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Unsteady flow of a thixotropic fluid in a slowly varying pipe

Andrew I. Croudace, David Pritchard,a) and Stephen K. Wilson
Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond St., Glasgow G1 1XH,
Scotland, United Kingdom

(Received 1 April 2017; accepted 1 August 2017; published online 21 August 2017)

We analyse the unsteady axisymmetric flow of a thixotropic or antithixotropic fluid in a slowly varying

cylindrical pipe. We derive general perturbation solutions in regimes of small Deborah numbers, in

which thixotropic or antithixotropic effects enter as perturbations to generalised Newtonian flow. We

present results for the viscous Moore–Mewis–Wagner model and the viscoplastic Houška model, and

we use these results to elucidate what can be predicted in general about the behaviour of thixotropic and

antithixotropic fluids in lubrication flow. The range of behaviour we identify casts doubt on the efficacy

of model reduction approaches that postulate a generic cross-pipe flow structure.© 2017 Author(s). All

article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC

BY) license (http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4998960]

I. INTRODUCTION

Thixotropic and antithixotropic fluids, long studied by

rheologists, have recently attracted wider interest within

fluid dynamics as both their applications and the challenges

they present have become better known. Thixotropic flu-

ids are characterised by a gradual decrease of viscosity

under increased shear and its gradual increase when shear is

reduced; antithixotropic (rheopectic) fluids exhibit the oppo-

site behaviour. Thixotropy is a property of many everyday

fluids, including foods such as tomato sauce and some paints;1

antithixotropy, though rarer, is observed in materials such as

carbon black suspensions.2

Both thixotropy and antithixotropy arise because the fluid

has an internal mesoscopic structure, which may consist of

chains of molecules (such as polymers in crude oil) or other

particles that can entangle or align in ways that affect the fluid’s

macroscopic properties. The dynamics of the mesostructure

may be complicated and depend on factors such as temperature

as well as on the macroscopic shear of the fluid. Frequently,

thixotropic effects are associated with other rheological prop-

erties such as yield stress3 or viscoelasticity.4 In the present

study we confine ourselves to ideal thixotropic fluids in the

sense of Larson,5 excluding viscoelastic effects, and we con-

sider rheologies in which the state of the fluid structure is

defined by a single scalar variable, the so-called structure

parameter. Even within this category there are many rheo-

logical models to choose from to describe thixotropy and

antithixotropy, reflecting the many contexts in which they

arise.1,3 This wide range of models means that there is a need

for analytical studies that can distinguish generic behaviour

from artefacts of a particular model.

A promising area for such studies is lubrication flow, in

which the streamwise lengthscale is much greater than the

transverse lengthscale and so the governing equations can

a)
david.pritchard@strath.ac.uk

be simplified asymptotically. Following its original devel-

opment for Newtonian fluids,6 lubrication theory has been

extended formally to non-Newtonian fluids,7–12 and recent

work has explored various thixotropic effects in lubrication-

type flows.13–16 Recently, Pritchard, Wilson, and McArdle17

(hereafter PWM) have derived a general theory for steady

thixotropic and antithixotropic lubrication flows in a two-

dimensional channel.

The present study develops PWM’s approach in two

important directions. We extend their analysis of steady flow to

unsteady flow, in which the driving pressure gradients and thus

the volume flux of fluid along the pipe may vary on a different

time scale from the structure. Although loose analogies can be

drawn between thixotropic effects in steady and in unsteady

flow, we will show that these analogies can be misleading. Fur-

ther, we consider axisymmetric flow in a slowly varying pipe

of circular cross section. Such geometries have many indus-

trial applications, including the transport of processed food,

drilling muds, and crude oil.13,18,19

PWM presented results for the steady flow of thixotropic

fluids in a widening channel. They found that thixotropy

reduces the structure parameter throughout the channel, most

strongly in the centre; meanwhile, it reduces the streamwise

velocity near the walls but increases it in the centre of the chan-

nel. (See, e.g., Fig. 2 of PWM.) We will refer to this qualitative

behaviour as the thixotropic reference case (TRC). PWM pre-

sented a physical interpretation of the TRC and suggested that

it represents the generic effect of thixotropy or antithixotropy

in an appropriate regime. We will discuss this interpretation

below in the light of our new results and will present a refined

version that elucidates the limits of such generic predictions.

In Sec. II we present and non-dimensionalise the gov-

erning equations, obtaining both an advective Deborah num-

ber Da, as obtained by PWM, and a new temporal Debo-

rah number Dt. We then perform an expansion in terms of

the small aspect ratio δ of the flow. In Sec. III we con-

sider the weakly advective and quickly adjusting regime in

which Da =O(δ) and Dt =O(δ), which allows us to study
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the advective and temporal effects of thixotropy in combi-

nation or in isolation. We obtain semi-analytical solutions

for the streamwise and radial velocities and the structure

parameter, from which we can obtain analytical or numer-

ical solutions for specific rheological models. We illus-

trate these general results by considering first (Sec. IV A)

the purely viscous Moore–Mewis–Wagner (MMW) model

and then (Sec. IV B) the viscoplastic Houška model.

II. GEOMETRY AND GOVERNING EQUATIONS

A. Governing equations and boundary conditions

We consider the unsteady axisymmetric flow of an incom-

pressible thixotropic or antithixotropic fluid along a cylindrical

pipe of slowly varying radius, driven by a pressure gradient.

A sketch of the problem is shown in Fig. 1, where ŵ(r̂, ẑ, t̂)

and û(r̂, ẑ, t̂) are the velocity components in the streamwise

and radial directions, respectively, and λ(r̂, ẑ, t̂) is the structure

parameter. (A caret denotes a dimensional quantity.) We take

the typical streamwise lengthscale L̂ of the flow to be much

larger than the typical radial lengthscale R̂, so the flow has the

small aspect ratio R̂/L̂ = δ≪ 1.

The flow is governed by the mass conservation equation

1

r̂

∂

∂r̂
(r̂û) +

∂ŵ

∂ẑ
= 0, (1)

and the Cauchy momentum equations

∂p̂

∂r̂
=

1

r̂

∂

∂r̂
(r̂ τ̂rr) +

∂τ̂rz

∂ẑ
(2)

and
∂p̂

∂ẑ
=

1

r̂

∂

∂r̂
(r̂ τ̂zr) +

∂τ̂zz

∂ẑ
. (3)

Here p̂(ẑ, t̂) is the pressure and τ̂ is the stress tensor, taken to

be of generalised Newtonian form,

τ̂ij = η̂(γ̇, λ)êij, (4)

where êij denotes the strain-rate tensor and the apparent vis-

cosity η̂ depends on both the shear rate γ̇ =

√

1
2
êij êij and the

structure parameter λ.

The structure of the fluid evolves according to an

advection–kinetic equation, which describes the breakdown

and build-up of the structure in a fluid element. This equation

takes the general form

Dλ

Dt̂
= f̂ (Γ̂, λ), (5)

FIG. 1. Unsteady axisymmetric flow of a thixotropic or antithixotropic fluid

along a cylindrical pipe of slowly varying radius r̂ = α̂(ẑ).

where D/Dt̂ denotes the material derivative, f̂ (Γ̂, λ) describes

the breakdown and buildup of the structure, and for conve-

nience we define

Γ̂ = γ̇2
= 2

(

∂û

∂r̂

)2

+

(

∂û

∂ẑ
+
∂ŵ

∂r̂

)2

+ 2

(

∂ŵ

∂ẑ

)2

. (6)

We assume that the usual no-slip boundary condition

applies at the pipe wall, along with symmetry conditions at

the centreline of the pipe, so that

û = 0 = ŵ at r̂ = α̂(ẑ),

τ̂rz = 0 = û at r̂ = 0.
(7)

Finally, since the fluid is incompressible, the streamwise

volume flux is independent of ẑ,

2π

∫ α̂(ẑ)

0

ŵ(r̂, ẑ, t̂)r̂ dr̂ = Q̂(t̂), (8)

where Q̂(t̂) is specified as a global boundary condition.

B. Non-dimensionalisation

We non-dimensionalise and rescale the problem, defining

dimensionless quantities via

r̂ = R̂r, α̂ = R̂α, ẑ =
R̂z

δ
, û =

δQ̂ref u

R̂2
,

ŵ =
Q̂refw

R̂2
, Γ̂ =

Q̂2
ref
Γ

R̂6
, Q̂ = Q̂ref Q,

p̂ =
µ̂0Q̂ref p

δR̂3
, η̂ = µ̂0η, t̂ = T̂ t, f̂ = f̂0 f ,

(9)

where Q̂ref is the typical volume flux, f̂0 is the typical break-

down or build-up rate, µ̂0 is the typical viscosity, and T̂ is the

typical time scale of the flow.

Using these dimensionless quantities, the mass conserva-

tion equation (1) becomes

1

r

∂

∂r
(ru) +

∂w

∂z
= 0, (10)

and the Cauchy momentum equations (2) and (3), with

constitutive law (4), become

∂p

∂r
= δ2

[
1

r

∂

∂r

(

2rη
∂u

∂r

)

+
∂

∂z

(

η
∂w

∂r

)]

+ δ4 ∂

∂z

(

η
∂u

∂z

)

, (11)

∂p

∂z
=

1

r

∂

∂r

(

rη
∂w

∂r

)

+ δ2

[
1

r

∂

∂r

(

rη
∂u

∂z

)

+
∂

∂z

(

2η
∂w

∂z

)]
. (12)

The expression for Γ, given by (6), becomes

Γ=

(

∂w

∂r

)2

+ δ2

2

(

∂u

∂r

)2

+ 2
∂u

∂z

∂w

∂r
+ 2

(

∂w

∂z

)2
+ δ4

(

∂u

∂z

)2

.

(13)

After non-dimensionalisation, the boundary conditions

(7) become
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u = 0 = w at r = α(z),

η
∂w

∂r
= 0 = u at r = 0,

(14)

and the flux condition (8) becomes

2π

∫ α(z)

0

w(r, z, t)r dr = Q(t). (15)

Finally, the structure evolution equation (5) becomes

Dt

∂λ

∂t
+ Da

(

u
∂λ

∂r
+ w
∂λ

∂z

)

= f (Γ, λ), (16)

where

Dt =
1

f̂0T̂
and Da =

Q̂refδ

f̂0R̂3
(17)

are the temporal and advective Deborah numbers, respectively.

We note that Da can also be interpreted as the reciprocal of

a “thixotropy number” as defined by Wachs et al.13 or as a

“thixoviscous number” as proposed by Ewoldt and McKin-

ley,20 but in order to compare advective and temporal effects

directly, it is more informative to follow PWM by interpreting

this parameter as a Deborah number.

C. General expansion scheme

We expand the dependent variables in powers of the aspect

ratio δ,

(u, w, p, λ) =

∞
∑

i=0

δi(ui, wi, pi, λi). (18)

From (11), the pressure depends on r only atO(δ2) and higher,

so p0 and p1 are independent of r. We also expand Γ, η(Γ, λ),

and f (Γ, λ),

Γ = Γ0 + δΓ1 + O(δ2),

η = η0 + δη1 + O(δ2),

f = f0 + δf1 + O(δ2),

(19)

where

Γ0 =

(

∂w0

∂r

)2

, Γ1 = 2
∂w0

∂r

∂w1

∂r
,

η0 = η(Γ0, λ0), η1 = ηΓΓ1 + ηλλ1,

f0 = f (Γ0, λ0), f1 = fΓΓ1 + fλλ1,

(20)

and where for convenience we have written

ηΓ =
∂η

∂Γ

�����(Γ0,λ0)

, ηλ =
∂η

∂λ

�����(Γ0,λ0)

,

fΓ =
∂f

∂Γ

�����(Γ0,λ0)

, fλ =
∂f

∂λ

�����(Γ0,λ0)

.

(21)

Using (18)–(21), at O(1) Eqs. (10) and (12) yield

1

r

∂

∂r
(ru0) +

∂w0

∂z
= 0, (22)

1

r

∂

∂r

(

rη0

∂w0

∂r

)

= −G0(z, t), (23)

respectively, where G0(z, t) = −∂p0/∂z. At O(1) the boundary

conditions (14) yield

u0 = 0 = w0 at r = α(z),

η0

∂w0

∂r
= 0 = u0 at r = 0,

(24)

and at O(1) the volume flux condition (15) yields

2π

∫ α(z)

0

w0(r, z, t)r dr = Q(t). (25)

Similarly, at O(δ) Eqs. (10) and (12) yield

1

r

∂

∂r
(ru1) +

∂w1

∂z
= 0, (26)

1

r

∂

∂r

[
r

(

η0

∂w1

∂r
+

(

2ηΓ
∂w0

∂r

∂w1

∂r
+ ηλλ1

)

∂w0

∂r

)]
= −G1(z, t),

(27)

respectively, where G1(z, t) = −∂p1/∂z. At O(δ) the boundary

conditions (14) yield

u1 = 0 = w1 at r = α(z), (28)

η0

∂w1

∂r
+

(

2ηΓ
∂w0

∂r

∂w1

∂r
+ ηλλ1

)

∂w0

∂r
= 0

and u1 = 0 at r = 0, (29)

and at O(δ) the volume flux condition (15) yields

2π

∫ α(z)

0

w1(r, z, t)r dr = 0. (30)

The structure evolution equation (16) becomes

Dt

(

∂λ0

∂t
+ δ
∂λ1

∂t

)

+ Da

[
u0

∂λ0

∂r
+ w0

∂λ0

∂z

+ δ

(

u1

∂λ0

∂r
+ w1

∂λ0

∂z
+ u0

∂λ1

∂r
+ w0

∂λ1

∂z

)]

= f0 + δ

(

2fΓ
∂w0

∂r

∂w1

∂r
+ fλλ1

)

. (31)

It is clear from (31) that the role of thixotropy depends

on the relative magnitudes of the Deborah numbers Dt and

Da and the aspect ratio δ. PWM discussed the possible

regimes in terms of Da: these range from regimes in which

the fluid structure adjusts so quickly to changes in the local

shear rate that the fluid behaves to O(δ) like a generalised

Newtonian fluid, through to regimes in which the effects of

breakdown and buildup enter at the same order as the O(δ2)

geometrical corrections to classical lubrication theory. In the

present study we focus on “quickly adjusting” regimes in

which Dt =O(δ) and “weakly advective” regimes in which

Da =O(δ). In such regimes, thixotropic effects enter the equa-

tions at O(δ), i.e., they are perturbations to the leading-order

(generalised Newtonian) behaviour but enter at lower order

than the O(δ2) geometrical corrections to classical lubrication

theory.

III. GENERAL SOLUTIONS IN WEAKLY
THIXOTROPIC REGIMES

We now specialise to the quickly adjusting and weakly

advective regime, in which Da =O(δ) and Dt =O(δ). We thus
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define Dt = δD
∗
t and Da = δD

∗
a, where D

∗
t and D

∗
a are O(1) or

smaller.

We consider the problem up toO(δ), to which accuracy we

can obtain two further regimes as limiting cases. The weakly

advective and very quickly adjusting regime (Da =O(δ) and

Dt =O(δ2)) corresponds to steady flow, while the quickly

adjusting and very weakly advective regime (Dt =O(δ) and

Da =O(δ2)) corresponds to spatially uniform flow. We will

use this terminology below in order to simplify our discussion.

A. General form of the solution at O(1)

At leading order, O(1), the flow is governed by the mass

conservation equation (22) and the momentum equation (23),

together with the structure evolution equation (31) which at

leading order becomes simply

f0 = 0. (32)

These are to be solved subject to the leading-order boundary

conditions (24) and the volume flux condition (25).

General semi-analytical solutions to the leading-order

problem can be obtained following the approach of PWM; the

advantage of this approach is that the derivatives required in

the first-order solutions can be obtained as integrals and read-

ily evaluated. For brevity we omit the details of the derivation

here.

At leading order, the fluid has an implicitly defined

generalised Newtonian rheology,

τ(q) = η(q2, λ0)q subject to f (q2, λ0) = 0,

where q =
∂w0

∂r
. (33)

For a given flux Q(t), the pressure gradient G0 is defined

implicitly by the condition (25), which becomes

Q(t) =
8π

[G0(z, t)]3

∫ qw

0

qτ2(q)τ′ dq, (34)

where

qw(z, t) = q(α(z), z, t), so τ(qw) = −
G0(z, t)α(z)

2
. (35)

The streamwise velocity is given by

w0(r, z, t) =
2

G0(z, t)

∫ −G0(z,t)α(z)/2

−G0(z,t)r/2

τ−1(ξ) dξ. (36)

Finally, the radial velocity is given by

u0(r, z, t) =
r

2G0

(

∂G0

∂z
w0 + qw

∂

∂z
[G0α]

)

+
12

G4
0
r

∂G0

∂z

∫ q

0

qτ2(q)τ′(q) dq. (37)

B. General form of the solution at O(δ)

At first order, O(δ), the perturbations satisfy the mass

conservation equation (26), the momentum equation (27), and

the O(δ) structure evolution equation (31), namely,

D
∗
t

∂λ0

∂t
+ D

∗
a

(

u0

∂λ0

∂r
+ w0

∂λ0

∂z

)

= 2fΓ
∂w0

∂r

∂w1

∂r
+ fλλ1, (38)

subject to the boundary conditions (28) and (29) and volume

flux condition (30).

Using (38) to eliminate λ1 from (27) yields

1

r

∂

∂r

[
rA(r, z, t)

∂w1

∂r
+ rB(r, z, t)

]
= −G1(z, t), (39)

where

A = η0 + 2

(

ηΓ − ηλ
fΓ

fλ

) (

∂w0

∂r

)2

, (40)

B =
ηλ

fλ

[
D
∗
t

∂λ0

∂t
+ D

∗
a

(

u0

∂λ0

∂r
+ w0

∂λ0

∂z

)]
∂w0

∂r
. (41)

The term A(r, z, t) represents the gradient of stress with respect

to shear rate, while B(r, z, t) represents the change to the stress

due to the changing structure of the fluid. We will refer to

B(r, z, t) as the thixotropic stress term.

Integrating (39) with respect to r and applying the

boundary condition (29) at r = 0 yields

∂w1

∂r
= −

(

1

2
G1(z, t)r + B(r, z, t)

)

1

A(r, z, t)
, (42)

from which a second integration with respect to r, applying

the no-slip condition (28), yields

w1(r, z, t) =
G1(z, t)

2

∫ α(z)

r

r ′

A(r ′, z, t)
dr ′

+

∫ α(z)

r

B(r ′, z, t)

A(r ′, z, t)
dr ′. (43)

Finally, integrating (43) for a third time and applying the

volume flux condition (30) yields

G1(z, t) = −

2

∫ α(z)

0

r

∫ α(z)

r

B(r ′, z, t)

A(r ′, z, t)
dr ′dr

∫ α(z)

0

r

∫ α(z)

r

r ′

A(r ′, z, t)
dr ′dr

. (44)

We note from (41) that B(r, z, t) is the sum of an “advec-

tive” term proportional to Da and a “temporal” term pro-

portional to Dt; from (44) and (43) we see that in fact all

perturbation quantities can be decomposed in this manner. It

is also evident that all advective terms must be proportional to

α′ and all temporal terms proportional to Q′. Consequently,

in Sec. IV we need to consider only the cases of steady flow

in a widening pipe (D∗t Q′ = 0, D∗aα
′ > 0) and of decelerating

flow in a uniform pipe (D∗aα
′
= 0,D∗t Q′ < 0) in order to under-

stand fully the behaviour of the fluid. Results for narrowing

pipes and/or accelerating flows can be obtained by appropriate

changes of sign or linear combinations of the “advective” and

“temporal” perturbations, i.e., the perturbations in steady and

in uniform flow, respectively.

IV. SOLUTIONS FOR SPECIFIC RHEOLOGIES

To gain insight into the range of possible thixotropic and

antithixotropic behaviours, we investigate two specific rhe-

ologies. First, we consider the purely viscous Moore–Mewis–

Wagner model, which allows us to explore both thixotropic
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and antithixotropic effects. Second, we consider a regularised

Houška model, which allows us to investigate the interaction

between thixotropy and plasticity.

The thixotropic reference case (TRC) described in Sec. I

guides our expectations about the form of the perturbations.

We expect that in steady flow of a thixotropic fluid, the velocity

perturbation 41 will be positive near the centre and negative

near the wall of the pipe, while the structure parameter pertur-

bation λ1 will be negative everywhere and largest in the centre

of the pipe. Since antithixotropy is, loosely, the opposite of

thixotropy, we may expect this picture to be reversed in steady

flow of an antithixotropic fluid, so 41 will be negative near

the centre and positive near the wall, while λ1 will be positive

everywhere. We may also draw a loose analogy between decel-

erating flow and flow in a widening pipe, since the shear rate

following a fluid element decreases in both cases. This leads us

to expect that the perturbations in decelerating uniform flow

will take the same forms as those in widening steady flow.

However, as we will now show, not all of these expectations

are fulfilled.

A. The MMW model

The MMW model employs a version of Moore’s21 consti-

tutive law in which the viscosity is proportional to the structure

parameter, so in dimensionless form

η = λ. (45)

Meanwhile, λ satisfies Mewis and Wagner’s3 general structure

evolution equation, in which

f̂ (Γ̂, λ) = −k̂1Γ̂
a/2
λ

b + k̂2Γ̂
c/2(1 − λ)d , (46)

where the constants k̂1 and k̂2 specify the structural breakdown

and build-up rates, and the exponents a, b, c, and d are non-

negative.

We non-dimensionalise (46) following (9) with

f̂0 =
k̂1Q̂a

ref

R̂3a
, (47)

to yield

f (Γ, λ) = −Γa/2
λ

b + κΓc/2(1 − λ)d ,

where κ =
k̂2Q̂c−a

ref

k̂1R̂3(c−a)
. (48)

The parameter κ represents the ratio of breakdown to build-up

rates, and we assume that κ =O(1). In practice, breakdown

rates may be rather larger than build-up rates so κ is numeri-

cally large; however, by taking it to be of order unity we obtain

the dynamically richest problem, the greatest range of possi-

ble behaviours, and thus the most thorough test of our generic

predictions.

In equilibrium, the structure parameter λ= λeq and the

structure evolution rate is zero, from which we may obtain

λ
b
eq

(1 − λeq)d
= κΓ(c−a)/2. (49)

Since the left-hand side is an increasing function of λeq, it

is easy to see that when c > a, the structure increases with

increasing shear rate (antithixotropy), whereas when c < a, the

structure decreases with increasing shear rate (thixotropy).

When d = 0, the MMW model admits solutions in closed

form, as in PWM; however, the usefulness of these solutions

is undermined because they inherit the well-known centreline

singularity of the power-law model.11 We therefore consider

only d > 0 here. For the MMW model with d > 0 we are unable

to find analytical solutions in closed form for general d. We

proceed instead using the general solutions for the leading-

order problem, given in Sec. III A, and the general solutions

for the first-order problem, given in Sec. III B, though we

must evaluate the integrals in these solutions numerically; the

results shown here were generated using the computer algebra

package Maple.22

Figure 2 illustrates the leading-order profiles of the

streamwise velocity and structure parameter for typical

thixotropic and antithixotropic cases. They have the famil-

iar forms associated with shear-thinning and shear-thickening

pipe flow: the thixotropic fluid is most structured at the centre-

line of the pipe, and so the velocity profile is “blunt” near

the centreline; conversely, the antithixotropic fluid is least

structured at the centreline, and so the velocity profile is

“sharper.”

Figure 3 illustrates the corresponding perturbations to the

velocity and the structure parameter, both for steady flow in a

widening pipe (Daα
′
= 1, DtQ

′
= 0) and for decelerating flow

in a uniform pipe (Daα
′
= 0, DtQ

′
= − 1). For a thixotropic

fluid [Figs. 3(a) and 3(c)], the forms of the perturbations agree

with the thixotropic reference case of PWM: the velocity per-

turbation is positive near the centre of the pipe and negative

FIG. 2. MMW model: leading-order

solutions for (a) streamwise velocity

40 and (b) structure parameter λ0.

Thixotropic fluid (T): a = 1, c = 0.5.

Antithixotropic fluid (A): a = 0.5, c = 1.

Common parameter values: b = 1, d = 1,

and κ = 1.
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FIG. 3. MMW model: perturbations to

[(a) and (b)] streamwise velocity 41

and [(c) and (d)] structure parame-

ter λ1, for [(a) and (c)] thixotropic

fluid with a = 1, c = 0.5; [(b) and

(d)] antithixotropic fluid with a = 0.5,

c = 1. Solid lines denote uniform

flow (Daα
′
= 0, DtQ

′
= − 1); dashed

lines denote steady flow (Daα
′
= 1,

DtQ
′
= 0). Common parameter values:

b = 1, d = 1, and κ = 1.

nearer the wall, while the structure perturbation is generally

negative, and largest at the centre (although it becomes pos-

itive at the wall in steady flow). The perturbations in steady

flow are generally larger than those in uniform flow. As one

might expect, the antithixotropic fluid behaves conversely: the

velocity perturbation is negative near the centre of the pipe

and positive nearer the wall, while the structure perturbation

is generally positive, and largest at the centre [Figs. 3(b) and

3(d)]. (We also note that the perturbations in steady and in

uniform flow do not have the same cross-pipe structure, mean-

ing that perfect cancellation of advective and temporal effects

in, for example, accelerating flow in a widening pipe, is not

possible.)

The cases plotted in Fig. 3 do not, however, represent

the full spectrum of possible behaviour of the MMW model.

Figure 4 illustrates another possibility, which can occur when

the fluid is sufficiently strongly thixotropic or antithixotropic.

The velocity gradient ∂w1/∂r now changes sign again near the

centre of the pipe [Fig. 4(a)], so the velocity perturbation has

a local minimum rather than a local maximum at r = 0, and its

maximum value is thus somewhat smaller than in less strongly

thixotropic cases. In this regime, the structure perturbation λ1

drops to zero at the centre [Fig. 4(b)]. An asymptotic analysis

of the behaviour of the perturbations near the centreline shows

that this behaviour occurs when either d < 1 and a > c/(1− d)

or b< 1 and c > a(1− b); we omit the details here for brevity.

The behaviour illustrated in Fig. 4 is a minor deviation

from the TRC, and in practice it is only visible for rather

extreme values of the exponents in (48); it is also much more

conspicuous in uniform than in steady flow. Nevertheless, it

FIG. 4. MMW model: perturbations

to (a) streamwise velocity 41 and

(b) structure parameter λ1, for a

strongly thixotropic fluid with a = 0.75,

b = 0.5, c = 0.62, d = 0.1, and κ = 1. Solid

lines denote uniform flow (Daα
′
= 0,

DtQ
′
= −1); dashed lines denote steady

flow (Daα
′
= 1, DtQ

′
= 0).
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is interesting because of its paradoxical nature: stronger devi-

ations from Newtonian rheology are associated with smaller

perturbations to generalised Newtonian flow. It also suggests

that PWM’s physical interpretation of the TRC is incomplete;

we will return to this following our investigation of the Houška

model.

B. The regularised Houška model

In many contexts,3,5,23 thixotropy occurs in conjunction

with a yield stress. The simplest rheological model that com-

bines these phenomena is the Houška model,24 which com-

bines a Herschel–Bulkley constitutive law25 with a structure

parameter that obeys a special case of Mewis and Wagner’s

structure evolution equation.3 In order to apply the semi-

analytical approach described in Sec. III, we regularise this

model following the approach of Papanastasiou.26

In dimensional terms, the regularised Houška rheology is

defined by

η̂(γ̇, λ) =
τ̂y(λ)(1 − e−k̂γ̇)

γ̇
+ η̂H(λ)γ̇n−1, (50)

where the regularisation parameter k̂ is large relative to the

reciprocal of typical shear rates in the flow. (The effect of the

regularisation can be seen in Figs. 5 and 6, in the form of a

slight rounding of the edges of the pseudo-plug.) We will take

n = 1 throughout. The yield stress τ̂y(λ) and the viscosity η̂H(λ)

are linear functions of λ, given by

τ̂y(λ) = τ̂y0 + λτ̂y1 and η̂H(λ) = η̂H0 + λη̂H1. (51)

The structure evolution rate is given by setting a = 1, b = 1,

c = 0, and d = 1 in (46), to obtain

f̂ (Γ̂, λ) = −k̂1Γ̂
1/2
λ + k̂2(1 − λ). (52)

We non-dimensionalise this model using (9) and (47)

together with µ̂0 = η̂H0, obtaining the dimensionless rheolog-

ical parameters

ηH1 =
η̂H1

η̂H0

, τy0 =
Q̂2

ref

R̂6

τ̂y0

η̂H0

,

τy1 =
Q̂2

ref

R̂6

τ̂y1

η̂H0

, k =
Q̂2

ref
k̂

R̂6
.

(53)

Figure 5 illustrates typical profiles of the unperturbed flow

and the perturbations. The most conspicuous feature of the

unperturbed flow [Figs. 5(a) and 5(b)] is the pseudo-plug in

the centre of the pipe, within which the fluid is fully structured,

λ0 = 1, and the streamwise velocity is constant. The velocity

perturbation [Fig. 5(c)] is similar to that for the purely vis-

cous fluid considered in the thixotropic reference case, with

reduced velocity next to the wall and increased velocity near

the centre, particularly in the pseudo-plug region. The pertur-

bation to the structure parameter [Fig. 5(d)] takes a different

form: although as expected it is negative across most of the

width of the pipe, it peaks at the edges of the pseudo-plug and

is zero within it. This is due to the lack of shear in the pseudo-

plug, which means that the structure there cannot evolve.

Likewise, within the pseudo-plug the velocity perturbation is

constant.

FIG. 5. Houška model: leading-order

solutions for (a) streamwise velocity

40 and (b) structure parameter λ0,

and perturbations to (c) velocity 41

and (d) structure parameter λ1. Solid

lines denote uniform flow (Daα
′
= 0,

DtQ
′
= −1); dashed lines denote steady

flow (Daα
′
= 1, DtQ

′
= 0). Common

parameter values: τy0 = 1, τy1 = 1,

ηH1 = 1, and k = 1000.
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FIG. 6. Houška model: perturbations to

[(a) and (b)] streamwise velocity 41

and [(c) and (d)] structure parame-

ter λ1, for [(a) and (c)] ηH1 = 1, with

τy1 = 0 (solid), τy1 = 0.1 (dashed), and

τy1 = 0.3 (light dashed); for [(b) and (d)]

τy1 = 1, withηH1 = 4 (solid) andηH1 = 8

(dashed). All results are for uniform

flow (Daα
′
= 0, DtQ

′
= − 1). Common

parameter values: τy0 = 1 and k = 1000.

This picture, however, is not universal, as Fig. 6 illustrates.

In Figs. 6(a) and 6(c) we see the effect of reducing the param-

eter τy1, which controls the variation of the yield stress with λ.

As τy1 is reduced, the yield stress decreases and so the pseudo-

plug becomes slightly narrower. A more conspicuous feature,

however, is that the velocity perturbation 41 is reduced within

the pseudo-plug, eventually becoming negative so the effect of

thixotropy on the flow is significantly different from the TRC:

the velocity is now increased just outwith the pseudo-plug but

decreased both within the pseudo-plug and near to the wall. A

similar effect can be seen in Figs. 6(b) and 6(d) as the param-

eter ηH1, which controls the variation of the viscosity with λ,

is increased.

C. Mechanisms controlling the velocity perturbation

To explain the behaviour in Figs. 4 and 6, we must inves-

tigate the factors controlling the velocity perturbation gradient

∂w1/∂r. From (42), and noting from (40) that A(r, z, t) ≥ 0,

this gradient is controlled by the interaction between two

terms: a term 1
2
G1(z, t)r that represents the effect of the first-

order pressure gradient that imposes the flux condition (30);

and the thixotropic stress term B(r, z, t), given by (41), which

represents the direct effect of thixotropy or antithixotropy. It

is clear from (42) that the sign of ∂w1/∂r depends on which of

these terms is larger. Figure 7 illustrates the balance of these

terms in cases in which the form of the perturbations accords

with expectations based on the TRC [Figs. 7(a) and 7(b)] and

in cases in which it does not [Figs. 7(c) and 7(d)].

The thixotropic stress term B describes the effect of the

evolving structure on the velocity gradient. It is proportional to

the product of the Lagrangian derivative Dλ0/Dt and the local

leading-order shear rate ∂w0/∂r. Since the shear rate vanishes

at the centreline, B = 0 at r = 0 both in steady and in uniform

flow. However, different boundary conditions control the value

of B at the wall.

In steady flow, B is proportional to the advective derivative

u0 ·∇λ0, which vanishes at the wall due to the no-slip condition;

thus, in steady flow, B = 0 at the wall as well as the centreline

and is constrained to take the form in Figs. 7(a) and 7(c). This

means that ∂w1/∂r is inevitably negative at the wall and so

41 is inevitably positive near the wall; the consequence is that

velocity perturbations in steady flow can deviate only fairly

subtly, near the centre of the pipe, from the generic behaviour

suggested by the TRC.

In uniform flow, in contrast, B is proportional to the time

derivative ∂λ0/∂t, which does not in general vanish at the wall.

Figures 7(b) and 7(d) show that both |B| and | 1
2
G1r | increase

from the centre of the pipe to the wall, and the balance between

these two terms is much finer than in steady flow. Conse-

quently, a slight change in the concavity of B can change the

regions in which ∂w1/∂r is positive and negative, leading to

more complicated forms for 41 than predicted by the TRC.

In addition, because B is closer to − 1
2
G1r in uniform than in

steady flow, ∂w1/∂r is generally smaller in uniform flow. This

explains why |41| in uniform flow is generally smaller than in

steady flow (compare the dashed and solid lines in Fig. 3).

We can also explain the form of the velocity perturbations

in the Houška model, and the reversal in sign of 41 when

ηH1 is large or τy1 is small. Figure 8 illustrates the balance

between the thixotropic stress term and the pressure gradient

term for the cases plotted in Figs. 6(b) and 6(d). Because the
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FIG. 7. MMW model: thixotropic

stress term B (dashed) and pressure

gradient term − 1
2

G1r (solid), in [(a) and

(c)] steady and [(b) and (d)] uniform

flow, for [(a) and (b)] a thixotropic

fluid with a = 1, b = 1, c = 0.5, d = 1,

and κ = 1; [(c) and (d)] a strongly

thixotropic fluid with a = 0.75, b = 0.5,

c = 0.62, d = 0.1, and κ = 1.

thixotropic stress term is zero within the pseudo-plug, there are

in general two intersections between B and − 1
2
G1r, and thus

two turning points of 41. As τy1 decreases or ηH1 increases,

the viscous stresses become larger relative to the yield stress.

The consequence is that the pseudo-plug becomes narrower

for a given flux; consequently, the balance between B and

− 1
2
G1r becomes finer [Fig. 8(b)], and the turning points of 41

move closer together. As a consequence, the positive region

of 41 becomes smaller, allowing 41 to reverse within and just

outwith the pseudo-plug.

D. Beyond the thixotropic reference case

With the results of Sec. IV C in mind, we can refine the

apparently generic explanation of the TRC given by PWM.

We recall that, for convenience, we consider widening pipes

(α′ > 0) and decelerating flows (Q′ < 0). We expect flow in a

widening pipe and a decelerating flow to be loosely equivalent,

and we also expect antithixotropic fluids to behave in the oppo-

site way from thixotropic fluids. As we have seen, the analogies

between widening pipes and decelerating flows, and between

thixotropy and antithixotropy, provide useful heuristics but fail

to capture all the behaviour of the perturbations.

The steady flow of a thixotropic fluid in a widening chan-

nel provides the TRC, in which 41 is positive at the centre of

the channel and negative at the wall, and λ1 is negative across

the width of the channel and largest at the centre. To explain

the behaviour of the TRC, PWM reason that (a) the advection

of broken-down fluid from upstream is strongest at the centre

of the channel, so this is where λ, and therefore the viscosity,

is most reduced relative to λeq; (b) fluid with a low viscosity is

easiest to shear, so flows faster (w1 > 0) near the centre of the

FIG. 8. Houška model: thixotropic

stress term B (dashed) and pressure gra-

dient term − 1
2

G1r (solid), in uniform

flow, for a thixotropic fluid withτy0 = 1,

τy1 = 1, k = 1000, and (a) ηH1 = 4; (b)

ηH1 = 8.
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channel; (c) as flux must be conserved, the increase in 4 near

the centre must be offset by a decrease (w1 < 0) near the wall.

Although this explanation appears sufficient for the TRC, it is

incomplete even for steady flow and, as we have seen, does

not capture the dynamics of unsteady flow.

We are now in a position to refine PWM’s explanation of

the TRC in the following ways. (a) Although the advection of

structure is strongest at the centre of the pipe, the temporal evo-

lution of the structure may be fastest at the centre of the pipe

or at the wall. (b) The advective component of the thixotropic

stress term is zero at the centre of the pipe and at the wall,

but the temporal component of the thixotropic stress term is

weakest at the centre and strongest at the wall. (c) The pres-

sure gradient G1, which maintains the prescribed flux, affects

the shear rate most strongly at the wall and most weakly at the

centre. The advective component of the thixotropic stress term

is always weaker at the wall than the pressure gradient term,

which gives the characteristic shape of 41 in the TRC, and this

behaviour appears to be generic except very close to the cen-

treline. In contrast, the temporal component of the thixotropic

stress term may be larger or smaller than the pressure gradient

term anywhere across the pipe, so we cannot predict the shape

of the profile of 41 in general.

In summary, although PWM’s interpretation of the TRC

is a useful heuristic for the advective effect of thixotropy, it

cannot predict some of the finer details of where thixotropy-

enhanced shear occurs, and does not capture the effect of

antithixotropy in unsteady flow, which is more sensitive to the

precise choice of rheology. This sensitivity suggests strongly

that no entirely general predictions can be made of how

antithixotropy affects the velocity profile in unsteady lubri-

cation flow. In turn, this calls into question how generally it is

possible to develop “reduced” models such as those proposed

by Livescu et al.14

V. CONCLUSIONS

This study has extended the perturbation approach to

weakly thixotropic lubrication flow developed by Pritchard,

Wilson, and McArdle17 (PWM) to unsteady pipe flows. Such

flows are characterised by two Deborah numbers, one rep-

resenting advective thixotropic effects and one representing

temporal thixotropic effects; we have explored the “weakly

advective” and “slowly adjusting” regimes in which these Deb-

orah numbers are comparable with the small aspect ratio δ

of the flow, and analytical or semi-analytical solutions may

then be developed up to O(δ). In the course of exploring

these solutions, we have identified several deviations from

the thixotropic reference case (TRC) that was presented as

generic by PWM,17 and this has allowed us to refine our under-

standing of the mechanisms that control the thixotropic or

antithixotropic response.

We recall that in the TRC in a widening channel the

streamwise velocity perturbation is positive near the centre

of the pipe and negative near the wall, while the structure

parameter perturbation is negative and largest at the centre

of the pipe.17 From the TRC we can predict the qualitative

behaviour of an antithixotropic fluid or flow in a narrowing

channel by an appropriate change of sign. A natural analogy

may also be drawn between steady flow in a widening pipe and

uniform flow with a decreasing volume flux, since in each case

any given fluid element is decelerating. However, our results

demonstrate that this analogy can be misleading.

Our exploration of the Moore–Mewis–Wagner model

indicated that although in many cases its behaviour accords

with the TRC, if the fluid is sufficiently strongly thixotropic

or antithixotropic then deviations occur (Fig. 4): the velocity

perturbation acquires additional turning points, and the struc-

ture parameter perturbation is no longer largest at the centre

of the pipe. In a regularised viscoplastic Houška model, still

more significant qualitative deviations from the TRC occur

(Fig. 6). Notably, when the variation of the yield stress with

the structure parameter is sufficiently weak or the variation

of the viscosity with the yield stress is sufficiently strong, the

velocity perturbation may peak at the edges of the pseudo-plug

and then reverse within the plug, so thixotropy leads to slower

flow in the centre of the channel.

The mechanism behind these changes involves the com-

petition between the pressure gradient and a thixotropic stress

term proportional to the Lagrangian derivative of the structure,

considered as a function of position across the pipe. Crucially,

the Lagrangian derivative takes rather different forms in steady

and in uniform flow. Consequently, the analogy between flow

in a widening pipe and flow with a decreasing flux is not

complete; in unsteady uniform flow the balance between the

pressure gradient and thixotropic stress terms is rather finer

and so the perturbations are more prone to deviate from the

TRC.

The underlying challenge in the mathematical modelling

of thixotropic flow is to distinguish between phenomena that

are generic and those that are artefacts of particular rheolog-

ical models. A thorough understanding of this distinction is

necessary in order to develop reliable means of construct-

ing reduced-order flow models14,16,17 as well as to extract

physical insight from the findings of particular studies. The

subtle nature of slowly varying thixotropic and antithixotropic

flow revealed by the present perturbation approach indicates

the scale of this challenge, since it must be expected that

more complicated flow problems will prove still more resis-

tant to general analysis. Nevertheless, this work provides a

basis for further systematic studies of related flows, as well as

an overview of possible dynamical regimes that may serve to

guide future investigations in this area.
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Benzollösungen,” Kolloid-Z. 39, 291–300 (1926).
26T. C. Papanastasiou, “Flows of materials with yield,” J. Rheol. 31, 385–404

(1987).

http://dx.doi.org/10.1016/j.cis.2008.09.005
http://dx.doi.org/10.1093/imamat/hxw031
http://dx.doi.org/10.1122/1.4913584
http://dx.doi.org/10.1098/rstl.1886.0005
http://dx.doi.org/10.1007/bf00871771
http://dx.doi.org/10.1016/s0377-0257(98)00133-5
http://dx.doi.org/10.1016/j.jnnfm.2004.06.011
http://dx.doi.org/10.1103/physreve.72.066302
http://dx.doi.org/10.1007/s10665-014-9725-2
http://dx.doi.org/10.1016/j.jnnfm.2009.02.002
http://dx.doi.org/10.1016/j.jnnfm.2011.01.010
http://dx.doi.org/10.1017/jfm.2013.235
http://dx.doi.org/10.1017/jfm.2013.235
http://dx.doi.org/10.1016/j.jnnfm.2017.01.001
http://dx.doi.org/10.1016/j.jnnfm.2016.07.009
http://dx.doi.org/10.1016/j.jnnfm.2014.01.005
http://dx.doi.org/10.1016/j.petrol.2012.04.026
http://dx.doi.org/10.1007/s00397-017-1001-8
http://dx.doi.org/10.1007/s00397-010-0504-3
http://dx.doi.org/10.1007/s00397-010-0504-3
http://dx.doi.org/10.1007/bf01432034
http://dx.doi.org/10.1122/1.549926

