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Abstract 17 
 18 
SNP heritability, the proportion of phenotypic variance explained by SNPs, has been reported for many 19 
hundreds of traits. Its estimation requires strong prior assumptions about the distribution of heritability across 20 
the genome, but the assumptions in current use have not been thoroughly tested. By analyzing imputed data for a 21 
large number of human traits, we empirically derive a model that more accurately describes how heritability 22 
varies with minor allele frequency, linkage disequilibrium and genotype certainty. Across 19 traits, our improved 23 
model leads to estimates of common SNP heritability on average 43% (standard deviation 3) higher than those 24 
obtained from the widely-used software GCTA, and 25% (standard deviation 2) higher than those from the 25 
recently-proposed extension GCTA-LDMS. Previously, DNaseI hypersensitivity sites were reported to explain 26 
79% of SNP heritability; using our improved heritability model their estimated contribution is only 24%. 27 
 28 
Introduction 29 
 30 
The SNP heritability (h2

SNP) of a trait is the fraction of phenotypic variance explained by additive contributions from 31 
SNPs.1 Accurate estimates of h2

SNP are central to resolving the missing heritability debate, indicate the potential utility 32 
of SNP-based prediction and help design future genome-wide association studies (GWAS).2,3 Whereas techniques for 33 
estimating (total) heritability have existed for decades,4,5 the first method for estimating h2

SNP was proposed only in 34 
2010,1 but has since been applied to many hundreds of traits. Extensions of this method are now being used to partition 35 
heritability across chromosomes, biological pathways and by SNP function, and to calculate the genetic correlation 36 
between pairs of traits.6–8 37 
 38 
As the number of SNPs in a GWAS is usually much larger than the number of individuals, estimation of h2

SNP requires 39 
steps to avoid over-fitting. Most reported estimates of h2

SNP are based on assigning the same Gaussian prior distribution 40 
to each SNP effect size, in a way which implies that all SNPs are expected to contribute equal heritability.1,9 By 41 
examining a large collection of real datasets, we derive approximate relationships between the expected heritability of a 42 
SNP and minor allele frequency (MAF), levels of linkage disequilibrium (LD) with other SNPs and genotype certainty. 43 
This provides us with an improved model for heritability estimation and a better understanding of the genetic 44 
architecture of complex traits. 45 
 46 
Results 47 
 48 
When estimating h2

SNP, the “LDAK Model” assumes 49 
 50 

E[h j
2]∼[ f j(1−f j)]

1+α×w j×r j ,      (1) 51 
 52 

where E[h2
j] is the expected heritability contribution of SNP j and fj is its (observed) MAF. The parameter α determines 53 

the assumed relationship between heritability and MAF. In human genetics it is commonly assumed that heritability 54 
does not depend on MAF, which is achieved by setting α=-1, however, we consider alternative relationships. The SNP 55 
weights w1, …, wm are computed based on local levels of LD;9 wj tends to be higher for SNPs in regions of low LD, and 56 
thus the LDAK Model assumes that these SNPs contribute more than those in high-LD regions. Finally, rj∈[0,1] is an 57 
information score measuring genotype certainty; the LDAK Model expects that higher-quality SNPs contribute more 58 
than lower-quality ones. rj is defined in Online Methods, where we also explain how (1) arises by assuming a genome-59 
wide random regression in which SNP effect sizes are assigned Gaussian distributions. 60 
 61 
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The “GCTA Model” is obtained from (1) by setting wj=1 and rj=1, and thus assumes that expected heritability does not 62 
vary with either LD or genotype certainty. To date, most reported estimates of h2

SNP have used the GCTA Model with 63 
α=-1, which corresponds to the assumption that E[h2

j] is constant, and so the expected contribution of a SNP set 64 
depends only on the number of SNPs it contains.1 To appreciate the major difference between the GCTA and LDAK 65 
Models, consider a region containing two SNPs: under the GCTA Model, the expected heritability of these two SNPs is 66 
the same irrespective of the LD between them, whereas under the LDAK Model, two SNPs in perfect LD are expected 67 
to contribute only half the heritability of two SNPs showing no LD. See Figure 1 for a more detailed example. 68 
 69 
FIGURE 1 ABOUT HERE 70 
 71 
An alternative method for estimating h2

SNP is LDSC (LD Score Regression).10 The LDSC Model expects that each SNP 72 
contributes equal heritability,10,11 and therefore closely resembles the GCTA Model with α=-1. When applied to the 73 
same dataset, estimates from LDSC will typically have standard error 25-100% higher than those from GCTA;11 this is 74 
partly because the LDSC Model includes an extra parameter, designed to capture confounding biases, and partly 75 
because LDSC estimates are moment-based, whereas GCTA (like LDAK) uses restricted maximum likelihood 76 
(REML).12,13 However, as LDSC requires only summary statistics (i.e., p-values from single-SNP analysis), it can be 77 
used on much larger datasets than GCTA and LDAK, which need raw genotype data, and can be applied to results from 78 
large-scale meta-analyses.10 79 
 80 
SNP partitioning: (1) can be generalized by dividing SNPs into tranches across which the constant of proportionality is 81 
allowed to vary (so E[h2

j] =ck x [fj(1-fj)]
1+α  x wj x rj for SNPs in Tranche k). This is known as SNP partitioning.6 Two 82 

examples are GCTA-MS14 and GCTA-LDMS:15 when applied to common SNPs (MAF>0.01), GCTA-MS divides the 83 
genome into five tranches based on MAF, using the boundaries 0.1, 0.2, 0.3 and 0.4, while GCTA-LDMS first divides 84 
SNPs into four tranches based on local average LD Score,10 then divides each of these into five based on MAF, resulting 85 
in a total of 20 tranches. In general, we prefer to avoid SNP partitioning when estimating h2

SNP, because it introduces 86 
(often arbitrary) discontinuities in the model assumptions and can cause convergence problems. However, we show 87 
below that partitioning based on MAF enables reliable estimation of h2

SNP when rare SNPs (MAF<\0.01) are included. 88 
Additionally, SNP partitioning provides a way to visually assess the fit of different heritability models; it allows us to 89 
estimate average h2

j for different SNP tranches, which can then be compared to the values predicted under different 90 
assumptions. 91 
 92 
TABLE 1 ABOUT HERE 93 
 94 
Datasets: In total, we analyze data for 42 traits. Table 1 describes the 19 "GWAS traits" (17 case-control, 2 95 
quantitative). For these, individuals were genotyped using either genome-wide Illumina or Affymetrix arrays (typically 96 
500K to 1.2M SNPs). We additionally examine data from eight cohorts of the UCLEB consortium,24 which comprise 97 
about 14000 individuals genotyped using the Metabochip;25 (a relatively sparse array of 200K SNPs selected based on 98 
previous GWAS) and recorded for a wide range of clinical phenotypes. From these, we consider 23 quantitative 99 
phenotypes (average sample size 8200), which can loosely be divided into anthropomorphic (height, weight, BMI and 100 
waist circumference), physiological (lung capacity and blood pressure), cardiac (e.g., PR and QT intervals), metabolic 101 
(glucose, insulin and lipid levels) and blood chemistry (e.g., fibrinogen, Interleukin 6 and haemoglobin levels). In 102 
general, our quality control is extremely strict; after imputation we retain only autosomal SNPs with MAF>0.01 and 103 
information score rj>0.99. We only relax quality control when, using the UCLEB data, we explicitly examine the 104 
consequences of including lower-quality and rare SNPs. 105 
 106 
Further details of our methods and datasets are provided in Online Methods. In particular, we explain how when 107 
estimating h2

SNP we give special consideration to highly-associated SNPs, which we define as those with 108 

P< 10−20
from single-SNP analysis, and how for the UCLEB data, we confirm that genotyping errors do not correlate 109 

with phenotype (which is important for the analyses where we include lower-quality SNPs). 110 
 111 
Relationship between heritability and MAF: Varying the value of α in (1) changes the assumed relationship between 112 
heritability and MAF; three example relationships are shown in Figure 2a. To determine suitable α, we analyze each of 113 
the 42 traits using seven values: -1.25, -1, -0.75, -0.5, -0.25, 0 and 0.25, seeing which lead to best model fit (highest 114 
likelihood). Full results are provided in Supplementary Figure 1 and Supplementary Table 2. First, to remove any 115 
confounding due to LD, we use only a pruned subset of SNPs (with wj=1); next, we repeat without LD pruning (the 116 
results for the GWAS traits are shown in Figure 2b); finally, for the UCLEB traits, we repeat including lower-quality 117 
and rare SNPs. We find that model fit is typically highest for -0.5≤α≤0, whereas the most widely-used value, α=-1, 118 
results in sub-optimal fit. On the basis that it performs consistently well across different traits and SNP filterings, we 119 
recommend that α=-0.25 becomes the default. This value implies that expected heritability declines with MAF; this is 120 
seen in Figure 2a which reports, averaged across the 19 GWAS traits, the (weight-adjusted) per-SNP heritability for 121 
low- and high-MAF SNPs (see Supplementary Figure 2 for further details). 122 
 123 



FIGURE 2 ABOUT HERE 124 
 125 
While α=-0.25 provides the best fit overall, for individual traits, optimal α may differ, and therefore we investigate 126 
sensitivity of h2

SNP estimates to the value of α. Full results are provided in Supplementary Figures 3, 4 & 5, while Figure 127 
6a provides a summary for the UCLEB traits. When analyzing only common SNPs, we find that changes in α have little 128 
impact on h2

SNP. For example, across the 23 UCLEB traits, estimates from high-quality common SNPs using α=-0.25 129 
are on average only 5% (standard deviation 4) lower than those using α=-1, and 4% (standard deviation 4) higher than 130 
those using α=0. However, this is no longer the case when rare SNPs are included in the analysis: for example, when the 131 
MAF threshold is reduced to 0.0005, estimates using α=-0.25 are on average 18% (standard deviation 4) lower than 132 
those using α=-1 and 30% (standard deviation 6) higher than those from α=0. Therefore, when including rare SNPs, we 133 
guard against misspecification of α by partitioning based on MAF (with boundaries at 0.001, 0.0025, 0.01 and 0.1); we 134 
find that this provides stable estimates of h2

SNP and also allows estimation of the relative contributions of rare and 135 
common variants (Figure 6a and Supplementary Figure 6). 136 
 137 
Relationship between heritability and LD: The LDAK Model assumes that heritability varies according to local 138 
levels of LD, whereas the GCTA Model assumes that heritability is independent of LD. First we demonstrate that  139 
choice of model matters when estimating h2

SNP. For the GWAS traits, Figure 3a reports relative estimates of h2
SNP from 140 

GCTA, GCTA-MS, GCTA-LDMS and LDAK (all using α=-0.25); see Supplementary Figure 7 for an extended version. 141 
We find that estimates based on the LDAK Model are on average 48% (standard deviation 3) higher than estimates 142 
based on the GCTA Model. For the UCLEB traits, estimates from LDAK are on average 88% (standard deviation 7) 143 
higher than those from GCTA (Supplementary Fig. 8). Figure 3a also includes results from LDSC, run as described in 144 
the original publication10 (see Supplementary Table 3 for numerical values). Estimates from LDSC are not significantly 145 
different to those from GCTA, which is to be expected considering that GCTA and LDSC assume the same relationship 146 
between heritability and LD. In Supplementary Figure 9 we consider alternative versions of LDSC (e.g., varying how 147 
LD Scores are computed, forcing the intercept term to be zero and excluding highly-associated SNPs). While changing 148 
settings can have a large impact, in all cases the average estimate of h2

SNP from LDSC remains substantially below that 149 
from LDAK. 150 
 151 
FIGURE 3 ABOUT HERE 152 
 153 
A recent article which asserted that GCTA estimates h2

SNP more accurately than LDAK, based this claim on a simulation 154 
study in which causal SNPs were assigned effect sizes from the same Gaussian distribution, irrespective of LD.6 This 155 
resembles the GCTA Model but not the LDAK Model, and so it is no surprise that GCTA performed better. Figure 3b 156 
shows that if instead effect size variances had been scaled by SNP weights, and so vary with LD similar to the LDAK 157 
Model, then the study would have found LDAK to be superior to GCTA. Thus using simulations to compare different 158 
heritability models is problematic, because the conclusions will depend on the assumptions used when generating 159 
phenotypes. See Supplementary Figure 10 for a full reanalysis of the reported simulation study and Supplementary 160 
Figure 11 for further simulations. 161 
 162 
Rather than using simulations, we compare LDAK and GCTA empirically. Supplementary Table 4 shows that when α=-163 
0.25, assuming the LDAK Model leads to higher likelihood than assuming the GCTA Model for all 19 GWAS traits and 164 
for 17 of the 23 UCLEB traits (if we instead use α=-1, likelihood is higher under the LDAK Model for 31 of the 42 165 
traits). To visually demonstrate the superior fit of the LDAK Model, we partition SNPs into low- and high-LD tranches 166 
(for this, we rank SNPs according to the average LD Score10 of non-overlapping 100kb segments, the metric used by 167 
GCTA-LDMS15). First, we partition so that the two tranches contain an equal number of SNPs. The left half of Figure 4 168 
reports, for each of the GWAS traits, the contribution of the low-LD tranche, estimated using the GCTA Model (with 169 
α=-0.25). Under the GCTA Model, the low-LD tranche is expected to contribute 50% of h2

SNP; under the LDAK Model, 170 
it is expected to contribute 72% of h2

SNP. We see that the estimated contribution of the low-LD tranche is consistent with 171 
the GCTA Model (95% confidence interval includes 50%) for only 5 of the 19 traits, whereas it is consistent with the 172 
LDAK Model (confidence interval includes 72%) for 18. Next we partition so that the low-LD tranche contains a 173 
quarter of the SNPs; now the low-LD tranche is predicted to contribute 26% of h2

SNP under the GCTA Model, but 47% 174 
of h2

SNP under the LDAK Model. The right half of Figure 4 shows that its estimated contribution is consistent with the 175 
GCTA Model for only 7 of the 19 traits, but again consistent with the LDAK Model for 18. Additional results are 176 
provided in Supplementary Figure 12; these show that regardless of whether we estimate heritabilities using LDAK 177 
(rather than GCTA), whether we use α=-1 (instead of α=-0.25) or whether we analyze the UCLEB traits, it remains the 178 
case that the LDAK Model better predicts the heritability contribution of each tranche than the GCTA Model. 179 
 180 
FIGURE 4 ABOUT HERE 181 
 182 
Relationship between heritability and genotype certainty: The LDAK Model assumes that SNP heritability 183 
contributions vary with genotype certainty (measured by the information score rj). So far, our analyses have used only 184 
very high-quality SNPs (rj>0.99), so this assumption has been redundant. Now we also include lower-quality common 185 
SNPs; we focus on the UCLEB traits, as for these we were able to test for correlation between genotyping errors and 186 



phenotype (Supplementary Fig. 13). Supplementary Table 5 compares model fit with and without allowance for 187 
genotype certainty; it shows that including rj in the heritability model tends to provide a modest improvement in model 188 
fit, resulting in a higher likelihood for 18 out of 23 traits. 189 
 190 
Estimates of h2

SNP for the GWAS traits: Table 1 presents our final estimates of h2
SNP for the 19 GWAS traits, obtained 191 

using the LDAK Model (with α=-0.25). For comparison, we include previously-reported estimates of h2
SNP, as well as 192 

the proportion of phenotypic variance explained by SNPs reported as genome-wide significant (see Supplementary 193 
Table 6). For the disease traits, estimates are on the liability scale, obtained by scaling according to the observed case-194 
control ratio and (assumed) trait prevalence.26,27 We are unable to find previous estimates of h2

SNP for tuberculosis or 195 
intraocular pressure, indicating that for these two traits, we are the first to establish that common SNPs contribute 196 
sizable heritability. Extended results are provided in Supplementary Table 7. These show that our final estimates of 197 
h2

SNP are on average 43% (standard deviation 3) and 25% (standard deviation 2) higher than, respectively, those 198 
obtained using the original versions (i.e., with α=-1) of GCTA28 and GCTA-LDMS.15 Results for the UCLEB Traits are 199 
provided in Supplementary Table 1. 200 
 201 
Role of DNaseI hypersensitivity sites (DHS): Gusev et al.7� �  used SNP partitioning to assess the contributions of 202 
SNP classes defined by functional annotations. Across 11 diseases they concluded that the majority of h2

SNP was 203 
explained by DHS, despite these containing less than 20% of all SNPs. For Figure 5, we perform a similar analysis 204 
using the 10 traits we have in common with their study (for 9 of these, we are using the same data). When we copy 205 
Gusev et al. and assume the GCTA Model with α=-1, we estimate that on average DHS contribute 86% (standard 206 
deviation 4) of h2

SNP, close to the value they reported (79%). When instead we assume the LDAK Model (with α=-207 
0.25), the estimated contribution of DHS reduces to 25% (standard deviation 2). Under the LDAK Model, DHS are 208 
predicted to contribute 18% of h2

SNP so 25% represents 1.4-fold enrichment. To add context, we also consider "genic" 209 
SNPs, which we define as SNPs inside or within 2kb of an exon (using RefSeq annotations29), and "inter-genic," SNPs 210 
further than 125kb from an exon; these definitions ensure that these two SNP classes are also predicted to contribute 211 
18% of h2

SNP under the LDAK Model. We estimate that genic SNPs contribute 29% (standard deviation 2), while inter-212 
genic SNPs contribute 10% (standard deviation 2), representing 1.6-fold and 0.6-fold enrichment, respectively. When 213 
we extend this analysis to all 42 traits, DHS on average contribute 24% (standard deviation 2) of h2

SNP, and in contrast 214 
to Gusev et al., enrichment remains constant when we reduce SNP density (Supplementary Fig. 14 & 15 and 215 
Supplementary Table 8). 216 
 217 
Finucane et al.30 performed a similar analysis, but considered 52 SNP classes and estimated enrichment using LDSC; 218 
across nine traits, they identified five classes with >4-fold enrichment, the highest of which, "conserved SNPs," had 13-219 
fold enrichment. When we use LDAK to estimate enrichment for our 19 GWAS traits, the results are more modest; the 220 
highest enrichment is 2.5-fold, with only 1.3-fold enrichment for conserved SNPs (Supplementary Fig. 16). 221 
 222 
FIGURE 5 ABOUT HERE 223 
 224 
Relaxing quality control: For the UCLEB data, we consider nine alternative SNP filterings. Supplementary Figure 17 225 
reports estimates of h2

SNP for each trait / filtering, while Figure 6a provides a summary. First we vary the information 226 
score threshold: rj>0.99, >0.95, >0.9, >0.6, >0.3 and >0 (each time continuing to require MAF>0.01). Simulations 227 
suggest that by including all 8.8M common SNPs (rj>0), instead of using just the 353K high-quality ones (rj> 0.99), we 228 
can expect estimates of h2

SNP to increase by 50-60% (Supplementary Fig. 18). This is similar to what we observe in 229 
practice, as across the 23 traits, estimates of h2

SNP (using α=-0.25) are on average 45% (standard deviation 8) higher. 230 
The simulations further predict that, even though the Metabochip provides relatively low coverage of the genome (after 231 
quality control, it contains only 60K SNPs, predominately within genes), we can expect estimates of h2

SNP to be 232 
approximately 80% as high as those obtained starting from genome-wide genotyping arrays. While we are unable to test 233 
this claim directly, it is consistent with our results for height, body mass index and QT Interval, the three traits for which 234 
reasonably precise estimates of common SNP h2

SNP are available6 (Figure 6b). For the final three SNP filterings, we 235 
vary the MAF threshold: MAF>0.0025, MAF>0.001 and MAF>0.0005 (all with rj>0). Across the 23 traits, we find that 236 
rare SNPs contribute substantially to h2

SNP: for example, when we use the 17.3M SNPs with MAF>0.0005, estimates of 237 
h2

SNP (using α=-0.25 and MAF partitioning) are on average 29% (standard deviation 12) higher than those based on the 238 
8.8M common SNPs (median increase 22%), with rare SNPs contributing on average 33% (standard deviation 5) of 239 
h2

SNP (Figure 6a). 240 
 241 
FIGURE 6 ABOUT HERE 242 
 243 
Discussion 244 
 245 
With estimates of h2

SNP so widely reported, it is easy to forget that calculating the variance explained by large numbers 246 
of SNPs is a challenging problem. To avoid over-fitting, it is necessary to make strong prior assumptions about SNP 247 
effect sizes, but different assumptions can lead to substantially different estimates of h2

SNP. Previous attempts to assess 248 
the validity of assumptions have used simulation studies,14,15 but this approach will tend to favor assumptions similar to 249 



those used to generate the phenotypes. Instead, we have compared different heritability models empirically, by 250 
examining how well they fit real datasets. 251 
 252 
We begun by investigating the relationship between heritability and MAF. Across 42 traits, we found that best fit was 253 
achieved by setting α=-0.25 in (1), which implies that average heritability varies with [MAF(1-MAF)]0.75. As explained 254 
in Online Methods, the value of α corresponds to the scaling of genotypes. Therefore, our result indicates that the 255 
performance (i.e., detection power and/or prediction accuracy) of many penalized and Bayesian regression methods, for 256 
example, the Lasso, ridge regression and BayesA,31,32 could be improved simply by changing how genotypes are scaled. 257 
Although we recommend α=-0.25 as the default value, with sufficient data available, it should be possible to estimate α 258 
on a trait-by-trait basis, or to investigate more complex relationships between heritability and MAF. In particular, with a 259 
better understanding of the relationship between heritability and MAF for low frequencies, it may no longer be 260 
necessary to partition by MAF when rare SNPs are included. 261 
 262 
We also examined the relationship between heritability and LD. To date, most estimates of h2

SNP have been based on the 263 
GCTA Model; this model can be motivated by a belief that each SNP is expected to have the same effect on the 264 
phenotype, from which it follows that the expected heritability of a region should depend on the number of SNPs it 265 
contains. By contrast, the LDAK Model views highly-correlated SNPs as tagging the same underlying variant, and 266 
therefore believes that the expected heritability of a region should vary according to the total amount of distinct genetic 267 
variation it contains. Across our traits, we found that the relationship between heritability and LD specified by the 268 
LDAK Model consistently provides a better description of reality. 269 
 270 
This finding has important consequences for complex trait genetics. Firstly, it implies that for many traits, common 271 
SNPs explain considerably more phenotypic variance than previously reported, which represents a significant advance 272 
in the search for missing heritability.2 It also impacts on a large number of closely-related methods. For example, 273 
LDSC,10 like GCTA, assumes that heritability contributions are independent of LD and therefore it also tends to under-274 
estimate h2

SNP.  Similarly, we have shown that estimates of the relative importance of SNP classes via SNP partitioning 275 
can be misleading when the GCTA Model is assumed.7,30 Further afield, most software for mixed model association 276 
analyses (e.g., FAST-LMM, GEMMA, MLM-LOCO and BOLT) use an extension of the GCTA Model,33–36 and 277 
likewise most bivariate analyses, including those performed by LDSC.8,37,38 It remains to be seen how much these 278 
methods would be affected if they employed more realistic heritability models. 279 
 280 
Attempts have been made to improve the accuracy of heritability models via SNP partitioning.14,15,39 We find that 281 
partitioning by MAF can be advantageous, as it guards against misspecification of the relationship between heritability 282 
and MAF when rare variants are included. Figure 3a and Supplementary Figure 7 indicate that the realism of the GCTA 283 
Model can be improved by partitioning based on LD; for example, across the GWAS traits, estimates from GCTA-284 
LDMS are on average 16% (standard deviation 2) higher than those from GCTA, and now only 23% (standard deviation 285 
2) lower than those from LDAK. The improvement arises because model misspecification is reduced by allowing SNPs 286 
in lower-LD tranches to have higher average heritability. However, Supplementary Table 9 illustrates why we consider 287 
such an approach sub-optimal; in particular, SNP partitioning can be computationally expensive, and even with LD-288 
partitioning, model fit tends to be worse than that from LDAK. 289 
 290 
While we have investigated the role of MAF, LD and genotype certainty, there remain other factors on which 291 
heritability could depend, in particular the available functional annotations of genomes.40 For example, our comparison 292 
of genic and inter-genic SNPs indicates that the effect-size prior distribution could be improved by taking into account 293 
proximity to coding regions. By way of demonstration, Supplementary Table 10 shows that model fit is improved by 294 

assuming 

E[h j
2]=ck×[ f j(1−fj)]1+α×w j×r j×exp(

−(D j+50)
500

)
, where Dj is the distance (in kb) between SNP 295 

j and the nearest exon (under this model, genic SNPs are expected to have about twice the heritability of inter-genic 296 
SNPs). In general, we believe that modifications of this type will have a relatively small impact; we note that across the 297 

19 GWAS traits, scaling by 

exp(
−(D j+50)

500
)

increases model log likelihood by on average only 1.5, much less than 298 
the average increase obtained by using α=-0.25 instead of α=-1 (8.9), or by choosing the LD-model specified by LDAK 299 
instead of GCTA (17.7), and does not significantly change estimates of h2

SNP. However, with sufficient data, it may be 300 
possible to obtain more substantial improvement by tailoring model assumptions to individual traits. 301 
 302 
When estimating h2

SNP, care should be taken to avoid possible sources of confounding. Previously, we advocated a test 303 
for inflation of h2

SNP due to population structure and familial relatedness.3 The conclusions of a recent paper claiming 304 
that h2

SNP estimates are unreliable,41 would have changed substantially had this test been applied (Supplementary Fig. 305 
19). We also recommend testing for inflation due to genotyping errors, particularly before including lower-quality 306 
and/or rare SNPs. For the 23 UCLEB traits, we showed that including poorly-imputed SNPs resulted in significantly 307 



higher estimates of h2
SNP and made it possible to capture the majority of genome-wide heritability despite the very 308 

sparse genotyping provided by the Metabochip. We found that including rare SNPs also led to significantly higher h2
SNP. 309 

Although sample size prevented us from obtaining precise estimates of h2
SNP for individual traits, our analyses indicated 310 

that for larger datasets, including rare SNPs will be both practical and fruitful in the search for the remaining missing 311 
heritability.2 312 
 313 
URLs 314 
 315 
LDAK: www.ldak.org 316 
PLINK: www.cog-genomics.org/plink2 317 
SHAPEIT: www.shapeit.fr 318 
IMPUTE2: mathgen.stats.ox.ac.uk/impute/impute_v2.html 319 
DHS annotations: 320 
hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegDnaseClustered/wgEncodeRegDnaseClusteredV321 
3.bed.gz 322 
RefSeq annotations: http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/refGene.txt.gz 323 
 324 
Methods 325 
 326 
Methods and any associated references are available in the online version of the paper. 327 
 328 
Code Availability 329 
 330 
Step-by-step instructions for estimating h2

SNP starting from raw genotype data, as well as for performing our other 331 
analyses, are provided in the Supplementary Note. 332 
 333 
Data Availability 334 
 335 
In total, we analyze data from 40 cohorts; 25 of these were downloaded (after completing a data access request) from 336 
the European Genome-phenome Archive or dbGaP, while the remaining 15 (which include the 8 UCLEB cohorts) were 337 
obtained direct from the relevant custodians. Full details of the cohorts (with accession codes where applicable) are 338 
provided in the Supplementary Material. 339 
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Figure Legends450 

 451 
Figure 1 - Comparison of the GCTA and LDAK Models. Region 1 contains five SNPs in low LD (lighter colors 452 
indicate weaker pairwise correlations). Each SNP contributes unique genetic variation, reflected by SNP weights close 453 
to one. Region 2 contains five SNPs in high LD (strong correlations). The total genetic variation tagged by the region is 454 
effectively captured by two of the SNPs, and so the others receive zero weight. Under the GCTA Model, the regions are 455 
expected to contribute heritability proportional to their numbers of SNPs, here equal. Under the LDAK Model, they are 456 
expected to contribute proportional to their sums of SNP weights, here in the ratio 4.6:1.9. Note that the expected 457 
heritability can also depend on the allele frequencies and genotype certainty of the SNPs, but for simplicity, these 458 
factors are ignored here. 459 
 460 
Figure 2 - (a) Relationship between heritability and MAF. The parameter α specifies the assumed relationship 461 
between heritability and MAF: in human genetics, α=-1 is typically used (solid blue line), while in animal and plant 462 
genetics, α=0 is more common (orange); we instead found α=-0.25 (red) provides a better fit to real data. The gray bars 463 
report (relative) estimates of the per-SNP heritability for MAF<0.1 and MAF>0.1 SNPs, averaged across the 19 GWAS 464 
traits (vertical lines provide 95% confidence intervals); the dashed lines indicate the per-SNP heritability predicted by 465 
each α. (b) Determining best-fitting α for the GWAS traits. We compare α based on likelihood; higher likelihood 466 
indicates better-fitting α. Lines report log likelihoods from LDAK for seven values of α, relative to the highest 467 
observed. Line colors indicate the seven trait categories, while the black line reports averages. 468 
 469 
Figure 3 - (a) Relative estimates of h2

SNP for the GWAS traits. h2
SNP estimates from LDSC, GCTA-MS (SNPs 470 

partitioned by MAF), GCTA-LDMS (SNPs partitioned by LD and MAF) and LDAK are reported relative to those from 471 
GCTA. For versions of GCTA and LDAK, we use α=-0.25 (see main text for explanation of α). Line colors indicate the 472 
seven trait categories; the black line reports the (inverse variance weighted) averages, with gray boxes providing 95% 473 
confidence intervals for these averages. Numerical values are provided in Supplementary Table 3. (b) Simulation 474 
studies can be misleading. Phenotypes are simulated with 1000 causal SNPs and h2

SNP=0.8 (black horizontal line), then 475 
analyzed using GCTA, GCTA-MS, GCTA-LDMS, LDAK and LDAK-MS (LDAK with SNPs partitioned by MAF). 476 
Bars report average h2

SNP across 200 simulated phenotypes (vertical lines provide 95% confidence intervals). Left: 477 
copying the study of Yang et al.,15 causal SNP effect sizes are sampled from N(0,1), similar to the GCTA Model. Right: 478 
causal SNP effect sizes are sampled from N(0,wj), similar to the LDAK Model. 479 
 480 
Figure 4 - Comparing the GCTA and LDAK Models for the GWAS traits: We partition SNPs into low- or high-LD, 481 
with the low-LD tranche containing either 50% (left) or 25% (right) of SNPs. For each partition, the horizontal red and 482 
black lines indicate the predicted contribution of the low-LD tranche to h2

SNP under the GCTA and LDAK Models, 483 
respectively. Vertical lines provide point estimates and 95% confidence intervals for the contribution of the low-LD 484 
tranche to h2

SNP, estimated assuming the GCTA Model. Line colors indicate the seven trait categories, while the black 485 
lines provide the (inverse variance weighted) averages. 486 
 487 
Figure 5 - Enrichment of SNP Classes. Block 1 reports the contributions to h2

SNP of DNaseI hypersensitivity sites 488 
(DHS), estimated under the GCTA Model with α=-1 (see main text for explanation of α). The vertical lines provide 489 
point estimates and 95% confidence intervals for each trait, and for the (inverse variance weighted) average; for 3 of the 490 
traits, the point estimate is above 100%, as was also the case for Gusev et al.7 Block 2 repeats this analysis, but now 491 
assuming the LDAK Model with α=-0.25. Blocks 3 & 4 estimate the contribution of "genic SNPs" (those inside or 492 
within 2kb of an exon) and "inter-genic SNPs" (further than 125kb from an exon), again assuming the LDAK Model 493 
with α=-0.25. To assess enrichment, estimated contributions are compared to those expected under the GCTA or LDAK 494 
Model, as appropriate (horizontal lines). 495 
 496 
Figure 6 - Varying quality control for the UCLEB traits. We consider three SNP filterings: 353K high-quality 497 
common SNPs (information score >0.99, MAF>0.01), 8.8M common SNPs (MAF>0.01) and all 17.3M SNPs 498 
(MAF>0.0005). (a) Blocks indicate SNP filtering; bars report (inverse variance weighted) average estimates of h2

SNP 499 
using LDAK (vertical lines provide 95% confidence intervals). Bar color indicates the value of α used. For Blocks 1, 2 500 
& 3, h2

SNP is estimated using the non-partitioned model. For Block 4, SNPs are partitioned by MAF; we find this is 501 
necessary when rare SNPs are included, and also allows estimation of the contribution of MAF<0.01 SNPs (hatched 502 
areas). (b) Bars report our final estimates of h2

SNP for height, body mass index and QT interval, the three traits for which 503 
common SNP heritability has been previously estimated with reasonable precision6 (orange lines mark the 95% 504 
confidence intervals from these previous studies). Bar colors now indicate SNP filtering; all estimates are based on α=-505 
0.25, using either a non-partitioned model (red and blue bars) or with SNPs partitioned by MAF (purple bars). 506 
 507 
 508 
 509 
 510 
 511 



Table 512 
 513 

      Estimates of h2
SNP & SDs 

 
Previous           LDAK  Collection Trait (Disease Prevalence, %) n m Σ j= 1

m w j
h2

GWAS

Welcome Trust 
Case Control 
Consortium 1 
(WTCCC 1) 

Bipolar Disorder (0.5) 1840+2913 2729 79K    0.02 0.247

� �  
0.04 0.35 0.03

Coronary Artery Disease (6) 1907+2918 2739 80K    0.03 0.257 0.06 0.40 0.06

Crohn's Disease (0.5) 1691+2905 2724 79K    0.21 0.2621

�  
0.01 0.32 0.03

Hypertension (5) 1918+2916 2740 80K <0.01 0.337 0.06 0.46 0.06

Rheumatoid Arthritis (0.5) 1846+2918 2736 80K    0.19 0.097 0.03 0.21 0.03

Type 1 Diabetes (0.5) 1941+2907 2732 80K    0.27 0.137 0.03 0.31 0.02

Type 2 Diabetes (8) 1896+2917 2736 80K    0.08 0.427 0.07 0.54 0.07

Welcome Trust 
Case Control 
Consortium 2 
(WTCCC 2) 

Barrett's Oesophagus (1.6) 1861+5138 3831 116K <0.01 0.2516 0.05 0.32 0.04

Ischaemic Stroke (2) 3769+5139 3797 115K <0.01 0.2517

�  
0.03 0.34 0.03

Parkinson's Disease (0.2) 1687+5136 3820 116K    0.03 0.2718 0.05 0.20 0.03

Psoriasis (0.5) 2267+5143 3815 116K    0.21 0.3519 0.06 0.34 0.02

Schizophrenia (1) 2068+2615 3481 111K    0.07 0.2320 0.01 0.30 0.04

Ulcerative Colitis (0.2) 2614+5327 4062 115K    0.12 0.1921 0.01 0.28 0.02

WTCCC 2+ 

Celiac Disease (1) 2492+7376 2682 88K    0.29 0.3322 0.04 0.35 0.02

Multiple Sclerosis (0.1) 8553+5667 3702 113K    0.17 0.177 0.01 0.24 0.01

Partial Epilepsy (0.3) 1217+5152 3399 108K <0.01 0.333

�  
0.05 0.27 0.04

RPTB Pulmonary Tuberculosis (4) 5142+5283 2987 102K <0.01 None Found 0.26 0.03

Blue Mountains Intraocular Pressure 2235 4149 125K   0.02 None Found 0.38 0.17

CHOP Wide-Range Achievement Test 3747 2593 88K <0.01 0.4323 0.1 0.21 0.09

UCLEB 23 Quantitative Traits 6458 to 11005   353 39K - - - Supplementary Table 1

 514 
Table 1: Properties of datasets and estimates of h2

SNP.  n = sample size (cases+controls), m = number of SNPs, Σj wj 515 
= sum of SNP weights which can be interpreted as an effective number of independent SNPs. All values are post quality 516 
control; values for m and Σj wj are rounded to the nearest K (thousand). For UCLEB, m and Σj wj refer to our main 517 
analysis, which considers only high-quality, common SNPs. The final column provides our best estimates of h2

SNP from 518 
common SNPs, computed using LDAK with α=-0.25 (see main text for explanation of α). For comparison, we include 519 
previously published estimates of h2

SNP (note that the previous analyses for rheumatoid arthritis, type 1 diabetes and 520 
multiple sclerosis excluded major histocompatibility SNPs, which we estimate contribute 0.07, 0.20 and 0.05, 521 
respectively), as well as h2

GWAS, the proportion of phenotypic variance explained by SNPs reported as GWAS significant 522 
(P< 5x10-8). For disease traits, estimates of h2

SNP and h2
GWAS have been converted to the liability scale assuming the 523 

stated prevalence. 524 
 525 
 526 
 527 
 528 
 529 
 530 
 531 
 532 
 533 
 534 
 535 
 536 
 537 



 538 
 539 
 540 



Online Methods 541 
 542 
The Supplementary Note summarizes the different analyses we performed, and the conclusions we drew from each. In 543 
general, we assume there are n individuals, recorded for p covariates and genotyped (either directly or via imputation) 544 
for m SNPs: the length-n vector Y contains phenotypic values, the n x p matrix Z contains covariates, while the n x m 545 
matrix S contains (expected) allele counts. 546 
 547 
Information score rj: Let the vector Sj = (S1,j, …, Sn,j)

T ∈ [0,2]n, denote the allele counts for SNP j (i.e., Sj is Column j 548 
of S). Our information score rj estimates the squared correlation between Sj and Gj = (G1,j, …, Gn,j)

T ∈ {0,1,2}n, the true 549 
genotypes for SNP j. When using imputed data, Gj is typically not known; instead for each individual we have a triplet 550 
of state probabilities pi,j,0, pi,j,1, pi,j,2, where pi,j,g = P(G1,j=g) and pi,j,0 + pi,j,1 + pi,j,2 = 1. Therefore, we define rj by taking 551 
expectations over the 3 n possible realizations of Gj: 552 
 553 

r j=
E[∑i=1

n
(Si , j−  ̄S j)(Gi , j−  ̄Gj)]

2

(∑i=1

n
(Si , j−  ̄S j)

2)E[∑i=1

n
(Gi , j−  ̄G j)

2]
,

where
 ̄S j=

1
n∑i=1

n
Si , j

and
 ̄Gj=

1
n∑i=1

n
Gi, j

 554 
 555 

Sj is known, so computing
∑i

(Si , j− ̄S j)
2

is straightforward. The two expectations can also be calculated explicitly: 556 
 557 
E[∑i=1

n
(Si , j− S̄ j)(Gi , j−Ḡ j)]=∑i

(S j−S̄ j)E [Gi , j−μ]=∑i
(S j−S̄ j)( pi , j ,1+2 pi , j ,2−μ) ,  558 

E[∑i=1

n
(G j−  ̄Gj)

2]=∑i
E [(Gj−μ)

2]=∑i
[ pi , j ,0(−μ)

2+pi , j , 1(1−μ)
2+pi , j , 2(2−μ)

2] ,
 559 

 560 

where 
μ=E [  ̄G j]=

1
n∑i

( pi , j ,1+2 pi , j , 2) .
 For our analyses, we use expected allele counts (dosages), so  561 

Si,j = pi,j,1 + 2pi,j,2. In this case, 
E[∑i

(Si , j−S̄ j)(Gi , j−Ḡ j)]=∑i
(Si , j− S̄ j)

2

and so the score reduces to  562 
r j=∑i

(Si, j− ̄S j)
2/∑i

(Gi , j−  ̄Gj)
2

For a directly genotyped SNP, each triplet of state probabilities will be (1,0,0), 563 
(0,1,0) or (0,0,1), which will result in Si,j  = Gi,j  for all i and rj=1; so for these, in place of rj, we use the metric r2_type2 564 
reported by IMPUTE2.43 Additional details on our information score are provided in Supplementary Figure 20. 565 
 566 
Estimating h2

SNP: We first construct the n x m genotype matrix X, by centering and scaling the allele counts for each 567 
SNP according to Xij = (Sij – 2fj) x [2fj(1-fj)]

α/2, where fj = Σi Sij /2n. If wj and rj denote the LD weight9 and information 568 
score for SNP j then the LDAK Model for estimating SNP heritability h2

SNP = σ2
g / ( σ

2
g + σ2

e) is: 569 
 570 
Y i=∑k=1

p
θk Zi ,k+∑j=1

m
β j Xi , j+ei , with 

β j∼N (0, r j w jσg
2 /W ) , ei∼N (0,σ e

2)
and 571 

W=r j w j [2 f j(1−f j)]
1+α .

  (2) 572 
 573 
θk denotes  the fixed-effect coefficient for the kth covariate, βj and ei are random-effects indicating the effect size of 574 
SNP j and the noise component for Individual i, while σ2

g and σ2
e are interpreted as genetic and environmental 575 

variances, respectively. Note that the introduction of rj is an addition to the model we proposed in 2012.9 Model (2) is 576 
equivalent to assuming:44,45 577 
 578 

Y∼N (Zθ ,K σg
2+I σe

2) ,
with 

K= XΩ X
T

W
,

  (3) 579 
 580 
where I is an n x n identity matrix and Ω denotes a diagonal matrix with diagonal entries (r1 w1, …, rm wm). The kinship 581 
matrix K, also referred to as a genetic relationship matrix (GRM)1 or genomic similarity matrix (GSM),46 consists of 582 
average allelic correlations across the SNPs (adjusted for LD and genotype certainty). Model (3) is typically solved  583 
using REstricted Maximum Likelihood (REML), which returns estimates of θ1, …, θp, σ

2
g and σ2

e.
12 584 

 585 
The heritability of SNP j can be estimated by h2 = βj

2 Var(Xj)/Var(Y), which under Model (2), and assuming Hardy-586 
Weinberg Equilibrium,47,48�  has expectation 587 
 588 



E[h j
2]=

E [β j
2]×Var (X j)
Var (Y )

=
r j w jσg

2 /W×[2 fj (1− f j)]
1+α

Var (Y )
.

  (4) 589 
 590 
If P1 and P2 index two sets of SNPs of size | P1| and |P2|, then under the LDAK Model, they are expected to contribute 591 

heritability in the ratio W1:W2, where
W l=∑ j∈Pl

r jw j [2 f j(1− f j)]
1+α .

The GCTA Model corresponds to setting 592 

wj=rj=1, in which case 
W l=∑ j∈Pl

[2 f j(1−f j)]
1+α .

Most applications of GCTA have further assumed α=-1, so that Wl 593 
=|P1 |, which corresponds to the assumption that SNP sets are expected to contribute heritability proportional to the 594 
number of SNPs they contain. 595 
 596 
Model (2) assumes that all effect-sizes can be described by a single prior distribution. This assumption is relaxed by 597 
SNP partitioning. Suppose that the SNPs are divided into tranches P1 …, PL of sizes |Pl|, ..., |PL|; typically these will 598 
partition the genome, so that each SNP appears in exactly one tranche and Σl |Pl|=m, but this is not required. This 599 
correspond to generalizing Model (2), so that SNPs in Tranche l have effect-size prior distribution βj ~ N(0, rj wj σ

2
l / 600 

Wl). Letting Σ = σ2
1, …, σ2

L, then h2
SNP = Σ / (Σ + σ2

e), while σ2
l / Σ represents the contribution to h2

SNP of SNPs in 601 
Tranche l. This model can equivalently be expressed as Y ~ N(Zθ, K1σ

2
1 + … + KLσ

2
L + I σ2

e), where Kl represents 602 
allele correlations across the SNPs in Tranche l.  603 
 604 
For analyses under the LDAK Model, we used LDAK v.5; for analyses under the GCTA Model, we used GCTA v.1.26. 605 
For about a third of GCTA-LDMS analyses, the GCTA REML solver failed with the error "information matrix is not 606 
invertible," in which case we rerun using LDAK (while the GCTA and LDAK solvers are both based on Average 607 
Information REML,28,49 subtle differences mean that when using a large number of tranches, one might complete while 608 
the other fails). For the few occasions when both solvers failed, we instead used "GCTA-LD" (i.e., SNPs divided only 609 
by LD, rather than by LD and MAF), which we found gave very similar results to GCTA-LDMS for traits where both 610 
completed (Supplementary Fig. 7). For diseases, we converted estimates of h2

SNP to the liability scale based on the 611 
observed case-control ratio and assumed prevalence.26,27 In general, we copied the prevalences used by previous studies; 612 
however for tuberculosis, where no previous estimate of h2

SNP is available, we derived an estimate of prevalence from 613 
World Health Organization data50 (see Supplementary Note).  614 
 615 
LDSC: Originally designed as a way to quantify confounding in a GWAS, LDSC10 also provides a method for 616 
estimating h2

SNP, which requires only summary statistics from single-SNP analysis (rather than raw genotype and 617 
phenotype data). LDSC is based on the principal that in a single-SNP analysis, the Χ2(1) test statistic for SNP j has 618 
expected value E[Χ2(1)] = 1 + n h2

j + n Σk≠j rj,k
2 h2

k + n aj, where rj,k
2 denotes the squared correlation between SNPs j 619 

and k, while aj represents bias due to confounding factors (e.g., population structure and familial relatedness).10 Under a 620 
polygenic model where every SNP is expected to contribute equally (i.e., E[h2

j] = h2
SNP/m), and the (widely-used) 621 

assumption that the bias is constant across SNPs (aj=a), we have E[Χ2(1)] = 1 + n lj h
2
SNP / m + n a, where  lj = 1+ Σk≠j 622 

rj,k
2 623 

is referred to as the LD Score of SNP j (as it is not feasible to compute pairwise correlations across all SNPs, in practice 624 
these are approximated using a sliding window of, say, 1centiMorgan). Therefore, LDSC estimates h2

SNP  and a by 625 
regressing test statistics on LD Scores. In the absence of confounding (a=0), LDSC can be viewed as estimating h2

SNP  626 
under the GCTA Model with α=-1 (as this satisfies the assumption that every SNP is expected to contribute equal 627 
heritability). As the authors of LDSC point out,10 it is straightforward to accommodate alternative relationships between 628 
E[h2

j] and MAF (i.e., α≠-1) by changing how genotypes are scaled when computing LD Scores, and potentially 629 
genotype certainty could be accommodated. However, the similarity with the GCTA Model appears intrinsic to LDSC; 630 
while the assumption that heritability is independent of LD can be relaxed via SNP partitioning,39 we can not envisage 631 
how the method could be modified to accommodate the LDAK SNP weights. For LDSC analyses, we used LDSC 632 
v.1.0.0 both for calculating LD Scores and estimating h2

SNP. 633 
 634 
Accommodating very large effect loci: Equation (2) assumes that all SNP effect sizes can be modeled by a single 635 
Gaussian distribution. Estimates are generally robust to violations of this assumption,9 but problems can occur when 636 
individual SNPs have very large effect sizes, because a single Gaussian distribution cannot accommodate both these 637 
SNPs and the very many with small effect sizes. This is a common concern when analyzing autoimmune traits for 638 
which the major histocompatibility complex (MHC) can contribute substantial heritability. In response to this problem, 639 
some authors exclude MHC SNPs from analyses.7,28,51,52 Another approach is to model effect sizes as a mixture of 640 
Gaussians,53,54 but this is not computationally feasible for millions of SNPs and many thousands of individuals. 641 
Therefore, our proposed strategy is to first identify SNPs with P< 10-20 from single-SNP analysis, to prune these using a 642 
correlation squared threshold of 0.5, then to include those which remain as fixed-effect covariates. Thus in place of 643 
Equation (3), we assume Y ~ N(Zθ + TΦ, Kσ2

g + Iσ2
e), where columns of the matrix T contain allele counts of the 644 

highly-associated SNPs (i.e., T is a submatrix of S), and the vector Φ represents their effect sizes. In contrast to 645 
standard (non-SNP) covariates, the variance explained by T counts towards SNP heritability: h2

SNP = (σ2
g + σ2

T) / (σ2
g + 646 



σ2
T + σ2

e), where  σ2
T = (TΦ)T(TΦ). Supplementary Figures 21 & 22 provides further details. In particular, we 647 

appreciate that our definition of highly-associated is somewhat arbitrary, so we confirm that estimates of h2
SNP are 648 

almost unchanged if instead we use P< 5x10-8. 649 
 650 
Datasets and phenotypes: When searching for GWAS datasets, we preferred those with sample size at least 4000 to 651 
ensure reasonable precision of h2

SNP.55 In total, our datasets were constructed from 40 independent cohorts, all of which 652 
have been previously described (see Supplementary Tables 11 & 12 for references and details of how cohorts were 653 
merged to form datasets). For the UCLEB data, there were in total 28 quantitative traits with measurements recorded for 654 
at 7000 individuals. For each of these, we quantile normalized, then applied a test for inflation due to genotyping errors 655 
(Supplementary Fig. 13). Specifically, our test, inspired by Bhatia et al.56 and valid for quantitative phenotypes where 656 
individuals are recruited from multiple cohorts, first estimates h2

SNP using only pairs of individuals in different cohorts, 657 
then using only pairs of individuals in the same cohort; a significant difference between the two estimates indicates 658 
possible inflation due to genotyping errors. We excluded five traits that showed evidence of inflation (P< 0.05/28), 659 
leaving us with 23: height, weight, body mass index, waist circumference, forced vital capacity, one second forced vital 660 
capacity, systolic blood pressure (adjusted), diastolic blood pressure (adjusted), PR Interval, QT Interval, Corrected QT 661 
Interval, QRS Voltage Product, Sokolow Lyon, glucose, insulin, total cholesterol (adjusted), LDL cholesterol (adjusted), 662 
triglyceride (adjusted), viscosity, fibrinogen, Interleukin 6, C-reactive Protein and haemoglobin. Approximately 40% of 663 
individuals were receiving medication to reduce blood pressure, 25% to reduce lipid levels, so where indicated, 664 
phenotypes had been adjusted for this: for individuals on medication, their raw measurements had been increased either 665 
by adding on (blood pressure) or scaling by (lipid levels) a constant.57,58 We note that some pairs of traits are highly 666 
correlated. However, as the overall correlation is not that extreme (we estimate the effective number of independent 667 
traits to be about 15), and most of our UCLEB analyses serve to support conclusions drawn from the GWAS traits, we 668 
decide to retain all 23 traits (rather than, say, consider only a subset). See the Supplementary Note for further details on 669 
phenotyping. 670 
 671 
Quality control: We processed each of the 40 cohorts in identical fashion; see the Supplementary Note for full details. 672 
In summary, after excluding apparent population outliers, samples with extreme missingness or heterozygosity, and 673 
SNPs with MAF<0.01, call-rate<0.95 or P<10-6 from a test for Hardy-Weinberg Equilibrium, we phased using 674 
SHAPEIT59�  then imputed using IMPUTE243�  and the 1000 Genome Phase 3 (2014) reference panel.60�  When 675 
merging cohorts to construct the GWAS datasets, we retained only autosomal SNPs which in all cohorts have 676 
MAF>0.01 and rj>0.99 (using IMPUTE2 r2_type2 in place of rj for directly genotyped SNPs). For the 8 UCLEB 677 
cohorts, we applied these filters only after merging. We only relax quality control for the analyses of the UCLEB data 678 
where we explicitly examine the consequences of including lower-quality and rare SNPs. When possible, the matrix S 679 
contains expected allele counts (dosages); i.e., Si,j = pi,j,1 + 2pi,j,2, where pi,j,1 and pi,j,2 denote the probabilities of allele 680 
counts 1 and 2, respectively. If hard genotypes are required, for example when using LDSC to compute LD Scores,10�  681 
we round Si,j to the nearest integer. As this was only necessary when considering high-quality SNPs (rj>0.99), we expect 682 
this rounding to have negligible impact on results. For each trait, Table 1 reports m, the total number of SNPs after 683 

imputation, and 
Σ j= 1

m w j , the sum of SNP weights; the aim of these weights is to remove duplication of signal due to 684 
LD and their sum can loosely be interpreted as an effective number of independent SNPs. For the GWAS datasets, Σj wj 685 
ranges from 79K to 125K. By contrast, when restricted to only high-quality SNPs, the UCLEB data has Σj wj =39K, 686 
reflecting that the Metabochip directly captures a much smaller amount of genetic variation than standard genome-wide 687 
SNP arrays. 688 
 689 
When analyzing quantitative traits, genotyping errors will tend only to be a concern when there are systematic 690 
differences between phenotypes across cohorts, and this is something we are able to explicitly test (Supplementary Fig. 691 
13). However, for disease traits, when cases and controls have been genotyped separately (as is the design of most of 692 
our GWAS datasets), any errors will almost certainly correlate with phenotype and therefore cause inflation of 693 
h2

SNP.9,27�  To test the effectiveness of our quality control for the GWAS traits, we construct a pseudo case-control study 694 
using two control cohorts; we confirm that the resulting estimate of h2

SNP is not significantly greater than zero, 695 
suggesting that the quality control steps we use for the GWAS datasets are sufficiently strict (Supplementary Note).  696 
 697 
Accurate estimation of h2

SNP requires samples of unrelated individuals with similar ancestry. Prior to imputation, we 698 
removed ethnic outliers identified through principal component analyses (Supplementary Fig. 23). Post imputation, we 699 
computed (unweighted) allelic correlations using a pruned set of SNPs, then filtered individuals so that no pair 700 
remained with correlation greater than c, where -cis the smallest observed pairwise correlation (c ranges from 0.029 to 701 
0.038, depending on dataset). For our datasets, this filtering excluded relatively few individuals (on average 3.8%, with 702 
maximum 11.6%). For all analyses, we include a minimum of 30 covariates: the top 20 eigenvectors from the allelic 703 
correlation matrix just described, and projections onto the top 10 principal components computed from 1000 Genomes 704 
samples.60 For the 19 GWAS traits, we also include sex as a covariate, while for intraocular pressure and wide range 705 
achievement test scores, we additionally include age. Supplementary Figure 24 reports the proportion of phenotypic 706 
variance explained by each covariate. To check our filtering and covariate choices, we estimate the inflation of h2

SNP due 707 
to population structure and residual relatednesss3�  (Supplementary Fig. 19). For the GWAS traits, we estimate that on 708 



average h2
SNP estimates are inflated by at most 3.1%, with the highest observed for ischaemic stroke (7.1%). For the 23 709 

UCLEB traits, the average inflation is 0.3% (highest 2.3%).  710 
 711 
Single-SNP analysis: Supplementary Figure 25 provides Manhattan Plots from logistic (case-control traits) and linear 712 
regression (quantitative traits), performed using PLINK v.1.9. These analyses provide the summary statistics required 713 
by LDSC. For the GWAS traits, we identified highly-associated SNPs (P< 10-20) within the MHC for 6 of the GWAS 714 
traits (rheumatoid arthritis, type 1 diabetes, psoriasis, ulcerative colitis, celiac disease and multiple sclerosis), while 715 
rs2476601, a SNP within PTPN22, is highly associated with both rheumatoid arthritis and type 1 diabetes.61,62 For the 716 
UCLEB traits, we find highly associated SNPs within SCN10A (PR Interval), APOE (total cholesterol, LDL cholesterol 717 
and C-reactive protein) and ZPR1 (triglyceride levels). For heritability analysis, these SNPs were pruned, then included 718 
as additional fixed-effect covariates as described above. 719 
 720 
Computational requirements: The most time-consuming aspect of analysis was genotype imputation; for a typically-721 
sized cohort (~3000 individuals) this took approximately one CPU-year (i.e., a few days on a 100-node cluster). Next is 722 
computation of SNP weights, which for the GWAS traits (~4M SNPs) took approximately one CPU-month (again, this 723 
can be near-perfectly parallelized). Finally, solving the mixed-model via REML would take between a few minutes for 724 
the smaller traits (~5000 individuals) and a few hours for the largest (~14000 individuals). Memory-wise, the most 725 
onerous task is solving the mixed-model, for which memory demands scale with n2; however, even for the largest 726 
dataset, this was less than 5Gb (when using multiple kinship matrices, LDAK allows for these to be read on-the-fly, so 727 
that the memory demands are no higher than when using only one). 728 
 729 
 730 
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