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Though researchers have employed various techniques (gravimetric, electromagnetic, 

neutron scattering, heat pulse, micro wave and optical remote sensing techniques) for soil 

moisture measurement, dielectric based techniques (Time Domain Reflectometry, TDR, and 

capacitance technique, CT) have gained much more popularity, mainly due to revolutionary 

developments in the field of electronics and data communication systems. However, 

suitability and relative performance of these techniques for moisture measurement of soils is 

a point of debate. Hence, in order to address this issue, extensive studies were conducted on 

the soils of entirely different characteristics, compacted at various compaction states (dry 

density and water content) by employing TDR and capacitance probes. Subsequently, the 

dielectric constant of the soil and its bulk electrical conductivity were obtained using these 

probes and compared against each other and that computed from Topp’s equation, which is a 

well established relationship between the dielectric constant of the soil and its volumetric 

moisture content. An attempt was also made to correlate Ka values obtained from the 

dielectric techniques and Topp’s equation with that of Time Propagation (TP) mixing model, 

which incorporates in it the properties of the soil matrix as well. It has been observed that Ka 

TDR matches well with the Ka Topp and Ka TP, while the best match has been observed between 

Ka TDR and Ka Topp as compared to the Ka CT. As such, the study demonstrates, clearly, that 

Topp’s equation, which ignores the soil specific parameters, is capable of determining the 

soil moisture content appropriately. This study proposes an empirical equation which relates 

dielectric constants obtained from Topp's equation to those obtained from the TDR, 

capacitance technique and TP mixing model. Such a relationship can be further utilized for 

estimating the volumetric soil moisture content.  

()*����+
 soils, dielectric constant, volumetric moisture content, time domain 

reflectometry, capacitance probe, electrical conductivity. 
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θ volumetric moisture content 

γt  soil bulk unit weight  

γd                        dry unit weight of soil                    

σ electrical conductivity 

σCT electrical conductivity obtained from capacitance technique 

σTDR electrical conductivity obtained from Time Domain Reflectometry technique 

ξ zeta potential 

mS/cm milli Siemens per centimeter 

w gravimetric moisture content 

g/cc gram per centimetre cube 

Ka dielectric constant 

Ka CT. dielectric constant of the soil mass obtained by employing capacitance 

technique 

Ka TDR dielectric constant of the soil mass obtained by employing Time Domain 

Reflectometry technique 

Ka Topp dielectric constant of the soil mass obtained by employing Topp’s equation 

Ka TP dielectric constant of the soil mass obtained by employing Time Propagation 

mixing model 

zTDR levels of immersion using Time Domain Reflectometry technique 

zCT levels of immersion using capacitance technique 

G specific gravity 

CEC Cation Exchange Capacity 

CT Capacitance Technique 
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LL liquid limit 

PL plastic limit 

PI plasticity index 

OM organic matter  

TDR Time Domain Reflectometry 

TDS Total Dissolved Solids 

TP Time Propagation 

USCS Unified Soil Classification System 
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Soil moisture content has paramount importance in timely scheduling of irrigation, 

slope stability analysis, water balance studies and heat and contaminant transport through the 

soil (Susha et al. 2014). Recently, Susha et al., (2014) have provided a detailed synthesis of 

various soil moisture measurements techniques (thermo gravimetric, electro magnetic, 

neutron scattering, optical and thermal analysis based) and have discussed about the issues 

pertaining to the applicability of these techniques for the soils of entirely different 

characteristics. Though earlier researchers developed various measurement techniques such 

as gravimetric (ASTM D 2216; Hillel, 1982; Robinson et al. 2008), electromagnetic (Selig et 

al. 1975; Topp et al. 1980; Topp et al. 1982; Nissen and Moldrup, 1994; Hilhorst 2000; Jones 

and Or, 2004; Bhat et al. 2007; Tarantino et al. 2008; Rao and Singh 2011), neutron 

scattering (Elder and Ramussen 1994; Fityus et al. 2011), heat pulse technique (De Vries, 

1963; Julie and Jay 1997), optical remote sensing techniques (Robinson et al. 2008; Sayde et 

al. 2010; Yin et al. 2013; Sadeghi et al. 2015), dielectric based techniques such as Time 

Domain Reflectometry (TDR) and capacitance techniques (Topp et al. 1980; Bhat et al. 2007; 

Rao and Singh 2011) have gained much more popularity. This is mainly due to the 

dependence of the dielectric constant (apparent permittivity  or relative permittivity, Ka) on 

the soil moisture content (for dry soils Ka is between 2 8, while for de ionized water the same 

is 81) and revolutionary development in the field of electronics and data communication 

systems in the recent past (Topp et al. 1980; Bhat et al. 2007; Arulanandan and Smith 1973; 

Acar and Olivieri 1989; Sreedeep et al. 2004), which facilitated them as instantaneous and 

non invasive measurement techniques in various porous materials such as soils, peats, wood, 

snow and forest litter (Moret Fernandez et al. 2008; Baudena et al. 2012; Camporese 2006; 

Canone et al. 2009; Previati et al. 2011; Previati et al. 2012). Incidentally, these techniques 

not only measure dielectric constant of the soil, but also measure its bulk electrical 
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conductivity, σ, which can be correlated with the volumetric moisture content, θ, conductivity 

of the pore solution, σw, fraction of the clay sized particles present and the soil mineralogy 

(Rhoades et al. 1976; Shainberg et al. 1980; Smith and Arulanandan 1981; Shah and Singh, 

2004; Shah and Singh 2005). Though these techniques are used quite frequently, precision of 

the soil moisture measurement, and suitability and performance of these techniques, for wide 

range of the soils (in terms of their physical, chemical and mineralogical compositions) has 

always been a point of debate.


With this in view, efforts were made to compare the relative performance of the TDR 

(Campbell scientific TDR CS640 probe model) and capacitance technique, CT, (Decagon 

device 5TE) probes on the soils with different characteristics and compacted to different 

states (as defined by their dry density and moisture content). In addition to moisture content, 

the dielectric constant of the soil, Ka, and its bulk electrical conductivity, σ, were obtained by 

employing these techniques. The results so obtained were compared against each other and 

those computed by employing the Topp’s equation, which is a well established relationship 

between the dielectric constant of the soil and its volumetric moisture content. Details of this 

study are presented in this paper along with a discussion on the efficiency of the Topp’s 

equation to compute soil moisture content.  Furthermore, a hypothesis, which can be 

employed for estimation of volumetric soil moisture content of soil without resorting to the 

dielectric techniques, has also been proposed based on this study.  

������
��
��
���
����


���
�����	
���������)
-���.


The TDR test setup used in this study consists of a step pulse generator, sampler 

(consists of a voltmeter and a timing device), an oscilloscope, coaxial cable and a TDR probe. 

This setup, which facilitates measurement of the delay time between the transmitted and 

reflected electromagnetic waves, was employed for determining the dielectric constant of the 
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soil. In this study, Campbell scientific TDR CS 640 probe that consists of three prongs, the 

pointed and projected parts of the probe, of length 7.5 cm, width 4.5cm, diameter 0.159 cm 

and spacing between the rods 0.84 cm was employed. As specified by the manufacturer, the 

range of the volumetric moisture content and the bulk electrical conductivity, for which this 

setup can be employed, are 1 100% and 0  5mS/cm, respectively. The set up provided the 

TDR waveforms of the samples and the obtained waveforms were analyzed as described 

below. 

%	��)���
��
��
���
*������


Evett (2000) has reported that the method of interpretation of the TDR waveforms, 

from which the dielectric constant of the soil, Ka, is obtained could significantly affect the 

computed value of the of soil moisture content. The tangent methodology proposed by 

Heimovaara and Bouten (1990) for the determination of the travel time (=tend   thead) of the 

electromagnetic wave up to the head, thead, and end, tend, of the probe for computing the Ka, 

has been employed in this study (refer Fig. 1(a)). Although, the time at which the reflection 

occurs from the head of the probe, thead, is constant, the time at which the reflection occurs 

from the end of the probe to its head, tend, depends upon the medium in which the TDR probe 

is inserted. Fig. 1(a) highlights this fact and it can be noticed that thead is constant for various 

media (air, water and wet saline soil). However, tend for water is higher as compared to its 

counterparts. This indicates that an increase in moisture content of a medium results in an 

increased tend and Ka. On the contrary, the presence of salinity in the medium makes it more 

conducting and hence tend decreases. Increase in conductivity of the medium is also 

responsible for its short circuiting at the surface and hence tend and Ka cannot be determined.


/��������
�������
-*���.
��	�	�
������	�
����
��
���
*������


TDR waveforms for a soil, compacted at different moisture contents and constant 

target dry density, γd, were obtained. From these waveforms, the dielectric constant, Ka TDR, 
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for different soils, considered in this study, was computed by employing Eq. 1 (Topp et al. 

1980) and the results are presented in Fig. 2(a). 

(1)     	������ 	= 	
 ���������
�� 	��    

where c is the velocity of electromagnetic waves (= 3×10
8 

m/s), times corresponding to the 

reflection at the end and head of the probe are tend and thead, respectively, and L is the effective 

length of the probe. 

Volumetric moisture content and dielectric constant are related by the following 

Equations 2 and 3 which are proposed by Topp et al. (1980). Ka Topp can be computed by 

employing Eq. 2. 

(2)																					������� = 3.03 + �9.3 ∙ ��� +  146 ∙ ���$ − �76.7 ∙ ��'�  

where �� 	is	the	volumetric	moisture	content	�in	%� = 6. γ7
γ8

 , w is the gravimetric moisture 

content (in %) and γd and γw are the dry density of the soil and density of water (=1 g/cc), 

respectively. 

Topp et al. (1980) have also proposed the following empirical relationship (Eq. 3) and 

reported that this equation is independent of soil type, soil density, soil temperature and 

soluble salt content; which most of the dielectric  based techniques (especially TDR and 

capacitance techniques) employ to determine the volumetric soil moisture content.  

(3)   θTopp = 4.3×10
 6

LKa
 3

 5.5×10
 4

LKa
2
+2.92×10

 2 
LKa 5.3×10

 2
                                     

���������
��	��������)
������	�
����
��
���
*�������


Topp et al. (1988)  have reported that the bulk electrical conductivity, σTDR, of the soil 

can be measured using a TDR probe and by employing the following relationship (Giese and 

Tiemann 1975): 

(4)      9	��� = �⋅:;⋅<=
<>⋅� ?�@;@A − 1B      
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where ϵ0 is the permittivity of the free space (in F/m), c is the velocity of electromagnetic 

waves (3×10
8 

m/s), L is the effective length of the probe (in m), V0 is the input voltage on the 

head of the probe, V∞ is the final voltage (of the standing wave) measured by the 

oscilloscope, after various reflections have occurred, and zc (63.3 ohm) and zp (183 ohm) 

correspond to the impedance of the cable tester and the probe, respectively. 

As the TDR probe returns the signal recorded by the oscilloscope in terms of 

reflection coefficient, ρ, the reflection occurring at infinite time (designated as	CD�E, refer 

Fig. 1(b)) can be written as: 

(5)       CD�E = @A�@;
@;                                         

Hence, Eq. 4 can be rewritten as: 

(6)            9��� = F=
<> ?

G�HI�J
GKHI�J

B                      

where, Kp = (cLε0Lzp)/L 	 
Calibration of the TDR probe should be done when the reflection coefficient 

measured in air, ρair, and water, ρw, and short circuit probe, ρsc, are not equal to 1, 1 and  1, 

respectively (Castiglione and Shouse 2003; Tarantino et al. 2008).  Hence reflection 

coefficient values range between  1 and  1. Wojciech (2008) have also reported that these 

calibration errors can occur due to the overlapping of incident and reflected pulses. Hence, 

Castiglione and Shouse (2003) have derived an equation (refer Eq. 7) for correcting the 

reflection coefficient, ρmax,corr, to account for these additional losses in the TDR system. 

(7)     CD�E,�MNN = ��H�HOPQ�
�HOPQ�HR>�

+1    

Eq. 8 can be modified as given below (Wojciech et al.2008). 

(8)                9��� = F=
<> SG�HI�J,>TQQ

GKHI�J,>TQQ
U                  

Incidentally, from Fig. 1(b), it can be noticed that ρmax becomes negative as the 

salinity of the medium increases and hence σTDR would be high (refer Equations 6 and 8) for 
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higher negative values of ρmax. However, σTDR is negligible for air and de ionised water as 

their ρmax is almost unity. 

��������	�
���#


In addition to the TDR measurements, capacitance technique (CT) based probe 

(Decagon device 5TE, which consists of three prongs of length 5.2cm and employs 70MHz 

oscillating wave and is manufactured by the Decagon Devices 2012) was also employed for 

this study. It was used for measuring the dielectric constant (1 to 80), Ka CT, the volumetric 

moisture content, θCT (0 100%) and the bulk electrical conductivity, σCT (<10mS/cm), of the 

same soil sample on which the TDR measurements were conducted and the value of θ was 

determined by using Eq.3. Incidentally, this probe can also measure the temperature ( 40°C  

50°C) of the soil and utilises Topp’s equation (refer Eq.3) to calculate θCT from Ka CT. 

Capacitance technique determines the dielectric constant of a medium by measuring the 

charging time of a capacitor, which uses this medium as a dielectric. A thermistor in contact 

with the sensor prongs provides temperature of the soil, while the screws on the surface of the 

sensor form a two sensor electrical array, which facilitates electrical conductivity 

measurements (Decagon Devices 2012). 

�0����	���
,	����"����	�


Seven soils of entirely different physical, chemical and mineralogical properties (refer 

Tables 1, 2 and3) were used in the present study. Details of their characterization, which 

facilitates standardization of these soils, are presented in the following. 

��)�����
���������1����	


The specific gravity, G, of these soils was determined as per the guidelines of ASTM 

D 5550 by employing an Ultra Pycnometer, (Quantachrome, USA), which utilizes helium gas 

as the displacing fluid. The gradational characteristics of the soils were determined by using 

the conventional sieve analysis and hydrometer analysis (ASTM D 422 63). The consistency 
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limits (viz., liquid limit, LL, plastic limit, PL and plasticity index, PI) of these soils were 

determined according to the guidelines of ASTM D 4318 10 (2013). The specific surface area 

(SSA) of the soils was determined by Ethylene Glycol Monoethyl Ether, EGME, absorption 

method (Carter et al. 1986; Cerato and Luteneggaer 2002; Arnepalli et al. 2008). The 

presence of organic matter in these soils was determined as per ASTM D2974 14 (2014). The 

physical properties of the soils are presented in Table 1. 

�������
���������1����	


Chemical composition of these soils (refer Table 2a) was determined by employing an 

X ray Fluorescence instrument, XRF (PANalytical PW 2404). The pH, electrical 

conductivity (σ) and total dissolved solids (TDS) of these soils, corresponding to liquid to 

solid ratio, L/S, equal to 20 were measured by employing a water quality analyzer (Oakton® 

PC 2700) and the results are listed in Table 2(b). The cation exchange capacity, CEC of these 

soils was determined (refer Table 2(b)) as per the guidelines provided in EPA 9081 (1967). 

The influence of pore fluid on particle to particle interaction in the soil can be investigated by 

the change in the surface charge potential which is indirectly defined as the zeta potential, ξ 

(Sparks 1986; Yukselen and Kaya 2003) which was determined by employing an automated 

electrophoresis instrument (Zeta PALS, BIC, USA) and the results are presented in Table 

2(b). 

��	����"����
���������1����	


Qualitative mineralogical composition of these soils was determined by employing an 

X ray Diffraction (XRD) Spectrometer (PANalytical X’Pert PRO, The Netherlands) which is 

fitted with a graphite monochromator and Cu Kα radiation, as the source (Cullity and Stock 

2001) and the results are listed in Table 3. The quantitative analysis of the mineralogical 

composition of the soils was conducted by resorting to Rietveld analysis by employing the 

X’Pert High Score Plus software with PDF 4+ database. 
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�����
���������	


The soil was mixed with nano filter water (deionized water) and left for maturation 

for 24 hours, which ensures uniform moisture level of the entire soil. Later, it was compacted 

to different compaction states (i.e., the gravimetric moisture content, w, and the dry density, 

γd) in a standard Proctor mould (944 cm
3
 in volume with an internal diameter of 10.2 cm and 

a height of 11.6 cm), as per the guidelines presented by ASTM D1557 12. Tarantino et al. 

(2008) reported that TDR waveforms would transfer only through the waveguides and 

measure the volumetric moisture content enclosed within the probe size. Susha et al. (2016) 

proved that effective magnetic field width (zone of influence) generated across the electrodes 

(diameter 0.2 cm) would be 2 cm. For the present study, diameter of the TDR probe is 

0.159cm and hence, there was no effect of the proctor mould in the electromagnetic waves 

generated. Moreover, multiple readings of the measurements were taken by the probes which 

ensured no distorted TDR waveforms (refer Fig. 3) and capacitance probe measurements. 

Simultaneously, three specimens from the matured soils were used for determining the w, as 

per ASTM D 2216 (2008). The volumetric moisture content, θ, electrical conductivity, σ, and 

the dielectric constant, Ka of the compacted soil were determined by employing both TDR 

and capacitance probes, in a sequential manner. 

������
�	�
���������	�


Calibration of the TDR and capacitance probes was conducted by placing them in 

different media (water, air and NaCl solutions of different molarities), for which the dielectric 

constant and electrical conductivity values are known. The resultant TDR waveforms are 

depicted in Fig. 4. Incidentally, the reproducibility (i.e. multiple waveforms for the same soil 

sample) of the resultant TDR waveforms was also ascertained, as depicted in Fig. 3. An 

overlap of the results indicates an excellent reproducibility of the TDR wave forms. It can 
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also be observed from Fig. 4 that as electrical conductivity of the media increases, the travel 

time of the TDR wave form decreases.  

To understand the performance of the TDR and capacitance probes, comparisons have 

been made between the obtained Ka TDR and Ka CT, θTDR and θCT and σTDR and σCT values 

corresponding to various compacted states of the soils (S1 to S5, refer Table 1) considered in 

this study. It can be observed from Figures 2 and 5 that there is a mismatch between the Ka 

TDR and Ka CT, θTDR and θCT, and σTDR and σCT. In fact, as depicted in Fig. 2a, it can be 

observed that the value of the dielectric constant obtained from the TDR measurements, Ka 

TDR, is much higher (almost twice) than that obtained from the capacitance (CT) probe, Ka CT. 

As a result, the volumetric moisture content obtained from the CT probe, θCT, is about 50% of 

the value obtained from the TDR probe, θTDR (refer Fig. 2b). Furthermore, it can be observed 

from Fig. 5 that the electrical conductivity of the soil obtained from the CT probe, σCT is 25% 

higher than that obtained from the TDR probe, σTDR. For standardization of these 

observations, all these variables (Ka TDR and Ka CT) were compared against the calculated 

volumetric soil moisture content computed, θc (=6. γ7
γ8

, refer Eq. 3) and the results are 

depicted in Fig. 6. The trends depicted in Fig. 6, corresponding to the variation of Ka TDR and 

Ka CT with θc, respectively, are pretty well defined and can be presented in an exponential 

form [Ka=A.e
θcLB

], where A and B are empirical coefficients. As depicted in these figures, an 

increasing trend between the two parameters (dielectric constant and electrical conductivity) 

indicates that starting from the dry state of compacted soil samples, which contain air (with 

lower dielectric constant 1 to 3) in the voids, gets replaced by the water (with higher 

dielectric constant 81). This in turn results in an increased dielectric constant of the soil. 

Furthermore, the water (pore solution) present in the interconnected pores would offer much 

lower resistance to the flow of current (i.e., an increase in the electrical conductivity, σ. 

However, if the soil exhibits higher electrical conductivity, σ (refer the data for soil S5 listed 
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in Table 2b), due to the presence of higher concentrations of ions in the pore solution, its 

dielectric constant would be lesser. In order to verify this, standard sands (soils S6 and S7) 

were saturated with different molar concentrations of the pore solutions (viz., 0.05M, 0.1M, 

0.2M and 0.5 M NaCl solutions) and the results obtained from the two probes are presented 

in Fig. 7 and Table 4. From Fig. 7 and Table 4, it can be noticed that, in general, as NaCl 

concentration increases, the dielectric constant of soils S6 and S7 which are essentially sands 

decreases. This can be attributed to the fact that, as stated earlier, in case of the TDR probe, 

an increase in salinity of the medium, increases its conductivity which results in a decreased 

tend. Thus due to an increase in conduction of the current through the medium, its dielectric 

constant, Ka TDR, reduces. Moreover, dielectric constant and electrical conductivity as a 

function of frequency take account of the inherent asymmetry and broadness of the dielectric 

dispersion and polarization effects which are characterised by Debye Relaxation Equation. 

For higher saline medium, as the medium approaches a relaxation point, the dielectric loss 

factor increases which corresponds to a drop in the dielectric constant (Robinson et al. 2003). 

As per the tangent method, Ka TDR cannot be obtained for the soils S6 and S7, the soils 

saturated with 0.2 M and 0.5M NaCl solutions,  as their end signals of the TDR waveforms 

are flat which means the electromagnetic wave is dissipated and no reflection could be 

obtained (refer Fig. 7). Similarly, in case of the capacitance probe, the capacitance of the 

medium reduces due to an increase in the salinity, and hence Ka CT decreases. Incidentally, 

Table 4 also reveals that the electrical conductivity measured by the capacitance probe, σCT, is 

higher as compared to σTDR, for the entire range of volumetric moisture content considered in 

this study, except for the dried state of the soils S6 and S7, where these measurements are 0 

mS/cm and 0.0028 mS/cm, respectively. 

As TDR and capacitance probes employ Topp’s equation (Eq. 3) to correlate Ka and 

θ, the Ka TDR and Ka CT of the soil samples were also compared with those computed from Eq. 
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2, Ka Topp, as depicted in Fig. 8(a) and (b). From these figures, it can be noticed that a linear 

relationship exists between Ka Topp and Ka TDR, and Ka Topp and Ka CT, though it appears to be 

an over prediction of Ka TDR and under prediction of Ka CT with respect to Ka Topp. To 

overcome this situation, Ka TDR, Ka CT and Ka Topp were also compared with the Ka TP (i.e., the 

dielectric constant obtained from the ‘Time Propagation mixing model’, which is also 

referred as TP Mixing model), as shown in Fig.8 (c), (d) and (e). Knoll (1996) has reported 

that TP Mixing model can be effectively employed for estimating the dielectric constant of 

the heterogeneous materials, especially geologic materials. The TP Mixing model 

incorporates soil specific parameters (mineralogical constitution of the soil, porosity and 

saturation of the soil and presence of various phases, air or water, of the pore solution in the 

soil) for estimation of the dielectric constant, Ka TP, as presented by Eq. 9 (Knoll 1996; Bhat 

et al.  2007; Martinez and Byrnes 2001) and the details of Ka TP is shown in Table 5. From 

Fig. 9, it can be noticed that Ka TP is linearly correlated to θc (R
2
=0.99) and the intercept is 5.0 

which corresponds to the dielectric constant of the dry soil (θc=0 %). However, TP Mixing 

model does not account for the effect of frequency of the AC, while computing the effective 

dielectric constant, Ka TP. Moreover, the quantification of the minerals present in the soil and 

estimation of their dielectric constants are arduous tasks. 

(9)    V����W = X�1 − ƞ� ·  [G · V�\] +[� · V�\^$ + ƞ ·  _N · V�`a] + �1 − _N� · V�`â $b   
where, ƞ is the porosity and Sr is the degree of saturation (with moisture) of the soil, M 

corresponds to the percentage of the mineral present in the soil, KM corresponds to the 

dielectric constant of the respective mineral (refer Table 3 and 5) and KPF corresponds to the 

dielectric constant of the pore solutions (viz., air (2) and water (81) ) present in the soil. 

From Figures 8(c), (d) and (e), it can be noticed that Ka TDR, Ka CT and Ka Topp yield 

good correlations with Ka TP. The slope of Ka TDR and Ka TP (0.89, refer Fig. 8e) relationship is 

higher as compared to Ka CT and Ka TP (0.45, refer Fig. 8d), and Ka Topp and Ka TP (0.75, refer 
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Fig. 8c), relationships. Hence, it can be inferred that the TDR probe performs better at 

matching with Ka TP and Ka Topp in comparison with Ka CT. This exercise also indicates that the 

values of Ka obtained from various techniques differ and hence θ, obtained from Eq. 3, would 

also vary. As most of the dielectric techniques employ Eq. 3 (Topp et al. 1980), Eq. 10 which 

is a relationship between Ka Topp with Ka TDR, Ka CT and Ka TP from Figures 8 (a), (b) and (c) 

was derived. One of the applications of Eq. 10 would be that Ka Topp can be obtained if Ka TDR, 

Ka CT and Ka TP are known. This in turn would facilitate determination of θ of the soil, by 

employing Eq. 3. Hence, the proposed relationship can be used to estimate dielectric constant 

and subsequently volumetric moisture content irrespective to the dielectric techniques 

(10)														�c�dMee = 0.82 · �c�dhi = 1.64 · �c�jd = 0.75 · �c�d`                                    

However, it should be borne in mind that Ka TDR and Ka CT, appearing in Eq. 10, are 

the effective dielectric constants and that would get influenced due to the presence of 

interfaces, from which the electromagnetic waves would get reflected due to change in the 

impedance. Such interfaces might develop within the compacted soil sample due to (a) its 

compaction in multiple layers or (b) the compaction induced moisture migration. Another 

explanation which could be ascribed to the interface formation in the sample could be the 

variation in the dry density along the depth of the soil mas since the bottom layers of sample 

receive higher cumulative compaction as compared to the middle and top layers. Moreover, 

due to compaction, moisture migration from top to bottom layers or vice versa occurs, which 

might cause moisture contrast, and hence the contrast in Ka, along the length of the sample. 

As such, in all these circumstances, the effective Ka of the soil would prevail. To address such 

situations and simulate their effect on the measurement of dielectric constant, an effort was 

made to realize the influence of an interface (air and water, and the stratification of the soil 

due to its compaction) media in which the dielectric probes were inserted. The TDR and CT 

probes were immersed in water corresponding to different insertion levels of the TDR and 
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CT, defined as zTDR and zCT (in cm), respectively (refer Fig. 10 , which presents results for 

the TDR probe). The TDR waveforms as depicted in Fig. 10 were obtained to determine Ka 

TDR and θTDR. The variations of zTDR show difference in the shape of the TDR waveform and 

hence the travel time would also differ. This in turn results in a change in the values of Ka TDR 

and θTDR. On the contrary, the CT probe would yield only the values of volumetric moisture 

content, θCT and dielectric constant, Ka CT and not any wave form. It can also be observed 

from Fig. 11 that these probes would yield correct values of Ka (81) and θ (100%) for water, 

when they are completely immersed in a medium. This indicates that due to the presence of 

an interface (in this case, air and water), the probes would yield an effective dielectric 

constant of the media. Incidentally, it can also be observed from the Figures 12 (a) and (b) 

that the time of travel (= tend thead) of the TDR waves increases with an increase in the dry 

density and the moisture content. However, it can be clearly inferred from Fig. 12 that the 

travel time is more sensitive to the increase in moisture content and hence the Ka TDR 

increases. However, as stated earlier, depending on the soil characteristics (especially saline 

soils), pore solution may contain more ions which would enhance the velocity of the electro 

magnetic waves and hence tend would decrease. It is worth noting that in case of the 

capacitance probe, the capacitance of the medium along the length of the soil sample varies 

due to the change in moisture content and hence Ka CT changes.  

��	������	�


Detailed investigations on the performance of TDR and capacitance technique, CT, 

based probes were conducted by measuring the dielectric constant (Ka), moisture content (θ) 

and electrical conductivity (σ) of the soils of entirely different characteristics compacted at 

different moisture contents and densities. The obtained dielectric constant values from these 

instruments (viz. Ka TDR and Ka CT) have been compared with Ka Topp and Ka TP. It has been 

observed that the measured Ka is not unique and varies with the types of techniques employed 
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for the soil moisture measurement. As these dielectric techniques employ Topp’s equation for 

relating Ka and θ, the change in Ka of different techniques might yield different values of the 

moisture content for the same state of the soil. An effort was also made to relate Ka TDR, Ka CT, 

Ka TP with Ka Topp which would help in determining the θ of the soil. It has been observed that 

Ka TDR matches well with the Ka Topp and Ka TP, while the best match has been observed 

between Ka TDR and Ka Topp as compared to the Ka CT. The study also demonstrates that the 

Topp’s equation, which though lacks the soil specific parameters in it, is capable of 

predicting the soil moisture content quite effectively. However, utility and efficiency of the 

relationship developed between Ka Topp,  Ka TDR, Ka CT  and Ka TP  should be further 

investigated for various soils of the world.  
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Table 1. Physical properties of the soils used in the present study 

 


����

    ϒd 

-"2��.
 G 
SSA 

-�
3
2". 

��14�������	
-5.
 5

USCS

*
 

��	�
 ����
 ���)
 LL PL PI 6� 

S1 1.2 2.77  160 0 20 80 64 32 32 0 CH 

S2 1.2 2.63 62 0 46 54 54 27 27 0 CH 

S3 1.3 2.66 358 16 67 17 56 32 24 2 CH 

S4 1.3 2.76 216 25 59 16 51 29 22 2 CH 

S5 1.1 2.60 359 3 59 38 79 28 51 21 CH 

S6 1.5 2.64 9 100 0 0 
Not Applicable 

0 SP 

S7 1.5 2.32 6 100 0 0 0 SP 

         CH: Clay of high plasticity, SP: poorly graded sand 
*
The Unified Soil Classification System  
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Table 2 (a). Chemical composition of the soils used in the present study


����






5
#)
*�"��


��63
 %�367
 8367
 ��6
 �"6
 (36
 !�36
 ��63
 �369


S1 40.59 55.87 1.27 0.03 0.11 1.38 0.69 0.02 0 

S2 37.94 52.84 2.52 1.59 0.20 1.84 0.19 2.69 0.03 

S3 48.19 17.69 22.67 5.18 1.49 0.132 1.32 2.72 0.31 

S4 42.16 19.77 29.67 1.39 0.50 1.03 0.27 4.31 0.51 

S5 29.12 44.39 9.45 5.61 0.97 3.31 5.51 1.21 0.33 

S6 86.88 9.85 1.22 0.14 0.10 0.51 1.03 0.16 0 

S7 85.44 10.04 2.43 0.16 0.03 0.35 1.43 0.02 0 




Table 2 (b). Chemical characterization of the soils used in the present study


����
 pH 
σ 

-��2��. 

TDS 

-���. 

CEC 

-���2:;;". 

ξ 

-4�/.


S1 7.72 0.142 91.88 10.23 10.66 

S2 7.89 0.193 97 14.77 17.5 

S3 7.18 0.330 164.2 65.67 16.4 

S4 6.95 0.179 90.02 90.8 15.4 

S5 7.7 3.429 1736 130 26.47 
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S6 7.64 0.093 60.62 0.70 24.19 

S7 7.97 0.0689 44.57 1.15 20.11 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Mineralogical characteristics of the soils used in the present study 

 

Soils Minerals 

S1 Kaolinite (99.5%), Laumonite (0.5%) 

S2 Kaolinite (87.5%), Quartz (5.5%), Illite (7.0%) 

S3 Anorthite (66.2%), Montmorillonite (2.2%), Quartz (20.7%), Hematite (10.2%), 

Dolomite (0.7%) 

S4 Goethite (46.8%), Quartz (41.7%), Montmorillonite (0.3%), Maghemite (7.4%), 

Hematite (3.8%) 

S5 Orthoclase (38.3%), Anorthite (24.6%), Magnetite (21.0%), Quartz (16.1%), 

S6 Quartz (100%) 

S7 
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Table 4. Comparison of Ka TDR, Ka CT, σTDR and σCT for Soils S6 and S7 

����
��
��
�����

K�4���
 K�4��


σ���
 σ��


-��2��.


�<
 �=
 �<
 �=
 �<
 �=
 �<
 �=


Dried state 4.58 5.13 2.02 2.02 0.0028 0.0028 0 0 

Saturated with water 26.83 32.74 14.26 17.95 0.062 0.0703 0.100 0.090 

Saturated with: 

0.05M NaCl 

 

26.42 

 

31.39 

 

11.34 

 

14.12 

 

1.083 

 

1.471 

 

1.680 

 

2.230 

0.1M NaCl 22.85 26.89 17.84 20.44 1.131 2.345 2.430 3.890 

0.2M NaCl 
  

29.34 41.34 4.354 3.774 5.630 6.880 

0.5M NaCl 
  

63.3 81.88 9.604 13.829 11.300 17.450 
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Table 5. Details of the parameters used for TP Mixing model 

����

ηηηη
 Sr
 ���	��"
��
��	����
 ��������
��	���	�
��
��
��	����


K�4��

5
 M:
 M3
 M7
 M>
 M9
 KM:
 KM3
 KM7
 KM>
 KM9


S1 

0.58 0.17 

0.995 0.005 
 

11.18 7.66 
 

11.99 

0.57 0.23 13.85 

0.57 0.28 15.16 

0.50 0.51 21.83 

0.52 0.55 23.14 

0.55 0.64 27.03 

0.58 0.67 28.60 

0.55 0.75 31.12 

S2 

0.64 0.10 

0.875 0.055 0.070 
 

11.18 6.53 10 
 

9.24 

0.54 0.31 16.02 

0.55 0.43 19.56 

0.54 0.57 24.01 

0.54 0.68 27.93 

0.54 0.76 30.78 

0.54 0.92 37.21 

S3 

0.49 0.20 

0.662 0.022 0.207 0.102 0.007 5.47 8 6.53 60 8.45 

8.60 

0.52 0.28 10.57 

0.52 0.37 12.92 

0.51 0.48 16.25 

0.52 0.59 20.29 

0.52 0.70 24.03 

S4 

0.53 0.12 

0.468 0.003 0.417 0.074 0.038 12 8 6.53 20 60 

11.30 

0.52 0.27 15.14 

0.54 0.41 19.04 

0.54 0.52 22.47 

0.53 0.68 27.81 

0.54 0.83 33.50 

S5 

0.57 0.18 

0.468 0.003 0.417 0.074 
 

33.7 6.53 6.2 5.47 
 

14.14 

0.57 0.29 17.32 

0.57 0.37 20.23 

0.59 0.42 21.77 

0.57 0.57 27.27 
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FIG.1. Typical TDR waveforms for finding out thead, tend and ρmax corresponding to various 

states of medium 

FIG. 2. Comparison of (a) Ka CT with Ka TDR and (b)  θCT with θTDR for different soils 

FIG. 3. Reproducibility of the TDR waveforms 

FIG. 4.TDR waveforms in air, water and NaCl solutions of different molarities 

FIG. 5. Variation of σa CT with σa TDR for different soils 

FIG. 6. Variation of Ka TDR and Ka CT with θc for different soils 

FIG. 7. Variation of TDR waveforms for Soils S6 and S7 in their dry and saturated (with 

water and NaCl solutions) states 

FIG. 8. Comparison of the dielectric constant obtained from different methods for the soils 

considered in the present study  

FIG. 9. Variation of Ka TP with θc for different soils 

FIG. 10. TDR waveforms for various levels of immersion (zTDR in cm) of the TDR probe 

(l=7.5cm length) in water 

FIG. 11. Variation of Ka and θ measured from the TDR and CT probes with their immersion 

in water up to different levels 

FIG. 12. TDR waveforms of the Soil S2 for different (a) dry density and (b) moisture content 

values 
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FIG. 1. Typical TDR waveforms for determining thead, tend and ρmax (reflection 

coefficient occurring at infinite time) corresponding to various states of medium 

 

 

 

 

 

 

 

Page 33 of 43

https://mc04.manuscriptcentral.com/astm-gtj

Geotechnical Testing Journal

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r R

eview
 O

n
ly

         Soil, g
d
 (in g/cc)

 S1, 1.2 S2, 1.2    S3, 1.3     S4, 1.3     S5, 1.1  

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

R
2
=0.97

K
a-CT
=0.5×!

a-TDR

!
a
-C
T

!
a-TDR

(a)

 

!!!!!

0 20 40 60 80 100
0

20

40

60

80

100

R2=0.98

q CT=0.58×q TDR

q
TDR

q
C

T

 

(b)

 

 

!!!!!!!!!FIG. 2. Comparison of (a) Ka-CT with Ka-TDR and (b)  θCT with θTDR for different soils 

 

 

Page 34 of 43

https://mc04.manuscriptcentral.com/astm-gtj

Geotechnical Testing Journal

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r R

eview
 O

n
ly

40 45 50 55 60

-1.0

-0.5

0.0

0.5

1.0

0.2M NaCl

Water

Soil S4

 Water

 0.2 M NaCl

Soil S4 w=4.9%, gd=1.3g/cc

r

t (ns)
 

     FIG. 3. Reproducibility of the TDR waveforms 

 

 

 

 

 

 

Page 35 of 43

https://mc04.manuscriptcentral.com/astm-gtj

Geotechnical Testing Journal

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r R

eview
 O

n
ly

!!!!!!!!!!!!!!!!!!!!!!!!

40 45 50 55 60

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.5NaCl

0.1NaCl

0.05NaCl

Air

 

 

r

t (ns)

Water

 

FIG. 4. TDR waveforms in air, water and NaCl solutions of different molarities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 36 of 43

https://mc04.manuscriptcentral.com/astm-gtj

Geotechnical Testing Journal

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r R

eview
 O

n
ly

 

 

0 2 4 6 8

0

2

4

6

8

R2=0.91

s CT =1.25× s TDR

s
TDR

 (mS/cm)

s
C

T
 (

m
S

/c
m

)

 Soil, g
d
 (in g/cc)

 S1, 1.2

 S2, 1.2

 S3, 1.3

 S4, 1.3

 S5, 1.1

 

FIG. 5. Compariosn of σa-CT with σa-TDR for different soils 

 

 

 

 

 

 

 

 

 

 

 

 

Page 37 of 43

https://mc04.manuscriptcentral.com/astm-gtj

Geotechnical Testing Journal

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r R

eview
 O

n
ly

 

 

                                                  Soil, g
d
!(in g/cc)

 S1, 1.2   S2, 1.2      S3, 1.3     S4, 1.3    S5, 1.1

!

!!!!!

0 20 40 60 80 100

0

10

20

30

40

50

R
2
= 0.87

!a-CT = 4.09× e
0.03×qc

R
2
= 0.92

!a-TDR = 5.1× e
0.04×qc

qc (%)

!
a

!

!

!

!

!

!

FIG. 6. Variation of Ka-TDR and Ka-CT with θc for different soils 
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FIG. 7. Variation of TDR waveforms for Soils S6 and S7 in their dry and saturated (with 

water and NaCl solutions) states 
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FIG. 8. Comparison of the dielectric constants obtained from different methods for the soils 

considered in the present study  
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FIG. 9. Variation of Ka-TP with θc for different soils 
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FIG. 10. TDR waveforms for various levels of immersion (zTDR in cm) of the TDR probe 

(l=7.5cm length) in water 
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FIG. 11. Variation of Ka and θ measured from the TDR and CT probes with their immersion 

in water up to different levels 
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FIG. 12. TDR waveforms of the Soil S2 for different (a) dry density and (b) moisture content 

values 
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