial finite 

element analysis software, ANSYS.  The accuracy and capability 

of this approach is demonstrated by considering several 

benchmark problems. 

 
Index Terms—Peridynamics, finite element, diffusion, model  

 

I.! INTRODUCTION 

IFFUSION equations, expressed in the form of partial 

differential equations, can be solved by using techniques 

such as finite element method (FEM), finite difference method 

(FDM) and boundary element method (BEM). These 

techniques can be useful for the solution of many different 

problems of interest; however, they may encounter difficulties 

if the structure has geometric or material discontinuities 

typical of electronic packages. Moreover, certain problems 

require a length scale parameter due to the presence of non-
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local phenomenon as in the case of solid state devices. Non-

traditional techniques exist to overcome such modeling and 

computational difficulties associated with the traditional local 

techniques.   Solution to nonlocal diffusion equation is usually 

achieved exchanging spatial differential operators for integral 

operators.  The resulting integro-differential equation provides 

general and realistic solutions even if the physical phenomena 

exhibit discontinuities and nonlocality.  There exist solutions 

to the nonlocal diffusion equations as discussed by Tian and 

Du [1], Tian et al. [2] and Tian et al. [3].  One of the most 

recent promising nonlocal techniques introduced by Silling [4] 

is called peridynamics (PD).   

 Although it was originally developed to perform 

deformation analysis and failure prediction, it has been 

extended for the analysis of many other fields including heat 

transfer [5-7], electrical conduction [8], moisture 

concentration [9], vacancy diffusion [5,10], etc. Peridynamics 

uses integro-differential equations which do not contain any 

spatial derivatives. Hence, it is very suitable for problems 

which contain spatial discontinuities. Moreover, it has a length 

scale parameter referred to as “horizon” which makes PD a 

non-local theory.  An extensive review of PD can be found in 

Madenci and Oterkus [11].   

 In general, solution of PD governing equations is not 

possible by using analytical techniques. Therefore, various 

numerical techniques are utilized including meshless methods 

[12]. Although PD is a powerful technique, it is usually 

computationally more expensive than the traditional 

techniques. However, the computational time can be 

significantly reduced by utilizing parallel programing 

architectures.  Another alternative is to use commercial finite 

element software so that existing efficient numerical 

algorithms can be utilized [13]. Hence, this study presents the 
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PD solution of diffusion equation by using a commercially 

available finite element software, ANSYS. It is important to 

note that the solution method is still based on meshless PD 

solution even with using a finite element analysis software. 

Various demonstration cases are considered to show the 

accuracy and capability of the current approach. As a 

demonstration of the ANSYS implementation of the PD form 

of diffusion equation, this study presents results when the 

length parameter (horizon) converges to zero.  In the limiting 

case, it recovers the solution to local diffusion models. 

II.! PERIDYNAMICS DIFFUSION FORMULATION 

Diffusion process occurs in many different physical 

phenomena, and it can be described by using the classical 

(local) formulation as   

 

( ) ( ) ( )2

1 2
, , ,m t m t s tψ ψ= ∇ +x x x (1)  

 

where ( ),tψ x  is the field variable, 
1
m  and 

2
m  represent the 

isotropic material properties, and ( ),s tx  represents the 

source.  The dot over a variable denotes differentiation with 

respect to time, and 2
∇  is the Laplacian operator.   

 Within the peridynamic framework, the interaction 

between material points is nonlocal. Therefore, a material 

point is influenced by the other material points within its 

neighborhood defined by its horizon.  As shown by Oterkus et 

al. [9], the PD form of Eq. (1) can be derived as   

 

( ) ( ) ( )1
, , , , , ,

H
m t f t dV s tψ ψ ψ ′′ ′= +∫

x

x
x x x x  (2) 

 

where f  is the response function which governs the 

interaction between material points x  and ′x .  It enables the 

exchange of field variable between material points that are 

connected through bonds.  In Eq. (2), the parameter H
x
 

represents the domain of influence region for the material 

point at x  as shown in Fig. 1.  Its extent is defined by the 

parameter, δ  referred to as the horizon. The response 

function, f  is zero for material points outside the horizon; 

i.e., δ′ − >x x .  The pairwise response function can be 

defined as 

 

( )
( ) ( )', ,

, , , ,
t t

f t m
ψ ψ

ψ ψ
′ −

′ ′ =
′ −

x x
x x

x x

 (3) 

 

where m  is the PD material parameter which is dependent on 

the material properties and the horizon.  This parameter can be 

determined by equating the PD form of the diffusion equation 

to the classical diffusion equation as the horizon size 

approaches to zero.  The explicit form of this parameter is 

given in the subsequent sections for three different physical 

fields, i.e. temperature, moisture concentration and electrical 

potential. 

 

 

Fig. 1.  Interaction of material point x  with its neighboring 

point, ′x  

 

A. Thermal diffusion 

 If the field variable, ψ  in Eq. (1) represents temperature,

Θ , the parameters in Eq. (1) are defined as 
1 v
m cρ=  and 

2 T
m k=  with 

T
k , 

v
c  and ρ  representing the thermal 

conductivity, specific heat and density, respectively, and 

T
s q=  is the volumetric heat generation.  Thermal response 

function is denoted by ( ), , , ,Tf t′ ′Θ Θ x x .  The response 

function enables the exchange of heat between material points 

that are connected through thermal bonds.  The PD material 

parameter, m  corresponds to the micro-thermal conductivity, 

T
κ  and can be defined as 
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in which h  is the thickness of the plate and A  is the cross 

sectional area.  The heat flux, q , which is the rate of flow of 

heat energy through a surface, is defined as 

 

T
k= − ∇Θq  (5) 

 

As derived by Oterkus et al. [10], the corresponding 

peridynamic heat flux can be expressed as 

 

( ) ( )
1 ( )

', ,
2

T
H

t t dVκ ′

′ −
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B. Moisture diffusion through wetness field 

 The moisture diffusion equation can be recovered if the 

field variable, ψ  in Eq. (1) is defined as concentration, 
M
C  

with 
1
1m =  and 

2 M
m D=  representing moisture diffusion 

coefficient.  However, the diffusion equation, Eq. (1) is only 

valid for a homogenous domain.  Therefore, it is not valid for 

direct solution of concentration in nonhomogeneous domains 

because the concentration is not continuous along dissimilar 

interfaces.  In order to remedy this situation, Wong et al. [14] 

introduced a normalized field variable called “wetness” as   

 

sat

C
w

C
=  (7) 

 

They showed the continuity of this new field through the 

interface of dissimilar materials based on the equalization of 

chemical potentials.  Therefore, the moisture concentration 

can be determined by solving first for wetness.  The diffusion 

equation, Eq. (1) can be recast in terms of the wetness field as 

wψ = .  If the source function, ( , )s tx  at material point x has a 

non-zero value, the second term on the right hand side of Eq. 

(1) requires a modification as ( , )/
sat

s t Cx . However, this 

equation is only valid under time independent moisture 

concentration, 
sat
C  condition.   

 Consequently, the moisture concentration response 

function is denoted by ( ), , , ,Mf w w t′ ′x x , and it enables 

exchange of wetness between material points that are 

connected through hygro bonds. The PD bond constant, m , 

corresponds to the micro-moisture diffusivity, 
M

κ  and can be 

defined as   
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C. Electrical conduction 

 If the field variable, ψ  in Eq. (1) represents electrical 

potential, Φ , the parameters in Eq. (1) are defined as 
1 E
m c=  

and 
2 E
m k=  with 

E
k  and 

E
c  representing the electrical 

conductivity and the electrical capacitance, respectively.  The 

electrical response function is denoted by ( ), , , ,Ef t′ ′Φ Φ x x , 

and it enables exchange of electrical current between material 

points that are connected through electrical bonds.  The PD 

bond constant, m  corresponds to the micro-electrical 

conductivity, 
E

κ  and can be defined as   
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Classically, the current density vector, j  can be expressed in 

terms of electrical potential, Φ  as 

 



E
k= − ∇Φj  (10) 

The corresponding peridynamic current density vector in 

terms of the response function can be expressed as [10] 
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2
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H
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x

x x
j x x x

x x
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As shown in Fig. 2, material points, x  and ′x  can be located 

on opposite sides of the interface with different coefficients m  

and m′ , respectively.  The PD bond between material points 

x  and ′x  is split between these two materials.  The segments 

of this bond are associated with these material points and are 

denoted by l  and l′ , respectively. The property of this bond 

between material points, x  and ′x  can be approximated as 

 

l l
m

l l

m m

′+
=

′
+

′

 (12) 

 

 

Figure 2.  PD interactions of material points near the interface 

region. 

 

III.! PERIDYNAMIC MODELING OF DIFFUSION VIA 

FINITE ELEMENT METHOD   

The implementation of PD modeling is explained by 

considering thermal diffusion analysis because many 

commercial finite element software readily offers heat transfer 

analysis capability.  Moisture and electrical conduction 

analysis can be performed by using the same methodology 

after successfully calibrating the parameters associated with 

the thermal diffusion analysis.  

 As described in the previous section, the bond-based PD 

heat conduction equation can be written as   

 

'v T Tc f dV hρ
Η

Θ = +∫   (13a) 

 

where ρ is density, cv is specific heat capacity, 
T
h  is heat 

source and Tf  is the thermal response function which is 

defined as 

 

'

T Tf κ
Θ −Θ

=
′ −x x

 (13b) 

in which 
T

κ  is thermal micro-conductivity, Θ is temperature 

of material points, and ′= −ξ x x  is the reference length 

between material points. The PD equation of heat conduction 

can also be expressed in discretized form for the material point 

located at 
i
x  as 

 

ij iv i T j T

j

c f V hρ Θ = +∑  (14a) 

 

with   

 

ij

j i

T T

j i

f κ
Θ −Θ

=

−x x

 (14b) 

 

where the subscript j  represents the parameters associated 

with the family members of the main material point, 
i
x .  

 The classical heat conduction equation is of the form   

 

2

v T T
c k hρ Θ = ∇ Θ+  (15) 

 

where 
T
k  is thermal conductivity.  By comparing this 

equation to Eq. (14a), the PD counterpart of the rate of heat 

entering through the surfaces is identified as 

 



2
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2 j i

T T j
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k Vκ
Θ −Θ
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−

∑
x x
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In light of Eq. (16), it is apparent that weak form of Eq. (15) 

can be recast similar to Eq. (14a) provided that certain 

parameters of the classical equation are calibrated to obtain the 

appropriate form of the PD equation.   

 Considering a one-dimensional heat flow between two 

mass elements, which are connected to each other with a link 

element as shown in Fig. 3, the weak form of Eq. (15) or its 

finite element equation can be expressed as  

 

[ ]{ } [ ]{ } { }Θ + Θ =M K F  (17) 

 

in which [ ]M  is the lumped mass matrix in terms of mass 

elements which depend on density ρ, specific heat capacity cv 

and volume V of each node.  Moreover, [ ]K  is the stiffness 

matrix of the link element, { }F  vector represents the heat 

source at each node and { }Θ  is the nodal temperature vector.   

 

 

 

Figure 3. Thermal link and thermal mass elements to represent 

PD heat conduction  

 

Furthermore, Eq. (17) can be explicitly written as   
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2 22
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TT
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hL
ρ

Θ−⎧ ⎫Θ ⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪
+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥ Θ−Θ⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎩ ⎭

 (18) 

 

in which subscripts 1 and 2 represent nodes 1 and 2, 

respectively. The volumes of mass elements, i.e., V, are equal 

and L is the length of the link element.   

The peridynamic counterpart of Eq. (18) can be written by 

multiplying both sides of Eq. (14a) with the volume of the 

material point, Vi, and considering only heat flow between two 

material points or nodes as shown in Fig. 3 as   

 

i

j i

v i i i T j i T

j j i

c V V V V hρ κ
Θ −Θ

Θ = +

−
∑
x x

 (19) 

 

For nodes 1 and 2, Eq. (19) can be rewritten as 
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1
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1

j
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and 
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2
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2

j
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Since the volumes of the material points are equal, i.e. 

1 2 j
V V V V= = =  due to uniform discretization, Eq. (20) can 

be expressed in matrix form as 
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 (21) 

 

Comparing stiffness matrices, [ ]K  of both equations, i.e. Eqs. 

(18) and (21), the classical parameters can be related to their 

PD counterparts as 

 

2

T T
Ak Vκ→  (22) 

 



since the length of each link element is equal to the reference 

length between material points, i.e. L = ξ .  The calibration 

procedure of a link element to represent the PD model is given 

in Table 1.  Moreover, similar calibration procedure can be 

applied for moisture concentration and electrical conduction 

fields. The calibration procedures for these fields are given in 

Tables 2 and 3. 

 

Table 1 Calibration of a link element for thermal analysis  

 Link Element 

Properties Original Modified 

Thermal Conductivity kT V  

Cross Sectional Area A 
T
Vκ  

Length of link element L ξ  

 

Table 2 Calibration of a link element for moisture analysis  

 Link Element 

Properties Original Modified 

Thermal Conductivity kT V  

Cross Sectional Area A 
M
Vκ  

Length of link element L ξ  

 

 

Table 3 Calibration of a link element for electrical conduction  

 Link Element 

Properties Original Modified 

Thermal Conductivity kT V  

Cross Sectional Area A 
E
Vκ  

Length of link element L ξ  

 

 

In order to construct the PD model of the domain, link 

elements can be created between the main material point and 

its family members within its horizon as shown in Figs. 4a-b.  

Thus, considering each node as the main material point, and 

creating link elements between the point itself and its family 

members lead to a network of link elements (connectivity) as 

shown in Fig. 4c.  This procedure allows establishment of the 

global stiffness matrix of the domain. Moreover, mass 

elements are introduced on top of each node in order to 

establish the diagonal global mass matrix. 

 

If ANSYS, a commercially available finite element analysis 

software, is utilized as the computational platform, LINK33 3-

D conduction bar element can be used as the thermal link 

element. For this element, the cross-sectional area of the 

element, A, should be defined as a real constant.   

 

 

 
 

(a) Family members of the main material point 

 

 
 

(b) Link elements between the main node and its family 

member nodes   

 



 
 

(c) Network of link elements 

Figure 4. PD discretization of a structure with thermal link and 

thermal mass elements 

 

 The material properties of the link elements require 

correction if its nodes do not have a complete set of family 

members such as the case for nodes located close to the 

surfaces.  The determination of surface correction factor, 
c

α  is 

explained by Madenci and Oterkus [11].  Moreover, as 

demonstrated in Fig. 4(a), the family members (nodes) close to 

the horizon boundary do not have complete volumes inside the 

horizon. Hence, it is necessary to determine the “volume” 

correction factor, 
c

υ  for these nodes. Therefore, a more 

accurate calibration can be achieved by incorporating these 

correction factors as  

 

( )( )c T c
A Vα κ υ→  (23) 

 

Note that the link elements should be defined as massless 

elements by assigning a material with zero density value 

because the total mass of the structure is represented by using 

thermal mass elements.  For the mass element, MASS71 

thermal mass element is suitable. The density, ρ  and specific 

heat capacity, 
v
c  can be defined as material property whereas 

the volume of the material point, 
i
V  can be specified as a real 

constant for this element type. For moisture diffusion through 

wetness analysis, the density, ρ  and specific heat capacity, 
v
c  

should be specified as unity. Moreover, for the electrical 

conduction analysis, the density, ρ  can take a value of unity 

whereas specific heat capacity, 
v
c  should be specified as the 

electrical capacitance, 
E
c .   

 

IV.! NUMERICAL RESULTS  

The numerical results concern the verification of this PD 

implementation by considering four different problems: (1) 

heat conduction in a finite bar, (2) heat diffusion in a plate 

under thermal shock, (3) heat diffusion in a plate of dissimilar 

materials with an insulated interface crack, and (4) moisture 

absorption in a three-dimensional material. For validation 

purposes, the PD predictions are compared with traditional 

finite element predictions or analytical solutions. 

 

A. Heat conduction in a finite bar 

The bar has a length of 1mL =  and a cross sectional area 

of 4 2
1 10A m

−
= ×  with material properties, 

4 2
1.1535 10 /

T v
k c m sα ρ −

= = ×  with 396 
T
k W m C= .  It 

has an initial temperature field of ( ), 0 0
o

x t CΘ = = , and its 

ends are subjected to a constant temperature of 

( ) ( )0, , 100
o

x t x L t CΘ = =Θ = = . These boundary conditions 

are applied to a fictitious region outside of the actual bar 

region with a length equivalent to the horizon size.  As shown 

in Fig. 5, the PD model has uniform spacing between the 

nodes of 2
1 10 m

−
Δ = ×  resulting in 100 nodes, and the 

horizon is specified as 3.015δ = Δ .  Implicit time integration 

is utilized with a time step size of 10 stΔ = .   

 The PD predictions of temperature variation along the bar 

is shown in Fig. 6 at different times, and they are compared 

with the traditional FEA predictions.  As evident from Fig. 6, 

both PD and FEA results agree very well with each other.   

 

 

 

Figure 5. Discretization of the finite slab and the fictitious 

boundary regions. 

 



 

 

Figure 6. PD temperature variation along the bar at different 

times and its comparison with FEA solutions. 

 

 The horizon is related to the grid size.  Therefore, 

convergence of the PD predictions to the local solution of 

diffusion equation is analyzed by considering various values 

of horizon and grid spacing.  Tian and Du [15] developed 

Asymptotically Compatible (AC) discretization schemes for 

robust approximations of PD models and their local limit 

models.  AC schemes allow for the preservation of the 

consistency between nonlocal and local limits of the 

continuum model at the discrete level, regardless of how the 

grid spacing between the material points is compared with the 

horizon.   

 The horizon is specified as m xδ = Δ  for decreasing value 

of uniform spacing between the integration points, 

0.0025, 0.005, 0.01, 0.02 and 0.05 mxΔ =  with a fixed value 

of 3m = .  The number of family members remains the same.  

Fig. 7 shows the error measure and convergence rate for 

varying times of 100,  500,  2000,  5000 st = .  The PD results 

converge to the local solution while Δx reduces from 0.05 to 

0.0025 m.  Similarly, the effect of nonlocality on the 

convergence rate is studied for a fixed value of 0.0025mxΔ =  

for varying 1,3,6,12,24 and 60m = .  The number of family 

members increases.  As shown in Fig. 8, the local solution is 

obtained as the horizon size reduces to zero and the effect of 

non-locality increases with the increasing horizon size.   

 

The global error measure is based on  

 

( )

( ) ( )( )
2

1

max

1 1
K

e c

m me

m

u u
Ku

ε
=

= −∑   

 

where 
( )

max

e

u  denotes the maximum of absolute value of 

exact field variable, the superscripts e and c show the exact 

and numerical solutions, respectively and K is the total 

number of points, in which the results are read, in the domain.  

 

 

 

 
Figure 7. Convergence rate for decreasing grid size for a fixed 

value of m = 3 at varying times.  

 

 

 
Figure 8. The effect of nonlocality on the convergence rate for 

a fixed value of 0.0025 mxΔ =  for increasing m at different 

times.  

 

 

B. Plate under thermal shock 

 A square plate of isotropic material under thermal shock 

loading with insulated boundaries at the top and bottom 

surfaces was considered as shown in Fig. 9. The plate has a 

length and width of 10 mL W= = , and thickness of 1 mH = .  

Its specific heat capacity, thermal conductivity and mass 

density are specified as 1 J/kgK
v
c = , 1 W/mK

T
k =  and 

31 kg/mρ = , respectively.  It is subjected to the following 

initial conditions and boundary conditions: 

 

( , , 0) 0 Cx y tΘ = = °  (24) 

 

and 

, ( 10, ) 0,   0
x
x y tΘ = = >  (25a) 

, ( , 5) 0,   0
y
x y tΘ = ± = >  (25b) 



2( 0, ) 5 ,  0t
x t te t

−
Θ = = >  (25c) 

 

As shown in Fig. 9, the spacing between material points in the 

PD model is 0.1 mΔ =  and the horizon is specified as 

3.015δ = Δ .  The time step size is kept small even if the 

problem is solved implicitly in ANSYS in order to capture 

appropriate wave characteristics. Hence, it is specified as 

4
5 10 st

−
Δ = × .   

 The temperature variations at 0y =  are predicted for 

3 st =  and 6 st = . PD results are compared with the FEA 

predictions as shown in Fig. 10 and they are in close 

agreement. Furthermore, Fig. 11 demonstrates PD temperature 

contour plots for the specified times. 

 

 

Figure 9. Peridynamic model of the plate under thermal shock 

loading.   

 

 

Figure 10. Comparison of temperature variations from 

peridynamics and FEA at 0y = .  

 

 

(a) 3 st =  

 

 

(b) 6 st =    

 

Figure 11. Thermal shock wave propagation in the plate at 

different times 

 

C. Dissimilar materials with an insulated crack 

 As shown in Fig. 12, a square plate made of two different 

materials with an insulated interface crack is subjected to 

thermal loading.  The plate geometry is specified by a length 

of 1 mL = , width of 1 mW = , thickness of 0.01 mH =  and 

crack length of 2 0.2 ma = .  Its specific heat capacity, 

thermal conductivity and mass density are specified as 

1 J/kgK
v
c = , 1.14 W/cmK

T
k k= =  and 31kg/cmρ = , 

respectively.  It is subjected to the following initial conditions 

and boundary conditions:   

 



( , , ,0) 0,     /2 /2,   /2 /2x y z L x L W y WΘ = − ≤ ≤ − ≤ ≤  (26) 

 

and 

 

o o( , /2, ) 100 C,   ( , /2, ) 100 C,   0x W t x W t tΘ = Θ − = − >   (27a) 

 

, ,( /2, , ) 0,   ( /2, , ) 0,   0
x x
L y t L y t tΘ = Θ − = >  (27b) 

 

The spacing between material points in the PD model is 

0.01 mΔ =  and the time step size is specified as 1 stΔ = .  

The problem is solved using 3 different thermal conductivity 

values for material 1 and 2 as 
1 2
k k k= = ; 

1 2
/ 2  and  k k k k= = ; 

1 2
/10  and  k k k k= = .  The 

peridynamic predictions and their comparison with FEA 

across the interface are given in Fig. 13.  As depicted in this 

figure, the results have a close agreement with each other.  

Furthermore, the influence of insulated pre-crack on 

temperature variations are apparent as shown in Fig. 14 

through the contour plots of PD predictions.   

 

 

Figure 12. Peridynamic model of a square plate with an 

insulated interface crack.   

 

 

 

Figure 13. Temperature variations along 0x = , across the 

interface of the plate at 500 st =    

 

 

(a) 
1 2
k k k= =  

 

 

(b) 
1 2

/ 2  and  k k k k= =  

 



 

(c) 
1 2

/10  and  k k k k= =  

Figure 14. PD temperature fields for different types of 

bimaterial models at 500 st =    

 

D. Moisture absorption of a three dimensional underfill 

material 

This problem demonstrates moisture absorption and weight 

gain in a three dimensional underfill material. The geometrical 

parameters are shown in Fig. 15 and they are specified as 

length, L = 42 mm, width, W = 37.7 mm and thickness, H = 

1.2 mm which is much smaller than its length and width. 

Furthermore, the diffusivity and saturated concentration values 

of an underfill material are specified as 

8 2
1.026 10  m /hrD

−
= ×  and 312.50 kg/m

sat
C = , respectively.   

 

 

Figure 15. Geometrical parameters of the underfill material  

 

The boundary conditions at the outer surfaces are specified as 

sat
C C= .  The material is initially dry, i.e. ( ), 0 0C x t = = .  It 

is subjected to moisture absorption for 120 hours.  A time step 

size of 1 hour is specified in the construction of the solution. 

Eighteen nodes are used in the thickness direction and the 

horizon size is chosen as 1.733 xδ = Δ . Peridynamic result of 

the weight change is shown in Fig. 16 and it is compared 

against the theoretical result at the fully saturated state. The 

underfill material reaches its fully saturated weight as 

calculated by 52.3751 10  kg
sat sat

W L W H C
−

= × × × = ×  which 

is in good agreement with the PD prediction.   

 

 

Figure 16. Comparison of PD and analytical weight gain 

results   

 

V.! CONCLUSION  

This study presents the implementation of PD diffusion 

analysis through a commercial finite element analysis 

software, ANSYS. It offers several computational benefits 

including significant reduction of computational time as a 

result of implicit time integration instead of explicit time 

integration which is a common approach used in the PD 

applications. Moreover, very large system of equations can be 

solved by employing efficient solvers available in ANSYS 

software.   

The accuracy and capability of this implementation are 

demonstrated by considering four benchmark problems 

concerning heat transfer and moisture diffusion.  Peridynamic 

predictions compare well with either traditional finite element 

or analytical solutions.  Finally, it is shown that peridynamics 

can easily deal with the problems including discontinuities in 

the form of an interface crack between two dissimilar 

materials.   
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