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Abstract 

Every object in the world has a 3-Dimensional geometrical shape and it is usually possible to 

model structures in a 3-Dimensional fashion although this approach can be computationally 

expensive. In order to reduce computational time, the 3-Dimensional geometry can be 

simplified as a beam, plate or shell type of structure depending on the geometry and loading. 

This simplification should also be accurately reflected in the formulation which is used for 

the analysis. In this study, such an approach is presented by developing an Euler-Bernoulli 

beam formulation within ordinary-state based peridynamic framework. The equation of 

motion is obtained by utilizing Euler-Lagrange equations. The accuracy of the formulation is 

validated by considering various benchmark problems subjected to different loading and 

displacement/rotation boundary conditions.  

Introduction 

Every object in the world has a 3-Dimensional geometrical shape including the graphene 

material, which is generally described as a structure with a 2-Dimensional geometrical shape, 

since it has slight waviness in the thickness direction. From a computational point of view, it 

is usually possible to model structures in a 3-Dimensional fashion. However, such an 

approach can be computationally expensive especially considering complex structures such 

as an aeroplane, ship, etc. Hence, in some cases, it is essential to make reasonable 

assumptions, so that the 3-Dimensional geometry can be simplified as a beam, plate or shell 

type of structure. As a result, the computational time can be significantly reduced. In order to 

represent such simplifications, the formulations describing the problem of interest should be 

modified appropriately which is also true for peridynamics (PD), a new continuum mechanics 

formulation introduced by Silling (2000). As argued by dell’Isola et al. (2014a, 2014b, 

2014c, 2015), the origins of PD go back to Piola’s continuum formulation.  

The original PD formulation was introduced for a 3-Dimensional geometrical configuration 

and each material point has three translational degrees-of-freedom. As mentioned earlier, for 
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simplified geometries, it is necessary to modify the formulation to represent simplified 

structural behaviour accurately. O’Grady and Foster (2014a) and O’Grady and Foster 

(2014b) developed non-ordinary state-based PD formulations for Euler-Bernoulli beam and 

Kirchoff-Love plate, respectively. Moreover, Taylor and Steigmann (2013) introduced a 

bond-based peridynamic plate model. Recently, Diyaroglu et al. (2015) presented PD 

Timoshenko beam and Mindlin plate formulations by taking into account transverse shear 

deformations. These formulations include not only the transverse deformation as degree-of-

freedom, but also rotations of the cross-section. For slender beams, where the ratio of length 

to thickness must be greater than 10, i.e., / 10L h > , transverse shear deformations can be 

neglected and Euler-Bernoulli beam formulation can be used. By doing this, it will be 

possible to reduce the total number of degrees-of-freedom in the system by half. Hence, in 

this study, a new ordinary state-based peridynamic model is developed and validated by 

considering various benchmark problems. The developed formulation can be used for the 

analysis of complex systems showing slender beam behaviour.  

Kinematics of Euler-Bernoulli Beam in PD theory   

In order represent an Euler-Bernoulli beam, it is sufficient to use a single row of material 

points along the beam axis, x, by using a meshless discretization as shown in Figure 1. In this 

particular case, the shape of the horizon, i.e. peridynamic influence domain, has a shape of a 

line. Moreover, each material point has only one degree of freedom along the z-axis, which is 

the transverse displacement, w.   

 

Figure 1. Kinematics of an Euler – Bernoulli beam in PD theory   
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By using the approach presented in Madenci and Oterkus (2014), the strain energy density 

function can be written in terms of micro-potentials and for material point k, it can be 

expressed as   

( ) ( )( )( ) ( )( ) ( )

1

2

PD

k j j k jk
j

W Vω ω= +∑              (1) 

where the micro-potentials 
( )( )k j

ω  and 
( )( )j k

ω  are the functions of transverse displacements of 

material points, i.e.  

( ) ( ) ( ) ( )( )( ) ( )( ) 1 2
, ,...k kk j k j k k

w w w wω ω ⎛ ⎞
= − −⎜ ⎟
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The total potential energy of the beam can be obtained by summing potential energies of all 

material points including strain energy and energy due to external loads as   
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in which 
( )
ˆ
k
b  is the body load with a unit of “force/per unit volume” and it may represent 

both the transverse load, ( )p x  and the moment load change, ( )m x x∂ ∂ . The moment load 

change should be converted into a more convenient form of ( )max. min.
/m m x− Δ , where 

max.
m  

and 
min.
m  represent maximum and minimum moment loads, respectively, acting on a material 

volume. Similarly, total kinetic energy of the beam can be obtained by summing the kinetic 

energies of all material points as   
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By using Eqs. (2) and (3), the Lagrangian of the system can be expressed as   
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Note that the Lagrangian is only a function of transverse deflection,
( )k
w . Hence, the Euler – 

Lagrange equation takes the form of   
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d

dt
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Substituting Equation (4) into Equation (5) leads to   
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Moreover, the PD equation of motion for an Euler-Bernoulli beam can be expressed in a 

more compact form in terms of force densities, !t
k( ) j( )

 and !t
j( ) k( )

, as   
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where the tilde sign represents force densities arising from the bending deformation and they 

take the form of   
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Moreover, these force densities can also be written in terms of strain energy densities of 

material points, k and j, in a PD bond as   
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The strain energy densities for material points, k and j, can also be expressed by utilizing the 

corresponding definition from classical continuum mechanics as   

( ) ( )
21

2
k k

W aκ=                 (10a) 

and 

( ) ( )
21

2
j j

W aκ=                 (10b) 

where 
( )k

κ  and 
( )j

κ  represent the curvatures of material points, k and j, respectively, (Figure 

1) and a is a PD parameter. The curvature functions for material points, k and j, for a bond 

can be defined as   
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and 
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where d is a PD parameter and it ensures that the curvature, κ, has a dimension of “1/length”. 

Moreover, the summation sign indice, k
i , represents all material points inside the horizon of 

the main material point k and the indice, j
i , represents all material points inside the horizon 

of the family member material point j where horizon defines the influence domain of each 

material point. Moreover, distances between material points are defined as 

( )( ) ( ) ( )k kki k i
x xξ = −  and 

( )( ) ( ) ( )j jki k i
x xξ = − . Note that Equations (11a,b) correspond to the 

curvature definition in classical theory, i.e. ( ) 2 2
x d w dxκ = . Substituting Equations (11a,b) 

into Equations (10a,b) yields the explicit expressions of strain energy densities as   
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The PD force densities can be rewritten by substituting Equations (12a,b) into Equations 

(9a,b) as   
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which can also be expressed in terms of curvature functions as   
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ξ
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Note that as in the classical theory,  the PD force densities occur due to bending deformation 

and they are functions of curvatures, 
( )k

κ  and 
( )j

κ , respectively. As shown in Figure 2, the 

force acting on the main material point k is different than the force acting on its family 

member, i.e. !t
k( ) j( )

≠ !t
j( ) k( )

. This is because the force function !t
k( ) j( )

 is based on the 

displacements of material points k
i  which are inside the horizon of the main material point k 

and, on the contrary, the force function !t
j( ) k( )

 is based on the displacements of material points, 

j
i  which are inside the horizon of the family member material point j. Therefore, the 

equation of motion of material point k given in Equation (7) is based on ordinary state-based 

Peridynamic theory and it can be rewritten in an open form as   
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where the summation functions for material points j, i
k
 and j

i  involve all family member 

material points inside their horizons, k
δ  and j

δ .   

 

Figure 2. Force functions of a PD Euler – Bernoulli beam   

In order to prove the validity of Peridynamic equation of motion (EOM) given in Equation 

(15), it is essential to check if its classical counterpart can be recovered in the limit of horizon 

sizes approaching to zero, i.e. 0
k

δ →  and 0
j

δ → . Therefore, the transverse displacements, 

( )ki
w  and 

( )ji
w , can be expressed in terms of their main material point’s displacements, i.e. 

( )k
w  and 

( )j
w , respectively, by using Taylor series expansions while ignoring the higher order 

terms as   
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2
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2
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kk k x k xxii i k
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2

j
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ξ
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Substituting Equations (16a,b) in PD EOM, i.e. Equation (15), results in   
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where the summation signs can either involve all the family members of the main material 

point inside the left part of the horizon or right part of the horizon. Again, if Taylor series 
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expansion is used for the family member material point j by disregarding the higher order 

terms as   

( ) ( ) ( )( ) ( ) ( ) ( )( )
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, , , ,
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j k

j kj xx k xx j k k xxx k xxxx
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and substituting Equation (18) into Equation (17) results in   
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After performing some algebraic manipulations, the final form of PD EOM can be obtained 

as   

ρ
(k )
!!w
(k )

= −ad 2
w
k( ),xxxx

4
i=1

∞

∑ V
i( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟j=1

∞

∑ V
( j )

+ b̂
(k )

            (20) 

where j
i  is replaced with i. Moreover, the infinitesimal volumes, 

( )i
V  and 

( )j
V  can be 

expressed for 1D beam element as 
( ) ( )( )i i k
V A ξ= Δ  and 

( ) ( )( )j j kV A ξ= Δ , where 
( )( )i k

ξΔ  and 

( )( )j kξΔ  approach to differential distances, i.e. 
( )( )i k

dξ ξ ′′Δ →  and 
( )( )j k dξ ξ ′Δ → . Converting 

the summation terms in Equation (20) into integrations results in   

ρ !!w = −A2ad 2
w
,xxxx

4
d ′′ξ

−δ

δ

∫ d ′ξ
−δ

δ

∫ + b̂              (21) 

Performing the integrations in Equation (21) yields the PD EOM as   

ρ !!w + A
2
ad

2
δ
2 ∂

4
w

∂x
4
= b̂               (22) 

Note that, the PD EOM, given in Equation (22), has the same form as its classical counterpart 

for an Euler – Bernoulli beam theory, i.e. 
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ρ !!w +
EI

A

∂
4
w

∂x
4
= p −

∂m

∂x
              (23) 

As mentioned earlier, the body load, b̂  may represent both the transverse load, p, and the 

moment change, ( )max. min.
/m m x− Δ , acting on a material volume. Therefore, it can be 

concluded that the proposed kinetic energy, T, and strain energy density, W, expressions 

given in Equations (3) and (12a,b), are suitable for representation of Euler – Bernoulli beam 

problem.   

Finally, equating the coefficients of the unknown function, w, in the PD EOM to the 

coefficients of that in the classical equation yields the relationships between the PD 

parameters, a and d, and the Young’s modulus, E, and the moment of the inertia, I, as   

3 2 2

EI
a

A d δ
=                 (24) 

The body load can be expressed as   

ˆ m
b p

x

∂
= −

∂
                (25) 

In order to obtain a complete PD formulation, the Peridynamic material parameter, d, must 

also be determined. For this purpose, the curvature of a material point is compared with its 

classical counterpart under a simple loading condition, which can be chosen as a constant 

curvature, ζ . Figure 3 shows such a loading condition for a beam with a length of 2δ .   

 

Figure 3. A beam subjected to constant curvature   

In classical beam theory, the constant curvature loading is defined as   

2 2
d w dxκ ζ= =                (26) 

Equation (26) can be solved for the specified boundary conditions which are   



 10 

( )( ) 0w w
δ δ−
= =                (27) 

Thus, the transverse displacement of any point on the beam axis can be defined as   

2 2

( )
2 2

x

x
w

ζ ζδ
= −    for   xδ δ− ≤ ≤              (28) 

Here, the coordinate axis, x, is located at the centre of the beam and the main material point, 

k, is also at the centre with its horizon completely embedded inside the beam as shown in 

Figure 3. Hence, the displacement functions for material points, k and its family member 

point k
i , can be expressed with the help of Equation (28), as   

2

( )
2

k
w

ζδ
= −    and   

2 2

( ) 2 2
k
i

w
ζξ ζδ

= −             (29) 

where 
( )( )k
i k

x ξ ξ= =  is used. Thus, substituting Equation (29) into Equation (11a) gives the 

curvature of material point k as   

( ) ( )
1

2
k

k

k i

i

d V
ζ

κ
∞

=

= ∑                (30) 

Converting summation term into integration while transforming material volume as 

( ) ( )( )kk
i ki

V A Adξ ξ ′′= Δ →  results in   

( )
2

k
d Ad

δ

δ

ζ
κ ξ

−

′′= ∫                (31) 

Performing integration and equating Equation (31) to the constant curvature, ζ , lead to the 

Peridynamic material parameter, d, as   

1
d

Aδ
=                 (32) 

Moreover, the PD parameter, a can also be expressed in a more convenient form by 

substituting Equation (32) into Equation (24) as   

EI
a

A
=                 (33) 

After substituting Equation (33) into Equation (10a), the strain energy density function of PD 

theory becomes   
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( ) ( )
21

2
k k

EI
W

A
κ=                (34) 

which is equivalent to the classical theory’s strain energy density expression.   

Calculations For the Near Surface Material Points   

Material points’ stiffnesses in a beam are effected from the free surfaces or material 

interfaces because the Peridynamic material parameter, d, is derived under the assumption 

that the main material point, k, has a horizon which is completely embedded inside the beam 

body. On the other hand, there is no need for a correction for the bending bond constant, a.   

In Euler – Bernoulli beam theory, the curvatures and relevant force density functions of 

material points which are close to the free surface are calculated numerically in a slightly 

different form than the given curvature equations, i.e. Equations (11a) and (11b) as well as 

the force density equations, i.e. Equations (13a) and (13b). The new forms of these equations 

are introduced with the reduced horizon sizes as explained in Appendix. Since, the horizon 

size is usually chosen as 3.015 xδ = Δ , it is truncated at the first three material points near the 

free surface.  

Boundary Conditions  

As explained in Oterkus et al. (2015) and Madenci and Oterkus (2016), the displacement 

boundary conditions in PD theory can be imposed through a nonzero volume of fictitious 

boundary layer, 
c
R , as shown in Figure 4. The size of this layer is equivalent to the horizon. 

An external load, such as a moment or a transverse load, can be applied in the form of body 

loads through a layer within the actual material, R . The size of this layer can be chosen as 

the same size as the discretization size.   

  

Figure 4. Application of boundary conditions in peridynamics 

The application of boundary conditions in Euler – Bernoulli beam theory is slightly 

complicated since the theory itself only contain displacement degrees of freedom rather than 

rotations. In this regard, application of different types of boundary conditions is explained in 

detail below.   
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Clamped boundary condition  

In order to implement clamped boundary condition, a fictitious boundary layer is introduced 

outside the actual material domain. The size of this layer can be equivalent to the horizon size 

of 3.015 xδ = Δ . In classical beam theory, clamped boundary condition imposes zero 

displacement and zero slope on the boundary, as shown in Figure 5. In PD formulation of 

Euler – Bernoulli beam, this condition is achieved by enforcing mirror image of the 

displacement field for the first two nodes in the actual domain with respect to the first 

adjacent material point which is fixed. Figure 5 shows the Euler – Bernoulli beam and its 

discretization with incremental volumes. The red dotted line shows the deformed form of the 

beam axis. The displacements for the material points in the boundary region should be 

specified as   

( ) ( )2 2i i
x x

w w
− +

= , 
( ) ( )1 1i i
x x

w w
− +

=    and   
( )

0
i
x

w =           (35) 

 

Figure 5. Clamped boundary condition   

Simply supported boundary condition  

In order to apply simply supported boundary condition, a fictitious boundary layer is 

introduced outside the actual material domain. The size of this layer can be equivalent to the 

horizon size of 
1 3

2.015 xδ δ= = Δ . In classical beam theory, simply supported boundary 

condition imposes zero displacement and curvature on the boundary, as shown in Figure 6. In 

PD formulation of Euler – Bernoulli beam, this condition is achieved by enforcing negative 

mirror image of the displacement field for the first two nodes in the actual domain with 

respect to the support point. Figure 6 shows the Euler – Bernoulli beam and its PD 

discretization with incremental volumes. The dotted red line shows the deformed form of the 

beam axis. The displacements for the material points in the boundary region should be 

specified as   
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( ) ( )2 2i i
x x

w w
− +

= −    and   
( ) ( )1 1i i
x x

w w
− +

= −            (36) 

 

Figure 6. Simply supported boundary condition   

Free boundary condition  

In order to implement free boundary condition, a fictitious boundary layer is introduced 

outside the actual material domain. The size of this layer can be equivalent to the horizon size 

of 3.015 xδ = Δ . In classical beam theory, free boundary condition imposes zero curvature on 

the boundary, as shown in Figure 7. In PD formulation of Euler – Bernoulli beam, this 

condition is achieved by freeing boundary points. Figure 7 shows the Euler – Bernoulli beam 

and its discretization with incremental volumes. Again, the dotted red line shows the 

deformed form of the beam axis and there is no imposed displacements for the material 

points in the boundary region.   

 

Figure 7. Free boundary condition   
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Numerical Solution Method   

In this section, the numerical solution procedure for the EOM of Euler – Bernoulli beam 

theory, given in Equation (15), is presented for the problems in static equilibrium condition. 

In this regard, the acceleration term at the left hand side of Eq. (15) is eliminated and 

rearranging the terms results in   

( )
( )( )

( )

2
( ) ( )( ) ( )

( ) ( )2 2 2

( )( ) ( )( )

ˆ
k j

k j

k j

k ji i

j ki i
j i ij k i k i j

w w w wad
V V V b

ξ ξ ξ

⎛ ⎞− −⎜ ⎟− =
⎜ ⎟
⎝ ⎠

∑ ∑ ∑         (37) 

Eq. (37) can also be written in a matrix form as   

[ ]{ } { }K U b=               (38) 

where [ ]K , { }U  and { }b  represent stiffness matrix, displacement and body force vectors, 

respectively. The stiffness matrix includes the Peridynamic parameters, a and d, the reference 

length of each bond and the material point’s volume as well as the volume and the surface 

correction parameters. The unknown displacement vector can be determined after imposing 

the boundary conditions. In order to impose specified boundary constraints, the master – 

slave condition method can be utilized. In this method, displacement matrix can be expressed 

as   

{ } [ ]{ }ˆU T U=               (39) 

where [T] represents transformation matrix and { }Û  is the reduced displacement matrix with 

only master nodes. For example, to impose the conditions,   

1 5

2 4

w w

w w

=

=
              (40) 

which can be used to define a clamped boundary, the transformation and the reduced 

displacement vectors can be expressed as   
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1

2 3

3 4

4 5

5

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

.0 0 1 0 0 0

. .0 0 0 1 0 0

. 0 0 0 0 1 0

0 0 0 0 0 1

n

n

w

w w

w w

w w

w

w

w

⎧ ⎫ ⎡ ⎤
⎪ ⎪ ⎢ ⎥

⎧ ⎫⎪ ⎪ ⎢ ⎥
⎪ ⎪⎪ ⎪ ⎢ ⎥
⎪ ⎪⎪ ⎪ ⎢ ⎥
⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥

=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎩ ⎭⎢ ⎥
⎪ ⎪ ⎢ ⎥⎣ ⎦⎩ ⎭

   and   { } [ ]{ }ˆU T U=         (41) 

In Equation (41), w1 and w2 are the slave nodes. Next, the equation of motion can be 

rewritten as   

[ ] [ ][ ]{ } [ ] { }ˆ
T T

T K T U T b=             (42) 

Solving Equation (42) leads to the unknown reduced displacement vector which involves 

only master nodes.   

Numerical Results 

Clamped – free beam problem   

The clamped – free beam is subjected to a point load of 50 NP = − , from the right end as 

shown in Figure 8. The  length of the beam is 1mL = , with a cross-sectional area of 

2
0.01 0.01 mA = × . Its Young’s modulus is specified as 200 GPaE = . Only a single row of 

material (collocation) points are necessary to discretize the beam. The distance between 

material points is 0.01 mxΔ = . Fictitious regions are created at the left and right edges with a 

size of 3.015 xδ = Δ . The loading is imposed on only one material point, which is denoted by 

yellow colour in Figure 8, with a body load of Pb
A x

=
Δ

.   

 

Figure 8. Clamped – free beam   
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The Peridynamic solution of the transverse displacement, w, is compared with the finite 

element (FE) method by using the beam element BEAM3, which is suitable for slender 

beams, neglects shear deformation and is available in the commercial software, ANSYS.   

As depicted in Figure 9, the PD and the FE solutions agree well with each other. This verifies 

that the PD equation of motion can accurately capture the deformation behaviour of an Euler-

Bernoulli beam for clamped-free boundary conditions.   

 

Figure 9. Displacement results of clamped – free beam   

Clamped – clamped beam problem  

A clamped – clamped beam is subjected to a point load of 50 NP = − , from its center as 

shown in Figure 10. The length of the beam is 1mL = , with a cross-sectional area of 

2
0.01 0.01 mA = × . Its Young’s modulus is specified as 200 GPaE = . Only a single row of 

material (collocation) points are necessary to discretize the beam. The distance between 

material points is 0.01 mxΔ = . Fictitious regions are created at the left and right edges with a 

size of 3.015 xδ = Δ . The loading is imposed on two material points, which are denoted by 

yellow colour in Figure 10, as a body load of Pb
A x

=
Δ

 in order to keep the symmetry.   
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Figure 10. Clamped – clamped beam   

The Peridynamic solution of the transverse displacement, w, is again compared with the FE 

method results.  As depicted in Figure 11, the PD theory and the FE method results agree 

well with each other. This verifies that the proposed PD equation of motion can accurately 

capture the deformation behaviour of an Euler-Bernoulli beam for clamped-clamped 

boundary conditions.   

 

Figure 11. Displacement results of clamped – clamped beam   

Simply supported – simply supported beam problem  

A simply supported – simply supported beam is subjected to a point load of 50 NP = − , from 

its center as shown in Figure 12. The length of the beam is 1mL = , with a cross-sectional 

area of 2
0.01 0.01 mA = × . Its Young’s modulus is specified as 200 GPaE = . Only a single 

row of material (collocation) points are necessary to discretize the beam. The distance 

between material points is 0.01 mxΔ = . Fictitious regions are created at the left and right 

edges with a size of 
1 3

2.015 xδ δ= = Δ . The loading is applied to two material points, which 
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are denoted by yellow colour in Figure 12, with a body load of Pb
A x

=
Δ

 in order to keep 

the symmetry.   

 

Figure 12. Simply supported – simply supported beam   

The Peridynamic solution of the transverse displacement, w, is compared with the FE method 

results. As depicted in Figure 13, the PD and the FE method results agree well with each 

other.   

 

Figure 13. Displacement results of simply supported – simply supported beam 

Conclusions 

In this study, a new ordinary state-based peridynamic formulation for Euler-Bernolli beam is 

presented. The equation of motion is obtained by using the Euler-Lagrange equation. The 

relationships between peridynamic parameters and relevant parameters in the classical theory 

are established by utilizing Taylor expansion for a special case of horizon size converging to 

zero. The main advantage of the developed formulation is the reduction of number of degrees 
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of freedom for each material point by half with respect to Timoshenko beam formulation. 

Application of boundary conditions in peridynamics is also different from classical theory. 

Elegant ways of applying different types of boundary conditions including clamped, simply 

supported and free edge boundary conditions are explained. Various benchmark cases are 

considered to demonstrate the accuracy of the current formulation and boundary conditions. 

Remarkable agreement between peridynamic and finite element results are observed. 
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Appendix 

Curvature and force density calculations for the first material point near the free surface   

For the first material point, k, near the free surface, the curvature can be calculated from   

( )

( ) ( )

( )

( ) ( )

( )1 2 2

4 2

2 2

k ki i

k i i

w w w w

d V V
x x

κ
+ ++

+ ++

− +⎛ ⎞
⎜ ⎟= +

Δ Δ⎜ ⎟
⎝ ⎠

           (A1) 

where 
1
d  is the modified Peridynamic material parameter and Δx is the distance between the 

material points. The material points i
+
 and i

++
 are shown in Figure A1. In Equation (A1), the 

horizon size is assumed as 
1
2.015 xδ = Δ  and it is used only if the material point k is the first 

point near the free surface. Note that Equation (A1) is obtained by using a finite difference 

formula for the second derivate since the curvature, κ , is the second derivative of the 

transverse displacement, w.   

Next, the force density function can be obtained by substituting Equation (A1) into Equation 

(14a) as   

( )( )

( ) ( )

( )

( ) ( )

( )

2

1

2 2 2

( )( )

4 2

2 2

k ki i

k j i i
j k

w w w w
ad

t V V
x xξ

+ ++

+ ++

− +⎛ ⎞
⎜ ⎟= +

Δ Δ⎜ ⎟
⎝ ⎠

         (A2) 

in which material points’ volumes can take the form of 
( ) ( )i i
V V A x

+ ++
= = Δ .   
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Figure A1. First main material point near the free surface   

In order to determine the modified Peridynamic parameter, i.e. 
1
d , the beam can be subjected 

to a constant curvature loading, ζ , as shown in Figure A1. In this case, Equation (26) can be 

solved for the different boundary conditions by imposing the values of 
( )( 2 ) 2

0
x x

w w
− Δ Δ

= = . 

Thus, the transverse displacement of any point on the beam axis can be calculated as   

2
2

( ) 2
2

x

x
w x

ζ
ζ= − Δ    for   0 2x x≤ ≤ Δ           (A3) 

From Equation (A3), the displacement functions for the material point, k as well as its family 

member points i
+
 and i

++
, can be expressed as   

( )
2

( ) 2
k

w xζ= − Δ , 
( )

2

( )

3

2i

x
w

ζ
+

− Δ
=   and  

( )
0

i
w ++ =          (A4) 

Substituting Equation (A4) into Equation (A1) leads to the curvature of material point k as   

( ) 1k
d A xκ ζ= Δ               (A5) 

Equating Equation (A5) to the constant curvature value, ζ , results in modified Peridynamic 

parameter, 
1
d , as   

1

1
d

A x
=

Δ
              (A6) 

As a summary, for the first material point near the free surface, the curvature and the force 

density should be calculated from Equations (A1) and (A2), respectively, while using 

Equation (A6) as a modified Peridynamic material parameter, 
1
d . Moreover, the horizon size 

should be assumed as 
1
2.015 xδ = Δ  for this material point.   

Curvature and force density calculations for the second material point near the free 

surface   
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For the second material point, k, near the free surface, the curvature can be calculated from 

Equation (11a). However, the Peridynamic material parameter d should be replaced with 
2
d  

which is the modified Peridynamic parameter since the horizon size is chosen as 

2
1.015 xδ = Δ  as shown in Figure A2. Thus, Equation (11a) takes the form of   

( )

( )( )
( )

( )( )

2 2

k

k

k
k

ki

k i

i
i k

w w

d Vκ
ξ

−
= ∑             (A7) 

The force density function can be obtained by substituting Equation (A7) into Equation (14a) 

as   

!t
k( ) j( )

=
ad

2

2

ξ
( j )(k )

2

w
(ik )

−w
(k )

ξ
i
k( ) k( )
2

V
i
k( )

i
k

∑            (A8) 

 

Figure A2. Second main material point near the free surface   

The beam is again subjected to a constant curvature loading, ζ , shown in Figure A2, in order 

to determine the modified Peridynamic parameter, i.e. 
2
d . In this case, Equation (26) can be 

solved for the boundary conditions defined as 
( )2 2

( ) 0w w
δ δ−

= = . Following similar procedures 

explained earlier, the modified Peridynamic parameter, 
2
d , can be calculated as   

2

2

1
d

Aδ
=               (A9) 

As a summary, for the second material point near the free surface, the curvature and the force 

density can be calculated from Equations (A7) and (A8), respectively, while using Equation 

(A9) as a modified Peridynamic parameter, 
2
d . Moreover, the horizon size should be 

assumed as 
2
1.015 xδ = Δ  for this material point.   

Curvature and force density calculations for the third material point near the free surface   
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Finally, the curvature for the third material point, k, near the free surface can be calculated 

from Equation (11a). The modified Peridynamic parameter, 
3
d , can be used for the chosen 

horizon size of 
3
2.015 xδ = Δ  as shown in Figure A3. Thus, Equation (11a) takes the form of   

( )

( )( )
( )

( )( )

3 2

k

k

k
k

ki

k i

i
i k

w w

d Vκ
ξ

−
= ∑             (A10) 

The force density function can be obtained by substituting Equation (A10) into Equation 

(14a) as   

!t
k( ) j( )

=
ad

3

2

ξ
( j )(k )

2

w
(ik )

−w
(k )

ξ
i
k( ) k( )
2

V
i
k( )

i
k

∑            (A11) 

 

Figure A3. Third main material point near the free surface   

The modified Peridynamic parameter, 
3
d , can be obtained by applying a constant curvature 

loading, ζ , to the beam as shown in Figure A3. In this case, Equation (26) can be solved for 

the boundary conditions of 
( )3 3

( ) 0w w
δ δ−

= = . Following similar procedures as explained 

earlier, the modified Peridynamic parameter,
3
d , can be calculated as   

3

3

1
d

Aδ
=               (A12) 

As a summary, for the third material point near the free surface the curvature and the force 

density can be calculated from Equations (A10) and (A11), respectively, while using 

Equation (A12) as a modified Peridynamic parameter, 
3
d . Moreover, the horizon size should 

be assumed as 
3
2.015 xδ = Δ  for this material point.   
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