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Control Performance Monitoring of

State-Dependent Nonlinear Processes

Luis F. Recalde*, Hong Yue ∗

∗ Wind Energy and Control Centre, Department of Electronic and
Electrical Engineering, University of Strathclyde, Glasgow, UK G11RD
(e-mail: luis.recalde-camacho@strath.ac.uk; hong.yue@strath.ac.uk)

Abstract: This paper presents a novel approach to monitor control performance of nonlinear
processes that can be described as state-dependent models (SDMs). A discrete Kalman filter
(KF) is established to estimate the SDM parameters. A covariance control formulation is
introduced to split the system closed-loop variance/covariance into two terms, one term to
account for the minimum expected quadratic loss bound (equivalent to the minimum variance
performance bound but in state space formulation), and another to account for performance
deviations from the minimum variance bound. Simulation studies have been conducted on several
nonlinear process systems including a cold rolling mill model with roll eccentricity and a steel
making system with real time oxyfuel slab reheating furnace control data. The case study results
demonstrate the computational efficiency of the proposed strategy in real time monitoring and
control of systems with fast, nonlinear and time-varying dynamics.

Keywords: State-dependent model (SDM), parameter estimation, Kalman filter (KF), control
performance monitoring, covariance control, steel industry

1. INTRODUCTION

Control performance assessment/monitoring (CPA/CPM)
provides automated monitoring, evaluation and diagnosis
of possible under-performing control systems. The assess-
ment is normally conducted on models fitted to closed-
loop operational data through the estimation of a mini-
mum variance performance bound (MVPB) when Gaus-
sian stochastic disturbance signals are considered. A com-
prehensive review of CPA technologies and their impacts
in industry can be found in (Jelali, 2006).

Performance assessment of nonlinear systems remains an
important and challenging topic which has not been fully
investigated. One difficulty is that estimation of nonlinear
model parameters from operating data is computationally
demanding. Furthermore, to include statistical properties,
nonlinear processes are estimated as Volterra time series.
The use of Volterra time series, albeit general, can also
be intractable, limiting the assessment to only special
classes of nonlinear models. In the work of (Harris and Yu,
2007) and (Yu et al., 2010), for example, the performance
assessment is restricted to nonlinear models with additive
linear or partially nonlinear disturbances and with explicit
input/output representations. A more general strategy is
required for performance monitoring of nonlinear systems.

State-dependent models (SDM) are general nonlinear
models with finite dimensionality, amenable to statistical
analysis and relatively easy to be fitted to data with no
prior assumptions about the process nonlinearity (Priestly,
1988). This motivates our use of SDM to allow the closed-
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loop performance information being included in the states
covariance for general nonlinear systems. The extraction of
MVPB from the resulting SDM model is therefore made
by means of covariance control theory. The solution to
the covariance control problem provides a controller which
assigns a given state covariance to the closed-loop system
(Skelton et al., 1998). More specifically, the covariance
control algorithm can provide the MVPB within the actual
closed-loop performance.

In this work, state-dependent modelling from operational
data for CPM is carried out through a discrete KF since
the SDM can be formulated as truncated Volterra series
with state-dependent coefficients. This SDM representa-
tion is locally linear. The main advantage of using KF
is that its innovations error covariance (the covariance of
the difference between the available observations and their
optimal estimates) contains the overall outputs variance.
A performance index can therefore be formulated based
on the difference between the outputs variance/covariance
and the extracted MVPB. The developed index has two
advantages against linear indexes, it can accommodate
the time varying behaviour encountered in process in-
dustries, and can quantify the effects of nonlinearities
on the systems performance. The proposed algorithm is
examined with application studies to steel processing lines
and other nonlinear processes. Steel processing lines are
highly nonlinear, fast speed and setpoint-dependent pro-
cesses where the final product depends on customer-order
specifications.

The remaining paper is organised as follows. The SDM
description and its parameter estimation through KF are
presented in Section 2.1. Calculation of the MVPB using
covariance control and the derivation of the performance



index are presented in Section 3. In Section 4, simulations
studies are conducted on several industrial examples. Con-
clusions and future work are discussed in Section 5.

2. DEVELOPMENT OF STATE-DEPENDENT
MODELS

2.1 Model Description

In a discrete time setting, fitting a time series into a
nonlinear model in the form of SDM can be described by
the relationship between the observation, yt, and the past
history of the series as follows:

yt = f (yt−1, · · · , yt−m, et−1, · · · , et−n) + et (1)

The nonlinear function f describes the information of yt
contained within its past history {yt−i}

m

i=1 of order m, and
the innovations process {et−j}

n

j=1
of order n. Any past

observation, yt−i, is, by itself a function of the innovation
sequence {et−i−j}

n

j=1
, thus giving the notion of the state

vector, i.e. at time t− 1:

xt−1 = [et−n, · · · , et−1, yt−m, · · · , yt−1]
T

(2)

Here the state vector is not in the context of standard
linear state space formulation, since it does not provide
a minimal realisation, but rather being used as a set of
quantities that contain all the necessary information about
the process (Priestly, 1988). If f is analytical, it can be
expressed as a Volterra first-order expansion as follows:

yt =−
m
∑

i=1

ai (xt−1) yt−i + et +
n
∑

j=1

gj (xt−1) et−j (3)

+µ (xt−1)

where µ (xt−1) is the mean value of the state vector xt−1.
The coefficients ai and gj are first order derivatives of
f (xt−1) with respect to xt−1.

To estimate the SDM parameters through a sequential
algorithm such as KF, the output observation yt can be
re-written as follows:

yt = Xt−1Γt + et (4)

where:

Xt−1 =
[

1,xT
t−1

]

=
[

X1
t−1, X

2
t−1, · · · , X

m+n+1
t−1

]

,

Γt = [µ, gn, · · · , g1,−am, · · · ,−a1]
T

For simplicity, the state vector notation xt−1 has been
omitted in vector Γt and the vector Xt−1 is an extended
state vector that includes an element for the mean value
µ. The innovations term, et, is expected to be zero mean
white noise, with innovations variance Σe, such that the
KF provides the optimal estimates. With this formulation,
the entries of the past observations and the innovations
appear as locally linear. In the presence of delays, the
innovations should be regarded as independent from the
feedback effects. This is a necessary condition for the
formulation of the feedback invariance for systems with
delays (Harris and Yu, 2007).

To obtain the MVPB, a state space approach is used.
In state space form, the minimum expected quadratic

loss is equal to the minimum variance from its equivalent
polynomial form. Under the minimum expected quadratic
loss, the expectation of output, E

{

y2t
}

, is equal to the

expectation of the innovation term, E
{

e2t
}

, or to the se-

quence, E
{

∑d−1

k=1 e
2
k

}

, when a controllable input is delayed

with d time instances. From (4), we have:

E
{

y2t
}

= E
{

Xt−1ΓtΓ
T
t X

T
t−1

}

+ E
{

e2t
}

(5)

The presence of the expectation term in (5) from the past
observation data suggests that a non-minimum expected
quadratic loss feedback controller has been used, which is
actually more realistic from real application point of view.
In practice, controllers achieving the minimum variance or
the minimum quadratic loss may be difficult to implement
due to physical and energy efficiency constrains. Further-
more, a well-tuned controller may be under-performing
in real processes, thus leading to non-minimum design
performance.

2.2 Parameter Estimation of SDM

The model parameters can be identified by fitting the
closed-loop operating data to the SDM. In (Priestly, 1988),
the evolution of the SDM parameters is approximated to
linear functions of the difference between the elements
of the extended state vector Xt and the elements of its
predictor X̂t:

ai,t = ai,t−1 +∆X̃i+n+1
t ǫi,t

gj,t = gj,t−1 +∆X̃j+1
t ξj,t (6)

µt = µt−1 +∆X̃1
t λt

with ∆X̃t = Xt−X̂t and ∆X̃1
t = 1 so that the mean value

can also be updated. ǫ, ξ and λ can be random locally
to preserve nonlinearity and add non-stationarity to the
model, that is:

Γt =Γt−1 +∆X̃T
t βt (7)

βt = βt−1 +Vt

where βt = [λt, ǫ1,t, · · · , ǫm,t, ξ1,t, · · · , ξn,t] and Vt is a
sequence of compatible dimensions that contains inde-
pendent random-valued elements with multivariate nor-
mal distribution. For simplicity, it is assumed that
Vt ∼ N (0,ΣV ) with noise covariance ΣV .

Combining both equations in (7), the estimation of the
SDM parameters can be developed based on the following
model:

Φt =FtΦt−1 +Wt (8)

yt =HtΦt + et

where:



Ft−1 =













I
(m+n+1)2

∆X̃1
t

diag({∆X̃t}
n+1
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diag({∆X̃t}
m+n+1
n+2 )

0
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I
(m+n+1)2













Wt =
[

0
(m+n+1)

,Vt

]T
, ΣW =

[

0 0
0 ΣV

]

Φt = [Γt, βt]
T
, Ht =

[

Xt,0(m+n+1)

]

and I
(m+n+1)2

, 0
(m+n+1)2

are identity and zero matrices.

Given the observations yt, · · · , yt−m and the innovations
et−1, · · · , et−n, the best estimate of the SDM parameters
vectorΦt can be generated by the KF algorithm as follows:

Φ̂t|t−1 =FtΦ̂t−1|t−1

Pt|t−1 =FtPt−1|t−1F
T
t +ΣW

Φ̂t|t = Φ̂t|t−1 +Ktet (9)

Kt =Pt−1|t−1H
T
t

[

HtPt−1|t−1H
T
t +Σe

]

Pt|t = [I−KtHt]Pt|t−1 [I−KtHt]
T
+KtΣeK

T
t

where Kt is the KF gain, Σe is the innovations noise
variance, ΣW is the extended noise covariance matrix for
Vt and Pt|t−1 is the parameters error covariance. It can be
argued that the extended Kalman filter (EKF) is a rather
simpler formulation, in the sense that both approaches,
EKF and SDM estimation with KF, are equally locally
linear. Nonetheless, only in the above formulation, the
model parameters are functions of the state vector and
consequently nonlinear during the estimation. The accu-
racy of the SDM parameters to fit the model output to the
nonlinearity can be determined by the relative magnitude
of ‖ΣV ‖. For instance, to estimate yt based on a short past
history (m is a small number), a small value of ΣV will
make Xt locally linear. On the contrary, for estimations
based on long past history (m is a large number) such
values of ΣV would be undesirable, thus leading to the
selection of a higher value of ΣV .

3. MINIMUM PERFORMANCE BOUND

Consider that the output observation yt from (4) has a
non-minimum open-loop state space realisation given by:

Xt+1 =AtXt +Btut + et+1 (10)

yt =CXt

with:

At =























1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 1 0 · · · 0
0 0 · · · 0 1 · · · 0
...

...
. . .

...
...

. . .
...

µ gopn−1 · · · gop0 −aopm−1 · · · −aop0























Bt = [ bm+n bm+n−1 · · · b0 ]
T

C= [ 0 0 · · · 0 0 · · · 1 ]

et+1 = [ 0 · · · et+1 ]
T

ut is the controllable input, At and Bt are matrix con-
taining coefficients of Xt and ut, respectively. The super-
script op stands for open loop. The minimum expected
quadratic loss is identical to the minimum variance only if
an optimal estimator is applied over a state space model
with noise-free output measurement signal as in (10) (War-
wick, 1990). This assumption is valid for controller design,
however, the problem under study is model parameters
identification. The lack of an optimal state estimator is
circumvented by the fact that the optimality of the KF
is added to the model state parameters and all the state
vector elements are observable. Under these conditions, the
closed-loop system should be able to achieve the minimum
variance through the following controller:

ut = −J
MV

t Xt (11)

where J
MV

t is the static state minimum variance feedback
gain (the superscript MV stands for minimum variance):

J
MV

t =
(

B̂T
t C

TCB̂t

)−1

B̂T
t C

TCÂt

Ât and B̂t are optimal parameter estimates calculated by
the KF. The controller in (11) also compensates the past
innovations since Xt is used for feedback.

It can now be stated that poor control performance from a
state space approach occurs mainly when the system is not
fully reachable in a finite period of time. It could be argued
that the system is not fully controllable but it could also
be the case that the system was originally controllable and
became under-performing over time, thus an unreachable
system is a more general assumption for CPA.

3.1 Covariance Control Formulation

For an under-performing system, the control objective now
becomes finding a controller based on the actual closed-
loop variance that contains a minimum variance bound
given by the controller in (11). This control objective is
feasible by means of covariance control that uses feedback
control to achieve the desired system performance (Skelton
et al., 1998). Assigning an exact performance is theoreti-
cally possible but rather unrealistic for CPA, alternatively
the control problem is oriented towards assigning a desired
performance bound. Suppose that the state covariance
that characterises the actual closed-loop performance is
specified in terms of a performance bound, that is:

lim
t→∞

E
{

y2t
}

< CΠXCT (12)

whereΠX is a given positive-definite matrix that stabilises
the closed-loop system under controllability assumptions.
The closed-loop system covariance is bounded by:

ΠX >
(

Â− B̂J
)

ΠX

(

Â− B̂J
)T

+Σe (13)

and J is the state feedback gain that achieves the actual
covariance. From (13), J can be developed to be:

J =
(

B̂TQB̂
)−1

B̂TQÂ+
(

B̂TQB̂
)− 1

2

LS
1
2 (14)

where L is an arbitrary matrix such that ‖L‖ < 1 and

Q= (ΠX −Σe)
−1

S=Π−1
X

− ÂTQÂ+ ÂTQB̂
(

B̂TQB̂
)−1

B̂TQÂ



Q and S are positive-definite matrices, J is a general
solution to (12) and can generate required covariance
bound (Skelton et al., 1998).

When limt→∞ E
{

y2t
}

= CΣeC
T , the second term in (14)

becomes zero and J = J
MV

. Both terms from the state
feedback gain can thus be re-written as:

J = J
MV

+∆J (15)

For CPM, ∆J represents the change in the system’s
closed-loop variance/covariance over time. Using the state
feedback controller from (15) into (10), the following
closed-loop state space realisation is obtained:

Xt+1 =−B∆JXt + et (16)

yt =CXt

since At = BJ
MV

t . Writing αt = −B∆J, the model in (16)
is the non-minimum closed-loop state space realisation of
(4) and can be estimated from closed-loop operating data.

A by-product of using covariance control for CPM is that
for structured controllers the derivation of the feedback
gain can provide a control re-tuning methodology. That
is, the closed-loop state covariance can be partitioned as
follows:

ΠX =

[

Πp Πpc

ΠT
pc Πc

]

where Πp, Πc and Πpc are the plant state covariance,
dynamic controller state covariance, and the covariance
between plant and controller states, respectively. This
approach requires measurements of the system controllable
inputs and outputs. The details of this methodology and
the results on PI/PID control re-tuning will be presented
in a future paper.

3.2 Performance Index

A straightforward use of the Harris index can be consid-
ered for the closed-loop system performance as follows:

ηy =
|Π

MV

|

|ΠX|
(17)

where |Π
MV

| is the determinant of the system minimum

covariance matrix Π
MV

. The index lies within [0, 1]. In
practice, the control performance can be classified as
ηy < 0.5(poor)/ηy ∈ [0.5, 0.8] (good)/ηy > 0.8(optimal),
and will depend on the applications at hand (Jelali, 2007).

For CPM, the variance of the innovations may deviate
from the white noise variance. It is therefore practical to
take the determinant of the innovations as the metric and
also to make the change in variance/covariance over time
independent of the innovations during the estimation of
the SDM. That is:

yt = α1,t







X1
t
...

Xn+1
t






+ α2,t (∆J)







Xn+2
t
...

Xm+n+1
t






(18)

where α1,t = [µ, gn, · · · , g1], α2,t (∆J) = [−am, · · · ,−a1]
and only α2,t (∆J) is dependent on (∆J). This approach
is cumbersome for feedback/feedforward controllers since
some terms of the innovations can include the change in

variance from the feedforward action, but in no sense re-
strictive for feedback controllers since the innovation terms
only include the minimum achievable variance. When time
delays are present, the feedback invariance can be ex-
tracted by setting n > d.

The selection of m and n values is related to the smooth-
ness of the system nonlinearity as mentioned in Section
2.2. In practice, these values can be set to be m = n
for feedback control, or m < n for feedback/feedforward
control.

4. SIMULATION STUDIES

The developed CPM algorithm is applied to several pro-
cess scenarios including a simple model with nonlinear
actuator, a cold rolling mill model with roll eccentricity,
and a steel making system with real time oxyfuel furnace
control data. The method described in (Harris and Yu,
2007) is used for performance comparison.

4.1 Actuator Nonlinearity

A typical source of nonlinear oscillations in process control
is valve stiction, which is the friction a valve needs to
overcome before the actuator changes its position. A sim-
ple feedback/feedforward control system with He’s model
(Jelali and Huang, 2010) of valve stiction is simulated in
Matlab/Simulink. The control system is given by (Desbor-
ough and Harris, 1993):

yt = ut−3 +
1− 0.2q−1

1− q−1
ω0,t +

q−5
(

1− 0.6q−1
)

1− q−1
ω1,t

where yt is the process output, ω0,t and ω1,t are the
unknown and known zero mean, Gaussian disturbance
terms, respectively. q−1 is the backward shift operator.
Time delays of 3s and 5s were used for the controllable
input and the known disturbance, respectively. The feed-
back/feedforward controllers are given as:

ut = −
Kff

1− q−1
ω1,t +

Kfb

1− q−1
(ysp − yt)

with feedback gain Kfb = 0.2690 and feedforward gain
Kff = 0.4055. ysp is the setpoint signal for the output.
The flow chart for valve stiction in He’s model is given in
Fig. 1. Values of 0.35 and 0.25 were chosen for fd and fs,
respectively, to generate a strong stiction.

The controllers are properly tuned for setpoint tracking
but not for disturbance rejection, causing the system out-
put with and without valve stiction to be very noisy, see
Fig 2. The performance of the system without valve stic-
tion is very close to the lower bound for good performance,
see Fig. 3. Valve stiction makes the index oscillatory at
time intervals when the He’s model is active. Such oscil-
lations would have not been picked up by a linear, non-
iterative method even though they make the index value
go below 0.5. The degradation in performance index is not
significant but infers an oscillatory disturbance. The mean
values of the calculated performance indexes are compara-
ble to the values obtained of ηy, 0.5026 and 0.4617, using
the comparison method for situations without and with
valve stiction, respectively. The value of m was set to be 8
whereas the value of n was set to be 10 (m < n) to make
the KF more sensitive to stiction oscillations.
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Fig. 3. CPM for feedback/feedforward control system with
and without valve stiction

4.2 Cold Rolling Mill with Roll Eccentricity

A cold rolling mill system is simulated in Matlab using the
model from (Kodati, 2010). The model consists of 3 stand
rolling mills. A multi-loop architecture is implemented to
control the process using a combination of PID and high
order controllers. Strip thickness, mass flow, looper angle
(inter-stand) and speed control are implemented in every
stage. Strip thickness at the exit of every stand is assessed.
The time delay to the thickness sensor is varying but
measurable. An initial calibration of setpoints is used to
represent a new slab entering the rolling mill. Controllers
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Fig. 4. Estimated output strip thickness vs measured strip
thickness for stands 1-3
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Fig. 5. CPM of output strip thickness for stands 1-3

are properly tuned but not set to compensate roll eccen-
tricity which is added to each stand with frequencies of
4.679Hz and 4.997Hz for lower and upper rolls, respec-
tively. Roll eccentricity refers to any conditions caused by
axial deviations between the roll barrel and the roll necks
that results in irregularities in the mill rolls.

The estimated strip thickness (hest), measured strip thick-
ness (h) and thickness setpoints (hsp) of the 3 stands
are compared (Fig. 4). The estimation process accurately
accommodates roll eccentricity variations in all the stands
with values of m and n both set to be 7 since the delay
is varying but always smaller than 3. The performance
index from each stand deteriorates when the strip moves
forward along the processing line due to the accumulated
roll eccentricity from the previous stand (Fig. 5). As ex-
pected, changes in setpoints are picked as peaks in the
corresponding stand (due to controller transient), and as
drops in other stands since the accumulated eccentricity
is passed. The comparison method calculates performance
values of ηy to be 0.7019, 0.6704 and 0.6545, respectively,
for the 3 stands. The process is performing reasonably well
since all performance values are within [0.5, 0.8].

4.3 CPM wiht Real Oxyfuel Furnace Data

Real oxyfuel furnace data provided by Swerea MEFOS
(One of the partners of the Cognitive Control Project com-
pleted in our previous work (Recalde, Katebi, and Tauro,
2013; Recalde, Katebi, and Yue, 2014) was employed in
this CPM study. The furnace is used to reheat the slabs
coming from the rolling mill and consists of 2 parts being



0 200 400 600 800 1000 1200 1400 1600 1800 2000

samples

800

900

1000

1100

1200

1300

te
m

p
e
ra

tu
re

 [
°

C
]

T
sp

 z3 T
sp

 z4 T z3 T z4 T
est

 z3 T
est

 z4

Fig. 6. Termocouples temperature values for zone 3 and 4.
Real furnace data provided by Swerea MEFOS

0 200 400 600 800 1000 1200 1400 1600 1800 2000

samples

0.45

0.5

0.55

0.6

η
y
 z3 η

y
 z4
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furnace data provided by Swerea MEFOS

divided into 6 zones. The steel strip travels across the
zones via a supporting roll. A total of 35 burners, 25
thermocouples and 5 pyrometers are used to control the
furnace and steel strip temperature. Model mismatch is
low between the estimated temperatures (Test) and the
measured temperatures (T ) for zones 3 and 4, see Fig. 6.
The values of m and n were set to be 5.

The temperature setpoints (Tsp) for these zones are also
added for illustration and comparison. There are sudden
drops in temperature in both zones when the slabs leave
the zones and do not affect performance index. The per-
formance values are very close to the poor performance
bound, see Fig. 7. The index in zone 3 is worse than the one
in zone 4 but does not present any oscillatory behaviour
that may come from a nonlinearity. Without more infor-
mation about the process, poorly performing controller/s
can be the source of the degraded performance. Further
assessment carried out by MEFOS revealed that the con-
troller in zone 3 was indeed badly tuned and its effects were
passed on to zone 4. The comparison method calculates the
performance values of ηy to be 0.5018 and 0.5037 for zones
3 and 4, respectively.

5. CONCLUSION

The CPM algorithm proposed in this work is capable of
assessing nonlinear systems that can be fitted to a SDM
and accommodating process variations in the state vector.
It can track control performance changes over time and is
computationally efficient. The identification of the SDM

parameters can be carried out using KF or any other
sequential identification algorithms. The KF is used in this
work to assure the optimal parameter estimation in the
SDM.

The flexibility of using covariance control to achieve the
desired performance specifications is the basis of the pro-
posed CPM algorithm. A by-product of this covariance
control application is the possibility to develop a control
re-tuning mechanism for structured controllers such as
PI/PID control, widely used in industries. The successful
implementation of this strategy supports the proposed
CPM approach to be applied in assessment and diagnosis
for general nonlinear dynamic systems.
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