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Abstractʊ Developments in energy storage technology 

will start to play a prominent role in overcoming the problems 

of generation intermittency by providing the ability to shift 

demand to times when generation is available. However, 

exploiting the potential of this technology requires the design 

of an optimal charging and discharging schedule to allow its 

integration with the energy network that brings maximum 

advantage to both the system and the user. This paper 

introduces a mathematical model for generation and demand 

forecasting with energy storage scheduling that can be used 

for micro-grid and small power park applications. The 

proposed solution models the physical limitations associated 

with the energy storage technology used, which will constrain 

charge and discharge schedules beyond what can be forecast 

for them. A case study of a community feeder with large PV 

installations is presented to demonstrate the effectiveness of 

the model. Day-ahead charge and discharge schedules were 

produced that increased self-consumption within the system 

and reduced energy export to the grid. The main contribution 

of this work is the design of a generic parametrized 

forecasting and energy storage scheduling tool that will be a 

platform for further development to specialized storage 

technology and its potential scalability.  
 

Index Terms-- Energy storage, discharge schedule, micro-
grid, demand forecasting, generation forecasting, Power Park. 

I. NOMENCLATURE 

Estored(t)        Energy stored in the electrical energy storage at   

      time t [kWh] 

SOC             State of charge of the electrical energy storage  

      [kWh] 

Estorage_flow       Amount of energy that is exchanged with energy   

                     storage and rest of the system [kWh] 

E flow _max           Maximum energy that can flow to the storage  

                     [kWh] 

E flow _min           Minimum energy that can flow to the storage  

                     [kWh] 

Prated             Rated power of the energy storage [kW] 

t                    Time index 

ǻt                  Time interval 

Į                   Self-discharge rate of the energy storage  

Ș                   Electrical energy storage efficiency 

MAPE          Mean absolute percentage error  

GP               Gaussian Process 

GBM            Gradient boost machine 

NN                Neural Network 

ARIMA         Autoregressive Integrated Moving Average 

EES              Electrical energy storage  

II. INTRODUCTION 

Currently, the GB power network is facing many challenges 

due to undergoing changes dictated by environmental 

protection issues, depleting non-renewable energy resources, 

the necessity of improving the security of the supply. The 

shifting from conventional power network architecture, where 

power generation is centralised and located far from the end-

user, to the smart grid, characterised by generation distributed 

within the network and a great share of renewable energy 

generation, sets many challenges that need to be resolved to 

ensure reliability and stability of the system to be maintained. 

An increasing penetration of the renewable energy generation 

in power network introduces uncertainty about energy 

available to maintain a balance between generation and 

demand [1]. This type of generation provides time fluctuating 

output strongly dependent on the weather. Accurate and 

timely forecasting of demand and generation with resulting 

demand side response actions could enhance the reliability of 

small power systems with high penetrations of embedded 

renewable generation [2]. With the development in energy 

storage technology, this device has potential to become a key 

element of new power network as described in the UK 

government’s National Infrastructure Commission Smart 

Power Report [3]. The storage can not only play prominent 

role in overcoming the problems of generation intermittency 

by providing the ability to shift demand to times when 

generation is available, but can also provide the ability to shift 

the power from off-peak hours to meet demand during peak 

hours by storing excess of energy and releasing it when 

required [4-6]. The other support services that energy storage 

can provide are frequency response services, reserve capacity, 

regulation and other [7]. However, exploiting the potential of 

this technology requires the design of an optimal charging 

and discharging schedule to allow its integration with the 

energy network that brings maximum advantage to both the 

system and the user.  Optimal operation of the energy storage 

is a very complex problem. Many factors need to be 
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considered to ensure that this device works in a way that 

optimally uses its advantages and gives an economically 

feasible solution. These are the life span of the energy storage 

and its technical limitations, the connection location of 

storage in the power network [5, 8, 9], the main purpose of 

this device in this configuration [5, 6]. Research in electrical 

energy storage area is focused on the optimal sizing [9, 10], 

operation [11], scheduling [12] and control [13] to allow its 

successful integration with the power network. 

The main contribution of the work presented in this paper 

is the design of generic parametrized forecasting and energy 

storage scheduling tool for small power parks and micro-grid 

applications. This produces day-ahead energy storage 

charging and discharging schedule that decreases electrical 

energy export to the main grid and increases self-

consumption of energy resources within the system. The 

proposed model constitutes a platform for further 

development to specialized storage technology and its 

potential scalability.  

The remaining part of the paper is structured in following 

way. Section III describes model formulation and 

implementation. The case study and evaluation of the 

performance and the effectiveness of proposed model is 

performed in section IV. Finally, the last section concludes a 

paper and includes recommendations for further model 

improvements. 

III. MODEL FORMULATION AND IMPLEMENTATION 

A grid-connected system consisting of the electrical load, 

PV generation, and electrical energy storage is modelled 

which includes the energy storage scheduler that controls 

energy flow within the system to achieve a reduction in 

export to the grid and increase in self-consumption. The 

energy flow in the developed model is presented in Fig.  1.   

A. Forecasting of demand and generation models 

     Accurate and timely forecasting of demand and forecasting of 

renewable generation has an important influence on the operation of 

the power network. Due to change in the infrastructure of the power 

network, the short time demand forecasting becomes more 

challenging. Since this is moving closer to end-use  and the load on 

local and disaggregated levels has more volatile and noisy 

characteristics, it is more difficult to predict [14].  With the decrease 

in load aggregation, the forecasting error increases significantly from 

around 3% for National level, through 10% for the secondary 

substation to 30% for end-user [14, 15] .  The developed model 

makes use of short time demand forecasting method previously used 

in this area of research.  The different methods of demand 

forecasting are employed to enable investigating the influence of 

used forecasting models on the performance of developed EES 

schedule tool. Due to lack of the weather data, the purely data-driven 

forecasting methods are used.   

1) Demand forecasting: Different methods of demand 

forecasting are implemented in the model. These are an 

ARIMA model with lags of 48 samples, and feed-forward 

Neural Network with 48 output nodes and 49 input nodes 

as used in [16], model based on the Gaussian Process (GP) 

and Gradient Boost Machine (GBM) used by [17], 

Ensemble Forecast (combination of all used demand 

forecasting methods by simple unweighted average) [18, 

19] and finally Persistent forecasting. 

2) PV generation forecasting: The PV generation 

forecasting, used in this work, is based on the persistence 

model. This naïve method assumes that the energy 

generated today at given time is the same as it was 

yesterday at the corresponding time.    

B. Electrical Energy Storage Model 

The parametrized model of electrical energy storage based on 

the energy balance equation (1) was developed.    

Estored (t +1) = (1 - Į)*Estored (t) -  Ș* Estorage_flow(t)              (1) 

Where the energy storage reduces the input energy to the system by 

the value associated with self-discharge rate for given interval of 

time and the efficiency associated with the charging and discharging 

processes of energy storage reduces the potential energy that can 

flow from and to the storage. During model development, the 

following parameters were considered: state of charge of EES, 

minimum and maximum state of charge, rated power, capacity, 

efficiency and self-discharge rate. The energy flow from storage at 

any given interval of time in proposed model is constrained by rated 

power of used storage technology as follows in (2). 

                        Eflow_min ≤ Estorage_flow (t) ≤ Eflow_max               (2) 

Where:                     Eflow_max = Prated *ǻt                         (3) 

                        Eflow_min =  - Prated *ǻt                     (4) 

Additionally, the state of charge of energy storage is limited by 

maximum and minimum allowed values (5) resulting from storage 

specification. 

                        SOCmin ≤ SOC (t) ≤ SOCmax                              (5) 

Where the SOCmax is related to the maximum allowed level of 

charge of the EES and SOCmin is the minimum allowed the depth of 

discharge for simulated technology. 

C. Scheduling of Energy Storage System 

The day-ahead scheduling of the electrical energy storage is 

performed basing on the forecasted daily profile of facility electricity 

demand and renewable generation forecast. The output of the 

scheduling are periods of time and corresponding actions to be 
 

Fig. 1.  Energy flow in the modelled system.  



performed by EES during these periods (charge, discharge or ”no 

action”). The logic that controls charge and discharge regimes is 

based on the available renewable energy resources in the system and 

technical limitation of the energy storage to be simulated. The main 

aim of the algorithm controlling the schedule is to reduce export 

energy to the grid and increase self-consumption within the system.    

IV. CASE STUDY AND RESULTS 

To assess performance and effectiveness of the proposed 

model the case study of an actual community feeder with 

significant PV installation is presented. Half-hourly historical 

data of electrical demand and PV generation covering 126 

days were used. The weather data for this period and location 

were not available. Dataset was divided into two subsets to 

allow implementation and testing of the demand forecasting 

method used in this work.   

  

A. Effect of demand forecasting methods accuracy on the 

energy storage model performance  

 

Six simulations, with different forecasting methods 

employed, were considered to study the effect of the error in 

demand forecasting on the level of reduction in electricity 

export to the grid and the increase of self-consumption within 

the simulated system. A 40kWh lead acid battery ESS with 

rated power of 10kW, efficiency 75% and discharge rate of 

0.005 per half-hour was considered. The results of 

simulations are given in Table I. The example of the electrical 

energy storage charging and discharging schedule produced 

by the model is illustrated in Fig.  2. The reduction in grid 

export achieved by developed model is in the range of 71.4% 

- 82.3% and the self-consumption is increased by between 70-

78.3% with the model employing persistence and GP demand 

forecasting model archiving the best results for the export 

reduction and self-consumption increase respectively. The 

worst performance in both cases achieves the model 

employing NN demand forecast. The simulation results show 

that there is a strong negative correlation between the 

forecasting error and the reduction in export to the grid and 

moderate negative correlation with the increase in self-

consumption, equal -0.93 and -0.67 respectively. It indicates 

that accuracy of employed forecasting method has a 

significant influence on model performance. The naïve 

method, Persistence demand forecasting used in the 

developed tool, gives the higher export reduction among all 

used models, but it does not perform so well with the increase 

of self-consumption. The model employing Ensemble 

forecast has the lowest mean absolute percentage error but 

does not introduce the higher percentage increase in the 

analysed quantities than other models. It indicates that other 

performances of the forecasting method need to be analysed 

and their influence on the performance of the developed 

model should be evaluated.  

 

B. Evaluation of the energy storage scheduler 

effectiveness 

 

The analysis of the energy storage scheduler effectiveness in 

predicting required storage actions is presented in this section. The 

method based on the confusion matrix is proposed. The confusion 

matrix is the table of true and false positives (TP, FP respectively) 

and true and false negatives (TN, FN respectively) that are results of 

comparing the outcomes of classification, hypothesis testing, 

object/event detection with the available target/ true/ actual 

outcomes [20]. It is a way to describe the performance of the 

classification model or classifier [20, 21]. The example of confusion 

matrix with its notation is shown in Fig. 3. The rows of the matrix 

represent the actual (target) occurrences of the particular storage 

action, and the columns correspond to predicted instances of this 

action. This method enables to evaluate the scheduler model 

capability to predict the occurrence of a particular action of the 

electrical energy storage. In this work, the target value was schedule 

 
     Fig. 2.  Day-ahead schedule of ESS achived for one week. The colors 

indicates the appropriate action to be performed by ESS. Colors 
represent charging, discharging and “no action” function of energy 

storage, yellow, red and orange respectively.  

TABLE I 

PERFORMANCE OF SCHEDULER MODEL 
Forecasting model Forecasting 

error 

Performance of scheduler 

model 
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[%] [%] [%] 

Ensemble forecast (all) 27.4 80 75.6 

Gradient boost machine 29 79.1 78.3 

Persistence forecast 29.7 82.3 73.2 

Gaussian process 30.6 80.3 76.5 

ARIMA model 48.2 74.9 74.6 

Neural networks 50 71.4 70 

 

 
Fig.  3. Confusion matrix notation. 



when actual demand data were used during simulation. The 

predicted results came from simulations with different demand 

forecasting methods employed in the model. For each case, the three 

separate matrices were prepared for predicting charging, discharging 

and the “no action” state with a comparison to the target schedule. 

The example of confusion matrices for a schedule when the GP 

demand forecasting was employed within the model is shown in Fig. 

4. The assessment of the effectiveness of the schedule was 

performed basing on different performance measures derived from 

those matrices such as sensitivity, specificity, false positive rate, 

precision/positive predicted value. All these indicators ‘describe the 

level at which the evaluated classifier succeeds a fail to correctly 

detect a positive class’ [21]. The sensitivity and the specificity give 

the proportion of actual instances, which are correctly identified, 

positive in case of sensitivity and negative for specificity. False 

positive rate gives knowledge about the number of negative 

occurrences that was predicted to be positive. Finally, precision is 

the proportion of positive instances that were correctly identified. 

[20, 21]. Base on the confusion matrix notation from Fig. 3. all 

mentioned above indices can be computed as follows. 

sensitivity = TP/(TP+FN)                                  (6) 

specificity=TN/(TN+FP)             (7) 

false positive rate=FP/(TN+FP)           (8) 

precision=TP/(TP+FP)                             (9) 

 As stated in [21] using all performance measures derived from 

the confusion matrix in the same time leads to significant 

informational redundancy. Usually, the performance measure is 

performed by assessing a complementary pair of indicators such as 

sensitivity with specificity, precision with sensitivity and true 

positive rate with the false positive rate. It is because one of the 

indicators describes the ability to detect the positive occurrence and 

other one describes capability to detect negative instances [21].   In 

this work, the analysis of sensitivity and specificity is carried 

out to evaluate the schedule effectiveness.  

When selecting the best classification method, ideally, both 

its sensitivity and specificity should be high; in practice, it is 

a compromise based on application specific criteria. The 

method with very high sensitivity does not perform well if it 

is characterised by poor specificity and vice versa. These two 

quantities have complementary character thus it is necessary 

to achieve high values for both to ensure effectiveness in 

classification. The sensitivity indicates how good a method is 

in predicting positive outcome and the specificity gives 

information on how good the model performs with the 

prediction of “not performing this action.” The higher value 

of this second indicator, the fewer cases that the action is 

predicted to be performed even if it should not be. For the 

EES it is crucial that the charging and the discharging action 

are not performed when they should not be because it puts the 

EES in a position that it becomes not capable to achieve 

system goals of reducing export to the grid and increasing the 

self-consumption within the system. For this reason, the 

specificity is treated as the leading criterion for assessing the 

schedule effectiveness in this work and the sensitivity is 

treated as the subsequent criterion.    

In the presented work, the effectiveness of the scheduler 

model employing a different method of demand forecasting 

was evaluated. The analysis of effectiveness was based on the 

performance of prediction for the three possible actions that 

storage can perform: discharge, charge or do not perform an 

action in given interval of time. The calculated performance 

measures for all possible simulated cases were summarised in 

Table II. According to II, the scheduler model employing 

ensemble forecast and GP forecast of demand achieve the 

highest specificity in the prediction of the energy storage 

actions except predicting “no action” state for which the 

model employing GBP demand forecasting performs the best. 

The scheduler model that uses Gaussian Process regression to 

forecast demand was chosen as the potential candidate with 

the good effectiveness in the charge and the discharge action 

prediction. It also achieves the higher sensitivity in predicting 

“no action” state than remaining two above mentioned 

models. Additionally, analysis of the model performance in 

the grid export reduction and self-consumption increase for 

the model employing GP, GBM and ensemble forecast, can 

TABLE II 
PERFORMANCE MEASURE VALUES FOR PREDICTION OF 

ACTION OF THE ENERGY STORAGE DEVICE 
Action Described parameter Demand forecasting model used 
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(%) 

89.1 87.3 88.1 77.3 70.9 88.4 

Specificity 92.9 91.9 93.4 87.8 92.1 93.4 

False positive 

rate 

7.1 8.1 6.6 12.2 7.9 6.6 

Precision 88.8 87.3 89.4 80.2 85.2 89.5 
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(%) 

94.9 93.1 94.6 89.2 84.9 94.1 

Specificity 96 96.2 96.3 92.1 94.1 96.3 

False positive 

rate 

4 3.8 3.7 7.9 5.9 3.7 

Precision 92.3 92.5 92.8 85 87.8 92.7 
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(%) 

84.9 84.4 86.7 74.4 90.6 86.4 

Specificity 95.7 94.3 95 90.6 85.9 94.9 

False positive 

rate 

4.3 5.7 13.35 9.4 14.1 5.1 

Precision 88.3 85.1 27.6 75.2 71 86.5 

 

 
Fig. 4.  The confusion matrices for charging, discharging and “no 
action” state prediction of energy storage schedule for model employing 

the Gaussian Process demand forecasting.  



support this decision. The model using GP forecast achieves 

the highest export reduction and the second best result in self-

consumption increase comparing the performance of these 

three models. The next reason for choosing this method as the 

most promising is that it requires less computation during 

proceeding forecast than ensemble forecast.  

Not necessarily the most accurate forecasting of demand 

gives the most effective schedule for all possible EES actions. 

It indicates that further work on the influencing factors on the 

schedule effectiveness should be performed. Furthermore, the 

influence of performance of forecasting model used in the 

scheduling tool should be more closely investigated. 

 

C. Effect of electrical energy storage size on developed 

model performance 

 

The effect of the size of energy storage on the increase in 

the self-consumption and reduction of the export was 

investigated. The ensemble demand forecasting was 

employed in the model for this set of simulations. Energy 

storage technology with parameter described in section A 

except for the capacity which was varied between 10kWh and 

200kWh was used during simulations. Fig. 5. illustrates an 

increase in the size of storage, up to 50kWh, resulting in 

significant increase in self-consumption and significantly 

reduced energy export to the grid. Self-consumption 

increased by 62.6% when the capacity of the electrical energy 

storage was gradually enlarged from 10kWh to 50kWh. 

Simultaneously, the grid export reduction was increased by 

66.3%. When the capacity of the storage was further 

increased, the rate of change in self-consumption increase and 

the export reduction significantly decreased and achieved 8% 

for both quantities. There were not significant changes in 

storage performances observed for storage with capacity 

above 80kWh. The self-consumption reached 94.3% increase 

and grid export reduction achieved 100% for capacity above 

80kWh. Since electrical energy storage technology is still 

very expensive, it is crucial from the economical point of 

view to install storage with capacity, which will be fully 

employed during operation. Additionally, installation of such 

technology needs to bring maximum technical benefits. It 

indicates the necessity of optimal sizing of the EES that bring 

maximum advantage to the system and gives an economically 

feasible solution.   

V. CONCLUSION AND RECOMMENDATION FOR MODEL 

IMPROVEMENTS 

This paper has presented an algorithm for producing one-

day ahead electrical energy storage charging and discharging 

schedules that reduce the energy export to the grid and 

additionally increase self-consumption in the modelled 

system. Depending on the forecasting of demand method 

employed in the model the energy export to the grid was 

reduced by between 71.4%-82.3%, and self-consumption was 

increased by 70%-78.3%. The strong correlation between 

mean absolute percentage error of the forecasting method 

used and export reduction indicates that a forecasting method 

with low MAPE is preferred as it can improve the overall 

storage system performance.  

The evaluation of the effectiveness of EES schedule leads 

to the conclusion that the most promising model from all 

considered was those employing Gaussian processes to 

forecast demand. This model was the most effective in 

predicting of charge and discharge actions of energy storage 

and second best in predicting “no action” state. Additionally, 

it achieved higher export to the grid reduction and greater 

increases in self-consumption than equivalent model  

employing ensemble forecast.  

The analysis of the size of the EES on potential reduction 

in grid export shows that increasing the size of the storage 

leads to the increase in reduction of export to the grid up to 

the point when the available storage capacity will not be fully 

employed during operation due to lack of renewable 

generation. Installing the storage with too high capacity can 

significantly increase the cost leading to economically 

infeasible solutions indicating the necessity to introduce 

optimal sizing of the ESS within further model developments.      
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