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A review on frequency support provision by wind 

power plants: current and future challenges 

Abstract – The continuing increase of wind energy penetration in power systems, in 

combination with the retirement of conventional generation, raises new challenges for the 

maintenance of power system stability. This paper presents a comprehensive review of wind 

power plant capabilities to provide frequency support and the corresponding methods available 

in the published literature are thoroughly analysed and compared. The topic is covered from 

different perspectives giving a comprehensive overview of the work carried out in this field. In 

addition, the integration of energy storage technologies and dispatching of wind farms during 

frequency deviations are investigated. Finally, technical challenges, future research lines and 

general recommendations are provided. 

Keywords – Wind power, frequency stability, power systems, energy storage, HVDC 

transmission 

Nomenclature 

WS Wind speed Cp Performance coefficient 

WF Wind farm SOs System Operators 

WTG Wind turbine generator Mv Special gain of virtual inertia 

A WTG swept rotor Area Hv Virtual inertia 

R WTG rotor radius Ki ll Phase-Locked Loop integral gain 

DFIG Double Fed Induction Generator Pcmd Power command for WTG 

MPT Maximum Power Tracking SOC State-of-Discharge 

T Time interval DOD Depth-of-Discharge 

P Active power h Water level in the HPES reservoir 

KE Kinetic Energy fw Flywheel 

∆f Frequency deviation nfw Number of flywheels 

H Inertia constant in seconds P*
fw Injected/absorbed power by flywheels 

PLL Phase-Locked Loop 
PWTG-

MPT 
WTG output at MPT 

λ Tip-Speed ratio PM. A 
Moving average of PWTG-MPT in a time 

interval 

BB Battery Bank N Number of WTGs/WF 

ω WTG rotational speed Pcmd-WF Power command for WF 
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HPES Hydro-pumped energy storage LIDAR Light detection and ranging 

RoCoF Rate-of-change of frequency   

1 Introduction 

The energy policies of various countries, and also strategies by leading companies, highlight 

that the future is reserved for renewable energy sources, e.g. wind energy, as alternatives to 

address the electricity supply challenges in order to mitigate carbon emissions and present a 

competitive alternative for expensive fossil fuels. Wind Europe (formerly EWEA) reveals 

optimistic plans to integrate a massive number of wind farms (WFs) in the North Sea [1-5]. 

Similarly, the Danish government has ambitious targets to achieve 50% wind power generation 

capacity by 2050 [6]. Germany is also progressing in a challenging plan to take out of operation 

all its nuclear power plants, and construct an additional 40 GW of wind power capacity within 

the next few years to achieve this target, [7].  

The expected high penetration levels of wind power into power systems, together with the 

increase of other power electronics-based technologies (i.e. energy storage, high voltage direct 

links (HVDC), PV farms, etc.) and the retirement of conventional synchronous plant will 

introduce power system stability issues. A major challenge will be the reduction of the total 

inertia, which will result in highly fluctuating and fragile dynamic responses.  Accordingly, 

transmission system operators (TSOs) are developing new grid codes requiring contributions 

not only from conventional generators but also from renewable energies and power electronics-

based technologies (e.g. HVDC). On this matter, ENTSO-e has published an initial draft of its 

first HVDC code [8, 9]. 

Several issues related to the role of wind power in ancillary services have been discussed in the 

literature, including voltage and frequency support [10]. In this context, this paper focuses on 

the active power contribution of wind turbines (WTGs) and WFs to suppress frequency drops. 

The theory of frequency support is based on the provision of an active power surge during the 

frequency event to mitigate the generation-demand unbalance. Securing stable energy 

resources and managing this power surge are key challenges that need to be addressed [11]. In 

[12], frequency metrics and grid code requirements were reviewed, meanwhile  this review 

paper focuses on the technical aspects and the wide range of the control algorithms proposed 

in the literature. This paper also discusses the dispatching of WFs/WTGs during frequency 

events. An additional contribution is an investigation of indirect methods that enable wind 

power plants to provide frequency support, markedly energy storage systems. This review also 
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highlights the potential role of HVDC links, which is a promising technology to connect the 

offshore WFs, with frequency support capabilities. 

1.1 Problem definition 

Conventional generators have two critical and one supplementary response to frequency 

variations; inertia response and primary response are illustrated in Figure 1, and further 

definitions for load-frequency regulation could be found in [13]. The first is a natural reaction 

to the sudden drop in system frequency that results in an instantaneous decrease in the 

mechanical speed of the turbine-generator set (inertia). The inertia response is the extraction of 

kinetic energy (KE) stored in the rotating parts of the turbine and generator. KE is depleted to 

increase the mechanical output power of the WTG to achieve the balance between the electrical 

demand and mechanical output so that the speed stabilizes at a new slower synchronous speed. 

However, the deceleration reaction (KE extraction) has a threshold that relies on the inertia 

constant of the plant (H; typical values from 4 to 7 s), and the nominal frequency of the grid 

[14, 15]. The second response is proportional to the frequency drop severity according to the 

assigned droop value [14]. The third one is not as critical to system stability as the other two, 

but it should achieve a complete balance between generation and demand to recover the 

frequency to the safe deadband. 

 

Figure 1 The main responses provided by power plants to intercept and mitigate frequency drops. 

The literature proposes three major concepts to obtain the former two responses directly from 

WTGs, namely 1) emulated (i.e. Synthetic) inertia, 2) droop and de-loading techniques, as well 

as 3) WTG overloading (i.e. bring the generator output to its threshold when wind speeds (WSs) 
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are above their rated values). This type of support could also be carried out by Energy Storage 

Systems to avoid the integration of special supplementary control methods into WTGs [16]  

Another aspect of frequency stability, which is out of scope of this paper, is the over-frequency, 

and it can be solved by the reduction of wind power generation when the frequency deviations 

violate certain limits. This aspect has been considered on a limited scale, compared to under-

frequency support. It is of note that, the majority of frequency support methods can also 

regulate the WTG output during over-frequency events [17, 18]. 

2 Synthetic inertia 

All renewable power generation technologies (except conventional hydro power plants) are 

decoupled from the grid through a power electronics (PE) interface that screens any variations 

in grid frequency due to the very fast response of the PE devices. Hence, the WTG cannot 

respond naturally to frequency drops although it has reasonable inertia which is comparable to 

that of conventional generators (i.e. WTGs do have stored KE as they include rotating masses, 

but they do not sense the sudden drop in grid frequency because the converters react very fast 

and alternate the control signals [19, 20]). Here we consider how an artificial (it is also called 

synthetic and virtual) inertia response can be produced by variable-speed WTGs, specifically, 

type-3 Doubly-Fed Induction Generator (DFIG) and type-4 Fully-Rated Converter Generator.  

In order to answer this question, it should be highlighted that the conventional operation of 

WTGs is based on Maximum Power Tracking (MPT), where the rotor speed is controlled to 

maintain the optimum performance coefficient (CP) which is the portion of energy available in 

the wind extracted by the rotor, given by (1) 

31
  ( , ) A

2
pMechanical output power C WSρ λ β= ⋅ ⋅ ⋅ ⋅     (1) 

where λ, β, A, and ρ are the tip-speed ratio, blades pitch angle, rotor swept area and air density 

respectively. This principle is illustrated in Figure 2,  
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Figure 2 Typical MPT curve for a wind turbine generator. 

The DFIG is connected to the grid through the stator only, and it is fully controlled through 

two converters: a Rotor Side Converter and a Grid Side Converter. The converter’s capacities 

are typically 35% of the machine rated power. Type 4 uses a fully rated converter that 

completely decouples the WTG from the grid [21, 22]. Neither type provides a natural inertia 

response in their conventional operation (i.e. MPT) due to the decoupling from the grid 

frequency. Moreover, at MPT, both types are already generating the maximum available power 

for the prevailing wind speed so there is no room to provide a supportive power surge. The 

expression ‘synthetic’ or ‘emulated’ inertia was coined to describe control algorithms that are 

used to provide an artificial inertia response.  Note that the expression ‘Synthetic’ has been 

standardized to replace ‘Emulated’ according to [23]. 

The literature deals with two main aspects of KE extraction, first, proposing methods to extract 

KE during frequency events, and second, quantifying the available KE, whereby the 

quantification is highly dependent on the associated method of extraction. The following 

subsections present the two key methods to enable KE extraction. 

2.1 WTG deceleration 

The most common approach to extract KE in a WTG is to apply a slight increase in the 

reference electrical power (or reference electrical torque) so that the demanded power output 

is higher than that available from the wind. Consequently, the rotor slows down as KE is 

converted into electrical energy to deliver a power surge [23, 24]. This deceleration stops when 
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the rotor speed reaches a certain limit to avoid loss of synchronism and stalling the turbine. 

This limit is around 70% of the WTG rated rotor speed corresponding to more than 50% of 

stored KE [25]. This procedure has the major advantage that the WTG does not deviate from 

the MPT during normal operation  [26]. However, the WTG power output is lower after the 

KE extraction process is completed in order to recover the nominal rotor speed (i.e. acceleration 

process, where the supplied power should be lower than the available mechanical power). This 

recovery stage might trigger a second frequency drop if the dispatching of WTGs/WFs is not 

executed properly.  Examples of this approach are available in [19] [25] [27]. The authors 

forced the WTG to decelerate by increasing the reference active power by a value denoted 

∆PKE, hence converting the stored KE into a predefined output increase (WS is fixed during 

the frequency event) [25]. As an alternative, the reference torque could be modified according 

to the frequency deviation [28]. This approach is somehow similar to WINDINERTIA – a 

method developed by General Electric that applies a simplified controller, where the WTG is 

decelerated due to an excess power step initiated during frequency events [27]. The 

representation of the WTG inertial response was based on a single-mass lumped model guided 

by Newton’s Law of Motion [25]. The deceleration process continued for a fixed duration 

independent of the speed reduction. This duration is determined based on an iterative procedure 

to assure that the minimum speed threshold is not violated.  

The torque controller in [19] depended on the rate of change of frequency (RoCoF) as opposed 

to ∆f as in [25] [27], and the inertia response is tuned through the parameters of the PI controller 

as shown in Figure 3. High values of the PI time constant mean that the DFIG effectively sees 

a lower RoCoF than the true value, thus, the generator delivers a smaller inertia response for 

the same PI gain. The impact of the WTG operation point prior to the frequency event was 

discussed, and it was concluded that the PI gain must be scaled (normalized) at each event by 

multiplying it by the ratio of instantaneous rotor speed  to the maximum rotor speed  (ω / ωmax), 

which can be considered as simplified adaptive control. Consequently, the inertia response is 

independent of the operation conditions. Their recommendation was to evaluate the PI gain at 

rated speed using the aggregate inertia of the WTG (HWTG), where the PI gain ≈ 2·HWTG, and 

it was slightly higher in order to compensate the attenuation caused by PI time constant (PI 

gain = 13 s). 
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Figure 3 Proposed auxiliary controller in [19]. 

The inertia response is shaped by passing the system frequency through a special function to 

modify the reference slip [29]. The slip reference signal is responsible for setting the reference 

phase shift angle of the voltage behind the transient reactance of the machine. The variation of 

the WTG slip ratio is considered as an indirect method to control the rotor speed to provide 

inertia response through setting the phase shift of the rotor flux vector. The controller is 

relatively complicated due to the presence of the shaping transfer functions that needs 

additional tuning efforts according to the targeted inertia response, and the limitations of the 

WTG. Moreover, it might have an impact on the reactive power contribution of the WTG 

because it directly affects the rotor flux. 

The extractable KE has been quantified through different approaches (i.e. statistical and 

dynamic simulations), and case studies in [24] [25] [30] [31]. The study in [24] provides a 

simple method to estimate the amount of extractable KE at a given WS, but the inertia of the 

WTG must be calculated first. A compromise between the supportive power step and the 

effective duration of support was also discussed. On average, a 0.2 p.u. power step lasts for 25 

s for the examined WTG [24]. It was concluded that increasing the optimal tip-speed ratio (λopt) 

extends the WTG support time before reaching the minimum rotor speed limit. Both [24] and 

[25] agreed that increasing the WTG nominal rotor speed and higher WTG inertia increase the 

supportive power surge or extend the support duration (given a fixed WS). 

Another example of KE quantification is presented in [30]and is based on a case study using 

real 10-minute mean WSs at Irish WFs is used. The authors assumed a fixed inertia of 2.5 

seconds for all WTGs, thereupon it was found, based on a probabilistic study, that when the 

generation is beyond 20% of the installed wind capacity, 90% of the WTGs have extractable 

KE. Additionally, a statistical analysis was performed to find the annual rate of occurrence of 

severe frequency nadir and steep RoCoF. Increasing DFIG wind power penetration (without 

conventional generators retirement) caused a negative impact on frequency nadir and RoCoF 

as shown in Figure 4. Compared to [30], [24] proposed a simple dynamic method to assess the 

extractable KE and then calculated the magnitude of the supportive power surge. Meanwhile, 
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[30] used statistical data and a probabilistic approach to reach a round figure of the extractable 

KE of a group of WFs. Reference [31] presented a similar study for the Ireland-Northern 

Ireland power system and the possible penetration of variable-speed WTGs but the control 

parameters were not revealed. One of the major findings was the ability of a WTG to provide 

0.5 MJ/MW within 10 s when WS is above minimum. In the power system studied, and due to 

the expansion of wind generation capacity from 1500 to 6000 MW (replacement of 

conventional units in 2020), at 50% cumulative hourly probability; the system inertia dropped 

from 38 GWs to 28 GWs. The paper also compared between two levels of inertial contribution, 

where one of them needed longer recovery period. The probabilistic study at different levels of 

WS (from 5 to 14 m/s) with a time resolution of 15 minutes showed a huge variation of the 

availability of WTGs inertial response. The paper applied the WINDINERTIA concept and 

investigated the impact of different levels of wind penetration (max. penetration 75%). 

The authors of [32] estimated the extractable KE of two types of WTGs; Enercon 3 MW E-

101, and 2 MW E-82. They considered the size of the WF and the availability of the WTGs to 

determine the actual amount of extractable KE from a WF. The frequency dip severity was 

linked to the amount of energy, on per unit bases with respect to the European grid, in a bar 

chart. The occurrence rates of different dips’ categories are also displayed in Figure 4, where 

dips worse than 70mHz represent only 10% of the occurrence of all events. 

 

Figure 4 Changes in RoCoF and frequency nadir after wind power penetration [30]. 

Generally, the recovery stage (post frequency drop) might trigger further frequency drops 

because the WTG output is suddenly reduced to start the recovery process, which is the major 

weakness of this concept, and it was mitigated by a shaping function (simpler one compared to 

[29]) which applies a ramping (not a step) reduction in the WTG electrical output reference 

[33]. The shaping function is triggered automatically (independent of the drop severity) when 

the frequency violates the safe margin to trigger a step increase in the reference power signal 

of the WTG, as shown in Figure 5. When the frequency recovers to the safe margin, the power 

reference is reduced gradually through the shaping function. The parameters of this shaping 
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function (e.g. ramp slope) were tuned using a four-part fitness function Particle Swarm 

Optimization technique. The first part applied high penalty on violating the system operation 

constraints (e.g. WTG rotor speed limits and overloading). The second, third and fourth parts 

considered the frequency nadir, the sum of the post-fault frequency square error, and RoCoF 

respectively. The paper provided details of the models and numerical values for several shaping 

functions which are a good asset for future work. Another approach was offered in [34] to 

mitigate transient energy loss and shorten recovery period where the optimum power was 

tracked during the rotor speed deceleration. The WTG inertia was not constant but a function 

of the rotor speed using (2),  

3

3

1
( )

WTG optimum

WTG

p optimum

J
H

A R C

λ
ω

ω ρ −

⋅
=

⋅ ⋅ ⋅
     (2) 

where JWTG is the WTG moment of inertia and ω is the rotor speed. The proposed method 

achieved the same peak power surge compared to the conventional KE extraction method, and 

the rate of power surge decay was higher. The WTG over-speeding is also a solution to 

overcome recovery problems, as discussed in the next subsection. 

 

Figure 5 Illustration for the shaping function method. 

2.2 WTG over-speeding to provide inertial response 

‘Over-speeding’ is achieved by increasing the WTG rotor speed (or tip-speed ratio) through a 

supplementary control loop to a value higher than the nominal/optimal value (i.e. that leads to 

an optimum Cp), thus the WTG operation deviates from MPT. When the grid suffers a 
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frequency drop, the rotor speed returns back to the nominal value, hence the WTG decelerates 

(KE extraction). The deceleration process stops when the speed reaches the nominal reference 

as shown in Figure 6. Therefore, when the frequency drop is cleared, there is no need to start a 

recovery stage immediately, and WTG continues providing its optimum power output. 

Afterwards, the over-speeding point is recovered gradually (i.e. not all the WTGs at the same 

time) to avoid further frequency events. The management of initializing/terminating frequency 

support technique among several WTGs in the same WF is called from now on ‘Dispatching’, 

and it is investigated in Section 5. The over-speeding technique leads to loss of wind energy at 

medium WS classes (i.e. MPT is violated) [26]. The major drawback of this method is its 

limited capability when the nominal speed approaches the highest threshold (i.e. at high WSs). 

The deceleration method explained in the previous subsection could be an alternative to secure 

a power surge especially that a relatively higher amount of KE is stored at high WSs because 

the rotor is running at higher speed. The basic concept of over-speeding is explained in [32]. 

 

Figure 6 Over-speeding WTG to reach a higher tip-speed ratio and returns to optimum Cp at frequency events. 

 

The proposed over-speeding algorithms in [32] [35] are simplified based on a minor deviation 

in reference signals of speed or tip speed ratio. More complex methods alternate the voltage 

components, namely the q-axis voltage component (vq) of WTG [36] [37].  

Virtual inertia (Hv) was proposed in [36] where the reference electrical torque is reduced by a 

certain value obtained from a transfer function in (3),  
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v m v i ll q

Electrical torque demand H

H M K v

ω ω

ω

= −

= ⋅ ⋅∆
      (3) 

where Mv, Ki ll and ∆vq are the pre-adjusted gain, Phase-Locked Loop (PLL) integral gain, and 

deviation in the q-axis voltage respectively. The transfer function has two poles, Mv is pre-

adjusted by trial and error to achieve acceptable stability, while the PLL is used to measure 

voltage. The authors simplified the term (Hv(s)·ωm) to be expressed in terms of ∆vq which is 

already well defined in any WTG for use in the converters’ controls. Therefore, the setting of 

Hv poles is not required and the inertia response (i.e. the higher speed value in over-speeding) 

is adjusted through Mv. The authors examined this method on a simplified micro-grid system 

to be able to deduce the closed loop transfer function and draw the system root locus, and 

observed that increasing Mv moves the poles far from the unstable margin. 

The tuning of vq was also proposed in [37] in a simpler way based on the derivative of the KE 

available at a given speed, where it depended on rotor speed sensing instead of WS 

measurement. This derivative signal was then processed through a first-order filter to alleviate 

fast fluctuations. The demand electrical torque was then tuned, and thereupon vqr was changed 

as shown in Figure 7. However, [36] focused on assessing the controller stability, hence a 

simple benchmark system was integrated to focus on the controller dynamics. Root loci and 

Bode diagrams were presented to determine the stable ranges for the main parameters of the 

Hv transfer function. 

 

Figure 7 Controller offered in [37] to update vq based on turbine rotor speed. 

 

The algorithm proposed in [35] merges the two concepts discussed above, namely, over-

speeding and decelerating below optimum speed. This algorithm runs the WTG at a higher 

rotor speed which is determined according to a pre-set high tip-speed ratio (λhigh). An 

acceptable accuracy level for WS measurement is required and min tip-speed ratio is pre-

adjusted. Since the Cp-λ curve is approximately symmetrical, the optimum tip speed ratio is the 

average value between high and min tip-speed ratios. Similar to the approach presented in [25], 
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support time (i.e. the duration of power surge provision) is fixed. The recovery time was 

decided according to a piecewise linear function where it is assumed that the speed recovers to 

achieve λhigh with a uniform rate as shown in Figure 8. The deceleration and acceleration slopes 

are assumed to be equal and linear because they take short time. Note that the WTGs continue 

at λmin as long as the frequency event prevails (from t2 to t3). The impact of the frequency 

severity was acknowledged where the frequency drop reflected the amount of required KE to 

maintain the grid frequency, in turn, the new lower speed (i.e. λlow). This reduced the recovery 

time and mitigated the speed oscillations in the WTG until it recovers to λhigh. 

It should be highlighted that all the methods discussed in this section are suitable only to 

variable-speed WTGs, because the WTG requires the ability to operate within a predefined 

range of rotational speed above and/or below the nominal speed. However, fixed-speed WTGs, 

can provide frequency support through pitch control support methods [38], which are discussed 

in the next section. 

 
Figure 8 rotational speed variations according to the algorithm proposed in [35] 

3 Governed primary response 

The primary response can be controlled in conventional generators through the droop setting. 

Droop is defined as the per unit change in generation, on machine capacity bases, with respect 

to 1Hz change in frequency. The droop setting controls the governor responsible for steam feed 

(thermal power plants) or gate opening (hydropower plants). The challenge in wind power 

generators is how to integrate the same concept as the fuel powering WTGs, the wind, is 

uncontrollable. One of the proposed solutions is to apply the droop action using pitch control. 

The pitch angle (β) is a major control parameter in the aerodynamic equation of Cp; increasing 
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β reduces the output mechanical power. In conventional operation, pitch control is used only 

to maintain output power and rotor speed within the limits of the machine. However, de-loaded 

pitching is widely used in droop control. The droop function is also applied through 

supplementary controllers integrated into the conventional controllers of WTG. 

Firstly, it is important to define ‘de-loading’; operating the WTG to provide less output power 

than the available in the wind flow (i.e. MPT is violated). De-loading has two types; Delta and 

Balance; in Delta the output power is reduced by a certain percentage of the available power, 

meanwhile in Balance mode the output is reduced to a fixed value (e.g. 0.2 per unit) [39]. At 

high WSs, in Balance mode, the WTG should provide fixed power and if the output, according 

to the MPT is higher, the WTG is de-loaded to maintain the pre-set fixed output as shown in 

Figure 9. 

 

Figure 9 Example for Delta and Balanced de-loading techniques for a WTG [39]. 

 

The simplest way to de-load the WTG is by pitching the blades, where the reference power to 

the pitch controller [40] is to set a certain value that achieves the target de-loading level [41-

43]. The dominant de-loading ratio (Delta mode) ranges from 10% to 20% of the available 

wind power [44], where the average WS, rating of WTG, and expected level of frequency 

support are the main parameters taken into account. To overcome the problem of pre-adjusting 

the de-loading factor, a simple droop controller is presented in [45]. The WTG is operated 

according to a de-loaded P-ω curve. The system frequency is multiplied by certain droop to set 

the final reference output power signal as shown in Figure 10. Thus, the de-loading ratio is not 



14 

 

fixed, but it varies according to frequency changes, which reduces the WTG output when the 

frequency is above nominal (i.e. full frequency regulation not only at frequency dips). 

 

Figure 10 Proposed droop controller in [45]. 

 

The algorithm proposed in [43, 46] merges inertial and de-loading responses. In [46], at low 

WSs, the WTG receives a higher reference output than the available wind power, thus the WTG 

decelerates until a certain defined stopping speed (ωstop) as in Figure 11. The adjustment of 

ωstop is carried out for each frequency event through a look-up table. At WSs greater than rated, 

the WTG is theoretically unable to provide any power surges during frequency events; 

however, it is possible to overload the WTG by a small percentage (e.g. 10%) for a very short 

duration (from a few seconds up to 1 minute). This overloading was applied through the 

reduction of pitch angle. The same paper dealt with a critical problem which is the reaction of 

WTG when WS drops while the frequency support algorithm is executed. It presents the 

extraction of KE as a solution when WS shifts from high or moderate to lower ranges. The 

parameters of the algorithm are tuned through a certain algorithm according to the average WS 

at the WTG location. The major drawback of the proposed algorithm was its need for 

continuous WS measurements of an average precision. The method of evaluating ωstop was not 

valid at all WSs due to the nature of the output power- ω curve of the WTG. Higher focus was 

directed on isolated weak power systems with high wind penetration and its coordination with 

diesel generators [47]. In this case, the torque reference was set to maintain a certain reserve 

examining both Delta and Balanced concepts. The auxiliary controller was provided by a 

RoCoF-input and frequency drop-input loops to tackle serious frequency events, and slower 

frequency changes respectively. 
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Figure 11 Partial de-loading method – operation regions and modes. 

 

The impact of WS fluctuations during frequency events was also addressed in [43], where a 

typical droop function similar to approach followed in [48], to assign the WTG reference 

power. The droop value was not fixed but dynamic, so that the droop was linearly changing 

with WS (i.e. maximum droop at lowest WS, namely 6% at 5 m/s). The main concept was to 

provide the highest possible primary frequency contribution through minimizing droop value, 

and acknowledge the dynamic conditions of the WTG (mainly affected by incident WS). 

The idea of WS categorization and setting different methods for frequency support was also 

presented in [48]. The procedure was based on setting a command power signal (Pcmd), which 

was then divided by the actual rotor speed to provide the mechanical reference torque signal to 

the rotor current regulator. At low WSs, Pcmd followed a linear relation as in (4),  

  ( )

  

( )

cmd reference

start

reference start

P reference output power slope

reference output power P
slope

ω ω

ω ω

= + ⋅ −

−
=

−

    (4) 

where Pstart and ωstart are the WTG output and rotor speed at a certain predefined low WS, 

typically just above the cut-in WS.  This concept is almost similar to the idea proposed by 

Meng in [49]. At moderate WSs, no specific method to provide Pcmd but it is stated that the 

WTG decelerates to achieve the torque balance according to the adjustable Pcmd. At high WSs, 

no power surge is available (i.e., the WTG is generating 1 p.u.), however, the authors tried to 

stabilize the WTG output by maintaining ω fixed to an upper limit. The model of the integrated 

pitch controller was relatively simple and received only the error in ω thereupon it was 
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processed through a proportional controller (suggested gain from 3 to 10). Generally, frequency 

events made Pcmd increase (or decrease when frequency rises) by a value determined using a 

typical droop function. The dependence on WS measurement is still one of the main challenges 

of this algorithm. 

As a summary, the proposed concepts divide into two groups; the first one makes the support 

provided dependent on frequency deviation severity [45] [48], while the second approach 

secures a power surge that is independent from the frequency excursion as soon as the 

frequency violates the safe margin [24, 43, 46]. The stepwise techniques provide the power 

surge for a predetermined duration and/or till the minimum rotor speed is reached. However, 

stepwise techniques abruptly decrease the output after the predefined time to restore the rotor 

speed. The sudden power reduction might cause a second frequency dip. Therefore, the idea of 

predetermined or dynamic shaping of the active power support functions is introduced to 

mitigate the expected power abrupt drop prior to the support stage [33, 35, 50]. 

The majority of papers dealt with a fixed WS in each case study and ignored the possibility of 

the WS decreasing during support provision. Moreover, at normal operation, the WTG is 

controlled in Delta or Balance de-loading independent of frequency conditions. The idea of 

variable de-loading factors, which could be decided according to WS conditions or grid 

demand, was rarely investigated. The drawbacks caused by WS measurements were avoided 

in some papers (for example [45]) by utilizing the rotor speed as an indicator for the incident 

WS. 

4 Comparison of support methods 

This section provides a comparison between the different control methods presented in the 

previous sections. Such comparison concerns only with the impact of wind power contribution 

in frequency support. 

The majority of papers compare the impact of inertia and primary responses on different real 

and hypothetical test systems. The test system always suffers a frequency dip, and then the 

frequency responses are compared in different case studies, namely; with zero wind power 

penetration, positive penetration-without frequency support, and positive penetration-with 

different types of frequency support. The comparison between frequency responses focuses on 

four main factors: frequency nadir, frequency deviation after a critical duration (i.e., 4~7s), 

oscillatory nature of frequency (i.e., Root Mean Square of oscillations; ∆fRMS), and time 
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required to stabilization within the safe margin that is typically around ± 0.0015 per unit from 

nominal frequency [46, 51].  

The comparison splits into two categories; the first one highlights the island systems [39, 52], 

and the other considers two large systems, which were investigated in two different papers [51, 

53]. The penetration levels of wind power (in the four test systems) either in generation capacity 

or load coverage are mentioned in Table 1. Two different real island systems were integrated 

as benchmark systems to investigate the impacts of inertial and primary responses; Rhodes, 

Greece, and the Guadeloupe archipelago in [24, 51], respectively. On the other hand, the 

Western and Eastern U.S. Interconnectors are considered in [50, 52], respectively.  

The two papers discussing island systems focused on the impact of inertial and droop gains so 

that several values of both gains are compared through assessing their impact on frequency 

recovery. The impact of different inertial gains in both systems is depicted in Figure 12. Note 

that the penetration level examined in Rhodes Island was lower and it had also achieved lower 

improvements in the nadir (e.g. at an inertial gain of 25; improvement was 0.43 Hz compared 

to 0.75 Hz in Guadeloupe system). Conversely, the discriminations between the power surges 

provided by the WFs in both systems at the beginning of the frequency event were not very 

high as shown in Figure 13. 

Table 1 Investigated test systems in the selected papers. 

Test system 
Wind power penetration Loss of 

generation 

Type of WTG 

in capacity in load feed 

Rhodes [39] 46% 50% 13.85% DFIG 

Guadeloupe [52] 29% 18% 12.75% 
Variable speed 

(not specified) 

US Western Interconnector [51] 54% 50% 1.40% 
Compared 

Types 1 to 4 

US Eastern Interconnector [53] 5% 18% 0.14% DFIG 
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Figure 12 Improvement in ∆fmax in the two island systems for different inertial gains (Hint: de-loading in both 

benchmarks is 10%, droop values in Rhodes and Guadeloupe were 20 and 25 respectively). 

 

Figure 13 Supportive active power provided by WFs (Hint: simulations in the two papers were not conducted at the same 

inertial gain values). 

On the other hand, the nadir improvements in large U.S. interconnections were largely 

mitigated as illustrated by Figure 14-a. The improvements in Eastern Interconnector were 

almost negligible due to the huge conventional generation capacity and the very low 

penetration of wind power. There was no data provided about the droop gain value and the de-

loading ratio in the Eastern Interconnection. Compared to island systems, the power surges 

provided by certain WF in the Eastern Interconnector were very low as shown in Figure 14-b. 

The inertial response, in the Western Interconnection, delayed the nadir by 17 seconds, but its 

magnitude was unchanged. Moreover, the overall droop response of the grid increased from 

1544 to 4908 MW/Hz when the inertial and primary response support algorithms were 

activated for the WFs at 50% penetration. 
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Wang et al. compared between Delta and Balance de-loading techniques (proportional and 

constant curtailment, respectively as in the cited reference) from the viewpoint of the secured 

primary reserve [54]. The energy efficiencies of the curtailed power through fixed short time 

spans were estimated using (5),  

,
0

 1

(  ( ) .    )

curtailed unused

curtailed total

T

curtailed unsed

MWh
Energy effciency

MWh

MWh Curtailed power t Min curtailed power during T dt

−

−

= −

= −∫
  (5) 

where T is a certain time span, and MWhcurtailed-total and MWhcurtailed-unused are the curtailed total 

and unused amounts of energy respectively. The minimum amount of WF available curtailed 

power is considered as the secure reserve provided by the WF. This means that each WF will 

provide the short-term forecasts of expected generation and the minimum primary reserve to 

the system operator(s). However, WS fluctuations make the actual curtailed power higher than 

the aimed minimum reserve leading to energy wasting. The test system was the same as in [52], 

and the time span was 15 minutes, de-loading of 10% or 5% of rated power in the Delta and 

Balance methods, respectively. The Delta approach provided 10% higher primary reserve, 

while the Balance approach provided reserve during 27% of the operation time. Another recent 

comparison touched on the impact of proportional integral gains of two supplementary 

controllers to provide pitch de-loading and virtual inertia (i.e. set-point for WTG output) [55]. 

The study presented root-loci and time simulations for wide ranges of the controllers’ gains 

(pitching, torque and frequency droop WTG controllers) to investigate whether the system 

stability was aligned with the improved performance of frequency response. The study was 

conducted at different WSs and up to 50% wind power penetration into the installed generation 

capacity. The authors proposed new values for the gains and time constants of the 

WINDINERTIA controller based on their benchmark system and implied frequency event. The 

most important numerical values, recommended by this paper are as follows: the proportional 

gain of the pitch controller = 450, the frequency droop of the proportional controller = 60, 

proportional and integral gains of the torque controller = 3 and 0.6, and WINDINERTIA 

proportional gain = 25. 

A general comparison between wind power frequency support methods is provided in Table 2 

and illustrated in Figure 15. The following points are considered: 

• Energy wasting is compared to MPT 

• Response speed does not consider communication delays 
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• Dependability on WS, namely during the event 

• Support time/event is the continuous time of sustainable active power surge 

Table 2 Global comparison between the main aspects of frequency support provision by wind power 

Red font refers to disadvantages, black; moderate characteristic compared to other methods, and green; clear advantage. 

Support Method 
Declarative 

KE extraction 
Over-speeding 

Balance de-

loading 
Delta de-loading 

Energy wasting Low Higher Highest Higher 

Response speed Fast Faster 
Slower (pitching 

response) 

Slower (pitching 

response) 

Control complexity Average Higher Higher Higher 

Secured primary 

reserve 
Lowest Low Highest High 

Dependability on WS Higher Higher High Higher 

Long/short term 

solution 
Shortest Short 

Applicability Variable speed WTGs only 
All WTGs (fixed speed types must be 

equipped with pitching system) 

Support time/event Shortest Short Long 

Possibility to support 

consecutive events 
Lowest Lower Average Low 

Capital costs Cost of controllers and software modifications-Low 

Reliability 
Increases failure rates of controllers and pitching systems 

Accurate wind speed measurement might be required 

 

 

Figure 14 Improvement in ∆fmax and supportive active power in the two grids at different support methods (Hint: de-

loading in Western Interconnector was 5% with droop gain of 25) 
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Figure 15 Spider graph comparing between the dominant frequency support methods 

5 Dispatching WTGs/WFs during frequency events 

The role of each WTG during frequency events should be defined so that the WF behaves as a 

conventional plant. Additionally, it is not practical to deal with each WTG as a conventional 

plant as there are thousands of WTGs connected to the power system. Thus, it is preferable to 

determine the required contribution from specific WFs according to the frequency deviation. 

Thereupon, a WF level controller decides which WTGs are switched to frequency support 

operation mode. This auxiliary controller should acknowledge the dynamic conditions of each 

WTG. The dispatching process assures that frequency recovery is smooth, avoids further drops, 

and improves the WF ability to support a second consecutive drop. There are two levels of 

dispatching, namely, dispatching WFs to determine the required contribution of each WF in 

the supportive power surge, and dispatching WTGs inside a WF to provide the WF share in 

power surge. The first level might be independent of the WF actual production, but counts on 

frequency event severity and the available conventional reserves. However, the second level 

completely depends on the actual conditions of each WTG inside the WF, then it is determined 

whether the WF is able to provide its share or not. A simplified WTGs dispatching criterion 

was presented in [23], where the incident WS on the WTG decided its share in the commanded 

power of the WF using (6),  

1

Weighting factor of the incident WS at WTG
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where A is the number of WTGs in each WF, and Ni is the number of WTGs in each group. It 

was assumed each group of WTGs experiences the same category of WS. The dispatching 

factor depended on the WS conditions at certain WTG compared to WSs at other WTGs inside 

the same WF. A fixed weighting factor was assigned to each level of WS (e.g., at 7<WS≤8, the 

weighting factor is 3). It was not mentioned how the commanded power to the WF is interpreted 

as a control signal to the WTGs. 

A compact WTG/WF and WF/WFs dispatching method was offered in [56]. A PI controller 

was integrated to determine the power surge required from all WFs according to ∆f. 

Afterwards, the instantaneous production of each WF determined its share in the overall power 

surge (i.e. WF/WFs dispatching). This PI controller acted as a conventional governor for all 

the integrated WFs. On the WTG/WF dispatching level, each WF was divided into predefined 

clusters where a certain number of clusters should participate in frequency support. Several 

clustering approaches could be applied; one of them is the average WS. As an illustration, the 

WF was divided into rows of WTGs, and it was assumed that each row is facing the same WS. 

According to wake effects, the initial WS is the highest, and it drops as it propagates from one 

row to the next. The dispatching algorithm decided how many clusters were required to provide 

the commanded power surge from the WF. The clusters which faced higher WS were given the 

priority. It was also interesting to perform a preparatory study to assess the maximum possible 

power surge from each WF at a moderate WS. This process required the knowledge of the 

number of WTGs, their ratings and types, and the applied support algorithm (as discussed 

earlier in Sections 2 and 3). The concept of a frequency deviation dependent PI controller was 

also offered in [48], to adjust the command power to WF (PWF-cmd). As an illustration, the WF 

was treated as a conventional plant however; the command signal was restricted by the WF 

production. The moving average method was implemented to estimate the available WF power 

through certain time interval T using (7),  
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where PMA is the moving average of the WTG output at MPT, and Pdev is the deviation of WTG 

output from its available (i.e. MPT). A higher value of weighting factor gave the WF higher 
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confidence to provide frequency support, but increased sacrifice in wind energy production. 

When a frequency event occurs, most probably the limit of PWF-cmd is violated and the WTGs 

must switch to frequency support mode to provide the required power surge. All the WTGs 

were switched to frequency support mode at the same time. Thus, [48] merged the concept of 

WF clustering [56] and setting power reference of both WF and each WTG [23]. 

Baccino et al. deviated from the classical PI controller applied in [48] [56], and proposed a 

central controller equipped with a Kalman filter which was responsible for setting the reference 

speed and power for each WF, meanwhile a local filter did the same task for each WTG within 

the WFs [57]. The Kalman filter estimated the external load variations through receiving WF 

aggregate output and ∆f signal at the point of connection of the WF to the grid. These load 

variations were then fed into a central predictive model controller. The central controller played 

a novel role as it integrated between load variations and dynamic conditions of each WTG 

inside the WF, as shown in Figure 16. The dynamic data of each WTG (incident WS, ω, β) was 

refined using the local Kalman filter. When frequency events occurred, every WTG responded 

differently according to its dynamic conditions and the central controller provided an additive 

control signal for each WTG which determined the frame of the supportive action from each 

WTG (i.e. for WTG no. i: Pi-ref  = Pi-local control ref + Pi-central controller signal). The central predictive 

model controller performed an optimization process within each time frame to maintain the 

WTG’s operation within preset limits and mitigate ∆f taking into consideration the WTG’s 

dynamic conditions. A central controller was also implemented in [58], to provide aggregate 

measurement information for the local controllers of WTGs and flywheels. In particular, the 

central controller received the penetration power margin for both; the WF and the integrated 

storage (provided by SOs), the output of all WTGs at the point of connection with the network, 

the common rotational speed of the flywheels, and frequency deviation. The central controller 

provided local WTGs governors with the power deficit to be stored or extracted to suppress 

frequency events. Thus, the WTG output power is ramped up or down using the local governor 

to preserve the pending conditions of the flywheels and the power system.  

The issue of dispatching AC synchronized area(s) and wind power clusters connected via point-

to point or mutli-terminal HVDC grid was raised in [59-61]. A local controller was integrated 

into each synchronous area to set the power surge provided either by conventional plants (in 

synchronized areas) or by WFs as shown in Figure 17 [59]. The proposed dispatching was more 

universal as it dispatched all the synchronous generators and WFs which are interfaced through 

power electronics of the HVDC. Two different controllers were proposed, one for each AC 
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area and the other for the wind power cluster. The controllers were not so sophisticated, and 

their two main design parameters were tuned using an advanced optimization algorithm. On 

the other hand, the dispatching method was very simple based on a proportional, fixed gain, 

which was predetermined based on the penetration ratio of wind power in load feed. The impact 

of communication failures on the dispatching process was tackled by [59] where the power 

supplied from one of the AC areas was intentionally missed in a case study to examine the 

controllers’ response. A solution for communication delays was to modify the magnitude of 

pulse width modulation signal, controlling the HVDC link converters, according to the onshore 

frequency (i.e. grid frequency) [60]. 

 

Figure 16 proposed WF dispatching controller in [57] 

 

Figure 17 Coordinated control to provide frequency support from WFs and synchronous AC areas connected to a 

HVDC grid (n and m are the numbers of AC grids and WFs respectively, α and β are two design parameters) 
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As seen, the common concept in the papers surveyed is the integration of a central controller 

(PI in most cases) to set the reference output of WF/WFs and WTG/WF or switch it to support 

mode. The available measured data were filtered in some research to enhance the dispatching 

process. The WTGs inside a WF were divided into groups or clusters according to weighting 

factors or other clustering parameters (e.g. WS). The proposed designs are feasible and ready 

to apply without the need for major equipment installation or considerable alternations 

6 Technical challenges 

This subsection presents the identified obstacles to be considered and solved to advance the 

participation of wind power in frequency support. It is worth noting that not all challenges are 

common to all support methods, and that one of the major obstacles is the presence of 

sufficiently reliable and fast data acquisition and communication systems. In addition, such 

wide cooperation between power systems and WFs requires a clear and well defined technical 

and legal rules and protocols to avoid any conflicts with other aspect of stability (e.g. small 

angle stability and its controllers) [62]. 

One key area related to wind power globally is the development or modification of balancing 

markets. These ancillary service markets were typically designed for the operation of 

conventional generation. Furthermore, the standardization and common regulation of such 

markets has been proposed to support growth in renewable penetration. It must be noted that 

economic, regulatory and market-related issues out with the scope of this paper. 

6.1 Wind speed measurement or estimation 

To determine or know the actual wind speed faced by the wind turbine is a prerequisite for 

several frequency support algorithms. However, the accuracy of the obtained measurements or 

prediction will always be questioned. The impact of error in wind speed estimation depends on 

the algorithm in question [63, 64]. Some algorithms count on WS as a categorization or 

dispatching parameter. In other algorithms, such as MPT, incident WS plays a major role in 

setting de-loading ratio and determining the reference rotational speed and/or torque. One 

modern and promising WS measurement methods is the LIDAR (Light Detection And 

Ranging) [65]. Frequency measurement is also a much debated topic, for example, choosing 

where to locate  frequency sensing equipment to trigger frequency support algorithms (e.g. at 

the point of common coupling or the collection bus of the WF, or it should be communicated 

through the SOs to WTGs/WFs controllers). Methods of frequency measurements are also 
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widely discussed, where PLL is the most applicable method [66]. However, the topics related 

to frequency measurements are out of the scope of this paper.  

6.2 Action to be taken at non-sufficient WSs 

Generally, the most practical solution in case that wind speed drops during frequency support 

provision is to extract the stored KE in the rotating parts of the WTG to maintain the initially 

provided level of support. On this track, a quantitative study was conducted to estimate the 

future evolution of PR and system inertia in the GB power system (required to face a worst 

loss of generation of 1800MW) for different policy scenarios [67]. The authors asserted that 

over-speeding techniques make the WTG contributes to the system inertia (i.e. the reduction 

of system overall inertia due to conventional generation retirement is mitigated) and PR while 

other support methods practically act as PR only. The performed case studies achieved very 

high penetration levels up to 50GW wind power/70GW load. The main finding was that as the 

load increases, the PR requirement was reduced while the increase in wind power penetration 

had a minor impact. However, when there WFs did not provide frequency support, as the 

penetration increased a slight variation in load caused major impact in PR requirements. Under 

this scenario, energy storage is a valid solution; however, it is still facing major economic 

barriers due to the high capital costs. Energy storage is also an alternative for replacing fixed 

speed WTGs with modern variable speed WTGs. Details of potential integration of energy 

storage for frequency support are given in the coming sections. 

6.3 Energy wasting (Energy loss) 

Wind energy is wasted either due to de-loading or during the recovery phase after providing 

the supportive power. The amount of wasted energy is always compared with respect to the 

available energy when the WTG is operated using MPT. A detailed comparison between 

wasted energy in three major support techniques is found in [26]. In particular, wasting energy 

is an economical problem which affects WF owner/operators as they may have to sacrifice 

energy to assure the capability of their WF to provide frequency support. However, developing 

support algorithms can mitigate the wasted energy to facilitate the compromise between grid 

requirements and investors’ targets. In addition, future grid codes should include special 

incentives for the WFs which will participate in frequency support as a compensation for the 

expected curtailment in energy production. Compared to the previous obstacle, energy storage 

is a valid solution to eliminate any energy wasting; on the contrary, it may improve the energy 
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yield of WFs by storing wind power which might otherwise be curtailed during period of low 

demand. 

6.4 Universal and standard solutions 

Providing generic and common options for the appropriate selection of the support algorithm 

are a priority. To date, there is no accredited procedure through which system operators and 

WF owners can decide which support algorithm is best suited to their needs. The complicity of 

the challenge relies on the wide range of givens, parameters and requirements that should be 

considered and compromised as illustrated in Figure 18. A complicated mesh of different issues 

makes it very hard to provide a universal criterion or set of equations to determine the suitable 

replacement ratio for conventional plants with WFs, and the best frequency support algorithm. 

In addition, the comparisons in the previous section show that the impacts of support algorithms 

vary significantly between large grids and isolated systems. Moreover, the capacity factor of 

WFs may vary from around 20% up to 55% depending on location [68]. It is also challenging 

to decide whether all the WFs should contribute to frequency support, as from an economic 

point of view this is not effective. The infrastructure of the system has a big influence, for 

example, the speed and accuracy of communication devices between different plants (i.e. WFs 

dispatching is highly affected by the speed and accuracy of data acquisition) [69]. A novel 

study was undertaken in [67] to estimate the required primary reserve post high penetration 

levels of renewable energies in GB in 2020 (Go Green scenario). A generalized probabilistic 

method was also applied to the Go Green scenario to estimate the available inertial response 

provided by wind power and its impact on system. The weighting factor of each WS block was 

related to the installed wind capacity in each region and probability of ramping between two 

WS classes. This weighting factor was then multiplied by the estimated inertial response from 

the WFs assigned to each block (applying the method of [34]). It was found that, at 1.8 GW 

generation loss, the frequency nadir and RoCoF of highest occurrence probability were 

improved by 0.1 Hz and 0.08 Hz/s, respectively. 

The generalization of frequency stability risk assessment was touched by Negnevitsky et al. in 

their recent paper [70]. They proposed a simplified risk assessment approach to analyse the 

system operation under high penetration of wind power by the identification of operational 

limit through an analytical solution (using Laplace transforms) that approximates dynamic 

response in frequency domain. This method allows droop frequency response to be modelled 

as a linear ramp response. The amount of non-supplied energy are estimated according to 
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expected load curtailments (i.e. based on the obtained frequency response) and financial losses 

and adequacy issues are quantified. Similar work was conducted to estimate the system inertia 

and primary reserve of wind power plants through a simplified mathematical representation of 

power system [71]. In spite of the intensive research efforts there is still no standard or widely 

applied methods that enable the WTG to provide frequency support. However, top WTG 

manufacturers, including Vestas and Siemens, had patented practical approaches that are 

compatible with their WTGs. Most of the patented methods are based on de-loading concepts 

[72, 73]. 

 

Figure 18 Illustration for the ‘Generalization’ dilemma 

6.5 Frequency dead-band 

This case defines the region where WFs/WTGs do not contribute to frequency support.  The 

operation region of the applied support algorithm is decided based on SOs requirements 

depending on frequency deviations. However, the width of this band depends on the wind 

power penetration level, and the targeted contribution of wind power to frequency support (i.e. 

full response; inertial, primary and secondary). It is most common to instruct WFs to react to 

moderate frequency drops by providing inertial and primary responses with a frequency 

deviation deadband of ±0.1% and ±2.2% minimum and maximum thresholds respectively [13, 

74]. 
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6.6 Suitable de-loading ratio 

The selection of this parameter is related to many factors including the WTG rating, average 

WS in the location, grid code requirements, and method of de-loading. In addition, de-loading 

would have a clear impact on the capacity factor of a WF if not corrected for. For example, 

applying 10% de-loading reduces the capacity factor by 3% in an example from [43]. However, 

a sufficient de-loading ratio should achieve a reasonable value of the power surge, which is 

determined by SOs. A de-loading ratio of 15% was applied in [46] to reach a 0.15 p.u. power 

surge at average WS. Moreover, the de-loading ratio could be assessed for the whole WF, such 

that the WF is treated as a power plant with an expected primary response. In that case, a WTG 

dispatching algorithm may be applied to achieve variable de-loading for individual WTGs so 

that the aggregate supportive power fulfils the WF target droop [56]. This point and the 

previous one are closely related to grid code requirements which differ from one country/region 

to another. The dominant trend does not obligate the WTGs/WFs to provide inertial or primary 

response [75]. However, WFs must reduce their production (e.g. Germany; a ramp rate 10% of 

connection capacity/minute) during the intervals of low demand to avoid positive frequency 

deviations and to maintain the allowed penetration levels in feeding the actual load [76] [77]. 

On the other hand, some codes treat medium sized WFs a power plant so that they expect the 

frequency response at the point of common coupling follows the grid code and the WTGs have 

to provide a power surge within the limits of the code according to certain agreement with SOs. 

This type of operation is closely related to the financial impact on the WFs owners and in most 

cases SOs offer additional incentives for WFs to provide frequency support. However, this 

aspect is out of the scope of this paper, but has been be reviewed in [78].  

6.7 Equipment’s reliability 

The reliability of the wind turbine is affected by the operation algorithm of WTGs. In wind 

power, reliability is a critical issue as it is very costly, hard and dangerous to have access to the 

WTGs components which are mounted atop high towers. In addition, massive amounts of 

potential energy capture are lost due to both planned and unplanned maintenance [79]. 

Therefore, frequency support algorithms should have limited negative influence on component 

reliability. For example, pitch de-loading implies additional stress on the mechanical pitching 

system so that it is more vulnerable to failures. Likewise, intensive rotational speed control 

affects the lifetime of WTG low speed shaft and gearbox and even the tower base [80, 81]. The 
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overloading technique offered in some algorithms in case of rated WS operation could reduce 

the lifetime of the machine insulation and increase the risk of winding failure. 

6.8 The layout and the type of connection 

 The collection grid and the power transmission system have an impact on a wind farm’s 

ability to provide frequency support. The interconnections between WTGs inside a WF might 

be AC, DC or hybrid. Likewise, a WF, especially offshore WFs, could be connected through 

an HVDC corridor [79]. In case of HVDC connections the power surge provided by the WF is 

limited by the power ratings and the rate of change of the delivered power of the connection 

converters. Moreover, the WF senses frequency deviation as the point of coupling with HVDC 

line or at the point of coupling of HVDC (i.e. inverter end) with the grid. However, future 

modifications to grid codes should clarify which frequency measurement is acknowledged to 

trigger a given support algorithm. The speed of response should be also examined to compare 

between conventional AC lines and HVDC corridors. This point has been widely addressed in 

[82]. Table 3 concludes the eight key obstacles in the way of wide and complete dependence 

on wind power as a robust participant in frequency support. The impact of the two last 

challenges and the proposed solutions are introduced in Section 4 

 

 

 

 

Table 3 Major technical obstacles facing wind energy participation in frequency support 

Numbers below each challenge refer to the involvement of support techniques in the evolution of the challenge (1: synthetic 

inertia techniques, 2: de-loading techniques and 3: energy storage) 

Challenge System operators Owners Manufacturers 

Wind speed measurement  
 ݱ    

1, 2 

Action at non-sufficient WS 
 ݱ    

1, 2 

Energy wasting  
 ݱ ݱ ݱ

1, 2 

Universal solutions  
 ݱ   ݱ

1, 2, 3 

Frequency dead-band  
   ݱ ݱ

1, 2, 3 

Suitable de-loading ratio    
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 ݱ ݱ 2

Equipment’s reliability  
 ݱ    

1, 2 

Type of connection to grid  
   ݱ ݱ

None 

7 Frequency support via stored wind energy 

The previous methods of frequency support count only on the available wind power just before, 

during and shortly after the frequency event. Therefore, these methods are vulnerable to WS 

variations and their potential contribution to frequency support in the near future is uncertain. 

In addition, the WTG may operate below MPT for extended periods of time, which would 

imply a negative economic impact on the WF revenues if no additional remuneration was 

available for providing frequency support. To overcome these obstacles, supportive power 

surges might be fully generated or shared by more stable and highly predictable source of 

energy to alleviate the incident frequency event. Literature had investigated several types of 

energy storage mediums, some of them are still in early stage of research and prototyping, and 

others stand on a solid ground of mature technologies [83]. This paper has considered three 

means of energy storage that are widely deployed in power systems and intensively examined 

in literature, namely, batteries’ banks (BBs), hydro-pumped energy storage (HPES) and 

flywheels (fw). The research efforts on the role of these three storage mediums in providing 

short term frequency support are rare. Thus, this paper discusses the trademark contributions 

in the field of energy storage participation in balancing wind power (i.e. mitigating small 

deviations), and how they might be utilized to provide frequency support services. 

7.1 Batteries’ banks 

The majority of research concentrates on the role of BBs in flattening the output of WFs to 

overcome WS intermittency. The impact of BBs on system frequency deviations was examined 

in [84], where the penetration level in generation capacity was limited by certain threshold for 

frequency deviations. Exhaustive mathematical analysis was presented and full interest was 

directed to frequency support. In addition, BBs sizing was based on statistical and historical 

data not the accuracy of wind power production forecasts. A complicated mathematical method 

was applied to convert the available real WS data into equal time-sized samples of wind power, 

where each sample has its own average and static stochastic fluctuations reflecting wind 

turbulence. Thereupon, wind power is integrated into a detailed model for the examined system 

so that the frequency is obtained through the complete time interval (i.e. several samples). The 
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penetration level was then monitored and increased until the frequency deviation threshold is 

violated. The next step was integrating a storage medium to improve the frequency response 

of the system. A novel idea assumed that the BB acts as a band-stop filter, where it should 

avoid the frequency deviations which had a certain rate of occurrence. The performance of this 

filter in time domain should follow the behaviour of frequency deviations (which is based on 

the stochastic wind power fluctuations as mentioned earlier). ∆f with the lowest occurrence 

rate are always the highest, thus higher surge power is required to suppress it, hence these 

records were excluded. The final size of the BB was compromised with the stopped bandwidth 

taking into consideration the efficiencies of charging and discharging, and preserving a 

maximum limit for ∆f. As an illustration, each time sample required a different sized BB 

(according to wind power variations and frequency deviations), but only one size is selected 

(i.e. rated power and energy capacity). The optimum upper and lower limits of SOC were 

acknowledged in each time sample to maintain the normal range of BB lifetime.  

A different approach was presented in [85], where the BB is overloaded for certain duration 

according to the permissible thresholds released by the manufacturer. A lookup table is 

integrated to determine the allowed overloading factor and duration at the instant of frequency 

drop and according to the BB accompanying conditions. The BB was modelled as voltage 

source inverter to handle sudden changes in frequency and voltage. As an illustration, SOC and 

∆f signals are processed through two independent PI controllers to set the reference value for 

the current d-component of the converters connecting the BB to the grid as shown in Figure 

19. The BB charge-discharge process is performed during normal frequency conditions, but at 

frequency drops; overloading is triggered, however, reaching the SOC minimum limit of 20% 

should halt the support process. The concept of charging-discharging BBs according to 

frequency conditions and load demand was also investigated in [86]. The sizing of BBs was 

based on chronological data as in [84], however the size of BBs was selected to cover possible 

gaps between generation and demand, according to the available WSs records (to avoid 

frequency drops that arise due to imbalance). A similar concept was adopted in [82] where the 

power surge (i.e. rated power of the BBs) is tuned according to the corresponding primary 

reserve from the retired conventional plants. The rated energy was selected to secure a 

sustainable power surge of a 3-stage shaping function (Ramping inertial response, fixed 

primary response, and decaying to assure stable frequency recovery). The major novelty was 

expanding the optimization process to achieve a low total operating cost of conventional units 

and BBs (, without violating acceptable limits of RoCoF and frequency nadir. The deficiency 
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of this work was its dependence on a very simplified equation describing the RoCoF variations 

according to the provided inertia by BBs. In addition, it was an event-dependent method, such 

that the severity of the generation-load mismatch decides the RoCoF hence the BBs size. 

Through all the previous papers, several types of batteries were implemented; however the 

most popular types in the field of rectifying and balancing the intermittency of renewable 

energy are NaS and Li-ion [87]. 

 

Figure 19 Charging-support algorithm offered in  [85] 

The energy stored in the dc capacitors of the PE converters and the capacity of the HVDC 

cables can be considered as a virtual battery that is able to provide frequency support. The 

benefits of combining this stored energy along with WFs frequency support were proposed in 

[60, 82] by integrating the appropriate ancillary controller as shown in Figure 20 [60]. Both 

papers compared three approaches to provide frequency support from WFs which are 

connected via HVDC links (namely, point-to-point); WTG-based, HVDC stored energy (where 

the dc link voltage drops below nominal to stored extract energy in the capacitors), and a 

combination between the two previous methods. The authors saw that the main obstacle for the 

first choice is communicating the frequency measurements to the WTG controllers. 

Meanwhile, the energy stored in HVDC link required to produce an inertia time comparable to 

a conventional plant is very high compared to the normal capacity of HVDC links (17 times 

more according to [82]). The combined method tackled the two problems where the initial 

voltage drop in HVDC provided the fast-enough response which is gradually supplemented by 

the WTG. The WF senses the HVDC voltage drop at the WF side converter to initiate the 

WTGs frequency support protocol (i.e. the droop response was proportional to the dc voltage 

drop). It was concluded that HVDC energy extraction is preferred when fast WTGs response 

is required; while WTG-based is favoured when the WTG should provide frequency support 

for relatively longer durations [82]. Both papers used DIgSILENT PowerFactory as a 



34 

 

simulation environment, however the controllers’ presentation and reproduction by the readers 

were simpler in [60], and it considered the behaviour at over-frequency events when the 

frequency violated the E.ON code margin, namely 50.2 Hz [88].  

 

Figure 20 Ancillary controller integrated to VSC-HVDC onshore side to provide frequency support 

7.2 Hydro-pumped storage 

HPES represents 99% of the energy storage capacity installed all over the world [87]. A sizing 

algorithm was offered in [89], which depended on evaluating a chronological array for the 

generation-load mismatches through the whole year after specific WFs replaced some 

conventional units. The general structure of a HPES is displayed in Figure 21. The HPES was 

proposed to be constructed onshore of the Red Sea in Egypt without a lower reservoir, and the 

sizing procedure decided the volume and head of the upper reservoir. The energy capacity and 

rated power are compromised to guarantee a fixed support power for 30 minutes. The proposed 

sizing algorithm is so far similar to the one proposed in [86]. 
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Figure 21 Typical structure of an HPES [89] 

The rated power and flow rates of charging pumps were selected based on the power mismatch 

array. However, this study requires more sophisticated statistical, probabilistic approach, such 

as Monte Carlo simulation to get more accurate results. As an extension of this work, a detailed 

operation algorithm is presented in [90] to determine how the HPES was charged without 

causing frequency excursions, and also mitigating the rejected wind power. During frequency 

events, the HPES responded as a normal hydro plant with a simple mechanical governor, 

meanwhile the WTGs do not have any contribution to frequency support. It is of note that the 

head height was designed to be relatively short (80~100 m) to assure an ultrafast response in 

primary support. The HPES was considered as an additional inertia in the system which 

mitigated the lowered inertia after the WFs had replaced some conventional units. 

7.3 Flywheel energy storage 

Finally, the method of WTG de-loading and integrating flywheels as a storage medium was 

proposed in [58]. The basic source for frequency support was several flywheels integrated near 

a WF, and they exchange power with grid according to frequency fluctuations based on a linear 

control droop as shown in Figure 22. The available power from flywheels was estimated 

according to the stored KE so that a fixed power step is provided within 30 minutes (notice that 

30 minutes support duration is common in literature) using (8),  
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− −

− −
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= ∆ ⋅ ⋅ − − − ⋅∆
  (8)  

where ωfw is the flywheel speed, ∆t is the frequency regulation duration, and Jfw is the flywheel 

inertia (all flywheels are identical). 

 

Figure 22 Flywheels frequency support droop controller [58] 

When the frequency suffers an overshoot, the term of minimum rotational speed is replaced by 

a max limit (the ability of flywheel to absorb more energy, hence it draws the excess power to 

mitigate the frequency rise). On the other hand, typical combined torque-pitch control was 

applied to maintain Delta de-loading for the implemented WTGs. 

7.4 Energy storage systems comparison 

A brief comparison between the three storage technologies gives an insight into the merits of 

each technology as shown in Figure 23. It is seen that the HPES has a slight privilege, however 

the main obstacles are the environment suitability and massive capital costs [16] 

 

Figure 23 General comparison between the three main energy storage technologies 
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8 Conclusions 

The role of wind power in frequency support has been an active field of research for several 

years. A wide range of algorithms and investigations have been published to tackle the problem 

of reduced system inertia and primary response provision when wind farms replace 

conventional generators. The solutions offered are based on three methodologies; kinetic 

energy extraction, controllable de-loading, and integrating energy storage mediums. Hydro-

pumped storage stations and batteries are the most widely used storage mediums worldwide. 

Although energy storage almost eliminates wind energy wasting compared to other methods of 

support, it has many financial and technical limitations. 

Variable speed wind turbines are able to provide frequency support by via specially designed 

control algorithms. However, the dominant wind speed conditions before, during and just after 

the frequency excursion play a major role. The impact of providing support on frequency 

response depends on many factors, including the nature of the power system (i.e. large grid or 

island system), the drop severity and the parameters of support algorithms (e.g. inertial and 

droop gains). According to the literature, the Delta de-loading method is the most practical and 

simple in application, however, the amount of power support is always vulnerable to wind 

speed conditions.  

This paper considered four different worldwide real test systems which were investigated by 

four different papers. It is concluded that the penetration level and the system size have a clear 

influence on the achieved improvements in frequency response. Therefore, it is hard to set 

universal values for controllers’ parameters (e.g. de-loading ratios and capacity factors) to 

assure that system inertia is not curtailed and maintain pre-wind penetration primary reserve. 

Merging wind power and energy storage solutions and frequency associated frequency support 

methods is a feasible solution to overcome the risk of overlapping poor wind speed conditions 

with frequency events. In other words, the main frequency support procedure should come 

from wind farms, but when the wind speed conditions are very poor, storage mediums can 

provide the minimum acceptable response and compensate for low wind power capability. In 

addition, advances in wind speed measurement and forecasting technologies will improve the 

performance of support algorithms and mitigate wind energy wasting. 

Finally, future grid codes should discriminate between onshore and offshore wind farms. They 

should also categorize wind farms based on the type of connection to the main grid (via the 

medium or high voltage AC or HVDC, which is used mainly for offshore wind farms). The 
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expression wind farm should be replaced by wind power plant (i.e. wind farm behaving 

similarly to conventional generators) to reflect the necessity and ability of the provision of 

ancillary services, including frequency regulation, by wind power. This categorization has a 

great impact on wind farm obligations to frequency support.   
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