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Brilliant X-rays using a Two-Stage 
Plasma Insertion Device
J. A. Hollowayͷǡ͸ǡͺǡ PǤ AǤ Norreys͹ǡͺǡ AǤ GǤ RǤ Thomasͼǡ RǤ Bartolini͸ǡͻǡ RǤ Binghamͺǡͽǡ JǤ Nydellͷǡ 
RǤ MǤ GǤ MǤ Trinesͺǡ RǤ Walker͸ǡͻ Ƭ MǤ Wingͷ

Particle accelerators have made an enormous impact in all Ƥelds of natural sciencesǡ from elementary 
particle physicsǡ to the imaging of proteins and the development of new pharmaceuticalsǤ Modern 
light sources have advanced many Ƥelds by providing extraordinarily brightǡ short XǦray pulsesǤ Here 
we present a novel numerical studyǡ demonstrating that existing third generation light sources can 
signiƤcantly enhance the brightness and photon energy of their XǦray pulses by undulating their beams 
within plasma wakeƤeldsǤ This study shows that a three order of magnitude increase in XǦray brightness 
and over an order of magnitude increase in XǦray photon energy is achieved by passing a ͹ GeV electron 
beam through a twoǦstage plasma insertion deviceǤ The production mechanism microǦbunches the 
electron beam and ensures the pulses are radially polarised on creationǤ We also demonstrate that the 
microǦbunched electron beam is itself an eơective wakeƤeld driver that can potentially accelerate a 
witness electron beam up to ͼ GeVǤ

Accelerating charged particles in the wake of a beam propagating through a plasma, i.e. plasma wakeield accel-
eration, achieves energy gains thousands of times greater per metre than those in conventional radio frequency 
accelerators1–9. In conventional accelerators, electric ields above 100 MVm−1 ionise the metal cavity where the 
particles are accelerated, destroying the accelerating structure. In wakeield accelerators however, no such limita-
tion exists as the plasma is already ionised and far greater electric ields can be realised.

Current light sources use magnetic ields to stimulate undulations in an electron beam leading to copious 
X-ray production10. In plasmas, however, it is the strong focusing electric ields found in wakeields that cause 
the beam to undulate, generating short X-ray pulses11–18. his is achieved by injecting a short electron beam into 
the correct phase of the wakeield where it experiences the strong on-axis transverse ields. Electron motion in 
wakeields is well understood19, 20. he electrons oscillate, emitting synchrotron radiation at X-ray frequencies 
comparable to those generated by third generation light sources. Plasma wakeield generated X-ray pulses have 
been demonstrated experimentally and used in phase contrast imaging11.

Here we study intense laser pulses21 and charged particle beams propagating through plasma as drivers of 
wakeield acceleration. he enormous ponderomotive force of the laser pulse, or space charge of the particle 
beam, acts to expel the background plasma electrons, leaving a region of ions, resulting in charge separation. he 
restoring force from the stationary background ions acts to pull them back to their equilibrium position where 
they overshoot, forming a repeating accelerating structure with large amplitude longitudinal and transverse elec-
tric ields. Laser-driven wakeield experiments have demonstrated electric ields >100 GVm−1 over short dis-
tances, typically millimetres, accelerating electrons to over a GeV in energy1. Charged particle-driven wakeields 
achieve lower ields experimentally, but sustain them over longer distances, due in part to the higher energy 
stored in a particle beam. For example, a 42 GeV electron beam at the Stanford Linear Accelerator has been used 
to drive a wakeield2 that accelerated a portion of the 42 GeV electrons to 85 GeV over 0.85 m, representing an 
average experienced accelerating ield of 52 GVm−1.

In the novel scheme presented here, the advantages of both laser and particle-driven wakeields are utilised. 
A laser driven wakeield modulates a particle beam, enabling it to drive a wakeield. To drive a wakeield within 
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a plasma efectively, a drive beam needs to have a length comparable to the plasma wavelength. Conventional 
particle beams tend to be much longer than the plasma wavelength so must be conditioned in order to drive 
plasma wakeields22. Micro-bunching suitably conditions such beams. Micro-bunching is achieved by briely 
co-propagating a beam with the focusing and defocusing regions of a high amplitude laser-driven wakeield and 
then allowing the beam to propagate through vacuum. he beam electrons exposed to the focusing ields drit 
on-axis, forming the micro-bunches whilst those exposed to the defocusing ields are discarded. his general 
scheme is demonstrated, via two dimensional particle-in-cell simulations, on the σz = 7.68 mm long electron 
beam generated in the storage ring of the Diamond Light Source (referred to hereater as the Diamond beam).

Co-propagating a particle beam with a laser-driven wakeield throughout the micro-bunch forming process 
imparts too much transverse momentum to the electrons, causing them to overshoot the beam axis and disperse 
the would be micro-bunch. Introducing a vacuum gap (Fig. 1), whilst the micro-bunches form, results in a factor 
of ity enhancement to the on-axis number density ater two metres of propagation when compared to the single 
stage simulations.

he L = 1 mm irst stage has a high amplitude (E = 1.3 GVm−1) laser-driven wakeield co-propagating with the 
electron beam. he Diamond beam then micro-bunches over the 114 mm of vacuum, increasing its on-axis num-
ber density by a factor of ive to ne = 2 × 1019 m−3. he micro-bunches are equally spaced as a result of the peri-
odicity of the wakeield, which is crucial to driving a high amplitude wakeield. As each micro-bunch enters the 
second plasma stage it resonantly enhances the wakeield driven by the previous micro-bunch. he second plasma 
stage’s position is chosen such that the micro-bunches enter with maximum on-axis charge density (Fig. 2). he 

Figure 1. A conceptual design of the two stage plasma cell design. An ultra short laser pulse drives a high 
amplitude wakeield in the irst, short stage that exposes a charged particle beam to alternating focusing and 
defocusing ields along its length. Micro-bunches form as the beam propagates between the two stages. Upon 
entering the second stage the micro-bunches resonantly drive a wakeield. his wakeield provides the focusing 
ields that stimulate whole micro-bunch oscillations.

Figure 2. he micro-bunched Diamond beam. Between the yellow micro-bunches are the beam electrons that 
propagated with the de-focusing regions of the wakeield and are in the process of being transversely expelled. 
he disturbance to the beam in the right of the panes is due to the laser pulse.
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micro-bunching process increases the emittance of the beam from 2.84 nm rad to 7.13 nm rad. However, the large 
focusing ields (Er = 1.1 GVm−1) in this purely particle-driven wakeield keep the micro-bunches contained over 
the length of the 385 mm second plasma stage (Fig. 3).

he particle-driven wakeield stimulates strong transverse oscillations of the micro-bunches. In contrast to 
betatron oscillations that arise from electrons self-injected in the blow-out laser wakeield regime (comprising 
typically of tens of pico-coulombs of charge23 oscillating over millimetres), a nano-coulomb of charge in the 
micro-bunches oscillates over tens of centimetres. hese oscillations are about the axis of propagation, and as a 
consequence, generate radially polarised X-ray pulses. Radially polarised X-rays can overcome the difraction 
limit when strongly focused with use of a suitable aperture and have a longitudinal component to the electric ield 
at the focus24. hese properties could potentially allow for a unique single-atom probe.

X-ray pulses with brilliance comparable to those presented in this paper have been demonstrated experimen-
tally via self-injected electron beams of laser-driven wakeields25, 26. Self-injection is a highly non-linear process. 
Great strides have been made reducing the shot-to-shot variation of the charge, divergence, energy and pointing 

Figure 3. Coherent undulations of the simpliied Diamond beam in the second plasma stage. Electron number 
density of the beam electrons is seen form a top down view. he focusing ields of the wakeield bring the micro-
bunch electrons on-axis (a). he micro-bunch has maximum on-axis number density in (b) and is regarded as 
formed. he electrons overshoot the axis in (c). he bulk of the electrons are focused back on axis whilst some 
escape the focusing ield in (d). A second and third undulation is seen in (e,f).
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of the self-injected electron beams, however the variations still remain in the region of 10–15%27, far away from 
the level of control demonstrated by conventional accelerators. he scheme presented here simulates conven-
tionally generated electron beams within plasma wakeields in the quasi-linear regime to produce brilliant, low 
divergence, radially polarised trains of X-ray pulses providing a unique tool that, if experimentally realised, is 
believed to be highly reproducible.

he radiated spectrum of the undulating Diamond beam is calculated using a electron tracking code, RDTX28. 

he peak brilliance (Fig. 4) of the X-ray pulse is B̂ = 1.9 × 1023 photons/(mm2 mrad2 s 0.1% BW), a three order of 
magnitude enhancement to that produced by the L = 2 m, B = 0.79 T, Diamond U-27 undulator 

(B̂ = 1.8 × 1020 photons/(mm2 mrad2 s 0.1% BW)). Equally signiicant, the brilliance covers a wide range of photon 
energies, peaking at E = 59 keV, which is a factor of 30 higher than the U-27 produced X-ray pulse of E = 2 keV.

The train of electron bunches forms a train of X-ray pulses, each 40 µm long with a 200 µm spacing. 
Furthermore, the X-ray pulses have higher photon frequencies further back in the pulse train as they are gener-
ated from micro-bunches experiencing a higher amplitude wakeield. his unique feature ofers interesting diag-
nostic opportunities. he current world record for fastest image acquisition is 4.4 trillion frames per second29 and 
relies upon stroboscopically acquiring a series of illuminations of the target that are dispersed spatially according 
to their varying photon frequency. It is believed that such an imaging technique would be well suited to using the 
train of X-ray pulses in single-shot time-resolved studies. For those applications that require sub femtosecond 
duration X-ray pulses, the second stage can be used to accelerate a suitably conditioned short witness electron 
beam to 6 GeV30, limited by the transformer ratio of a plasma wakeield. his witness bunch can be injected into 
a conventional undulator to generate harder X-ray pulses with the required pulse duration.

An optimisation study was performed on this two-stage plasma device, culminating in a full inal simulation 
using the reined parameters. Scans over the ultra short laser driver’s parameters; plasma density, plasma stage 
length, vacuum gap length and beam width versus temperature were performed to maximise the amplitude of 
the wakeield. It was found that a wakeield of 1.3 GVm−1 driven by a modest laser pulse applied to the Diamond 
beam over 1 mm of propagation, followed by 114 mm of vacuum, fully micro-bunches the Diamond beam, which 
then drives a wakeield peaking at 2 GVm−1 in the 385 mm long second plasma stage.

A scan over the plasma density reveals that the maximum possible wakeield the modulated Diamond beam 
can drive is 4 GVm−1: above this, the wakefield is disrupted by the motion of the background plasma ions. 
Although the high electric ields return ater the disruption, closer examination reveals that there are no distinct 
wakeields in which to accelerate charged particles. Ion motion can be suppressed by decreasing the charge to 
mass ratio of the ion: for this simulation set Xenon was therefore chosen.

It has been demonstrated, via extensive, two dimensional computer simulations, that it is possi-
ble to micro-bunch the 3 GeV Diamond beam using a novel wakeield accelerator design. Once formed, the 
micro-bunches maintain their structure via their self-driven wakeield and undergo entire micro-bunch oscilla-
tions, generating brilliant, radially polarised X-ray pulses. hese pulses have a three order of magnitude enhance-
ment in peak brilliance and a factor of 30 enhancement in photon energy when compared to those generated 
from conventional magnetic insertion devices. he new two-stage plasma scheme could be used to accelerate a 
witness electron beam to greater energies than the drive beam, allowing current light sources to generate harder 
X-rays from the existing infrastructure. he use of higher plasma densities with shorter initial bunches promises 
even higher peak brilliance gains in the future. In summary, a two-stage plasma scheme allows existing light 
source facilities to greatly enhance both the brilliance and energy of X-ray pulses with a single insertion device, 
ofering a diagnostic with unique temporal properties allowing for ultra-fast studies.

Methods
Designing the two plasma stage beam line required a parameter scan over plasma density of both stages, and the 
length of the irst stage, both of which were run in a modiied version of the particle-in-cell code EPOCH31, 32  
Simulations were initially designed with the longer and higher emittance electron beam form the Diamond 
booster synchrotron. he aim of the density scan was to identify the density at which the largest amplitude 
wakeield could be driven by the micro-bunched Diamond booster beam without ion motion disruption. To 

Figure 4. he peak brilliance of various third generation light sources compared to the X-ray pulse by the 
simulated Diamond storage ring beam. he lower emittance of 2.84 nm rad and shorter beam length of 7.68 mm 
of the storage ring beam enables the generation of X-ray pulses with photon energies peaking at 59 keV.
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model a micro-bunched beam a tri-gaussian envelope was assumed with a sinusoidal modulation along its length, 
described by equation 1:

π σσ

= −
σ σ− −N x

N
e e k z( )

(2 )
(1 cos( )/2)

(1)
b

z y

z y
p3/2 2

/2 /2z y
2 2 2 2

Here, σz is the beam length, σy is the beam width, N is the number of beam electrons and kp is the plasma wave-
number. he wakeield amplitude as a function of distance from the head of the Diamond booster beam (+3σz) 
is plotted in supplementary igure M0. he density scan identiied a density of interest ne = 2.8 × 1022 m−3. At this 
density a wakeield is driven along the length of the Diamond booster beam peaking at 2 GVm−1 toward the tail. 
he artiicial micro-bunch train simulated is signiicantly closer to ideal than the train formed in the inal simula-
tion, which achieves a wakeield amplitude of E = 1.1 GVm−1. he parameters for the density scan are summarised 
in Tables 1 and 2.

The aim of the plasma stage length scan was to identify the co-propagation length needed between the 
Diamond booster beam and the laser-driven wakefield that results in the formation of low emittance 
micro-bunches ater further propagation through vacuum. A laser pulse that drives a Ezmax = 1.3 GVm−1 in the 
plasma density of interest is summarised in Table 3. Resolving the laser wavelength within a particle-in-cell sim-
ulation requires approximately two orders of magnitude more computational resources to compute. As such, a 
way to model the laser pulse was required. An ultra-short electron beam was picked that drove a Ezmax = 1.3 GVm−1 
wakeield and used to model the laser pulse. For this scan a lower energy E = 300 MeV Diamond booster beam 
was used to further save on runtime. his ultra-short electron beam led the core of the Diamond booster beam by 
+1σz, driving a wakeield in the plasma which co-propagates with the trailing Diamond booster beam. he 
Diamond booster beam then leaves the irst plasma stage and forms into micro-bunches as it propagates through 
vacuum. The distance from the first stage to the point at which the on-axis number density of the forming 
micro-bunches is maximised is said to be the ‘focal point’ of the irst stage. he results are summarised in Table 4. 

E (GeV) 3

∆E/E 0.007

 (nm rad) 140

σz (mm) 26

σr (m) κ2 / p

N 1.25 × 1010

Table 1. Diamond beam parameters. E is the electron energy, ∆E/E is the longitudinal energy spread,  is the 
emittance, σz is the beam length, σr is the beam radius and N is the number of electrons.

Technical Parameters

nz (cells) 150

ny (cells) 150

zmax − zmin (m) 2λp

ymax − ymin (m) 2λp

tend (s) 6σz/c

ppc 4

Plasma Parameters

ne (m−3) 0.2775 × 1020 × 2m

m 5:15

Ion Xe+

Table 2. Technical and plasma parameters. nz is the grid cell length, ny is the grid cell width, zmax − zmin is the 
grid length, ymax − ymin is the grid width, tend is the run time, ppc is the particles per cell, ne is the electron number 
density, m is the variable scanned over and Ion is the plasma ion species.

E (J) 0.5

τ (fs) 50

σr (µm) κ2 / p

λ (µm) 1.06

P (TW) 10

Table 3. Laser parameters. E is the laser pulse energy, τ is the beam length, σr the beam width, λ is the laser 
wavelength and P is the laser peak power.

http://M0
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Further simulations set the irst plasma cell length to L1st = 1 mm, yielding micro-bunches with emittance of 
= .7 13nmmrad  — an acceptable increase of a factor 2.5.

A full-scale, 2D simulation was then performed of the laser pulse and Diamond booster beam propagating 
through the irst stage, vacuum, and into the second plasma stage. his simulation fully resolved the plasma 
wavelength capturing the physics neglected in the stage-length scan (Rayleigh length, dephasing length, etc.). 
Parameters for this simulation are found in Tables 1, 3 and 5. A further simulation was performed applying the 
two-stage scheme to the Diamond Light Source’s storage ring electron beam. he parameters are the same as 
those found in Table 5, but with a lower emittance of 2.84 nm rad and shorter beam length of 7.68 mm.

To calculate the radiation spectrum emitted by the wiggling Diamond beam the code RDTX was used. 
Parameters of a representative micro-bunch were taken from the full inal simulation at the entry point to the 
second plasma stage. his bunch was simulated as co-propagating with a wakeield of amplitude E = 1.1 GVm−1 
found in the second stage as simulated in EPOCH. For a single particle the distribution in frequency and angle of 
energy radiated by an accelerated charge is given by:

∫ω

ω

π
β

Ω
= × × ω

−∞

∞
− ⋅

ˆ ˆ
ˆd I

d d

e

c
e ts s

4
( ) d ,

(2)
i t t cs r

2 2 2

2
( ( )/ )

2

where ŝ is in the direction of observation, ω is the radiation frequency Ω is the angle of observation from the axis 
of propagation, I is energy, r is electron position, β = v/c is the normalised velocity and other symbols have their 
usual meaning.

he RDTX code calculates the spectral intensity of radiation emitted by a number NP of accelerating point 
charges33, with the jth particle at position rj, and with normalized velocity βj = vj/c, in the far-ield, as:

∫ ∑
ω

µ

π

ω β
Ω
= × .
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d d
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2
0

2
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2
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( / )

2
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Radiated Spectrum of the Oscillating MicroǦbunchǤ he peak brilliance34 is simply the number of 
photons per pulse, per unit volume in six-dimensional phase space, in a frequency window of ±0.0005 ω and is 
given by:

π τ

=B̂
N

(2 )
,

(4)

B

x y E
3  

where NB is the number of photons per pulse per 0.1% band width, x  and y  are the transverse rms emittance of 
the X-ray pulse, E is the fractional energy spread of the X-ray pulse and τ is the length of the X-ray pulse. his 
calculation can be broken down by irst calculating the phase space volume, and then the number of photons per 
0.1% frequency window.

Cell length (mm) Focal point (mm)

2.5 65.5

3.0 57.0

3.5 48.5

4.0 42.0

4.5 37.5

5.0 33.0

Table 4. First cell focal point.

Technical Parameters

nz (cells) 1,200,000

ny (cells) 78

zmax − zmin (mm) 40

ymax − ymin (mm) 2.6 × λp

tend (s) 1.666 × 10−9

ppc 4

Plasma Parameters

ne (m−3) 2.84 × 1022

Ion Xe+

Table 5. Full inal simulation parameters. nz is the grid cell length, ny is the grid cell width, zmax − zmin is the grid 
length, ymax − ymin is the grid width, tend is the run time, ppc is the particles per cell and ne is the electron number 
density.
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Six Dimensional Phase Space VolumeǤ Figure 5 shows the output of the RDTX code for the Diamond 
micro-bunch simulation, which is the energy deposited on the virtual spectrometer, as a function of angle from 
the propagation axis, θ, and the frequency of radiation, ω. he igure shows that the majority of the energy depos-
ited is close to the axis (θ < 0.001 rads) and the spectrum is that of a synchrotron, i.e. it lacks the narrow peaks 
emitted by an undulator. The left pane is integrated over the frequency of the photons and gives the 
root-mean-squared divergence of the photons. he bottom pane is integrated over angle of emittance and gives 
the spectrum of the radiation. he critical frequency of the synchrotron-like spectrum is ωcrit = 4.5 × 1019 rad s−1 
with a FWHM frequency spread of ∆ω = 2.1 × 1020 rad s−1. The longitudinal emittance is found to be 

 = ∆ = .E E/ 2 81E .
he transverse size of the particle beam is used as an approximation to the X-ray transverse beam size and is 

displayed, as a function of time, in Fig. 6. he rms transverse beam size was found to be 〈x〉 = 〈y〉 = 23 µm. Given 
the quantities above, the six-dimensional phase space, multiplied by (2π)3τ to complete the denominator of equa-
tion 4, is found to be π τ = . ×

−(2 ) 4 71 10 m rad sx y E
3 28 2 2   .

he number of photons per 0.1% bandwidth is found by taking the solid angle integrated spectrum and per-
forming a moving point integration over the frequency window ω − ∆ω to ω + ∆ω, where ∆ω is 0.005. he peak 
brilliance is then this quantity divided by the calculated phase space volume and the beam length, τ.

he code RDTX calculates the spectral intensity, 
ω Ω

d I

d d

2

, emitted by accelerating charge. To calculate the bril-

liance from this quantity one irst inds the number of photons per relative bandwidth per steradian,

Figure 5. he angularly resolved spectrum emitted by the representative Diamond micro-bunch (top right 
pane). he let pane is integrated over the frequency of the photons and gives the root-mean-squared divergence 
of the photons. he bottom pane is integrated over solid angle and gives the spectrum of the radiation.

Figure 6. he transverse and longitudinal root-mean-squared beam size of the Diamond micro-bunch in the 
second plasma stage. he initial transverse size compresses signiicantly during the irst betatron oscillation 
before undergoing smaller amplitude oscillations. he length of the micro-bunch decreases throughout the 
simulation as the head of the bunch experiences the decelerating regions of the wakeield and the rear the 
accelerating.
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ω

ωΩ
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Ω
=

Ω
ω

ω
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d N

d d

d N

d
,

(5)
d

2 2 2

where N is the number of photons and ħ is Planck’s constant. Convention states that peak brilliance is given as the 
number of photons per 0.1% bandwidth, i.e. =

.
ω

ω

10
d d

d

3

(0 1%BW)d
. Furthermore peak brilliance is measured in mil-

liradians squared, so =
πθΩ

10
d

d

d

d

6

( )2
. Substituting these unit conversions into equation 5 yields,

πθ ω.
=

Ω
.

d N

d BW d

d I

d d(0 1% )

1

10 (6)

2

2 9

2



his quantity is the number of photons per 0.1% bandwidth per milliradian squared. To ind the peak brilliance 
one has to divide by the intrinsic source properties of the electron beam generating the pulse, the duration, τ, and 
the source area, σr

2, measured in millimetres squared (this convention adds a factor of 106 to the co-eicient to the 
right have side of equation 7).

σ τ ω




 .






=

Ω
B̂

d I

d d

photons

s mm mrad 0 1%BW

1

10 (7)r
2 2 15 2

2

Figure 4 plots the peak brilliance of the single representative micro-bunch against existing third generation light 
sources. he peak brilliance of the micro-bunch is found using equation 7. here is a three order of magnitude 
enhancement to peak brilliance when compared to the third generation light sources which extends well into the 
hard X-ray regime. Broadband emission is seen and there are no characteristic narrow energy bands, as would be 
expected from an undulator. In contrast to betatron oscillations that arise from electrons injected in the blow-out 
laser wakeield regime (comprising typically of tens of pico-coulombs of charge oscillating over millimetres), a 
nano-coulomb of charge in the micro-bunches undergo these coherent oscillations over tens of centimetres. Note 
that, since the peak brilliance of a synchrotron-like source is proportional to the charge of the beam and inversely 
proportional to the length of the beam, the peak brilliance of the micro-bunch train will be comparable to the 
single representative micro-bunch.
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