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Abstract 

While biomarker studies of late-onset Alzheimer’s disease suggest pathology to be present 

decades before diagnosis, little is known about cognitive performance at this stage. A sample 

of 210 adults (aged 40-59) of whom 103 have a parent diagnosed with dementia (FH sub-

group), underwent computerized cognitive testing.  ApoE status was determined and 193 

subjects had magnetic resonance (MR) imaging. Distance from dementia onset was 

estimated in relation to age of parental diagnosis and CAIDE Dementia Risk Scores were 

calculated. Lower hippocampal volumes (p=0.04) were associated with poorer spatial 

location recall and higher DRS with poorer visual recognition (p=0.0005), and lower brain 

and hippocampal volume ((p<0.0001) ; p=0.04 respectively). FH participants closer to 

dementia onset had lower scores on visual working memory (p=0.05) while those with an 

ApoE4 allele performed better on form perception (p=0.005). Middle-aged adults at risk of 

dementia show evidence of poorer cognitive performance, principally in visuospatial 

functions.  
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Introduction 

Both epidemiological and biomarker studies of high risk groups suggest that late-life 

Alzheimer’s disease (AD) pathology may be present decades before a clinical diagnosis of 

dementia [1-3]. These observations are further supported by autopsy studies tracking 

amyloid and tau pathology from childhood through mid-life [4] . Furthermore as exposure to 

the principal cardiovascular and metabolic risk factors commonly begins in mid-life, this 

preclinical period is increasingly considered to constitute a critical window for secondary 

prevention [5]. Theoretical models of the temporal order of changes in these markers have 

hypothesized that amyloid-β (Aβ) accumulation is an early change followed by markers of 

neurodegeneration (tau accumulation and structural/metabolic abnormalities), with cognitive 

decline occurring only at the end of this pre-clinical period in a prodromal phase just prior to a 

dementia diagnosis [6]. The construction of biomarker and cognitive trajectories in the 

decade preceding diagnosis based on empirical observations has suggested an alternative 

model in which cognitive changes may not only parallel but also interact with biomarker 

changes [7]. 

 

A recent review of pre-clinical neuroimaging studies and prospective cohorts concluded that 

alterations in cognitive function may be detected at this stage but on a much narrower range 

of functions than in dementia, with patterns of deficit changing with distance from (i.e. length 

of time before) dementia diagnosis [8]. While longitudinal studies indicate amyloid load to be 

frequently associated with episodic and semantic memory and executive functions [9,10], 

these changes are observed principally in the prodromal period. A central problem has been 

that the cognitive measures used in AD research, being based on tests used to detect 

dementia rather than on the underlying neuropathological changes, may be insufficiently 

sensitive to the subtle focal brain changes occurring in the pre-clinical phase.  
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With increasing interest in the development of public health strategies to reduce dementia 

risk and drug development for up-stream secondary prevention, the middle-aged offspring of 

recently diagnosed persons with dementia, especially those at genetically higher risk, are an 

obvious target group for investigation and ultimately therapeutic intervention. A central 

methodological problem is the improbabilityof being able to track young at-risk cohorts for 

decades following an intervention until dementia diagnosis in order to be able to establish 

efficacy. Intermediary outcome measures are therefore required, but while a number of 

clinical, cognitive and biomarkers have now been demonstrated to show changes in the 

years immediately preceding dementia, we have little knowledge as to how well they perform 

at such an early stage.  The PREVENT Dementia Programme [11], initiated in 2013, is a 

prospective study of the adult children of persons with dementia designed to seek out clinical 

and biological changes which may subsequently be used as short-term outcome measures 

for mid-life secondary preventions. This multi-centre study has incorporated both cerebral 

imaging and a battery of computerized cognitive tests designed to cover a much wider range 

of cognitive functions than is normally used in studies of pre-clinical dementia. The baseline 

results from the pilot phase of the PREVENT Dementia programme carried out in West 

London are used within the present study to examine associations between cognitive 

performance and multiple indicators of dementia risk (family history, genetic vulnerability, 

brain biomarkers and a composite dementia risk score based on cardiovascular measures ). 

The principal hypothesis of the study is thus that persons with a high probability of 

manifesting pre-clinical AD may manifest subtle cognitive changes in comparison to persons 

with low risk on testing procedures designed to assess cognitive processing rather than to 

detect dementia. 

 

METHODS 

The protocol for the PREVENT study has been described in detail elsewhere [11] 

http://bmjopen.bmj.com/cgi/content/full/bmjopen-2012-001893. Participants aged 40 to 

http://bmjopen.bmj.com/cgi/content/full/bmjopen-2012-001893
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59 were recruited through multiple sources. Initially they were identified from the dementia 

register (DemReg) database held at West London Mental Health NHS Trust (WLMHT), part 

of the U.K. National Health Service. This registry holds information on patients with dementia 

and cognitive impairment who have consented to be approached for clinical research and 

their carers (often children). Other participants were recruited via the Join Dementia 

Research website (https://www.joindementiaresearch.nihr.ac.uk/), through information about 

the study on the internet and public presentations. Of the 210 persons (62 men; 148 women) 

now recruited at baseline, 103 have at least one parent with a dementia diagnosis, referred 

to as the family history (FH sub-group).  

Consent and organisation of examinations 

Consented participants were seen at the West London Cognitive Disorders Treatment and 

Research Unit, WLMHT where they were given a standardized neuropsychiatric interview 

and life-style questionnaires. Blood was taken for ApoE genotyping with all members of the 

research and clinical teams remaining blind to the result. Approval for the study has been 

given by the NHS Research Ethics Committee London Camberwell St-Giles.  

Cognitive testing 

The COGNITO neuropsychological battery is designed to examine cognitive processing 

across a wide range of cognitive functions in adults of all ages, and not restricted to those 

functions usually implicated in dementia detection in the elderly . The cognitive areas 

assessed by COGNITO, by order of presentation, are Reaction Time; Reading; 

Comprehension of Phonemes, Phrases and Syntax; Focused and Divided Attention in both 

visual and auditory modalities; Visual Working Memory (visual tracking with auditory 

interference); the Stroop test; Immediate, Delayed and Recognition trials for Verbal Recall 

(name list); Delayed Recognition of Spatial stimuli (faces); Visuospatial Associative Learning; 

Visuospatial span; Form perception; Denomination of common objects; Spatial reasoning; 

Copying of meaningful and meaningless figures; Verbal Fluency with semantic and phonetic 

https://www.joindementiaresearch.nihr.ac.uk/
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prompts; Immediate Recall of a narrative; Immediate Recall of a description of the relative 

position of objects; Vocabulary; Implicit Memory (recognition of new and previously learnt 

material).  The full battery takes approximately 40 minutes and is described in detail in the 

manual   

http://inserm-neuropsychiatrie.fr/sites/default/files/documents/COGNITO_MANUAL.pdf 

A detailed description of the neuropsychological basis of test construction and item selection 

is given in Ritchie et al. [12]. Participants respond using a touch-sensitive screen which 

records correct responses and response latencies.  

Imaging 

Participants underwent multimodal 3T structural MRI on a single scanner including 

volumetric T1-weighted scans (176 slices, 1.0 x 1.0 mm, 1.0 mm slice thickness, TR = 

2300ms, TE = 2.98ms, flip angle 9°). Brain tissue segmentation into grey matter (GM), white 

matter (WM) and cerebrospinal fluid (CSF) was performed using the Gaussian mixture model 

in VBM toolbox of SPM8 (http://www.fil.ion.ucl.ac.uk/spm). The GM maps were then 

normalized using the DARTEL algorithm [13]. Hippocampal region of interests (ROIs) were 

selected using AAL atlas in MNI space [14], and then inverse normalized back to each 

subject’s native space using the participant-specific diffeomorphic parameters estimated from 

the previous DARTEL procedure. The resulting ROIs were also masked using the 

thresholded GM probability maps (at threshold p > 0.8) before the total hippocampal volume 

was calculated. Finally in order to control for global volume effects, the hippocampal volumes 

were normalized by the estimated total intracranial volume (ICV). 

Genotyping 

Taqman Genotyping was carried out on QuantStudio12K Flex to establish ApoE variants. 

Genomic DNA was isolated from whole blood and genotyping was performed in 384 well-

plates, using the TaqMan polymerase chain reaction-based method. The final volume PCR 
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reaction was 5 μl using 20 ng of genomic DNA, 2.5 μl of Taqman Master Mix and 0.125μl of 

40x Assay By design Genotyping Assay Mix, or 0.25µl of 20x Assay On Demand Genotyping 

Assay. The cycling parameters were 95° for 10 minutes, followed by forty cycles of 

denaturation at 92° for 15 seconds and annealing/extension at 60° for 1 minute. PCR plates 

were then read on ThermoFisher QuantStudio 12K Flex Real Time PCR System instrument 

with QuantStudio 12K Flex Software or Taqman Genotyper Software v1.3.  

 

Statistical analyses  

 

Hypothesized distance to a dementia diagnosis for FH participants was calculated from the 

difference between the participant’s age and the age of dementia diagnosis in their parent 

following Bateman et al. [15] as a proxy for stage of pre-clinical disease progression.  

Dementia Risk Scores (DRS) were calculated for each participant irrespective of family 

history of dementia using the Cardiovascular Risk Factors, Aging, and Incidence of Dementia 

(CAIDE) score [16]. This is a risk score validated within prospective population studies 

composed of cohort-based weightings by reference to the following variables: age, 

education, sex, systolic blood pressure, body mass index, total cholesterol, physical activity, 

ApoE status. Scores vary from 0 to 15 and are treated as a continuous variable in the 

present analyses.  

Comparisons of sociodemographic characteristics and prevalent pathologies between FH 

and non FH groups were performed using Chi square tests for categorical variables and 

Wilcoxon two-sample tests for those continuous variables (age and BMI) which were not 

normally distributed. 

Ten cognitive summary variables from the COGNITO  battery were considered as dependent 

variables: [1] working memory (total number of correct answers for form recognition in double 

task design and difference of the mean time in milliseconds between the double task and the 

simple task), [2] narrative recall (total number of correct answers), [3] description recall (total 

number of correct answers), [4] implicit memory (difference in the number of steps in the 
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progressive build-up of names on the screen between the number of names never seen and 

the number of names already learnt), [5] name-face association (number of correctly 

recognized faces and visual recognition of their corresponding names), [6] form perception 

(number of correct answers) and [7] (mean time for correct answers), [8] phoneme 

comprehension (total correct responses) and [9] (mean time for correct response), [10] 

verbal fluency (sum of the number of words generated using both a  semantic and phonemic 

cue). If normally distributed these variables were analyzed with linear regression, otherwise 

with logistic regression models after dichotomization according to the median. Linear 

regression models adjusted for gender were used for analyzing brain volumes as dependent 

variables.  

 

RESULTS 

Sample description 

The participants were principally white (90%). Educational levels were post-graduate (29%), 

trade or technical skills (15%), college graduates (33%), high school (23%) and one person 

with no education. No statistically significant differences were found between persons with 

and without a family history of dementia in relation to age, gender, hypertension, depressive 

symptomatology, diabetes or BMI (Table 1). The FH sub-group (n=103) had a lower level of 

education (p=0.003) and a higher prevalence of the ApoE 4 allele (65%) than the non-FH 

group (28%). High rates of head injury were observed for the group as a whole (38.6%), but 

no statistically significant difference was found between participants with and without a family 

history (p=0.56). Overall DRS mean (SD) was 5.94 (2.90) in the range 0 to 15. For the FH 

group, the mean age of dementia diagnosis in parents was 76.2 years, (SD 7.49). Type of 

dementia in the parents as declared by the children were AD for 56 participants, mixed AD 

for 20, vascular dementia for 16 and unknown for 11 participants.  

 

Table 1 here 
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Associations between indicators of dementia risk and brain volumes 

The FH group was observed to have a significantly higher DRS than controls (mean (SD) of 

6.51 (2.51) vs 5.40 (3.15), p=0.0055). No significant association was observed between brain 

volumes and either FH or ApoE status (ANOVA, p≥0.25), but in simple linear regression DRS 

in the whole sample was significantly associated with total brain volume (R-squared=0.016, 

p=0.08), whole brain GM volume normalized by total intracranial volume (R-squared=0.094, 

p<0.0001) and hippocampal volume (average of left and right hemispheres and normalized 

by total intracranial volume) (R-squared=0.022, p=0.04). However, the R-squared are low 

suggesting that only a small part of DRS variability is explained by brain volumes. In the FH 

group no significant association was found between DRS and estimated time to dementia 

(linear regression, n=100, p=0.26). 

 

Cognitive performance and indicators of dementia risk in the whole sample 

The association between cognitive outcomes and age, family history, ApoE status, education 

and head injury was first examined individually by univariate analyses (Table 2). It was 

observed that while age, education and head injury were significantly associated with 

performance on some cognitive tasks, neither family history of dementia nor ApoE status 

alone were found to differentiate cognitive performance in the group as a whole.  

 

TABLE 2  

 

 

When indicators significantly associated with cognitive performance were included together 

in a multivariate model the results were only slightly modified: age (p=0.03) and years of 

education (p=0.003) for name-face association, years of education (p=0.0003) and loss of 

consciousness (p=0.03) for narrative recall and years of education (p<0.0001) and loss of 

consciousness (p=0.09) for description recall.  
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A higher DRS was associated with poorer performance on name-face associative learning 

(OR=1.4 CI 1.04-1.26 p=0.008) and phoneme comprehension time ((SE)=16.7(7.24) 

p=0.02), approaching significance on form perception (response time) ((SE)=64.4(34) 

p=0.06) within univariate models (Table 2). Multivariate linear regression with stepwise 

selection of cognitive variables showed DRS to be associated with significantly poorer 

performance on visually presented name recognition (F=12.61 p=0.0005) and a very slight 

association with response speed on comprehension (F=5.28 p=0.02). 

  

Cognitive performance and indicators of dementia risk in the FH group 

A statistical interaction between FH of dementia and ApoE ε4 was found for the number of 

correct answers in the form perception task (p=0.007). In the FH group only, participants with 

an ApoE ε4 allele had more correct responses, the probability of having poor performance 

being lower (OR=0.29; CI 0.12-0.69; p=0.005). This association was not significant in the non 

FH group (p=0.32). In the FH group, estimated closer distance to dementia diagnosis was 

found to be associated with poorer performance in visual working memory (difference in 

mean time between the double task and the simple task) ((SE)=80.3(40.0) p=0.05) in a 

simple linear model. 

 

Cognitive performance and brain volumes 

Univariate analyses showed gender-adjusted associations between description recall and 

both total brain volume and hippocampal volume (Table 3).  

 

TABLE 3 

 

Age was found to be significantly associated with brain volume/cranial volume only. After 

adjusting for gender and age the association between brain volume/cranial volume ratio and 

comprehension response time lost significance (β(SE)=0.0006%(0.0004) p=0.13). 



11 
 

 

DISCUSSION 

  

Overall we observed in this middle-aged cohort that persons with a family history of dementia 

have a higher dementia risk according to the CAIDE criteria, and also higher rates of the 

ApoE 4 allele as previously reported by Scarabino et al. [17]. However, we observed no 

difference in relation to cognitive performance between FH and non-FH groups. Bateman et 

al. [15] have previously demonstrated that the difference between current age of persons 

with a family history of dominantly inherited AD and parental age of AD onset may be used 

as a proxy for pre-clinical staging. Given that age of onset of late-onset AD has also recently 

been shown to have a strong genetic component, with greater genetic influence being related 

to earlier onset [17 18], we have used this difference as a means of refining familial risk to 

incorporate a possible pre-clinical staging indicator. Interestingly we observed that FH 

participants closer to estimated age of onset showed poorer performance on visual working 

memory.  It should be noted, however, that “time to dementia” is an exploratory measure 

designed only as a proxy for sub-clinical disease progression (if there is any) and requires 

validation within longer term prospective studies. FH participants with an ApoE4 allele were 

observed surprisingly to perform better on a geometric form matching task.  This task 

measures form perception with no recall component. We have no clear explanation of why 

this should be performed better in this normally high risk group. This does not appear to be 

because at risk subjects were taking longer to perform a task they found more difficult and 

therefore making less errors, as we observed no differences in response time. A possible 

explanation may be the young age of our cohort, given that previous research has suggested 

that the ApoE e4 allele, while being associated with a number of poorer health outcomes in 

old age, may have a positive effect earlier in life, being associated with higher IQ and a more 

economic use of memory-related neural resources in young healthy humans [19]. 

 

For the cohort as a whole a high CAIDE dementia risk score was found to be associated with 
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poorer visual association learning, and a decrease in both brain volume/cranial volume ratios 

and hippocampal volume. The latter observation is consistent with recent findings by Enache 

et al. [20] reporting an association between CAIDE score and medial temporal atrophy. 

Poorer performance on a test requiring recall of spatial configuration was found to be 

associated with both total smaller brain volume and smaller hippocampal volumes in the 

group as a whole.  While the original CAIDE validation study was carried out on a population 

cohort likely to be closer to dementia diagnosis (up to 20 years before) than the PREVENT 

participants, a recent study by Exalto et al [21] has demonstrated its validity up to 40 years 

before thus making it relevant to this study. It is an important observation from our work that 

the CAIDE score is already impacting on measures of brain health both in terms of biology 

(brain volumes) and behavior (cognition) in mid-life. This suggests a therapeutic opportunity 

by which reduction in an individual’s CAIDE score or avoidance of its increase through better 

cardiovascular health may affect longer-term outcomes.  

 

Overall our results suggest that having a parent with recently diagnosed dementia is not in 

itself associated cross-sectionally with poorer cognitive performance at this early stage. 

However, having either a) a family history and being closer to hypothesized age of onset b) 

having smaller hippocampal and/or whole brain volumes, or c) a higher dementia risk score 

is associated with poorer performance on a very small number of cognitive tests which have 

notably a strong spatial component. A weak association also reported between 

comprehension response time and dementia risk score may reflect either a slowing in 

syntactic comprehension or also given the spatial component of this task (identifying the 

position of stimuli) be related to spatial analysis. The pattern of cognitive deficit differs, 

however, according to the definition of risk used (family history, ApoE allele, dementia risk 

score or estimated distance to dementia).  

 

Previous cross-sectional studies of pre-clinical AD have shown virtually no association 

between cognitive performance and brain changes [22-24], but it may be that this is due to 
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the limited range of tests which have been used. While some prospective studies indicate 

differences in slope in episodic memory, semantic fluency and executive functions [25 26] 

these associations are mostly observed in the period up to 5 years before dementia 

diagnosis [27-30].   A case control study with ten year follow-up by Laukka et al. found a 

range of deficits could be observed up to ten years before diagnosis with visuospatial deficits 

preceding changes in episodic and semantic memory [31].  Bilgel et al. [32] on the other 

hand observed verbal episodic memory to be impaired before visuospatial memory, however, 

the visual stimuli used were geometric shapes which tend to be memorized by verbal 

mediating processes. The authors also noted that immediate recall is more sensitive than 

delayed recall in pre-clinical AD. We observed no association at this preclinical stage in the 

tests most commonly used previously to assess immediate episodic memory.  However, the 

COGNITO battery also includes immediate recall of a description which does not rely on 

logical verbal sequencing but rather on capacity to visualize and recall the relative spatial 

location of random objects, the length and semantic structuring of this test being comparable 

to that of narrative recall. This test, but not narrative recall, was found to be associated with 

both total brain volume and smaller hippocampal size, again suggesting the increased 

sensitivity at this stage of spatial tests. This difference in performance between two tests of 

similar difficulty level but different content, normally performed at a similar level in normal 

adults, is suggestive of an early decrement, probably in spatial memory and analysis, 

however the difference is small and may also be due to other factors such as poorer recall of 

non-logically related events. 

 

One of the most striking features of previous studies of pre-clinical AD overall has been their 

focus on tests of executive functions and verbal episodic memory and the relative absence of 

purely spatial tasks.  While spatial navigation tasks in particular are considered to be highly 

sensitive to changes in this area of the hippocampus, only one recent study has investigated 

the potential of spatial navigation in the pre-clinical stage of AD; showing significant 
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decrements between cerebrospinal A positive and negative persons [33]. In this younger 

group we did not have a specific navigational task but found some modest differences in 

tests which rely predominantly on more general visuospatial processing. It is possible that 

more significant differences may have emerged had we used this type of task. 

Histopathological studies point to the transentorhinal cortex as the first anatomical region 

affected by AD followed by the entorhinal cortex and hippocampus, with evidence from lesion 

studies in these areas in humans and experimental animals [34 35] and functional 

neuroimaging in normal adults [36] indicating that a decline in visuospatial memory and 

spatial location to be primary candidates for an early marker. Longitudinal studies of 

prodromal dementia and MRI imaging suggest that mediotemporal lobe atrophy in preclinical 

cases may be demonstrated by tests of visuospatial analysis tasks even before evidence on 

brain imaging [37]. 

 While the hippocampal formation is recognized as one of the first brain regions to be 

compromised by AD-related pathology, there has been a tendency to focus on its role in 

episodic memory while neglecting its other pivotal functions, notably in spatial navigation, 

spatial memory and the integration of spatial location with episodic memory [38]. Examining 

persons at risk decades before likely dementia onset we were unable to detect an 

association between dementia risk and cognitive performance on most of the tests commonly 

used in studies of prodromal AD, but some evidence of decrements were observed in tests 

implicating predominantly spatial functions. Our preliminary results underline the need for 

improved spatial testing procedures able to target regions implicated in spatial analysis and 

binding such as the entorhinal cortex, precuneus and retrosplenial cortex;  regions in which 

both tau and abeta pathology both initially co-occur [39 40 ].  
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CONCLUSION 

Middle aged adults with at least one parent recently diagnosed with dementia are prime 

targets for intervention strategies, not only because they are highly motivated but also 

because they are entering a period of exposure to a number of well-established risk factors 

such as diabetes and cardiovascular disease. They may also be showing the first brain 

changes. While such interventions may be assessed in relation to biomarkers, cognitive 

functioning will always remain a central clinical concern and a principal outcome measure. 

Findings from the present study suggest that persons with a high risk for late-onset dementia 

show some evidence of poorer cognitive performance in a number of areas, varying 

according to the definition of type of risk (family history, genetic vulnerability, estimated time 

to dementia diagnosis, dementia risk score). These changes appear to have in common a 

strong spatial component. Our findings draw attention to two important points: first, that many 

of the dementia-based cognitive tests now being integrated into research protocols for pre-

clinical AD do not appear to be discriminative at this early stage and second, that future pre-

clinical test development should focus more on spatial and navigational tasks. The aim of this 

study is to provide exploratory descriptive data for research purposes and which may 

ultimately be used to improve early clinical diagnosis but at present cannot be used for 

individual examinations or to inform persons of their risk status. Furthermore the study is 

cross-sectional and requires confirmation from prospective follow-up of the cohort as decline 

across time may prove to be a more sensitive measure. There is also the possibility that 

some of our negative results have been due to lack of power as power calculations have 

been based on studies with slightly older participants. Moreover, some of the parents of the 

participants have probably had non-AD dementia (according to the reports of their offspring 

around 15%) and this may have weakened some of the associations described here.  

The PREVENT Dementia Program is ongoing with recruitment eventually of 700 further 

participants by 2017 and incorporating in the second wave new tests designed to be more 

sensitive to spatial and navigational abilities and a wider range of AD biomarkers. Two-year 
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follow up has started and then follow up every 5 years in the entire cohort is planned. As the 

sample increases in size and longitudinal change data can be entered into our modeling 

work, the findings presented here can be validated and expanded upon. 
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