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ORBITS OF PRIMITIVE k-HOMOGENOUS GROUPS
ON (n — k)-PARTITIONS WITH APPLICATIONS TO
SEMIGROUPS
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ABSTRACT. The purpose of this paper is to advance our knowledge
of two of the most classic and popular topics in transformation
semigroups: automorphisms and the size of minimal generating
sets. In order to do this, we examine the k-homogeneous permu-
tation groups (those which act transitively on the subsets of size k
of their domain X) where |X| = n and k < n/2. In the process we
obtain, for k-homogeneous groups, results on the minimum num-
bers of generators, the numbers of orbits on k-partitions, and their
normalizers in the symmetric group. As a sample result, we show
that every finite 2-homogeneous group is 2-generated.
Underlying our investigations on automorphisms of transforma-

tion semigroups is the following conjecture:

if a transformation semigroup S contains singular

maps, and its group of units is a primitive group

G of permutations, then its automorphisms are all

induced (under conjugation) by the elements in the

normalizer of G in the symmetric group.
For the special case that S contains all constant maps, this con-
jecture was proved correct, more than 40 years ago. In this paper,
we prove that the conjecture also holds for the case of semigroups
containing a map of rank 3 or less. The effort in establishing this
result, suggests that further improvements might be a great chal-
lenge. This problem and several additional ones on permutation
groups, transformation semigroups and computational algebra, are
proposed in the end of the paper.

Date: 17 December 2015

Key words and phrases: Transformation semigroups, regular semigroups,ji
permutation groups, primitive groups, homogeneous groups, rank of
semigroups, automorphisms of semigroups.

2010 Mathematics Subject Classification: 20B30, 20B35, 20B15, 20B40,
20M20, 20M17.

Corresponding author: Joao Araijo, jjaraujo@fc.ul.pt

1. INTRODUCTION

1


https://core.ac.uk/display/84589317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 JOAO ARAUJO, WOLFRAM BENTZ, AND PETER J. CAMERON

Let X ={1,...,n}. Our context is permutation groups (subgroups
of the symmetric group S,) and transformation semigroups (subsemi-
groups of the full transformation monoid T,) over the set X.

The rank of a transformation ¢t € T, is the size of its image, and
is denoted by rank(t). The kernel of ¢ is the partition of X in which
two points lie in the same part if and only if they have the same image
under t.

We say that a partition P = (Ay, ..., Ax) of a set X, where the parts
are listed in decreasing order of cardinality, is of type (|A1],...,|Ax|)
and thus the type of P is itself a partition of the integer n. A parti-
tion having k parts will be called a k-partition, by analogy with the
terminology k-subset.

Given sets A, B C T,, and a transformation ¢ € T,, we denote by
(A) the semigroup generated by A. We will abuse notation by writing
(A, B) rather than (AU B), and (A, t), rather than (AU {t}).

Our group-theoretic investigations concern the minimal generating
sets of permutation groups G < S,, and their orbits on (n—k)-partitions,|j
for k < n/2. For example, in the case k = 1, we examine the orbits of
G on (n — 1)-partitions, which is equivalent to the study of the orbits
of G on 2-sets (a slight variation of the key concept of orbitals). Our
main results in this section fit the following template (with m and m’
appearing in Tables 2-6):

Theorem template. Let k < 5 and let G < S, be a primitive k-
homogenous group.

e G has at most m orbits on the set of (n — k)-partitions;
e the smallest number of elements needed to generate G is m'.

In particular, we show that a 2-homogeneous group is 2-generated.
This result seems to have been unnoticed before. For example, the
computer algebra system GAP [44] provides 2-element generating sets
for these groups in only about one-third of all cases.

In Theorem 3.2, we determine the 3-homogeneous groups whose or-
bits on (n — 3)-partitions coincide with those of their normalizers. Our
list is complete except for one unresolved family.

These preliminary results on groups are then used to extract infor-
mation about transformation semigroups. McAlister and Levi proved
the following theorems.

Theorem 1.1. [80] Let G < S,, and t € T, be any map of rank n — 1.
Then (G, t) generates all rank n — 1 transformations in T, if and only
if the group G has only one orbit on the (n— 1)-partitions of {1,...,n}
(equivalently, G is 2-homogeneous).
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Theorem 1.2. [60] Let A, < G < S, and lett € T, \ S,. Then the
automorphism group of (G,t) is isomorphic to S,.

We generalize these results as follows.

Theorem 1.3. Let t be a singular map in T, and suppose that t has
kernel type (l1, ..., 1), with k > n/2; let G be a group having only one
orbit on partitions of this type.

(a) The automorphisms of (t,G) are those induced under conjuga-
tion by the elements of the normalizer of G in Sy,:

Aut((t,G)) = Ns, (G);

(b) If k <n—2, then (G,1) is generated by 3 elements.

(c) Let A be a set of rank k maps such that (A, G) contains all maps
of rank at most k and A has minimum size among the sets with
that property. Then |A| is given in Table 1.

’ rank ‘ partition type ‘ |A| ‘
n—1 (2,1,...,1) 1
n—2 2,2,1,...,1) | 2
3,1,...,1) | O(n)
n—3 (4,1,...,1) | 144

(3,2,1,...,1) | 5
(2,2,2,1,...,1)| 3

n— 4 G.1,....1) | 15
other 5
k(n/2<k<mn-5) any p(k)

TABLE 1. Generating all maps of rank &

Table 1 should be read as follows: if a group G has, for example,
one orbit on partitions of type (4,1,...,1), then there is a set A of size
144 such that (G, A) contains all maps of rank at most n — 3, but no
smaller set will suffice.

In Theorem 1.3, we require the group of units to be transitive on
partitions with the same type as the kernel of the singular map ¢. In
the next theorem this condition is replaced by the weaker requirement
that G is | Xt|-homogeneous, i.e., transitive on subsets with cardinality
equal to the rank of ¢.
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Here, and elsewhere in the paper, the notation PXL(2, ¢) means the
3-transitive subgroup of PT'L(2,¢q) (for ¢ an odd prime power square)
containing PSL(2, ¢) as a subgroup of index 2, different from PGL(2, ¢);
that is, it is generated by PSL(2, ¢) and an element which is the product
of a diagonal and a field automorphism of order 2. (When ¢ =9, this

group is better known as Mg, the point stabiliser in the Mathieu group
M11 )

Theorem 1.4. Let G be a primitive group with just one orbit on (n—k)-
sets, where 1 < k <n/2. Let t € T,, be a rank (n — k) map.

(a) Aut ((G, 1)) = N, ((G, 1)).
(b) For k > 3, the list of 3-homogeneous groups that satisfy

Aut ((G,t)) = Ng, (G)

is the following:
(i) G = Ng, (G), that is,

e 5,.

e PI'L(2,q) for k = 3.

e AGL(d,2) for k = 3.

o AT'L(1,8), My (k = 4), My (degree 12, k = 3),
M12 (k’ = 5), 24 : A7, M22 2 (k = 3), Mgg (k = 4),
My, (k=15), and AT'L(1,32) (k=4).

(i) G = Ay;

(i) G = AGL(1,8), PGL(2,8), PGL(2,9), Mo, PSL(2,1
My, PXL(2,25), or PX1(2,49), with k = 3 and A
(4,1,...,1).

The list is complete with the possible exception of the groups

PXL(2,q) for ¢ > 169.

(c) Let A C T, be a set of rank n—k maps such that (G, A) generates
all maps of rank at most n — k, and suppose A has minimum
size among the sets with that property. Then the size of A is
bounded by the values in Table 2.

1),

As said, the two results above are just sample theorems. For more
detailed results we refer the reader to the sections below.

The results above on automorphisms rely on the fact that the semi-
groups under consideration contain all constant maps. This is in line
with the overwhelming majority of past papers on automorphisms of
transformation semigroups. Our next theorem, however, goes a step
beyond this requirement by providing a result on automorphisms of
semigroups containing a primitive group of permutations, but possibly
without constant maps.
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Minimum number of
Rank Sample k-homogeneous groups
I |A] attaining the bound for |A| generators for a primitive
k-homogeneous group
1 . C'log
n—1 % Cp, Dp ( n odd prime) \/%
n—2 O(n?) Example 2.1 2
n—3 O(n?) PSL(2,q), PTL(2,q) 2
n—4 12160 PI'L(2,32) (n = 33) 2
n—>5 a4 Moy (n = 24) 2
n—k(k>5)| p(k) Sn, An 2
TABLE 2. Number of rank n — k& maps needed to

together with a k-homogeneous group G generate all the
maps of rank not larger than n — k.

Theorem 1.5. Let S < T, be a semigroup with primitive group of
units G < S, If there exists in S a map of rank 3 or less, then all the
automorphisms of S are induced under conjugation by permutations of
the normalizer of G in S,,.

The semigroup-theoretic content of the paper belongs to the general
area of investigating how recent results on groups, chiefly the classifica-
tion of finite simple groups and detailed study of the structure of almost
simple groups, can help the study of semigroups. (For other papers on
this line of research, see for example [1, 4, 5, 6, 7, 9, 10, 11, 12, 13, 23,
25, 26, 61, 64, 65, 80, 82, 92| and the references therein.) The typical
object in this field is a semigroup generated by a set of non-invertible
transformations A C T, \ S,, and a group of permutations G contained
in S,. In this paper we are mainly concerned with the description
of automorphisms and minimal generating sets, for semigroups having
special given group of units.

The rank of a semigroup S, denoted by rank .S, is the least number of
elements in S needed to generate S (not to be confused with the rank
of an element of S). It is well-known that a finite full transformation
semigroup, on at least 3 points, has rank 3, while a finite full partial
transformation semigroup, on at least 3 points, has rank 4 (see [50,
Exercises 1.9.7 and 1.9.13]). The problem of determining the minimum
number of generators of a semigroup is classical, and has been studied
extensively; see, for example, [3, 6, 24, 27, 42, 51, 56, 66, 87| and
the references therein. Given the importance of idempotent generated
semigroups illustrated by the Erdos/Howie famous twin results (see
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38, 49] and also |2, 22]) the related notion of idempotent rank appeared
as natural and has also been widely investigated; the same can be said
about the concepts of relative rank and nilpotent rank; see [21, 28, 36,
40, 46, 47, 48, 63]. One of the goals of this paper is to contribute to
this line of research.

Another classic topic in semigroup theory is the description of the
automorphisms of semigroups. After the pioneer work of Schreier [89]
and Mal’cev [76], proving that the group of automorphisms of T,, is
isomorphic to S, a long sequence of new results followed (for example,
(7, 8, 13, 14, 15, 16, 17, 18, 19, 20, 58, 59, 60, 67, 75, 90, 91, 92,
93] and the references therein). In addition to the general interest of
studying automorphisms of mathematical structures, the description
of automorphisms of semigroups turned out to be a key ingredient in
Plotkin’s universal algebraic geometry [84] and [30, 31, 32, 39, 57, 77,
78, 79, 85, 86.

Here, we use advances in permutation group theory during the last
couple of decades to contribute to this line of research, by finding the
automorphisms of semigroups with given group of units.

An outline of the contents of the paper follows.

In Section 2 we prove the main theorems about the minimum num-
ber of generators of primitive groups, and we also give estimates on the
number of orbits of primitive groups on (n — k)-partitions, for k& > n/2.
In Section 3 we tackle the problem of independent interest of classi-
fying the permutation groups in which all orbits on (n — k)-partitions
are invariant under the normalizer. In Section 4 we apply the results
proved in the previous sections to describe automorphisms and ranks of
semigroups in which its group of units has just one orbit on the kernel
type of t. In Section 5 we consider similar problems, but for semigroups
whose group of units has just one orbit on the image of t. Section 6
contains some comments on the normalizers of 2-homogeneous or prim-
itive groups. Section 7 contains the description of the automorphisms
of a semigroup with primitive group of units and a map of rank at most
3.

The paper ends with a section of open problems.

2. GROUP THEORY

Let 1 < k <n/2, and G a k-homogeneous group. The aim of this
section is to calculate exact or asymptotic bounds for the numbers of
orbits of G on the set of (n—k)-partitions, and for the minimal numbers
of generators of G.
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The case in which least can be said is k = 1. The rank r(G) of
a transitive permutation group G (acting on X = {1,...,n}) is the
number of G-orbits on ordered pairs from {1,...,n}. To handle the
case of k = 1, we need a slightly different parameter, the number ny(G)
of G-orbits on the set of 2-subsets of {1,...,n}. Clearly

(r(@) = 1)/2 <na(G) <r(G) - 1;

the lower bound holds when G has odd order (since then no pair of
points can be interchanged by an element of GG), and the upper bound
when all the orbitals of G are self-paired. Note that r(G) < n, with
equality if and only if G is regular. In particular, a primitive group G
has 7(G) = n if and only if n is prime and G is cyclic of order n. We
thus see that ny(G) < n—1 for transitive groups G; equality is realised
for an elementary abelian 2-group acting regularly, but for primitive
groups of degree greater than 2 we have ny(G) < (n — 1)/2, with
equality only for the cyclic and dihedral groups of odd prime degree.
This follows because if G is primitive but not cyclic or dihedral of prime
degree, then all non-trivial orbits of a point stabiliser have size at least
3.

Theorem 2.1. Let G < S, be a 1-homogeneous (that is, transitive)
permutation group. Then

(a) G has na(G) orbits on the set of (n — 1)-partitions;
(b) the smallest number of elements needed to generate G is at most

Cn
Viogn

Clogn
Vloglogn

where C is a universal constant.

if G is imprimitive,

if G is primative,

Proof. All (n — 1)-partitions have one part with two elements while all
other parts are singletons. Therefore the group G has as many orbits
on the set of (n — 1)-partitions as on the set of 2-sets.

Mclver and Neumann [81] showed that every subgroup of S,, can
be generated by |[n/2] elements if n # 3, and by 2 if n = 3. This
bound is best possible for arbitrary subgroups, but for transitive or
primitive subgroups has been improved in [71, 72| to the statements in
the theorem. Moreover, these bounds are essentially best possible. [

Next, we are going to prove that the minimum number of generators
of any 2-homogeneous finite group is 2. (It is worth observing that we
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could not find this fact in the literature; we are grateful to Colva Roney-
Dougal and Andrea Lucchini for independently confirming it.) The
proof uses the following result proved by Lucchini and Menegazzo [70].
Here d(G) denotes the least number of elements needed to generate G.

Theorem 2.2 ([70]). Let G be a non-cyclic finite group having a unique
mimimal normal subgroup M. Then d(G) = max{2,d(G/M)}.

Corollary 2.3. If G is a finite 2-homogeneous permutation group, then

d(G) = 2.

Proof. Observe that any 2-homogeneous group has a unique minimal
normal subgroup, which is either elementary abelian or simple, by
Burnside’s theorem for 2-transitive groups [33, Theorem 4.3].

If G is almost simple, then it satisfies the conditions of Theorem 2.3,
with M being the simple socle. Since, in the case of socle PSL(d, q),
the group G contains no graph automorphisms, we have d(G/M) < 2
in all cases, so d(G) = 2.

If G is affine, its unique minimal normal subgroup M is elementary
abelian, and the quotient H is a linear group; the relevant groups can
be found in [33, 37]. If the linear group has normal subgroup SL(d, ¢),
Sp(d,q) (d > 1) or Gs(q), then another application of Theorem 2.2
shows that d(H) = 2, whence d(G) = 2. For 1-dimensional semi-
affine groups, the linear group is metacyclic, and the result is clear.
The finitely many cases remaining can be dealt with case by case: in
each case, explicit generators for the linear group are known, and where
more than two are given it suffices to show that the corresponding linear
group can be generated by two elements. The groups (apart from the
sharply 2-transitive group of degree 592 with linear group SL(2, 5) x Cyy,
which is clearly 2-generated), are within reach of GAP; the computation
can be speeded up by taking the first potential generator to belong to
a set of conjugacy class representatives. U

Regarding the number of orbits on (n — k)-partitions, we start with
large values of k.

Theorem 2.4. Suppose that G is a permutation group of degree n
which is k-homogeneous, where either 6 < k <n/2, or k =5, n > 25,
ork=4,n>34. Then:
(a) G has p(k) orbits on the set of (n — k)-partitions, where p is the
partition function,
(b) there is one orbit on partitions of each possible type.

Proof. 1t follows from the Classification of Finite Simple Groups and
known results about 4- and 5-homogeneous groups that any G under
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the assumptions of the theorem is S, or A,. The second assertion is
a well-known fact about A, and S,,. For the first, given a partition
of {1,...,n} with n — k parts, for & < n/2, subtracting one from the
size of each part gives a partition of k after discarding values of 0.
Conversely, every partition of k arises in this way. The result now
follows directly from part (b). O

The numbers of orbits of the finitely many k-homogeneous groups
other than symmetric or alternating groups for £ = 5 and k = 4 can
be computed.

Theorem 2.5. Let G be a k-homogeneous group of degree n (where
k=4 orb5 and n > 2k), other than S, or A,. Then the number of
orbits of G on (n — k)-partitions are given in Tables 3 and 4 below.

Remark We are grateful to Robin Chapman for independent con-
firmation of the values for PI'L(2, 32) in Table 3.

Degree 9 9 11 12 23 24 33
Group PSL(2,8) | PTL(2,8) | M11 | Mi2 | Mas | M2y | PT'L(2,32)
5,1,...) 1 1 2 1 2 1 3
(4,2,1,...) 4 2 3 2 2 112
(3,3,1,...) 4 2 2 2 3 2 82
3,2,2,1,...) 12 4 8 3 11 3 2772
(2,2,2,2,1,...) 5 3 6 5 18 7 9191
Total 26 12 21 13 38 15 12160

TABLE 3. Orbits of 4-homogeneous groups on (n — 4)-partitions

The situation is very different for the 2- and 3-homogeneous groups,
to which we now turn. The main difference is that there are infinitely
many such groups (apart from the symmetric and alternating groups),
so there is no reason why the number of orbits on (n — k)-partitions
should be bounded (and indeed it is not; it can grow as a polynomial
in n, whose degree depends on k and on the partition considered).

Theorem 2.6. Let G be a 2-homogeneous permutation group on the
set {1,...,n}. Then the number of G-orbits on the set of partitions
of type (3,1,...,1) is O(n), and the number of orbits on the set of
partitions of type (2,2,1,...,1) is O(n?).

Proof. Since each 2-set lies in n — 2 sets of size 3, G has at most n — 2
orbits on 3-sets. Also, for any 2-set, there are at most (";2) 2-sets
disjoint from it, so there are at most this many orbits on (2,2,1,...,1)

partitions. O
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Degree 12| 24
Group My | Moy
(6,1,...) 2 2
(5,2,1,...) 2 3
(4,3,1,...) 2 3
(4,2,2,1,...) 5 8
(3,3,2,1,...) 5 8
(3,2,2,2,1,...) 8| 22
(2,2,2,2,2,1,...) 6] 31
Total 30| 77

TABLE 4. Orbits of 5-homogeneous groups on (n — 5)-partitions

The bound on the number of orbits is best possible, as the next
example shows.

Example 2.1. Let p be a prime congruent to —1 (mod 12). Let G
be the group of order p(p — 1)/2 consisting of all maps of the field of
integers mod p of the form = +— ax + b, where a is a non-zero square.
Its normalizer is the group of order p(p — 1), consisting of all maps of
the above form for arbitrary non-zero a.

The group G is 2-homogeneous. The (p — 2)-partitions have type
(3,1,...,1) or (2,2,1,...,1). Since |G| is coprime to 6, no element
of G except the identity fixes such a partition, and so the number of
orbits is

&) +3(%)  3p*—11p+ 10

p(p—1)/2 12 '
Of these, (p—2)/3 are on partitions of type (3,1,...,1), and (p—2)(p—
3)/4 are on partitions of type (2,2,1,...,1).

Using arguments like those in the proof of Theorem 2.6, we may
obtain a corresponding theorem for 3-homogeneous groups.

Theorem 2.7. Let G be a 3-homogeneous permutation group on the set
{1,...,n}. Then the number of G-orbits on the set of (n—3)-partitions
is O(n) for partitions of type (4,1,...,1), O(n?) for partitions of type
(3,2,1,...,1), and O(n®) for partitions of type (2,2,2,1,...,1).

In fact we can say more. From CFSG, we know that, if G is 3-
homogeneous, then one of the following holds:
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e PSL(2,q) < G < PI'L(2,q), for some prime power ¢;
e G = AGL(d,2) for some d;
e (G is one of finitely many exceptions.

In the first case, the order of G is O(n?), so the number of orbits on
partitions of type (2,2,2,1,...,1) will be Q(n?). However, in the other
two cases, the number of orbits is bounded by a constant, independent
of d in the second case. This is clear for the third case, so consider the
second. Suppose we have an (n — 3)-partition of {1,...,n}. Then the
set of points lying in parts of size greater than 1 has cardinality at most
6, and so these points lie in an affine subspace of dimension at most 5.
The group is transitive on affine subspaces of any given dimension, and
the stabiliser of such a subspace has only a bounded number of orbits
on its subsets of size at most 6. The number of orbits for this type
can be calculated by looking at AGL(5,2). We find that the number of
orbits on AGL(d, 2) on (n — 3)-partitions is 12 for d > 5. The numbers
of orbits on partitions of the different types is given in Table 5, with
the same conventions as earlier.

Degree 24 (d > 5) 16 8
Group AGL(d,2) | AGL(4,2) | AGL(3,2)
(4,1,...) 2 2 2
(3,2,1,...) 3 3 2
(2,2,2,1,...) 7 6 3
Total 12 11 7

TABLE 5. Orbits of AGL(d,2) on (n — 3)-partitions

Similar data can be produced for any finite number of the other
3-homogeneous groups. Table 6 gives a selection of 3-homogeneous
groups of degree n > 7, which includes all the sporadic examples, all
4-homogeneous groups, and all examples with n < 10 apart from S,
and A,,.

3. ORBITS OF NORMALIZERS

In this section we will be interested in the following questions:

(a) Given an orbit of the k-homogeneous group G on (n — k)-
partitions, what is the subgroup of the normalizer of G, in .S,
which fixes that orbit?



12 JOAO ARAUJO, WOLFRAM BENTZ, AND PETER J. CAMERON

| Degree | Group | (4,1,...)](3,2,1,...) ] (2,2,2,1,...) | Total |
8| AGL(1,8) 2 10 1] 23
ATL(1,8) 2 4 50 11
PSL(2,7) 3 4 7| 14
PGL(2,7) 2 3 50 10

9| PSL(2,8) 1 4 71 12
PI'L(2,8) 1 2 3 6
10 | PGL(2,9) 2 5 2] 19
Mo 2 5 9 14
PI'L(2,9) 2 4 8| 14

il M, 1 2 4 7
12 M, 2 4 6] 12
M, 1 1 3 5

16| 2¢: 4, 2 4 0] 16
22 My 2 5 1] 18
Moy : 2 2 4 10| 16

23| My 1 2 3 6
24| My, 1 1 2 4
33 | PTL(2, 32) 1 16 127 | 144

TABLE 6. Orbits of 3-homogeneous groups on (n — 3)-partitions

(b) In particular, for which groups is it the case that every orbit on
(n — k)-partitions is invariant under the normalizer, that is, the
action of Ng, (G)/G on the set of orbits is trivial?

Note that the questions are well-posed, since Ng, (G)/G acts on the set
of orbits.

If G is an alternating group, then each of its orbits is stabilised by
the symmetric group. For k > 4, any other k-homogeneous group is
equal to its normalizer, except for PGL(2,8) with n = 9. This group
is b-homogeneous, and so has the same orbits on partitions of type
(5,1,1,1,1) as its normalizer. Computation shows that this is not the
case for other types of 5-partitions. So we have the following theorem.

Theorem 3.1. Let k > 4 and n > 2k, and let G be a k-homogeneous
group of degree n. Then G has the same orbits on (n — k)-partitions of
any given type as its normalizer, except in the case of PGL(2,8), for
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which this assertion holds for partitions of type (5,1,1,1,1) but for no
other types.

We next consider the case k = 3. For a partition type A, we say that
the pair (G, \) is closed if each orbit of G on A-partitions is invariant
under Ng, (G). Note that there are three types of partition to be con-
sidered, namely (4,1,...,1), (3,2,1,...,1), and (2,2,2,1,...,1). Note
also that (G, \) is trivially closed if G = Ng, (G).

The main theorem of this section is the following (recall the notation
PXL(2, q) defined before Theorem 1.4).

Theorem 3.2. Suppose that G is a 3-homogeneous subgroup of Sy,
and X\ a type of (n — 3)-partitions. Then (G, \) is closed if one of the
following holds:

(CL) G = NSn (G)7

(b) G = A,

(c) N = (4,1,...,1) and G = AGL(1,8), PGL(2,8), PGL(2,9),

MlO; PSL(Q, 11), MQQ, PXL(2,25), or PXL(2,49)

No other 3-homogeneous groups appear in a closed pair, with the pos-
sible exception of PXL(2,q) for ¢ > 169.

This theorem answers question (b) at the beginning of this section,
with the exception of the groups PXL(2, q) referred to in its statement.
Concerning question (a) the situation may be much more complicated
as the following example shows.

Example 3.1. Let n = 17, and let G be the 3-homogeneous group
PSL(2,16). The normalizer of G in S,, is PI'L(2,16) = G : 4, with one
intermediate subgroup G : 2. Table 7 gives the number of G-orbits on
the 14-partitions of various types, and the numbers with each of the
three possible stabilisers.

Partition 4,1,...,1)]3,2,1,...,1) [ (2,2,2,1,...,1) | Total
Orbits 3 19 72 94
Stabiliser G 0 12 60 72
Stabiliser G : 2 2 6 10 18
Stabiliser G : 4 1 1 2 4

TABLE 7. Stabilisers of orbits of PSL(2, 16)

For the group G' = PSL(2,2?), with p prime and p > 3, the situation
is much simpler: no (27 — 2) partition can be fixed by an element
outside GG, and so every orbit has stabiliser GG. (This also shows, for
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example, that the numbers of orbits for PSL(2, 32) are five times those
for PT'L(2, 32) given in Table 6.)

We now give the proof of Theorem 3.2.

Proof. We begin by listing the 3-homogeneous groups.

(a) Sn, Ap.

(b) (Some) subgroups of PI'L(2,q) containing PSL(2,q), for ¢ a
prime power (“some” means “all” if and only if ¢ is even or
congruent to 3 mod 4).

(¢) AGL(d,?2).

(d) Finitely many “sporadic” examples: AGL(1,8), AT'L(1,8), M,
Mll (degree ]_2), Mlg, 24 . A7, MQQ, MQQ . 27 Mgg, M24, and
ATL(1, 32).

We remark that, of these, the groups which are equal to their nor-

malizers (and so fall in the first case in the Theorem) are:

(a*) S,.

(b*) PT'L(2,q).

(c*) AGL(d, 2).

(d*) All except AGL(1,8) and Ma,.

Now type (a) are always closed. Type (c), and also type (d) with
the exception of AGL(1,8) and Mys, are equal to their normalizers,
so are trivially closed. For the remaining cases in (d), computation
shows that, if G = AGL(1, 8) (degree 8) or G = My (degree 22), and
A is a partition type of rank n — 3, then (G, \) is closed if and only if
A=(4,1,...,1).

In fact, the numbers of orbits on the three types of partitions for G
and its normalizer are (2,10,11) and (2,4,5) for G = AGL(L1,8), and
(2,5,11) and (2,4, 10) for G = My,. Note that My comes very close:
only two orbits of each of the other two types are fused by My, : 2.

It remains to deal with type (b). So, let ¢ be a prime power, and G
a 3-homogeneous subgroup of PT'L(2, ¢) that contains PSL(2, q).

We will first consider G containing PGL(2,¢). Let A = (4,1,...,1).
The partitions of this type correspond naturally to 4-subsets.

Orbits of PGL(2,q) on 4-tuples are parametrised by cross ratio:
there is some flexibility about the definition, but we will take the cross
ratio of (00,0, 1,a) to be a. The 24 orderings of a 4-set give rise to a
set of 6 (or, in special cases, fewer) cross ratios of the form

{Z, 1/’27 1- 2, 1/(1 - Z)a Z/(Z - 1)7 (Z - 1)/’2}
So GF(q) \ {0, 1} is partitioned into sets of 6 (or fewer) cross ratios
corresponding to orbits of PGL(2, ¢) on 4-sets.
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Now PT'L(2,q) is generated by PGL(2,q) and the Frobenius map
x — 2P, where ¢ is a power of p, say ¢ = p'. Thus there is a cyclic
group of order ¢t permuting the orbits of GG as well as their corresponding
sets of cross ratios. To show that (G,\) is not closed for any proper
subgroup G of PT'L(2, q) containing PGL(2, ¢), it suffices to find a set
of six cross-ratios such that the cyclic group of order ¢ generated by
the Frobenius map acts regularly on the orbit containing this set, since
different subgroups of a regular group have different orbits. Hence we
have to find such a set which is fixed only by the identity element of
this cyclic group.

Suppose that we have a 6-set {z,1/z,1—2,1/(1—2),z/(z—1), (2 —
1)/z} which is fixed by a non-trivial power of the Frobenius map; we
can assume that this has the form z ~ 2?" where u divides t. We
find all pairs (z,u) for which this holds, and show that for ¢ > 9 there
exists z with the required property. We put t = uv and p* = r, so that
g = r* and the map under consideration has fixed field GF(r). Now,
for every z,

2re{z1/2,1—21/(1—-2),z/(z—1),(z —1)/z}.

There are six possibilities:

e 2" =z Then z € GF(r).

e 2" €{l/z,1—2,2z/(z—1)}. In each of these cases, we find that
27 = 2,80 z € GF(r?). So we may assume that ¢ = 2.

o 2" €{1/(1—2),(2—1)/z}. In these cases, we find that 2"* = z;

so we may assume that ¢ = 73.

Only one of these possibilities can hold. We may assume that g # r,
so that z can be chosen so that the first possibility does not hold.

Suppose that ¢ = r2. Now the above argument shows that the r? —r
elements outside GF(r) satisfy one of the three equations 2" = 1/z,
2" =1—z or 2" = z/(z — 1). These are polynomials of degrees r + 1,
r, r+ 1 respectively; so 3r+2 > r? —r, giving r < 4. Now PGL(2,4) =
Aj falls under case (a); and computation shows that (PGL(2,9), \) is
closed but (PGL(2,16),A) and (PGL(2,16) : 2,\) are not. (Both the
last two groups have three orbits on 4-sets, but PGL(2, 16) : 4 has only
two.)

Now suppose that ¢ = 7®. We argue similarly to say that the elements
outside GF(r) satisfy one of the two equations z" = 1/(1 — z) or 2" =
(z — 1)/z, both polynomials of degree r + 1. Thus r® —r < 2(r + 1),
with only the solution r = 2. The pair (PGL(2,8), \) is closed, since
PGL(2,8) is 4-homogeneous.
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For the other two partition types, the argument is less elegant. We
will next consider type A = (3,2,1,...,1).

In this case, each orbit has a representative in which the 3-set is
{00,0,1}, by 3-transitivity of G. The elements of PGL(2,q) which
map this set to itself are the maps z +— f(z), where f(z) is one of
the six linear fractional expressions which came up in our discussion of
cross ratio. Moreover, all three points are fixed by the Frobenius map.

Suppose that p is odd. Take z € GF(p) \ {0,1} and y in no proper
subfield of GF(q), and consider the partition as above whose 2-set is
{z,y}.

The points fixed by the above transformations are x = —1, x = 2,
T = %, and x a primitive 6th root of 1. If p # 3 or 7 we can choose x
to satisfy none of these, so there is only one partition containing parts
{00,0,1} and {z,y'} in the orbit. But if we choose y to be a primitive
element, then it is not fixed by any power of the Frobenius map, so
this set is in a regular orbit of this map.

If p =3, then x = 2 is fixed by three maps z — 1/z, z — 1 — z,
and z — z/(z —1). So if the orbit is fixed by the Frobenius map, then
y must satisfy y" € {1/y,1 —y,y/(y — 1)}. There are at most 3r + 3
such elements. So ¥ —r < 3r — 3, whence r = 2. But the computer
establishes that not all PGL(2,9)-orbits are fixed by PI'L(2,9).

Suppose that p = 7. A similar but easier argument applies, since each
of 2, 4 and 6 is fixed by just a single element, so we find r* —r < r+1,
which is impossible.

Lastly we have the case p = 2. We may assume that ¢ > 2, since
PGL(2,4) =2 A;. Nowify # 1/z,1—x,2/(x—1), then only the identity
in PGL(2, q) fixes this partition. Choosing y to be a primitive element
of GF(q) shows that the group generated by the Frobenius map acts
regularly on the orbit of this partition.

We now consider partitions of type (2,2,2,1,...,1). We can assume
that an orbit we are considering contains the partition {co, 0}, {1, a}
and {b, c}.

Suppose first that p > 2, and take a = 2. The three linear fractional
transformations fixing the pair of sets making up the first two cycles
are z — 2/z, z— (2—2)/(2—1), and z — 2(2—1) /(2 —2), have among
them at most six fixed points, namely ++v/2, 1 ++1/—1, and 2 + v/—2;
so there is a point a fixed by none of these. If we take b and ¢ to be
linearly independent over GF(p), then only the identity in PGL(2, q)
fixes the three sets; and if we take b # ¢, then we find that they are
not fixed by any power of the Frobenius map.
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If p = 2, the argument is similar. If ¢ is even, then we have a
subfield GF(4); if ¢ is divisible by 3, a subfield GF(8). If neither of
these occurs, then no field automorphism can fix a partition of type A,
since only permutations of order dividing 48 can do so.

It remains to consider groups not containing PGL(2,¢). If ¢ is not
a square, then any subgroup of PT'L(2, ¢) containing PSL(2, ¢) but not
PGL(2,q) must lie inside PXL(2,¢q). Moreover, we may assume that
G = PXL(2, q), since any other subgroup is contained in a group twice
as large which does itself contain PGL(2,¢). This case only arises if
q = 3 (mod 4), since otherwise PXL(2, ¢) is not 3-homogeneous.

If the PXL(2, ¢)-orbit of a partition P is fixed by PI'L(2,q), then
a partition in that orbit must be fixed by an element of PI'L(2,q) \
PYL(2, q), since then its stabiliser will be twice as large, and the orbit
the same size. We can assume that such an element has 2-power order,
and all its cycles have the same size (since PXL(2,¢) has odd order).
This excludes type (3,2,1,...,1), so we have to consider the other two
types. Moreover, ¢ is an odd power of p, so these maps do not involve
field automorphisms.

First consider type (4,1,...,1), so we are looking for an element
fixing a 4-set, acting on it as either a double transposition or a 4-cycle.
By 3-homogeneity, we can consider 4-sets of the form {o0,0,1,a}. For
a double transposition, there are three possibilities:

e (00,0)(1,a): z + a/z does this. Its determinant is —a, which
is a nonsquare if and only if a is a square.

e (00,1)(0,a): z+ (z—a)/(z —1) does this. Tts determinant is
—1+ a, which is a nonsquare if and only if 1 — a is a square.

e (00,a)(0,1): 2+ (az —a)/(z — a) does this. Its determinant is
—a*+ a, which is a nonsquare if and only if a(a — 1) is a square.

Now the product of these three numbers is —a?(a — 1), which is a
nonsquare. So 0 or 2 of them are squares for every a. Indeed, it is
well-known (from the construction of the Paley design) that there are
(¢g+1)/4 elements a for which a and 1 — a are both non-squares. Now
we consider 4-cycles. Up to inversion, there are three possibilities:

e (00,0,1,a): 2+ 1/(cz+1), where 1/(c+1) = a and ac+1 = 0;
these equations have a unique solution a = 2.

e (00,0,a,1): z+— a/(cz+1), where a/(ac+1) =1 and c+1 = 0;
the solution is a = 1.

e (00,1,0,a): z— (2—1)/(2+¢), where —1/c =a and a+c¢ = 0;
the solution is a = —1.
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So, if every orbit is accounted for, we have (¢ +1)/4 < 3,s0 ¢ =7 or
g = 11. It can be checked (by hand or by computer) that (PSL, (2,7), \)
for type A =(4,1,...,1) is not closed, but (PSL(2,11), ) is.

Now consider the type (2,2,2,1,...,1). This time we can assume
that the partitioned 6-set is {{o00,0},{1,a}, {b,c}}, and it is fixed by
an involution, which fixes one or all of the 2-sets. If there is a cycle
(00,0), then 1 maps to a, b or ¢, and we find that the product of any
two of a,b,c is the third. (For example, if (1,a) is a cycle, then the
map is z — a/z, and a/b = c.)

In the remaining case, we have four triple transpositions to con-
sider, namely (OO> 1)(07 &) (bv C)a (007 a) (07 1)(b7 C)> (OO, b)(07 C)(L a)a or
(00,¢)(0,b)(1,a). The third and fourth are equivalent under inter-
change of b and ¢. We have:

e (00,1)(0,a)(b,c): we find 1 —a=(1—-05)(1—c).
e (00,a)(0,1)(b,c): we find (a —b)(a —¢) = a(l+ a).

e (00,0)(0,¢)(1,a): we find a(b—c¢) =a—b.
In each case, given a and b, there is only one choice of ¢, so ¢ < 5, a
contradiction.

The remaining class to be considered are the groups PXL(2,q). As
mentioned earlier, we have checked by computer the odd prime power
squares up to 121, and found that PXL(2,q) acting on (4,1,...,1)
partitions is closed for ¢ = 9, 25 and 49, but not for ¢ = 81 or 121. [

4. GROUPS HAVING ONLY ONE ORBIT IN A GIVEN KERNEL TYPE

The remainder of this paper is dedicated to the application to semi-
group theory of the results found above. We want to describe the struc-
ture (elements, ranks, automorphisms, congruences, regularity, idem-
potent generation, etc.) of semigroups generated by a k-homogenous
subgroup of S,, and some singular maps of rank larger than n/2. We
will use several times the well known fact ([50, p.11]) that if S is a
finite semigroup and a € S, then there exists a natural number w such
that a“ is idempotent.

In this section we are going to study the semigroups generated by a
singular transformation ¢, such that rank(t) > n/2, and a permutation
group that has only one orbit on the kernel type of ¢.

We start by noting the following. Suppose that the kernel of ¢ has
type (l1,...,l;) and m is the largest natural such that l,, > 1. Then
G must be (3_;", l;)-homogeneous and hence, given that the rank of
t is k, the group must be p-homogeneous, for some p € {n — k +
1,...,2(n — k)}. The smallest value of p is attained if the kernel type
is (n — k+ 1,1,...,1), and the largest value is attained for kernel
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type (2,...,2,1,...,1). Therefore, for any practical considerations we
might assume that our groups are (n — k + 1)-homogeneous.

Theorem 4.1. Let t be a singular map in T(X), with X = {1,...,n},
and suppose that t has kernel type (I1,..., 1), with k > n/2; let G be a

group having only one orbit in the partitions of that type. Let E denote
the set of idempotents of (t,G)\ G. Then

UG\ G = (t,5.)\ S = (E,1).

The proof of this theorem will follow from a sequence of lemmas.
Throughout this section t € T,, will be a rank k£ map of kernel type
(l1,...,1lg), and G < S, will be a (n—k+1)-homogeneous group having
only one orbit on the partitions of type (I, ..., ).

We now introduce some notation. Given the rank and the kernel

type of t we have
L A o A,
- a/l DR ak !

where |A;| = [; (for all i € {1,... k}).

Throughout this section we will assume that the fixed map ¢ has
kernel T' = (A4, ... ,Ax) of type (I1,..., k).

Observe that for every g, h € G we have

arh -+ aph

Since k > n/2 and the group is (n —k+1)-homogeneous, it follows that
the group is also k-homogeneous. Thus given any k-set Y contained
in X, there exists th € (G,t) such that Xth = Y. Similarly, given
any partition Q = (By,..., By) of X of type (I1,...,lx), since G has
only one orbit on the partitions of this type, it follows that there exists
g € G such that {Ay,..., Ax}g = {Bx, ..., Bx} and hence the kernel of
g 'tis (By,...,By). This proves the following lemma.

Lemma 4.2. Given any partition Q of type (l1,...,lx) and any k-set
Y C X, there exist g,h € G such that ker(g~'th) = Q and Xg~'th =
Y.

The previous result shows that (G, t) has rank k& maps of every pos-
sible image and kernel. The next result provides the anlogous result
for idempotents.

Lemma 4.3. Given any partition Q of type (l1,...,lx) and any k-set
Y C X such that Y is a transversal for ), there exists an idempotent

e € (t,G) such that ker(e) = Q and Xe =Y.
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Proof. By the previous lemma we know that there exist g, h € G such
that ker(¢~'th) = Q and Xg~'th = Y. Since Y is a transversal for
Q, it follows that there exists & € G, namely k := hg~!, such that
rank(tkt) = rank(t). Therefore, every element in (tk) := {(tk)* | i €
N}, the monogenic semigroup generated by tk, has the same rank as
t. Since every finite semigroup contains an idempotent, we conclude
that (tk) contains an idempotent, say (tk)“, and hence ¢~ '(tk)“g =
g Y (thg=1)¥g is also an idempotent with kernel @Q and image Y. The
result follows. ]

In order to increase the readability of the arguments we introduce
some notation. Given a partition P = (Ay,...,Ax) of X, and a
transversal S = {ay,...,a} for P, where a; € A; (for all 7), we rep-
resent A; by [a;], and the pair (P,S) induces an idempotent mapping
defined by [a;],e = {a;}. Conversely, every idempotent can be so con-
structed from a partition and a transversal. With this notation, we can

write the idempotent
e — [al]P cee [ak]P
aq Ce (053

in the more compact form e = ([a1],,. .., [ax],). This notation extends

I

to e = ([a1,b],, [as],, ..., [ak],) when b € [a1], and [a;],e = {a;}. By
([a1], ..., [ai, b, ..., ax]) we denote the set of all idempotents e € T,
with image {ai,...,ax} and such that the ker(e)-class of a; contains

(at least) two elements: a; and b, where the underlined element (in this
case a;) is the image of the class under e.

Lemma 4.4. Let q1,q2 € (G, t) be two maps of rank k such that X q; =
{b1,...,bp} and Xqy = {ba, ..., bxs1}. Then there exists an idempotent
e € (G,t) such that Xq1e = Xqo.

Proof. By the previous lemma, given any partition of the same type
as the kernel of ¢, and any transversal for it, there exists in (¢,G) an
idempotent with that partition as kernel and that transversal as image.
Therefore we can pick a partition of the same type as the kernel of ¢
with the following parts: Qo = {{b1,bks1,---},{ba, ...}, -, {bk,. ..} };
it is clear that X ¢ is a transversal for ()o and hence the idempotent
e = [[b1, bk+1]Qy, [b2]Qos - - - » [br],] satisfies the desired X g1e = Xqo. O

Since given any two k-sets Y, Z C X, there exists a sequence of k-
subsets of X, say (Y1,...,Y,,), such that |Y;NY; ;1| = k—1, withY; =Y
and Y,, = Z, the following result is a consequence of the application of
the previous lemma as many times as needed.
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Corollary 4.5. Let q1,q2 € (G,t) be two rank k maps. Then there
exists a sequence of idempotents ey, . .., e; such that Xqie; ...e; = Xqa.

So far we showed that it is possible to use idempotents to build maps
with any given kernel of the same type as the kernel of ¢, and as image
any k-set. Now we move a step forward.

Lemma 4.6. Let p be a map of rank k and x,y € Xp = {p1,...,px}
with x # y. Denote by (zy) the transposition induced by x andy. Then
there exist idempotents ey, e9,e3 € (G, t) such that p(xy) = pejeses.

Proof. Since p is non-invertible, there exists ¢ € X \ Xp. By Lemma
4.3, (G, t) intersects the following sets of idempotents:

A= (pi),-- [z, 5[yl -y [pk])
B=(pi,- 5[y, 2], fel, - (k)
C=(pl,-- - leyl,- [z, o))
Taking e; € A, e; € B, and e3 € C, all from (G, t), we get the desired
composition p(xy) = pejeses. O

Now we can prove Theorem 4.1.

Proof. To prove the theorem, observe that (t,.5,) \ S, is generated by
the set {gth | g,h € S,}. If gth € (t,G), for all g,h € S, the result
would follow.

Let @ be the partition induced by the kernel of gth and let S; be a
transversal for (). Since ) has the same kernel type as ker(t) it follows,
by Lemma 4.3, that there exists an idempotent e € (G,t) such that
Xe =57 and the kernel of e is ). Let S be a transversal for the kernel
of t. By Corollary 4.5, there exists a sequence of idempotents such that
Xeey...e; = 5. Thus the map ee; ... e;t has the same rank as ¢, and
the same kernel as gth. Similarly, there are idempotents f,..., f; such
that Xeey...eitfi... f; = Xgth. Thus, there exists a permutation o
of the set X gth such that ee;...e;tf1... fio = gth. Therefore,

gth=-eey...eitf1... fio=eer...eitfi... fillziy) ... (TmYm),

and each of these transpositions can be replaced by a product of three
idempotents of (¢, G). This also proves that (t,G) \ G C (E,t); as the
converse inclusion is obvious, the result follows. 0

We recall here some known facts about the semigroups (¢, S,,).

Theorem 4.7. Let a € T,, be singular and let S = (a,S,) \ S,. Let
Q:={1,...,n}. Then

(a) S={beT,|(3g€S,) ker(a)g C ker(b)};
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(b) S is reqular, that is, for all a € S there exists b € S such that
a = aba;

(c) S is generated by its idempotents;

(d) S and {(g7'ag | g € S,) have the same idempotents;

(e) S=(g""ag | g€ Sy);

(f) the automorphisms of {(a,S,) are those induced under conjuga-
tion by the elements of the normalizer of S in S,

Aut({a, S,)) = Ns, (5);

(9) we also have Aut({a,S,)) = Sp;
(h) all the congruences of (a,S,) are described;
(i) if € = e € (a, S,), r :=rank(e), then

{f € {a,Sp) | ker(f) = ker(e) and Qf = Qe} = S,.

(j) regarding principal ideals and Green’s relations, for all a,b € S,
we have

aS=0bS & ker(a) = ker(b)
Sa=5b & Qa=Qb
SaS = SbS < rank(a) = rank(b)

(k) the minimum size of a generating set for {(a, S,), for a € T,,\ Sy,
15 3.

(1) the minimum size of a set A of rank k maps such that (A, S,)
generates all maps of rank at most k is p(k).

Proof. Equality (a) was proved by Symons in [92]. Claims (b), (c¢) and
(e) were proved by Levi and McFadden in [65]. Claim (d) was proved
by McAlister in [80], and (together with (c)) it also implies (e).

Claim (f) follows from the general result that every automorphism
of a semigroup S < T, containing all the constants is induced under
conjugation by the normalizer of S in S, (see [90] and also [18, 19]);
since, by (a), the semigroups (.S, a) contain all the constants, the result
follows. Claim (g) was proved by Symons in [92], but is also an easy
consequence from (f). In [62] Levi described all the congruences of an
Sp-normal semigroup and hence described the congruences in S. Thus
(h).

Statement (i) belongs to the folklore (see Theorem 5.1.4 of [43]). The
results about principal ideals (j) were proved by Levi and McFadden
in [65].

Claim (k) follows from the fact that S, is generated by two elements.

Regarding (1), observe that given any rank k£ map ¢ we have that all
rank k maps in (¢,.S,) have the same kernel type as t; conversely, every
rank k£ map of the same kernel type of p belongs to (¢,S,). Therefore,
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to generate all maps of rank k£ a necessary and sufficient condition is
that there is in A one map of each kernel type, so that |A| = p(n). It
is well known that the maps of rank k, for £ > 1, generate all maps of
smaller ranks. The result follows. 0]

The previous results immediately imply the following.

Theorem 4.8. Let t be a singular map wn T,, the full transforma-
tion monoid on Q := {1,...,n}, and suppose that t has kernel type
(l1,... k), with k > n/2; let G be a group having only one orbit in the
partitions of that type. Let S = (t,G) \ G. Then

(a) S={beT,|(3g €S, ker(a)g C ker(b)};

(b) S is regular, that is, for all a € S there exists b € S such that
a = aba;

(c) S is generated by its idempotents;

(d) S and (g7'ag | g € G) have the same idempotents;

(¢) S=(g97ag|g € G);
(f) the automorphisms of (a,G) are those induced under conjuga-
tion by the elements of the normalizer of G in S,

Aut({a,G)) = Ns, (G);

(g) all the congruences of S are described;
(h) if €* = e € {a,G), r :=rank(e), then

{f € {a,G) | ker(f) = ker(e) and Qf = Qe} = S,.

(i) regarding principal ideals and Green’s relations, for all a,b € S,
we have

aS=0bS < ker(a) = ker(b)
Sa=5b & Qa=Qb
SaS = SbS < rank(a) = rank(b)

(j) the minimum size of a generating set for (a,G) is 3.

(k) let A be a set of rank k maps such that (A, G) generates all maps
of rank at most k and A has minimum size among the sets with
that property. A bound for the size of the sets A C T, such
that (G, A) generate all maps of rank k is given in Table 8. In
the middle column is the type on which G has only one orbit.

Proof. Claims (a)—(e) and (g)—(i) all follow from the previous theorem
and Theorem 4.1.
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Rank ‘ Kernel type ‘ | Al ‘
n—1 2,1,...,1) 1
n—2 (2,2,1,...,1) | 2
3,1,...,1) | O(n)
n—3 (4,1,...,1) | 144
(3,2,1,...,1) | 5
(2,2,2,1,....1)| 3
n—4 5,1,....1) | 15
other 5
kE(n/2<k<mn-5) any p(k)

TABLE 8. Generating all maps of rank k

Regarding claim (f), observe that by (a) the semigroup (a,G) con-
tains all the constant maps and hence, by [90, Theorem 1], its auto-
morphisms are

{19 g€ S, Ang Ha,G)g = (a,G)},

where, for a given g € S,, we have 79 : (a,G) — (a,G) defined by
fr9 = g~ 'fg. Note that a permutation g € Ng, (G) normalizes {(a, G)
if and only if it normalizes G and (a, G) \ G. Thus the automorphisms
of (a,G) are the maps induced under conjugation by the elements in
the normalizer Ng, (G) that also normalize (a, G)\G. Since (a, G)\G =
(a, Sp)\ Sy it follows that every permutation of S, normalizes (a, G) \G.
We conclude that the automorphisms of (a, G) are all the maps

{r? :{a,G) — (a,G) | g € Ng,(G)}.

To prove that in fact we have Aut ((a, G)\G) = Ng, (G) we only need
to observe that a primitive group (other than a cyclic group of prime
order) have trivial center (that is, only the identity in G commutes
with all other elements of G).

Regarding (j), observe that every 2-homogeneous group is 2-generated|]
(Corollary 2.3).

Finally, (k), follows from the results in the previous section, with
a little care. For example, a permutation group transitive on parti-
tions of type (2,2,1,...,1) is 4-homogeneous, and so 3-homogeneous;
so it is transitive on (3,1,...,1) partitions also. A group transitive
on (3,2,1,...,1) partitions is 5-homogeneous, and so symmetric, al-
ternating or a Mathieu group; we refer to Table 6 for the Mathieu
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groups (which are transitive on partitions of this type because they are
5-transitive). O

5. GROUPS WITH ONLY ONE ORBIT ON THE IMAGE

We turn now to semigroups (t, G), where G is transitive on the image
of t (that is, G is (n — k)-homogeneous, where k > n/2 is the rank of

).

Theorem 5.1. Let G be a primitive group with just one orbit on (n—k)-
sets, where 1 <k <n/2. Let t € T,, be a map of rank n — k. Then

(a) (G,t)\ G and {(g~'tg | g € G) have the same idempotents;
(c) For k > 3, the list of 3-homogeneous groups that satisfy

Aut ((G, 1)) = N, (G)

1s the following:
(i) G = Ng, (G), that is,
o S,.
e PT'L(2,q) for k = 3.
e AGL(d,2) for k = 3.
o ATL(1,8), My, (k = 4), My (degree 12, k = 3),
M12 (k} = 5)7 24 . A7, M22 22 (]{? = 3), M23 (]{? = 4),

(i) G = Ap;

(i) G = AGL(1,8), PGL(2,8), PGL(2,9), Mo, PSL(2,11),
My, PXL(2,25), or PXL(2,49), with k = 3, and t of type
A=(4,1,...,1).

The list is complete with the possible exception of the groups
PXL(2,q) for ¢ > 169.

(d) Let A C T, be a set of rank n—k maps such that (A, G) generates
all maps of rank at most n — k and A has minimum size among
the subsets of T,, with that property. Then the mazimum sizes
that A can have are given in Table 9.

For more precise values depending on the group chosen, see the tables
in Section 2 of the paper.

Proof. McAlister [80] proved that for any group G < S,, and any trans-
formation a € Ty, the semigroups (a,G) \ G and (g tag | g € G) have
the same idempotents. This proves (a).

A transitive group G is said to synchronize a map t if the semigroup
(G, t) contains a constant map (and hence, by transitivity, all constant
maps). It is proved that primitive groups synchronize every singular
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Minimum number of
Rank Sample k-homogeneous groups
I |A] attaining the bound for |A| generators for a primitive
k-homogeneous group
1 . C'log
n—1 % Cp, Dy (n odd prime) \/%
n—2 O(n?) Example 2.1 2
n—3 O(n?) PSL(2,q), PTL(2,q) 2
n—4 12160 Pr'L(2,32) (n = 33) 2
n—5 7 Moy (n=24) 2
n—k(k>5)| p(k) Sn, An 2

TABLE 9. Smallest number of rank n — k maps needed
to together with a k-homogeneous group G generate all
the maps of rank at most n — k.

map of rank at least n — 4 (see [5, 9, 88]). It is also known that
2-homogeneous groups, together with any singular map, generate all
the constant maps ([12, 80]). Therefore, under the assumptions of the
theorem, if the primitive group G has only one orbit on the k-sets, for
n > k > n/2, then G together with any rank k& map t generates all
the constants and hence the automorphisms of S := (¢, G) are induced
under conjugation by the elements in Ng, (S). This implies (b).

The more detailed description included in (c) follows from Theorem
3.2.

Regarding (d), we start by observing that all maps in (G, t) having
the same rank as t, have also the same kernel type as t. Therefore, to
generate all rank n — k maps with G and a set A of rank n — k maps, A
must contain maps whose kernels form a transversal of the orbits of G
on each kernel type. This necessary condition turns out to be sufficient
for (G, A) to generate all transformations of rank at most n — k. In
fact, given any (n — k)-partition P and any transversal S for P, there
exists p € A and g € G such that P = ker(gp). In addition, since G
has only one orbit on the k-sets, it follows that there exists h € G such
that the image of gph is S. We infer that rank(phgp) = rank(p); thus,
every element in (phg) has the same rank of p and, for some natural
number w, we have that (phg)“ is idempotent and the same holds for
e := g(phg)®g~'. In addition, ker(¢) = P and the image of e coincides
with the image of ph which is S. Since P and S were arbitrary, it
follows that (A, G) contains all rank n — k idempotents of 7,,. It is well
known ([2]) that the rank n — k idempotents generate all maps of rank
at most n — k and hence the result follows. 0
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6. ON NORMALIZERS OF 2-HOMOGENEOUS GROUPS

By the main theorems of the two previous sections, to compute the
automorphisms of (G,t) (with G and t under the assumptions of the
theorems) it is necessary to know the normalizer of (G, ) in S, which
is contained in the normalizer of G. Therefore we provide here the
normalizers of 2-homogeneous groups.

According to a theorem of Burnside, a 2-transitive group G has a
unique minimal normal subgroup 7', which is either elementary abelian
or simple non-abelian. (If G is 2-homogeneous but not 2-transitive,
it also has a unique minimal normal subgroup, which is elementary
abelian.) Thus Ng, (G) < Ng, (7). So, to describe the normalizers of
the 2-homogeneous groups G, we only need to look within the group
Ng, (T)/T. Table 10 gives the structure of this quotient in the case
when T is simple. In the table, G(r,s,p) denotes the group (a,b |
a” = b* = 1,b7'ab = aP). In all rows of the table except the second
and fourth, Ng, (G) = Ng,(T). In the second and fourth rows, we
have Ng, (G)/T = Nyr)r(G/T), and this quotient is computed in the
metacyclic group G(r, s, p).

Note that there are a few small exceptions: PSL(2,2), PSL(2,3),
PSU(3,2), Sz(2), Sp(4,2), and R;(3) are not simple. The first four of
these are solvable; the fifth has a simple subgroup of index 2 isomorphic
to Ag; and the last has a simple subgroup of index 3 isomorphic to
PSL(2,8).

Now we consider the 2-homogeneous affine groups. In each case,
the classification gives a subgroup H (not necessarily 2-homogeneous)
which must be contained in G. The group H contains the translation
group T of G, so G = TGy and H = TH,. Thus, as in the other
case, we have Ng (G) < Ng, (H), so again we have to compute the
normalizer within the group Ng, (H)/H = Ng, ,(Hy)/H,. Table 11
gives the structure of this quotient group. The groups G(r,s,p) are
the same as defined earlier. In all cases not shown in the table, the
quotient is abelian, and so the normalizers of H and T coincide, and
we have not listed them explicitly.

We have not attempted to make a similar classification of normal-
izers of primitive groups, since this problem is as difficult as finding
normalizers of arbitrary transitive groups, as the following example
shows.

Let m > 3, and let K be a transitive group of degree k. Let G be
the wreath product S,, ! K in its power action of degree m*. Then G
is primitive, and its normalizer in the symmetric group of degree m* is

Sm U Ng, (K).
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’ T ‘ Degree ‘ N(T)/T ‘ Condition
An n Cy
PSL(d,q) | (¢ —1)/(¢ — 1) | G(r,5,p) | ¢ =p°, p prime,
r=ged(qg—1,d)
Sp(2d,2) 22d—1 4 gd—1 1
PSU(3, q) ¢ -1 G(r,s,p) | ¢ =p®, p prime,
r=ged(qg+1,3)
Sz(q) ¢ +1 Coet1 q=2%
Ri(q) ¢+ 1 Coet1 q =3
My, 11 1
My, 12 1
My 12 1
A, 15 1
Moy 22 Cy
Mos 23 1
My, 24 1
HS 176 1
Cos 276 1

TABLE 10. Normalizers of almost simple 2-transitive groups

’ Degree ‘ H, ‘ N(Hy)/H, ‘ Condition
¢" | SL(n,q) | G(r,s,p) |q=p"r=q—1
q C(q—l)/2 Cas q = p° odd
¢*" | Sp(2n.q) | G(r,s,p) |g=p°r=q—1

TABLE 11. Normalizers of affine groups

However, it is known (see [45]) that, if G is a primitive permutation
group of degree n, the order of Ng, (G)/G is smaller than n with finitely
many exceptions. (Note that, in the above example, the degree of the
primitive group is exponential in the degree of the transitive group.)
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7. AUTOMORPHISMS OF TRANSFORMATION SEMIGROUPS WITH
PRIMITIVE GROUP OF UNITS

Very early in this investigation we arrived at the conjecture that if
a transformation semigroup has singular maps and its group of units
is a primitive permutation group G, then all its automorphisms are
induced under conjugation by the elements in the normalizer of GG, in
the symmetric group. We invested a long time trying to prove this
conjecture, but could not decide it. The problem is probably very
difficult. What we could prove is the following theorem which is the
main result of this section (and one of the main results of this paper).

Theorem 7.1. Let S < T, be a semigroup with primitive group of
units G < S,,. If there exists in S a map of rank 3 or less, then all the
automorphisms of S are induced under conjugation by permutations of
the normalizer of G in S,,.

It is worth pointing out that in parallel with the conjecture above we
also arrived at the following conjecture: if S is a transformation semi-
group containing singular maps and a primitive group of units, then
its subsemigroup of maps of minimum rank is idempotent generated.
This conjecture looks very interesting in itself, but, moreover, it might
be that in the end it turns out to be connected to the automorphisms
conjecture above; future researches will certainly clarify this.

In the remainder of this section we prove the theorem above.

Suppose that S has a rank 1 map; then the transitivity of G guar-
antees that S contains all the constant maps and the theorem is a
consequence of the following result.

Theorem 7.2. ([90, Theorem 1]) If S is a subsemigroup of T,, contain-
ing all the constant maps, then all the automorphisms of S are induced
by the elements of the normalizer of S in S,.

Suppose that S has a rank 2 map; Neumann [82] proved that prim-
itive groups synchronize all rank 2 maps and hence S contains all the
constants, a case already settled. The same conclusion holds in the case
G synchronizes any rank 3 map in S. Therefore we can assume that
G does not synchronize the rank 3 maps in .S, and S does not contain
maps of rank less than 3. Thus let G < S,, be a non-synchronizing
primitive group, and G C S C T, such that the smallest rank of a
transformation in S is 3. In addition, by the results of [5], if G is
primitive of degree n and ¢ has rank at least n — 4, then G synchro-
nizes t, and so (G, t) contains all the constant maps; so we can assume
(although this is not required by our proof) that S contains no map
whose rank r satisfies n —4 <r <n — 1.
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Let D C S be the subsemigroup consisting of all rank 3 maps. For
t € D, we define ord(t), the order of ¢, as the smallest positive integer
1 for which ¢ is idempotent. This is equivalent to the group theoretic
order of the restriction ¢’ of ¢ to im(¢) within the subgroup ().

In what follows, when we refer to kernels and images, we will always
mean kernels and images of elements of D. Let X = {1,...,n} be the
underlying set for all actions. Note that for each x1, zo € X, there exists
a map in S whose kernel K satisfies (21, x2) ¢ K, an easy consequence
of the primitivity of G.

Lemma 7.3. Let a,b € D. Then a and b have the same image if and
only if there exists u € S such that a = ub.

Proof. If there exists u € S such that a = ub, it follows that Xa C Xb
and hence equality holds since a and b have the same rank. Conversely,
let b be the idempotent power of b. Clearly b is the identity in the
image of b, thus it is the identity in the image of a. Therefore, ab” = a
and hence a = ub, where u = ab”~!. The result follows. O

In the same way we prove the following lemma.

Lemma 7.4. Let a,b € D. Then a and b have the same kernel if and
only if there exists uw € S such that a = bu.

Let J be the set of all images of maps in D, L the set of all kernels
of maps in D, and F' be an automorphism of (G,t). Suppose a and b
are two maps in D having the same image; then a = ub (for some u) so
that aF' = (uF)(bF), and hence aF and bF have the same image too.
Thus F' induces a permutation of the sets in J which we will denote
by F; (and usually abuse notation writing simply F'); in the same way
we prove that F' induces a permutation of the kernels in L, which will
be denoted by FI.

For I € J; K € L, we let i ; stand for the unique idempotent with
kernel K and image I, and if I and I’ intersect in exactly one element
of X, we refer to that point as zy p.

We claim that with the notation above, for every automorphism F
of S there exists h € S, such that tF' = h~'th.

Let © be the graph with V(0) = X, in which two distinct vertices
x,x’ are adjacent if there is an [ € J with x, 2’ € I. O is clearly vertex-
primitive, with clique number and chromatic number 3, the latter can
be seen by colouring with the kernel classes of any rank 3 map. As
shown in [9], © does not contain any induced subgraph isomorphic to
a 4-clique with one edge removed.

As a side remark, we observe that the graph © is contained in the
graph I''(S) from [5]. For clearly two vertices lying in some image of



ORBITS OF k-HOMOGENOUS GROUPS 31

an element of D cannot be collapsed by anything in S. It is not clear
whether the converse holds.
Our proof proceeds through the following steps.

(a) The permutation F; is given by I +— Ih for some h € Sy.
(b) If Fy is given by h € Sx, then tF = h™'th.

Lemma 7.5. Let I,I' € J such that INI' =0. Then IF; NI'F; = (.

Proof. We start by claiming that there exist K, K’ € L for which
ord(ix rigs ) = 3, where ord(x) denotes the order of x.

Let K; be an arbitrary kernel. Number the elements of I, I’ so that
I = {il,’iQ,ig}, I = {2,1,2,2,2:/3} and that (ZJ,Z;> € Kl for all j

By primitivity, we can find a kernel K5 that separates i; and 7). Let
o1 € S3 be such that (41,4, ), (i2,15,, ), (i3, 15,,) € Ky. If 01 is a 3-cycle,
then ord(ik, rix;, ) = 3, as required. So assume otherwise. o(1) # 1,
so 07 is a transposition not fixing 1, say w.l.o.g. that o1 = (1 2).

Once again by primitivity there exists a kernel K3 € L that separates
i3, and i3. Let oy € Sy be such that (iy,14},,), (72, %,,), (13, 73,,) € Ks.
If 05 is a 3-cycle, the conclusion follows again.

Otherwise, 05 = (2 3) or 02 = (1 3), as oy does not fix 3. Assume
the former. We have that (iy,145), (i2,1}), (i3,45) € K and we also have

(i1,11), (i2,1%), (i3,45) € Ks. Hence ig, rig, r|lr = (¢} 4 i), and so
ord(ik, rix, 1) = 3. The case that o = (1 3) is analogous, proving the
claim. O

Now suppose instead that I,I' € J are non-disjoint, say x € I' N I".
Then, for all K, K" € L,

and so i rig p fixes one element of its image and hence has order at
most 2.

Now let K, K" be kernels such that iy jig p has order 3. Then the
same holds for (ix jig 1) F' = ixririx rrr. By our results above, this
is not possible if IF N I'F # ().

Lemma 7.6. For all automorphisms F, there exists an h € Sx (nec-
essarily from Aut (©)) such that Fy is given Ih for all I € J.

Proof. Let I,1 € J', I # I such that INI' # (. Then [INTI'| =1, as
|INI'| = 2 implies that the induce ©-subgraph on I U I’ is isomorphic
to a 4-clique with an edge removed. Lemma 7.5 now implies that if
IINI'|=1then |[FNI'F|=1.
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For each z; v, define h by x; ph = x1ppp. Clearly, every o € X is of
this form for some I, I’; so the definition is universal on X. We have
to show that it is also well defined.

Let I" € J, 1 #* 1" =+ I’, such that Trp = Tpgpr = Trp € In
I N 1. Suppose that TIFI'F # TIFI'F- Then TIFI'F # T'FINF for
otherwise |]F N I”F| Z 2. Slmllarly TIFI'F 7é TR I'F- But now
TiprF, TipF, Tppmp form a triangle in © that shares one edge with
the triangle on the set I F'. The induced subgraph on the union of these
triangles is a 4-clique missing one edge. However, © does not contain
such a subgraph, giving a contradiction.

It follows that x;ppp = zrpp, and by repeating this argument,
that h is well-defined. Clearly, such h satisfies 1F; = Ih. O

Lemma 7.7. If F; is given by right multiplication with h € Sx, then
tF = h='th for allt € S.

Proof. Let t € S, and t' € D. Then t't has rank 3 and hence is in
D. Tt follows that F' acts on the images of both ¢’ and t't as right
multiplication by A, and hence

(im(t"))th = (im(¢'t))h = im((t't)F) =

=im((¢'F)(tF)) = (im(t'F))(tF) = (im(t")A(F),
and so (im(#'))t = (im(¢'))h(tF)h~1. As this holds for all ¢ € D, t and
tF' have the same right action on J. Comparing ¢}, t, € D with images
I,I' € J such that I N I’' = {z}, it then follows that zt = zh(tF)h~'.
As we can find such ¢, t € D for every x, t = h(tF)h™!, and the result
follows. O

Theorem 7.1 now immediately follows from the last two lemmas,
noticing that if conjugation with h induces an automorphism on S,
then h necessarily has to be in the normalizer of G in §,,. O

Cases in which Theorem 7.1 applies but Sullivan’s Theorem [90] does
not involve a primitive group G and a map t of rank 3 not synchronized
by GG. Examples include:

e wreath products S35, in the product action, and primitive
subgroups of these;

e the automorphism groups of the Heawood, Tutte-Coxeter and
Biggs—Smith graphs, acting on the edge sets of the graphs (these
are described in detail in [5]);

e two primitive actions of the Mathieu group M;, with degree 495
(also in [5]).
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In all these examples except S30S5 and the group of the Heawood graph,
there are semigroups containing singular maps with rank greater than
3 as well as maps of rank 3. The last example has some interesting
features which we now explain.

The Mathieu group M, has two different primitive actions on a set
of size 495 (PrimitiveGroup(495,3) and PrimitiveGroup(495,5) in
the GAP numbering). Each of these is the automorphism group of
a graph of valency 6, in which the closed neighbourhood of a vertex
consists of three triangles with a common vertex. In both cases, the full
automorphism group of the graph is Aut (Mis) = Mo : 2. If we take
the triangles in one graph to be the lines of a geometry whose points
are the vertices, we obtain a partial linear space; the spaces obtained
from the two graphs are duals of each other. Let I'y and I'y be these
two graphs. We can construct I'y; from I'; by taking the triangles of
I'; as vertices, two vertices adjacent if the triangles intersect, and vice
versa.

As well as having clique number 3, each graph has chromatic num-
ber 3, and hence has an endomorphism onto a triangle; since in each
case the automorphism group is transitive on triangles, every triangle
is the image of an endomorphism.

Let S; and S5 be the semigroups of endomorphisms of I'y and I’y
respectively. By Theorem 7.1, we have

Aut (Sl> =~ Aut (52) = M12 2.

Any element of S; must map triangles of I'y to triangles, and so induces
a map on the vertices of I'y; so we have an action of S; on this set.
This action is not faithful; also, its image contains all the constant
maps, and so it cannot consist of endomorphisms of I'y. However, it
would be interesting to know more about it; in particular, what does
the semigroup generated by Sy and the image of S; look like?

8. PROBLEMS

If the following question has an affirmative answer (as we conjecture),
then the list in Theorem 3.2 is complete.

Problem 1. Is it true that for G = PXL(2,q), ¢ > 169 and A =
(4,1,...,1), no pair (G, \) is closed?

The next problem looks within reachable boundaries.

Problem 2. Prove for 2-homogeneous groups an analogous of Theorem
3.2.

Unlike the previous, the next problem is certainly extremely difficult.
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Problem 3. Prove for primitive groups an analogous of Theorem 3.2.

The next problem was introduced in Section 3, but only some re-
marks were given. A full solution is still out there.

Problem 4. Given an orbit of the k-homogeneous group G on (n—k)-
partitions, what is the subgroup of the normalizer of G, in S,, which
fixes that orbit?

The results on normalizers of 2-homogeneous groups suggest the fol-
lowing generalization.

Problem 5. Let G be a family of primitive groups that has been clas-
sified (e.g., primitive groups of rank 3). Build for the groups in that
family a table similar to Table 10, describing the normalizers of these
groups in the symmetric groups of the same degree.

In order to give a sharper version of Theorem 5.1 (2), it would be use-
ful to classify the primitive groups having a 2-homogeneous normalizer
in S,.

Problem 6. Classify the primitive groups G < S,, such that Ng, (G)
18 2-homogeneous.

We state now the main conjecture introduced in the previous section.

Problem 7. Let G be a primitive group and t € T, \ S,. Then all
the automorphisms of (G,t) are induced (under conjugation) by the
elements in Ng, ((G,1)).

If t has rank at least n —4, then we know (by [5]) that (G, t) contains
all the constant maps and hence (by [90]) the conjecture above holds.
The results of the previous section solve the conjecture for rank at most
3. The problem is open for semigroups with maps of rank between 4
and n — 5.

The following problem was also mentioned in the previous section.

Problem 8. Let G be a primitive group and t € T, \ S,. Then the
transformation of minimum rank in S are generated by idempotents.

In [60] it is proposed the problem of finding the groups that can be
the normalizers in S,, of some semigroup S C T,,. The main theorems
of this paper provide some answers for that question, but we would like
to propose the following conjecture.

Problem 9. Is it true that a group G 1is the normalizer in S, of a
semigroup S < T, if and only if G is the normalizer in S,, of some
group H < 5,7
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Let us say that a group G is normalizer-binding if the automorphisms
of (G,t) are induced by elements in the normalizer of G, for every
singular map t. We believe that the following conjecture is likely to be
true:

Problem 10. Show that the property of being normalizer-binding is
closed upwards (that is, if G is normalizer-binding of degree n, and
G < H < S, then H is normalizer-binding).

Our final problem asks for a sharper version of Theorem 5.1, (2).

Problem 11. For every pair (G, \), where G < S, is a k-homogeneous
group and X is an (n—k)-partition of n, classify the groups Ng, ({(G,t)),
where t s any map whose kernel has type .

8.1. Enhancing GAP. As shown above, every 2-homogeneous group
is 2-generated. However the GAP library of 2-transitive groups con-
tains default sets of generators that in the major part of the cases have
size larger than 2.

Problem 12. Produce a library of generating sets of size 2 for all the
degree nand k-homogeneous primitive groups in the GAP library (for
k>2).

Slightly connected to the previous problem is the following.

Problem 13. (a) Include in GAP a very effective function to find
the homogeneity of a given permutation group.
(b) Include in GAP a very effective function to find representatives
for the orbits of a given permutation group on k-sets.
(¢) Include in GAP a very effective function to find representa-
tives for the orbits of a given permutation group on a given
k-partition.

The next problem deals again with GAP libraries.

Problem 14. Let G be a k-homogeneous degree n primitive group in
the GAP library of primitive groups. Produce a minimal set A of de-
gree n transformations of rank k such that (G, A) generates all the
transformation of rank at most k.
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