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Abstract—In this paper, a cost minimization problem is formu-
lated to intelligently schedule energy generations for microgrids
equipped with unstable renewable sources and energy storages.
In such systems, the uncertain renewable energy will impose
unprecedented scheduling challenges. To cope with the fluctuate
nature of the renewable energy, an uncertainty model based on
renewable energies’ moment statistics is developed. Specifically,
we obtain the mean vector and second-order moment matrix
according to predictions and field measurements and then define
uncertainty set to confine the renewable energy generation. The
uncertainty model allows the renewable energy generation distri-
butions to fluctuate within the uncertainty set. We develop chance
constraint approximations and robust optimization approaches
based on a Chebyshev inequality framework to firstly transform
and then solve the scheduling problem. Numerical results based
on real-world data traces evaluate the performance bounds of
the proposed scheduling scheme. It is shown that the temporal-
correlation information of the renewable energy within a proper
time span can effectively reduce the conservativeness of the
solution. Moreover, detailed studies on the impacts of different
factors on the proposed scheme provide some interesting insights
which shall be useful for the policy making for the future
microgrids.

I. INTRODUCTION

The power grid is being restructured to allow high penetra-
tion of distributed generators to become more environmental
friendly and cost effective. The growth and evolution of the
future electricity grids is expected to come with the plug-and-
play of the basic structure named microgrid. Microgrids can
operate in grid-connected mode, where they are allowed to
import power from the electricity grid, or in islanded mode,
in which they are isolated from the upstream power grid and
utilize their local generators as the source of power supply
when needed. There are world-wide deployments of pilot
microgrids, such as those reported in [1] and [2].

Energy generation scheduling to achieve reliable and eco-
nomic power supply is an essential component in microgrids.
Two features of microgrids are the integrations of large-
scale renewable sources and energy storage systems. Such
features, however, impose significant challenges on the design
of intelligent control strategies for microgrids. Traditional
generation scheduling schemes are typically based on perfect
predictability of energy generation, which is hardly the case
in the microgrids as the renewable energies are highly volatile

and hard to predict. Although the integration of energy stor-
ages may to a certain extent alleviate the uncertainty problem
caused by the fluctuations of renewable energies, it further
complicates the scheduling process of the system operation.
Because of these unique challenges, it remains an open issue to
design robust and cost-effective energy generation scheduling
schemes for microgrids.

A. Related Work

There exists some literature taking into account renewable
energy uncertainties when scheduling the energy generation
in microgrids. Such work can be mainly classified into two
categories: the stochastic optimization based approaches [3]–
[6] and robust optimization based approaches [7]–[10]. the
stochastic optimization approaches explicitly incorporate a
probability distribution function of the uncertainty, and they
often rely on enumerating discrete scenarios of the uncertainty
realizations. Such approaches mainly have two limitations.
First, it may be difficult and costly to obtain an accurate prob-
ability distribution of uncertainty. Second, the solution may
only provide probabilistic guarantees to the system reliability.
To obtain a highly reliable guarantee requires a large number
of samples, which poses substantial computational challenges.

In some recent studies, robust optimization has received
growing attention as a modeling framework for optimization
under uncertainties. Instead of postulating explicit probability
distribution, robust optimization confines the random variable
in a pre-defined uncertainty set containing the worst-case
scenario. For instance, in [7]–[10], uncertainties in renew-
able energy generation are presented as interval values with
deterministic lower and upper bounds, and the framework
developed in [11] is incorporated to solve the problem. With no
requirement for an explicit probability distribution, uncertainty
can be characterized more flexibly. The conservativeness of
the solution can also be easily controlled and the problem
is computationally tractable both practically and theoretically
even for large scale problems.

In our study, the robust optimization concept is also ap-
plied to tackle the renewable energy uncertainties in energy
generation scheduling problem of microgrids. Different from
the previous robust optimization works [7]–[10] which usually
confine the uncertainty within a pre-defined lower and upper



bounds, in this paper, we adopt first- and second-order moment
statistics to characterize the renewable energy uncertainties,
which can provide more details in describing the underlying
uncertainty. Moreover, moment statistics are very easy to
obtain in practice.

B. Main Contributions

In this paper, by extending our previous work [12], [13],
we consider a robust optimization-based energy generation
scheduling problem in a microgrid scenario considering the
uncertainty of renewable energy and integration of energy
storages. The main contributions of this paper can be briefly
summarized as follows:

• We adopt the moment statistic model to capture the fluc-
tuant nature of the renewable energy. To the best of our
knowledge, this is the first time that moment statistics are
utilized to model and analyze the properties of renewable
energy generation. In addition, moment statistics are easy
to obtain in practical applications. Compared with the
distribution uncertainty model proposed in our previous
work [12], [13], the microgrid systems do not need to
analyze a large amount of historical data by adopting the
moment statistic model.

• The energy generation scheduling problem is formulated
into a cost minimization problem with random variables
in the constraints. We develop chance constraint approxi-
mations and robust optimization approaches to transform
the problem into a solvable form.

• To the best of our knowledge, this work is the first to
investigate how the temporal-correlation information of
renewable energy impacts the energy generation schedul-
ing in microgrids.

• Numerical results based on real-world data evaluate the
impacts of different parameters and performance bounds
of the proposed scheduling scheme. A novel observa-
tion is that the temporal-correlation information of the
renewable energy can help to effectively reduce the
conservativeness of the problem solving and improve
the performance of the proposed generation scheduling
scheme.

The rest of this paper is organized as follows. Section II
introduces the particulars of the system operation. In Section
III, we introduce the mathematical depiction of the energy gen-
eration scheduling problem and the moment statistic model of
renewable energies. Section IV presents the chance constraint
approximation and robust optimization approach for handling
the demand balancing and renewable energy uncertainties. The
simulation results and discussions are shown in Section V.
The parameters and calibration data are drawn from real-world
statistics. Finally, we conclude our paper and discuss the future
work directions in Section VI.

II. SYSTEM MODEL

We consider a microgrid comprising a number of homoge-
neous conventional power units, a renewable energy generation
system (e.g., solar panels) and an energy storage system.

Fig. 1: The architecture of a typical microgrid system.

Currently the microgrid is operated in the islanded mode.
The illustration of the microgrid system is shown in Fig. 1.
The particulars of the system operation are explained in the
followings.

We divide time into discrete time slots with an equal length.
Let A denote the set of conventional power generators. Further
denote the start up cost for turning on a generator a as csa, the
sunk cost of maintaining the generator a in active mode for
one unit of time as cba, and the marginal cost for the generator
a to produce one unit of electricity as cma . Adopting a general
power unit model, we define the energy generation scheduling
vector xa and state vector ya as follows:

xa = [x1
a, x

2
a, ..., x

H
a ] and ya = [y1a, y

2
a, ..., y

H
a ], (1)

where H ≥ 1 is the scheduling horizon which indicates the
number of time slots ahead that are taken into account for
decision making in the energy generation scheduling. For each
coming time slot h ∈ H = [1, 2, ..., H ], we use a binary
variable yha = 0/1 to denote the state of generator a (off/on)
and a variable xh

a to denote the dispatched load to power unit
a. For each unit a with a maximum power output capacity
Emax

a and a minimum stable output Emin
a , we have

yha ·Emin
a ≤ xh

a ≤ yha ·Emax
a . (2)

In our model, we assume that the renewable energy har-
vested from solar panels will be first saved into energy storage
devices for future use, i.e., a solar-plus-battery system is
considered. The household can obtain electricity from energy
storages in an on-demand manner. Denote the household
demand and energy obtained from energy storages at time
h as Dh and V h, respectively. A central requirement of
the microgrid is to set the energy source power such that
the electricity could meet the demand at all time slots. This
statement can be described as

H
∑

h=1

xh
a + V h = Dh, ∀h ∈ H. (3)

Let Bh denote the amount of energy stored in the battery. To
ensure that there is always backup power for emergency use,



we require the battery to be maintained at or above its initial
level at the end of the scheduling horizon:

H
∑

h=1

V h −
H
∑

h=1

ξh ≤ 0, (4)

where ξh ∈ [0, ξmax] is the random variable representing the
amount of energy harvested from renewable energy devices
(e.g., solar panels), and ξmax denotes the maximum generation
capacity of the renewable energy generators. A battery’s level
can never go beyond the maximum capacity or drop below 0.
Therefore we have that

0 ≤ Bh ≤ Bmax, (5)

where Bmax represents the maximum capacity of the energy
storage devices. Last, the battery level varies over time as

Bh+1 = Bh + ξh − V h. (6)

In this paper, we assume that the energy storage device is of
a large size. Under such case, constraints (5) and (6) can be
relaxed when scheduling the energy generation in microgrids
[14].

III. PROBLEM FORMULATION

A. Cost Minimization Formulation

The microgrid aims to minimize the operation cost of
the whole system over the entire time horizon. The cost
minimization formulation is defined as follows

min
X,Y,V

H
∑

h=1

∑

a∈A

[

cma · xh
a + cba · y

h
a + csa · (y

h
a − yh−1

a )+
]

s.t. (2)− (4), yha ∈ {0, 1} (7)

xh
a , V

h ∈ R
+
0 , h ∈ H, a ∈ A,

where X = [x1,x2, ...,xa, ...]T and Y = [y1,y2, ...,ya, ...]T

are matrices of decision vectors xa and ya for a ∈ A,
respectively; V = [V 1, V 2, ..., V h, ...] is the vector of de-
cision variables V h for h ∈ H; (·)+ is a function where
(x)+ = max(0, x). The cost function comprises the operation
and start-up costs of conventional power generators for the
entire time horizon H .

A difficulty in solving this problem lies in the correlation
term (yha − yh−1

a )+. By introducing an auxiliary variable zha
into the problem formulation, an equivalent expression can be
obtained as

min
X,Y,Z,V

H
∑

h=1

∑

a∈A

[

cma · xh
a + cba · y

h
a + csa · z

h
a

]

(8)

s.t. zha ≥ 0, zha ≥ yha − yh−1
a

(2)− (4), yha , z
h
a ∈ {0, 1}

xh
a , V

h ∈ R
+
0 , h ∈ H, a ∈ A,

where Z|A|×H is the matrix of auxiliary variable zha for a ∈ A,
h ∈ H. The objective for introducing an auxiliary variable
zha into problem formulation (7) is to have an equivalent,
solvable problem without the correlation term (yha − yh−1

a )+.

Another difficulty in solving problem (7) is the indeterminacy
of renewable energy generations ξh existing in (4). Note
that to optimize over the space defined by (4) amounts to
solving an optimization problem with potentially large or
even infinite number of constraints. Obviously, this realization
of uncertainties is intractable. Next, we adopt the moment
statistic model to capture the uncertainties of ξh.

B. Moment Statistic Model

It is generally difficult to characterize the renewable energy
generation. However, we may measure the variability of re-
newable energy generation using its mean and second-order
moments, which are quite easy to obtain from field mea-
surements. Mathematically, we may assume that renewable
energy generation ξ = [ξ1, ..., ξH ] is confined by the following
uncertainty set:

P(µ, S) =
{

Pξ ∈ P∞ :

∫

Rn

ξ · P(dξ) = µ, (9)

∫

Rn

ξξTP(dξ) = S
}

,

where µ ∈ RH and S ∈ SH , SH is the set of symmetric
matrixes with dimension H , while P∞ represents the set of all
distributions on RH . Thus, P(µ, S) contains all distributions
that share the same mean µ and second-order moment matrix
S. The temporal-correlated information of renewable energy
generation is included in S, e.g., the two lines above and
below the diagonal of S indicate the correlation within one
time slot. With this moment statistic model, we are now ready
to transform the constraint (4) to allow efficient solution of
(8).

IV. OPTIMIZATION ALGORITHM

A. Robust Approach for Constraint (4)

As shown in (4), the energy storage balance can be ex-
pressed as:

∑H
h=1 V

h −
∑H

h=1 ξ
h ≤ 0. In practice, a decision

criterion is to properly set decision vector V to allow good
confidence that (4) is satisfied. To achieve that, we may intro-
duce a small value ϵ to control the degree of conservativeness
and change the above expression into a chance constraint

P(
H
∑

h=1

ξh <
H
∑

h=1

V h) ≤ ϵ, (10)

where ϵ is the fault tolerance limit of the microgrid, represent-
ing the acceptable probability that the desirable power supply
is not attained. Then we can have the robust expression that

sup
Pξ∈P(µ,S)

P(
H
∑

h=1

ξh <
H
∑

h=1

V h) ≤ ϵ. (11)

Theorem 1: Solving the left part of inequality (11) is
equivalent to solving the following semidefinite programming



problem (SDP):

max
k
∑

i=1

λi (12)

s.t. zi ∈ R
H , Zi ∈ S

H ,λi ∈ R ∀i = 1, 2, ..., k

aTi zi ≥ biλi ∀i = 1, 2, ..., k
k
∑

i=1

(

Zi zi
zTi λi

)

≼

(

S µ
µT 1

)

(

Zi zi
zTi λi

)

≽ 0 ∀i = 1, 2, ..., k

where a1H×1
= −1 · [1, 1, ..., 1]T ; [a2, ..., aH+1] = −1 · IH ;

[aH+2, ..., a2H+1] = IH , and IH is the identity matrix with

dimension H ; b1 =
∑H

h=1 V
h; [b2, ..., bH+1] = [0, .., 0]T ;

[bH+2, ..., b2H+1] = ξmax · [1, 1, ..., 1]T , and obviously k =
2H + 1.

The SDP reformulation (12) can be obtained through the
generalized Chebyshev inequality bounds. Detailed proof of
Theorem 1 is lengthy and omitted here due to limited space.
Readers may refer to reference [15] for more detailed descrip-
tions. Defining b1 =

∑H
h=1 V

h as the robust electricity acqui-
sition (EA) decision, which equals the amount of electricity
obtained from energy storage systems during the whole time
horizon. Further define Kξ(b1) = supPξ∈P(µ,S) P(

∑H
h=1 ξ

h <
∑H

h=1 V
h) as the worst-case fault probability. We can then

get a worst-case mapping Mwc which maps the robust EA
decision b1 to Kξ(b1):

Mwc : b1 −→ Kξ(b1). (13)

B. Determine the Robust EA Decision Threshold

Since there exist random variables in the constraint (4),
we cannot solve energy generation scheduling problem (8)
directly. As mentioned before, we adopt chance constraint
approximations and robust approaches to transform the con-
straint (4). The goal of such transformation is to determine
the maximum robust EA decision b∗1 (i.e., robust EA decision
threshold) so that the constraint (4) can be transformed into a
solvable form.

Theorem 2: The worst-case fault probability Kξ(b1) is non-
decreasing with respect to the robust EA decision b1.

It is straightforward to derive Theorem 2 since
dKξ(b1)/db1 = fξ(b1) ≥ 0, where fξ is the probability

density function of random variable
∑H

h=1 ξ
h. Though directly

obtaining the robust decision threshold is not practical, the
monotonicity of Kξ(b1) enlightens us a bisection method to
search for the solution for Kξ(b∗1) = ϵ. The main idea is to
perform the search within an interval of [0, ρ], where ρ is an
empirical constant such that Kξ(ρ) > ϵ.

Details of the algorithm for searching the robust EA deci-
sion threshold are presented in Algorithm 1. Note that, in the
5th line of the algorithm, we use interior point method to solve
the SDP problem in Theorem 1 and obtain the worst-case
probability with fixed robust EA decision. Then we compare
the worst-case fault probability at b1− and b1

− with the fault

tolerance limit ϵ, respectively. The comparison results help
shrink the search region as shown in lines 6-9.

Algorithm 1 Search for robust EA decision threshold b∗1
Input: Mean vector µ; Second-order moment matrix S

Search radius ρ; Battery balance fault tolerant limit ϵ;
Computational accuracy tolerance ε.

Output: Robust EA decision threshold such that Kξ(b∗1) = ϵ;
1: Begin

2: initialize b1− = 0, b1
− = ρ

3: while |b1− − b1
−| > ε

4: set b̄1 =
b1−+b1

−

2
5: compute Kξ(b̄1) by solving the SDP problem (12)

6: if
(

Kξ(b̄1)− ϵ
)(

Kξ(b1
−)− ϵ

)

< 0

7: then set b1− = b̄1
8: else set b1

− = b̄1 end if

9: if |Kξ(b̄1)− ϵ| < ε break end if
10: end while

11: set b1
∗ = b̄1

12: End

Once the robust EA decision threshold b∗1 for the constraint
(4) is obtained, we can approximate (4) with the following
constraint:

H
∑

h=1

V h = b∗1. (14)

Now we can tackle the following optimization problem rather
than the original formulation (8)

min
X,Y,Z,V

H
∑

h=1

∑

a∈A

[

cma · xh
a + cba · y

h
a + csa · z

h
a

]

(15)

s.t. zha ≥ 0, zha ≥ yha − yh−1
a

(2) (3) (14), yha , z
h
a ∈ {0, 1}

xh
a , V

h ∈ R
+
0 , h ∈ H, a ∈ A.

Note that constraint (4) with random variables in the initial
formulation (8) is approximated and replaced by (14) with no
random variable. This problem is a mixed integer program-
ming (MILP) problem, which can be solved effectively by
cutting plane method, branch and bounded method, etc.

V. PERFORMANCE EVALUATION AND ANALYSIS

In this section, we present numerical results based on real
world traces to assess the performance bounds of the proposed
energy generation scheduling scheme and evaluate the effects
of different parameters.

A. Parameters and Settings

We assume there are solar panels in the microgrid system.
The area of solar panels in this microgrid system is set to
be 1.5 × 104 m2. The energy conversion efficiency is 0.4.
The monthly clearness index time series are from 10 mete-
orological stations in Singapore. These stations are designed
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Fig. 2: Temporal correlation fitting using first two weeks’ radi-
ation data of November 2012. Nonlinear least square method is
adopted to get the fitted curve rtc = 1−0.1644τ+0.0.0038τ2.

to perform monitoring of solar radiation. Silicon sensors are
employed at each station, with some also having pyranometers
that measure diffuse and global irradiance. The silicon sensors
are calibrated by the Fraunhofer Institute for Solar Energy
Systems to achieve an uncertainty under 2%. The data used
in this work is hourly data collected by these 10 stations in
November 2012 [16], [17].

We obtain the electricity demand statistics from [18]. We
focus on a college at Forecasting Climate Zone (FCZ) 09. This
trace contains hourly electricity demand of the college in year
2002. The parameters of conventional power generators are
set based on the statistics in [19]. The maximum output of
a power unit is Emax

a = 3.5 MWh and the minimum stable
output is Emin

a = 1.5 MWh. The marginal cost for producing
one unit of electricity is cma = 0.051 $/KWh, which is obtained
using the fuel price and the energy conversion efficiency. The
sunk cost for a generator keeping in active mode is cba =
110 $/h, which includes the operation cost, capital cost, and
maintenance cost. The start up cost is set to be csa = 560 $.
Finally, unless otherwise stated, it is assumed there are 10
power units in this microgird system, the duration of a time
slot is 1 h and the time horizon is 12 h. The MILP problem
is solved using Mosek optimization toolbox 7.0 on an Intel
workstation with 6 processors clocking at 3.2 GHZ and 16
GB of RAM.

B. Results and Discussions

We first investigate the statistical properties of solar energy
generation in the time domain. In particular, we adopt solar
irradiance data for the first two weeks in November 2012.
Nonlinear least square method is used to obtain the fitted
line. The results concerning the temporal coherence of solar
energy generation with respect to time lag is depicted in Fig.
2. Note that the colored dots show the coherence of solar
energy generations in 10 stations, and the blue curve is the
fitted function rtc = 1 − 0.1644τ + 0.0.0038τ2, where τ is
the time lag and rtc is the coherence. As we observe in the
figure, solar energy generations show near-linear correlation
in the time domain, and such observations help us analyze
the performance bounds of the proposed energy generation
scheduling scheme in the following contents.
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Fig. 4: Cost bounds of the microgrid system with respect to
the fault tolerant limit ϵ.

Next, we investigate how the robust EA decision threshold
b∗1 varies when the fault tolerant limit ϵ increases. Figure 3
plots the mapping from fault tolerance limit ϵ to robust EA
decision threshold b∗1. It is shown from the figure that the
robust EA decision threshold b∗1 grows when ϵ increases. In
other words, a larger fault tolerant limit ϵ permits a higher
reliance on the solar energy (a larger robust EA decision
threshold), which is straightforward to understand. Note that
the robust EA decision threshold function is monotone, there-
fore it is justified to adopt the bisection method as presented
in Algorithm 1 to search for the robust EA decision threshold.
We also observe that the incremental rate of the robust EA
decision threshold slows down when ϵ increases.

In Fig. 4, we vary the values of fault tolerance limit ϵ
and study how system cost bound changes with respect to
ϵ. Note that the cost bound represents the operation cost of
the microgrid system under the worst-case condition of solar
energy generation. Apparently, the cost bound decreases when
ϵ increases. The reason is that when ϵ increases, the protection
level for the robust solution will decrease, the scheduling
strategies of the microgrid hence become less conservative,
leading to the decline of the operation cost. Also note that the
cost bound is less sensitive when the fault tolerance limit ϵ is
at a higher level.

In Fig. 5, we evaluate how the fault probability Kξ(b1)
varies with respect to the amount of temporal-correlation in-
formation utilized under different values of robust EA decision
b1. Specifically, we conduct a set of experiments. In the first
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Fig. 5: Fault probability Kξ(b1) with respect to the amount of
temporal-correlation information utilized under different value
of robust EA decision b1.

step, we only utilize the mean and variance information of
renewable energy generation to define µ vector and S matrix,
i.e., the elements in S is set to 0 except for those on the
diagonal; At the second step, we add the temporal-correlation
information within 1-hour time lag, i.e., only the diagonal, and
the lines above and below it have values in the second-order
moment matrix S. Then, at each time step n, n ≥ 2, the
temporal-correlation information within time lag 0 and time
lag n− 1 is utilized for the decision making. We repeat such
process until time step 12. At each step of the experiment, we
compute the fault probability under different values of robust
EA decision and plot Fig. 5. As depicted in this figure, when
we expand the time lag window to utilize more temporal-
correlation information, the fault probability will decrease first
and then increase. This result indicates that the temporal-
correlation information of solar energy generation within a
proper time span is of benefit for reducing the conservativeness
of the robust solution, whereas the correlation information out-
side a time lag (8 hours) window is useless, even harmful for
the decision making. Thus, we may suggest that the microgrid
should only utilize the temporal-correlation information within
8 hours for developing the scheduling strategies.

VI. CONCLUSION

In this paper, we investigated the energy generation schedul-
ing problem in a microgrid system equipped with renewable
energy resources and energy storage devices. The aim of the
scheduling is to minimize the system operation cost while
maintaining the system reliability. To cope with the indeter-
minacy nature of renewable energy generation, we adopted a
moment statistic model to confine the fluctuations. Such model
allows convenient handling of volatile renewable energies as
long as the generations are not too intensely different from
the predictions or empirical knowledge. Chance constraint
approximations and robust optimization approaches based on
generalized Chebyshev bounds are developed to first transform
and then solve the scheduling problem. Numerical results
based on real-world statistics evaluate the cost bounds of the
proposed scheduling scheme. The impact of different param-
eters has been carefully studied. Moreover, we investigated
the temporal-correlation properties of the solar energy. It

is shown that the temporal-correlation information of solar
energy generation within a proper time lag is beneficial for
reducing the conservativeness of the robust solution, whereas
the correlation information of longer time span may be harmful
for the decision making. These results, as we believe, shall
provide useful insights helping the microgrid system operators
to develop rational scheduling strategies.
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