Synchronization of an optomechanical system to an external drive
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Optomechanical systems driven by an effective blue detuned laser can exhibit self-sustained oscillations of
the mechanical oscillator. These self-oscillations are a prerequisite for the observation of synchronization.
Here, we study the synchronization of the mechanical oscillations to an external reference drive. We study two
cases of reference drives: (1) An additional laser applied to the optical cavity; (2) A mechanical drive applied
directly to the mechanical oscillator. Starting from a master equation description, we derive a microscopic Adler
equation for both cases, valid in the classical regime in which the quantum shot noise of the mechanical self-
oscillator does not play a role. Furthermore, we numerically show that, in both cases, synchronization arises
also in the quantum regime. The optomechanical system is therefore a good candidate for the study of quantum

synchronization.

PACS numbers: 05.45.Xt, 42.65.-k, 07.10.Cm

I. INTRODUCTION

Synchronization is the phenomenon in which a limit-cycle
oscillator, i.e., an oscillator with fixed amplitude and free
phase, develops a phase preference when weakly coupled to
a drive or to other self-oscillating systems [[I} 2]. This phe-
nomenon is prevalent in all the natural sciences, manifesting
itself in, for example, adjustment of the circadian rhythm in
many living systems or fireflies blinking in unison [3]].

In recent years there has been considerable interest in the
topic of quantum synchronization [4H21]], i.e., the synchro-
nization of self-oscillators operating in the quantum regime.
There has been extensive research done on the paradigmatic
example of a van der Pol oscillator [4H12]. Other platforms
have been used to study quantum synchronization as well,
among which are micromasers [13]], atomic ensembles [14}
15], interacting quantum dipoles [16]], trapped ions [6} [17],
and optomechanical systems [[18-20].

In an optomechanical system electromagnetic cavity modes
are coupled to mechanical motion. In its most basic setup, an
optomechanical system is made of a single laser-driven cavity
mode which couples to a single mechanical mode via, e.g., ra-
diation pressure [22]. The dynamics of the system crucially
depends on the frequency of the laser driving the cavity. A
laser field tuned to the red side of the cavity frequency is
used for back-action cooling as well as for state transfer [23-
235), while resonant driving is used, e.g., for position sens-
ing [26]. When blue detuned, the laser drive can induce the
parametric instability, leading in turn to self-sustained oscilla-
tions of the mechanical oscillator. These self-sustained oscil-
lations have been studied in both the classical and the quantum
regimes [27H32]]. For that reason, the optomechanical sys-
tem may exhibit synchronization when coupled to an external
drive (an additional external drive, in contrast to the laser driv-
ing the self-oscillations), to another optomechanical system,
or as part of an array of optomechanical systems, as was theo-
retically shown in the classical regime [33}134]. Synchroniza-
tion of an optomechanical system to an external drive [35]], of
two optomechanical systems [36] and even of small arrays of
up to seven such systems [37] have been demonstrated exper-

imentally. In the quantum regime the synchronization of two
optomechanical systems has been studied theoretically [18]],
as well as the synchronization of an array of such systems [[19]
within a mean-field approach was used.

In this work, we theoretically study the synchronization of
the mechanical self-oscillator to an external reference drive.
We examine two different reference drives: (1) An additional
laser applied to the optical cavity. Under an appropriate
rotating-wave approximation, this may also be implemented
by modulating the power of the laser inducing the mechani-
cal self-oscillations, as was experimentally done in Ref. [35]];
(2) A mechanical drive applied directly onto the mechanical
oscillator, which could for instance be realized with a piezo-
electric element attached to the mechanical oscillator.

For both cases, our starting point of the analysis is the mi-
croscopic master equation. We then use the laser theory for
optomechanical limit cycles [30] to derive an equation of mo-
tion (EOM) for the phase distribution of the mechanical self-
oscillator. We show that in both cases, in a relevant parameter
regime, the Adler equation emerges from the EOM. The Adler
equation is a differential equation for the phase difference be-
tween the self-oscillator and the reference drive, known to de-
scribe synchronization. For the optical reference drive, this
is the first time a microscopically derived Adler equation is
discussed. For the mechanical reference drive, it reproduces a
result in Ref. [33]]. We then continue to show numerically, for
both cases, that in the quantum parameter regime an “Arnold
tongue” exists, a standard signature of synchronization [1} 2].
This suggests the optomechanical system is a good candidate
for the study of synchronization in the quantum regime.

This manuscript is organized as follows: We describe the
system under investigation, composed of an optomechanical
system and an additional reference drive in Sec. [} Section |
contains the analytical derivation of the microscopic Adler
equations. A major part of this derivation is done by apply-
ing the laser theory for optomechanical limit cycles [30] to
this problem. This is presented in the Appendix. In Sec.
we demonstrate numerically that synchronization is expected
also in a quantum parameter regime.
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FIG. 1. Schematics of a generic optomechanical system. In a rotating
frame with frequency w,, obtained by applying the unitary transfor-
mation U = exp (ithfa , the cavity with frequency —A is driven by
a time-independent laser, depicted by the black arrow to the left of
the cavity. In the self-oscillatory regime of the mechanical oscillator
with natural frequency w,,, the mechanical oscillator may synchro-
nize to an additional optical drive with frequency w;’ as depicted in
dashed box (a), or to a mechanical drive with frequency ' as de-
picted in dashed box (b). Note that w;” is given in the rotating frame,
while the application of U leaves both " and w,, identical in both
frames.

II. THE SYSTEM

The standard Hamiltonian of an optomechanical system in
which the position of the mechanical oscillator parametrically
modulates the frequency of an electromagnetic cavity is given
in a frame rotating with the frequency of the laser drive, wy,
by [22]

H = a)mbTb —Adta- goaTa <b + bT) —iAL (a - aT) , (D

where a’ and a are the creation and annihilation operators of
photons in the cavity, b" and b are the creation and annihila-
tion operators of phonons in the mechanical resonator, w,, is
the mechanical frequency of oscillation, A = w; — w, is the
detuning from cavity resonance at w, of the driving field with
strength A;, go is the single photon coupling constant, and we
have set i = 1. A schematic figure of the system is shown in
Fig.[T} The frame rotating with laser drive wy, is obtained by
applying the unitary transformation U = exp (ithaTa), which
generates the Hamiltonian UH, U™ - iU8U" /ot

The dissipation of the two oscillators (the mechanical res-
onator and the optical cavity) can be described via the master
equation,

¥ _

a =—i [H,p] + me + ch, (2)

with the Lindblad operators
Lup = Yn(nn + DD[blp + ¥ DIb' o, 3)
and
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FIG. 2. Wigner function representation of (a) self-sustained os-
cillations in the mechanical oscillator and of (b) tendency towards
phase-locking of the mechanical oscillator to the phase of a syn-
chronizing reference drive. The parameters used for both plots
are (8o, Ye» Yms AL, A, ng) = (0.3,0.3,0.015,0.4,0,0) X w,, where

the parameters of the external optical drive in (b) are (A;”, w,’) =

(0.08,0.98) X wyy,.

where y,, and y, are the amplitude damping rates of the me-
chanical oscillator and the electromagnetic cavity correspond-
ingly, ny, is the mean phonon number in thermal equilibrium,
and D[x]p = xpx’ — (px"'x + x'kxp) /2.

In this work we would like to study the synchronization of
the mechanical element of the optomechanical system to an
external drive. We consider two cases:

Case (1) - Optical laser drive - We introduce an additional
optical laser reference field, with frequency w,’ given in a
frame rotating with frequency wy, and strength AS”, by adding
the term

H® = —iA% (ei‘”ﬁp’a - e_"‘”zp’aT) 5)

to the Hamiltonian appearing in Eq. (Z). This is depicted in
dashed box (a) in Fig. m This Hamiltonian can be realized
by an additional optical laser, or, if the mechanical frequency
wy, is large enough such that a rotating-wave approximation
can be used, by periodically modulating the power of the op-
tical laser causing the mechanical self-oscillations, as seen in
Ref. [35].

Case (2) - Mechanical drive - A mechanical reference drive
with frequency )" and strength A7' can be applied directly
onto the mechanical oscillator, e.g., by introducing a piezo-
electric component as depicted in dashed box (b) in Fig.[I] In
analogy to case (1), we add the term

H™ = —iA} (b = e 'bT) (©)

to the Hamiltonian appearing in Eq. (2).

Self-oscillations in the optomechanical system.- An op-
tomechanical system driven by an effective blue-detuned laser
may give rise to self-sustained oscillations in the mechani-
cal oscillator [27H32]]. These self-oscillations are a prerequi-
site for studying synchronization. They can be illustrated in
phase-space via the Wigner function phase-space distribution.
A Wigner function representation for a specific self-sustained
oscillation in the mechanical oscillator is shown in Fig. |2| (a).

Under the influence of a reference drive, the mechanical
self-oscillator may develop a phase-preference as it tends to-
wards locking onto the phase of the drive. For an additional



optical laser drive, as in case (1), the Wigner representation for
a mechanical self-oscillator showing such phase-preference is
shown in Fig. 2] (b)[38].

III.  SYNCHRONIZATION - ANALYTICAL
CALCULATION

In the following section, it is our goal to derive an analyti-
cal description for the synchronization of the mechanical self-
oscillator to a reference drive. To do so, we apply the laser the-
ory for optomechanical limit cycles [30] to the current prob-
lem, Eq. (), in which an additional reference drive, Eq. (§)
or Eq. (0), is influencing the optomechanical limit cycle. This
approach is based on the assumption that the dynamics of the
cavity adiabatically follows the dynamics of the mechanical
oscillator. It allows us to obtain an equation of motion (EOM)
for the phase distribution of the self-oscillator, o7(r, ¢), where
r and ¢ are the mechanical phase-space variables representing
the radius and the phase of the self-oscillator. To keep this
manuscript coherent and focused on synchronization, we shift
the derivation of the relevant EOMs to the Appendix. Here
in the main text, we will use the derived EOMs as a starting
point.

Case (1) - Optical laser drive - As explained in the Ap-
pendix, the EOM for o (r, ¢) is valid when the dynamics of the
cavity adiabatically follows the dynamics of the mechanical
oscillator, the optomechanical coupling is small, g9y < Wy,
and the thermal- and quantum shot-noise does not play a role.
In a rotating frame with frequency w,,, the EOM for o (7, ¢) is
of the form

o=- (6,;4, + 6¢,u¢) o, 7
where the phase-drift coefficient is given by,

1 — o
Ho =y ), goAL{ALRe[h I 1]
n

n=—co n—1

0 e_i¢-]n]n72 —iel o ei¢]n71]n*1 i€

n—-1

and the explicit expressions for the radius-drift coefficient is
given in Eq. (AT8). In the last expression J,, := J,(=2g0r/wy)
is the Bessel function of the first kind of the nth order, € =
w" — w,, is the detuning between the frequencies of the refer-
ence drive and the natural frequency of the mechanical oscil-
lator, and A, is defined as

hy = % T i(nw — A, ©)

where the definition for the effective detuning of the cavity
field, Ay, is given in Eq. (AT0).

This EOM describes the dynamics of the mechanical oscil-
lator and, in an appropriate parameter regime, will therefore
describe the synchronization of the mechanical oscillator onto
the optical reference drive. The onset of synchronization is
characterized by the locking of the phase of the mechanical
oscillator to the phase of the optical drive, while the radius

of oscillation stays approximately constant. For that reason,
we can neglect the term describing the drift of the radius, y,,
while focusing on the drift of the phase, Eq. (§). We are there-
fore left with

o= —(9¢u¢0', (10)

from which we recognize that y; = ¢. Let us therefore focus
on iy, Eq. (), which completely determines the time evolu-
tion of ¢. The first term is the known amplitude-dependent
optomechanical frequency shift dw (see Ref. [32]), i.e., we
obtain

py = ¢ = —0w
gOALA(e)"7 e_i(¢+g)]n]n—2 + ei(¢+6t)‘ln—l-]n—1
+ — R .
> Re| 5

n n—1

r

Y

In the sideband-resolved regime and with a detuning close to
the mechanical frequency, i.e., y./2 < Aeg = Wy, terms with
hy in the denominator are close to resonance. For that reason,
we will keep only the terms with n = 1,2. We then find

¢ = —6w + AT sin(g + €1), (12)

where we have shifted ¢ by a constant and defined the effec-
tive drive strength as
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Adding the frequency difference € to both sides of Eq. (12),
we obtain the Adler equation

6 = (W — M) + AP sin(59), (14)
where the effective mechanical frequency is ' = w,, + dw,
and we have defined ¢ = ¢ + €. Note that 6¢ = (¢ — wpt) +
wy’t is just the difference of phase of the mechanical oscillator
(in a frame rotating with w,,) to the phase of the external drive.

The Adler equation describes the synchronization of the
mechanical self-oscillator to the reference drive, as shown in
Fig. [3, in which we plot sin ¢ as a function of (w;” — wSM)
for different drive strengths, where the overline refers to time-
averaging. For |02 — wf| < AT the solution to Eq.

is 6¢ = 0. Therefore phase-locking takes place. For |w)’ —
W) > AT sin(5¢) time-averages to zero. The optome-
chanical parameters chosen in Fig. [3| can be readily obtained
in a wide range of experiments [22l 24} [39]. In Ref. [39]
a mechanical resonator of frequency w,,/(2r) = 9.7(kHz)
was studied, while in Ref. [24] a mechanical resonator of fre-
quency wy,/(2r) = 3.9(GHz) was studied. In both, the pa-
rameters of the optomechanical system were similar to those
given in Fig.[3]
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FIG. 3. Synchronization of the mechanical self-oscillator to an
optical reference drive. The analytically calculated time-average
sin(6¢) as a function of (wy’ — ) for different values of Af”,
from 0.13 to 0.17. The inset compares the analytical solution (blue)
with the numerical simulation (red dashed) for A2 = 0.15. It
shows excellent agreement. Colored region indicates the synchro-
nization region, dé¢/dt = 0. The parameters of the optomechani-
cal system are taken in the classical regime, (go, V¢, Ym» AL, A, 1) =
(0.015,0.5,0.0001, 1.0, 1.0, 0) X w,,.

We can further test this derived Adler equation by compar-
ing it with the numerical prediction, which can be obtained
by integrating the optomechanical equations of motion for the
cavity field @ and the mechanical field S [32]

& = iha + igo(B + B)ar — %a AL+ AP (15)
B = igolaf ~ iwnp~ 2p. (16)

The result is shown in the inset of Fig.[3] The synchronization
region is indicated by the colored region. There is a very good
agreement between the prediction of the derived microscopic
equation and the numerical simulation.

Case (2) - Mechanical drive - Analogously to case (1), by
applying the laser theory for optomechanical limit cycles we
obtain an EOM for the phase distribution of the self-oscillator,
o(r,¢). This EOM has the same form as Eq. (]Z]), but with a
phase-drift coefficient which is given by

1 Jan—l m . m
Ho =7 {Z ot Re [hnh:;_l] — Al e ¢]}’
(17

and with a radius-drift coefficient which is given in the Ap-
pendix, Eq. (A20). Now, taking identical steps to those shown
in case (1), one reaches an Adler equation,

6 = (W' — W) + AT sin(59), (18)
where the effective drive strength is

Am
AP =< (19)
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FIG. 4. Synchronization of the mechanical self-oscillator to a me-
chanical reference drive. The analytically calculated time-average
sin(6¢) as a function of (w™ — ¢ for different values of A™, from
0.003 to 0.007. The inset compares the analytical solution (blue)
with the numerical simulation (red dashed) for A = 0.005. It
shows excellent agreement. Colored region indicates the synchro-
nization region, dé¢/dt = 0. The parameters of the optomechani-
cal system are taken in the classical regime, (go, V¢, Ym» AL, A, 1) =
(0.01,0.3,0.0001, 1.0, 1.0, 0) X w,y,.

This form of the Adler equation agrees with [33]. In Fig. ]
we plot sin ¢ as a function of (wy’ — w®) for different drive
strengths, where the overline refers to time-averaging. We
can further test this analytical equation by comparing it with
the classical numerical prediction, which can be obtained by

integrating the equations of motion

& = iha + igo(B + B — %a + AL (20)

B = igolal® — iwmB — )%ﬂ + A;"e_iwzlt. 21

The comparison is seen in the inset of Fig. @] A very good
agreement is found between the analytical Adler equation and
the numerical simulation.

IV. QUANTUM SYNCHRONIZATION -
NUMERICAL DEMONSTRATION

The optomechanical system is theoretically suggested to
demonstrate synchronization also in a quantum parameter
regime, in which gy <« w,, does not hold anymore. In that
parameter regime, the quantum shot noise plays an important
role, and cannot be neglected as in the previous section. The
quantum synchronization of two such systems was theoreti-
cally studied in Ref. [18]. Here we show numerically that
the mechanical self-oscillator is expected to synchronize to
a reference drive in the quantum parameter regime. Before
discussing the numerical calculation and the results, we intro-
duce the synchronization measure used.
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FIG. 5. The time-averaged synchronization measure § as a function
of the external drive’s frequency, shown in blue for an optical drive
with A’ /w,, = 0.08 and in a red dashed line for a mechanical drive
with A”/w,, = 0.008. For the mechanical drive there is only one
synchronization peak at w” = w:f, while the optical drive leads to
multiple synchronization peaks at w;’ = {wfnﬁ/3,wff/2,w§ff, Zwﬁff}.
The black dotted lines are plotted at these frequencies. The synchro-
nization peaks at w,” = {wff/?a, wanﬁ} are hardly noticeable in the
scale of the figure, and are therefore shown in the two insets. Op-
tomechanical parameters are the same as in Fig.

A. The synchronization measure

Synchronization of a self-oscillator to an external drive is
the development of phase preference for the self-oscillator as
it tends towards phase-locking to the phase of the external
drive. As shown in Fig. |2} this phase preference is easily seen
in the phase-space distribution of the mechanical oscillator.
The information stored in the phase-space distribution can be
accounted for by using a single number [8]],

1<D) |

NGDY

where the bracket (...) denotes averaging over the phase-
space distribution. The numerator holds information regard-
ing the spread of the phase-space distribution, while the de-
nominator is introduced for the purpose of normalization. For
a completely phase-independent limit cycle centered around
zero, the oscillator is obviously completely unsynchronized,
and indeed we will find S = 0. As the self-oscillator synchro-
nizes to an external drive, a phase preference develops. This
will reduce the phase variation, resulting in larger values of
S. For a coherent state the measure is S = 1, meaning the
oscillator is strongly synchronized to the drive. This measure
cannot be used in cases for which the self-oscillator develops
multiple preferred phases.

Note that in the optomechanical system, the self-
oscillations developing in the mechanical oscillator are cen-
tered around some point in phase-space, 8., which is gener-
ally different than the origin. This is seen in Fig. [2] (a). This

S = (22)

deviation from the origin influences the synchronization mea-
sure, Eq. (22). This can be easily corrected and accounted for.
To do so, we move to a displaced frame by using the displace-
ment operator D(—f3.) = exp(=B.b" + B.b). For the rest of this
work, we will be working in the appropriate displaced frame.

The problem of an optomechanical system with an addi-
tional reference drive, Eq. (2) with either Eq. (3) or Eq. (6),
contains a time-dependent Hamiltonian. For that reason, a
steady state does not emerge. However, in the late-time dy-
namics, the system evolves into a state which is periodic in
time with periodicity T = 27r/w', where i denotes the optical-
or the mechanical-reference drive. This is true in the syn-
chronized state and outside the synchronized state, and it is
the result of the periodic time dependence of the Hamiltonian.
For that reason, in the late-time dynamics the synchroniza-
tion measure S is a function of time with the same periodicity,
S({) = S(t + 7). The variation of S over the time scale 7
in the late-time dynamics is relatively small, and is of order
S ~ 0.01 at maximum. To conveniently discuss synchroniza-
tion, we use S, defined as the time-average of S over a period
T.

B. Numerical Results

To numerically study synchronization of the mechanical
self-oscillator to an external drive, we use QuTiP [40} 41]].

Case (1) - Optical laser drive - In Fig. |5 the time-averaged
synchronization measure S is plotted in blue as a function
of the frequency of the reference drive, w.’. A main syn-
chronization peak appears about an effective mechanical fre-
quency, ', slightly shifted from w,,. This shift of the me-
chanical frequency is known [31} 32]] to be the result of the
average dynamics of the electromagnetic cavity. Synchroniza-
tion peaks at other frequencies are found as well: A synchro-
nization peak about wy” = w&/2 is clearly visible, and in the
insets of Fig. [5] we zoom in on the very small synchroniza-
tion peaks at wy’ = {wfnff/3,2wfnﬁ}. These synchronization
peaks are known in the literature as high-order synchroniza-
tion [1} 2. While in principle high-order synchronization is
always present when synchronizing a self-oscillator to a ref-
erence drive, it is in practice very difficult (if not impossible)
to detect. The presence of a reference drive which contains
many frequency components in its oscillation can enhance the
synchronization peaks [2]. As shown in the Appendix, the
effective drive of the mechanical self-oscillator, Eq. (A6)), in-
deed contains multiple frequencies. For that reason, and in
contrast to case (2), we can observe the smaller synchroniza-
tion peaks. We can also notice an asymmetry in the synchro-
nization peak with respect to the reference field’s frequency.
This can be also be seen in Fig.[6] While there is no reason
to expect perfect symmetry, it is visible that the case of an op-
tical reference drive is more asymmetric. This is due to the
high-order synchronization peaks.

In Fig.[6|(a) we focus on the synchronization peak for wg” =
w. This corresponds to the maximal synchronization peak
shown in Fig. |5l The synchronization measure S is plotted as
a function of both Ay” and w.". Indeed, the “Arnold tongue”
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FIG. 6. Arnold Tongue: The synchronization measure S is plotted as
a function of the drive frequency and strength for case (1) (a), and for
case (2) (b). S has the typical shape of an Arnold tongue. The black
lines mark w;” = w: and W™ = < in (a) and (b) correspondingly.
The horizontal white lines mark the cut along which Fig.[3is plotted.
Optomechanical parameters are the same as in Fig. [2}

is present, a signature for synchronization.

Case (2) - Mechanical drive - The reference drive synchro-
nizes the mechanical oscillator at frequency w!" = . This
is shown by the red dashed curve in Fig.[5] In contrast to the
optical case, no high-order synchronization is seen. Indeed,
as the mechanical drive is acting directly on the mechanical
self-oscillator, its influence is harmonic. Therefore high-order
synchronization is not detected [[11 2].

In Fig. [6](b) we focus on this synchronization peak. In this
figure we vary both the external frequency w?' and the strength
of the external drive, AY', and the “Arnold tongue” is clearly
observed.

V.  CONCLUSIONS

In conclusion, our work fills a gap in the study of syn-
chronization of an optomechanical system. Starting from the

microscopic master equation, we analytically develop Adler
equations describing the synchronization of the mechanical
self-oscillator to a reference drive. This was done for two dif-
ferent reference drives, an optical one and a mechanical one
(as was shown in Ref. [33]]). We also show numerically that
synchronization in a quantum parameter regime is expected,
therefore suggesting the optomechanical system as a good
candidate for the study of quantum synchronization.
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Appendix A: Applying the Laser Theory for Optomechanical
Limit Cycles

In the following, we apply laser theory for optomechani-
cal limit cycles [30] to our current problem, Eq. (Z), with an
additional reference drive as given by Eq. () or Eq. (6). We
derive an EOM for o, the phase-space distribution of the me-
chanical oscillator, for each case. In applying laser theory to
our problem, the initial steps are identical to these taken when
applying laser theory to a bare optomechanical system (with
no reference drive). We therefore do not repeat these steps,
but refer to Ref. [30] for our starting point, Eq. (AZ)), which is
presented below. A short summary of the steps taken in this
Appendix:

e Switching to a phase-space representation for the me-
chanical oscillator degree of freedom. This allows us to
use a different adiabatic reference state of the electro-
magnetic cavity field for each point in the phase-space
of the mechanical oscillator.

e Assuming the electromagnetic cavity dynamics follows
adiabatically the dynamics of the mechanical oscilla-
tor, we solve for an approximate solution for the cavity
field.

e We use the solution for the cavity field as a reference
state for the mechanical state, which allows us to obtain
an EOM for 0.

Case (1) - Optical laser drive - The master equation de-
scribing our system, Eq. with an optical reference drive,
Eq. (©), can be written in a phase-space picture for the me-
chanical oscillator [30, 42| 43]. The system is then de-
scribed by o(8, 8*), which is a density operator for the elec-
tromagnetic cavity field and a quasi-probability distribution
for the mechanical oscillator, with § representing the mechan-
ical phase-space variable. This results in a dependence of the
cavity detuning on the phase-space variables of the mechan-



ical oscillator. If we further use the semipolaron transforma-
tion [30],

(8,55, 1) = ego(ﬂ—ﬁ*)a%a/wmo.(ﬁ’ﬂ*’ t)e—go(ﬁ—ﬁ*)afa/wm’ (A1)
this dependence is conveniently transformed into one of the
driving field.

The transformed master equation, in a mechanical frame
rotating with frequency wy,, is then

0,0(B,B",1) = (L + Lc + Lin) (B, B, 1), (A2)

with

Lo = 22 (3B + 0pB") 0+ Y (0 + 1D g, (A3)

Lo =-i|-Ad'a- Ka'ay - i(E@®)'a- E®a').o| (A4)
+v.Dlalo,

Lino = —i% (e”‘”"’@,; - e‘i“’mlaﬁ*> od'a+ H.c. (AS)

where the Kerr nonlinearity is K = g(z) /wm, and E is a general-
ized driving field which depends on the mechanical state,

E(t) = (AL + AZ ") Z Ju(=nr)ei™@nt=0) (A6)

n=—oo

Here, J, is the Bessel function of the first kind of the nth order,
r and ¢ are the mechanical phase-space variables § = re',
and n = 2go/w,. We will use the shorthand notation J, :=
J, n (—77r )

We will now assume that the cavity dynamics, with a dom-
inant time scale 7;.1, is fast compared to all other time scales
in L,, and Li,. This means that we can solve for the cavity
field a(f), while assuming the state of the mechanical oscilla-
tor, described by the phase-space variables 8 and g, is fixed.
The solution for a(f) will then be considered as a classical
reference amplitude.

1. Calculating the classical reference amplitude

Under the assumption that the cavity dynamics with char-
acteristic time scale y.! is much faster than all other dynamics
in the problem, its state is governed by L., while the effect of
Liy 1s neglected,

o=Lo. (A7)
This equation describes a cavity with Kerr nonlinearity, which
is driven by two amplitude and phase modulated fields. An
approximate solution to Eq. can be found in two limits:
the limit |a(¢)] > 1, i.e., a cavity which is driven by a strong
drive to a state of large mean amplitude, and the limit |a(7)| <
1, for which the cavity is driven by a weak drive and stays
close to its ground state. In the former limit we neglect terms
up to first order in @, while in the latter we neglect terms of
third order in a:

a. |a()]>1

From Eq. (A7), one can obtain an EOM for the classical
cavity field amplitude a(7),

al(r) = - {73 —ila+ 2K|0/(t)|2]} a(t) + E(r,¢,1).  (A8)

As a result of the form of the driving field E, Eq. (AG), we
expect the solution to be of the form

00

a(r, ¢’ [) = Z [af'[(r7 ¢)einm/rxt + afl(r, ¢)ei(nw;n+wgl7)f:| , (Ag)

n=—0o0

where the amplitudes o (r, ) and ’(r, ¢) shall be determined.
As noticeable from Eq. (AS), the effective detuning felt by
the electromagnetic cavity depends on |a(f)*>. By placing the
solution obtained for a(r), while keeping only the dominant
dc components, we obtain for the effective detuning

Aer(r,8) = A+2K Y [lah P + laf + ab(al_ )" + (ah, )]

(A10)
where we have assumed w.’ = w,, + €, with € < Wi, wpy.
This assumption is satisfied when studying synchronization in
the vicinity of wy’ ~ w,. We solve Eq. by assuming a

fixed effective detuning A.¢. We then find,

A .

a = h—LJ,, (—nr) e, (A1)
A ,

@, = ——J,(-nr)e™"?, (A12)
hn+l

ha = 2+ i = Ac), (A13)

where we have used w.” = w,, + € again. We have therefore
found a solution for a(t).

b. Displaced frame for |a(t)] < 1
In this limit, Eq. (A7) dictates that a(f) should solve

a(t) = [i(A +K)- %] a(t) + E(r,¢,1). (A14)
As compared with Eq. (A8), we see that a different effec-
tive detuning should be defined, Ax = A + K. Then, we
can proceed as was done in the |a(f)] > 1 limit. Results
will be in complete analogy, and can be obtained by chang-
ing Aeg — Ag.

2. Obtaining the EOM

After finding the solution for (), which will serve as a
classical reference amplitude for the mechanical oscillator,
our next goal is to obtain the EOM for the phase-space dis-
tribution of the mechanical oscillator, o7(8, 8). We notice that



the dynamics of this phase-space distribution are governed by
Eq. and Eq. (A3). By placing the solution for a(t) into
Eq. (A5), one obtains an EOM for the phase-space distribution
of the mechanical oscillator,

o =igo Z g [afl(afl_l)* +al(al,)e ™ + aﬁ(aﬁl)*eif’] o
n

+H.c,,

(A15)
where we have neglected terms proportional to oc (Ay”)?, kept
only dc terms, and have used w,” = w,, + €, where w,", w,, >
€. This allowed us to send A, — h,,;, while keeping the
exponentials depending on €, as they will be needed later to
describe synchronization.

In describing limit cycles and synchronization, it is more
natural to work in polar coordinates. We therefore transform
Eq. (AT3) to a polar coordinate system. A more detailed de-
scription of this transformation can be found in Ref. [30]. The
transformed EOM is then,

0 = [~0uptr — Bopts | (A16)
where the drift coeflicients are given by

1 Jn-]n—]

=- Ar{ALR

Ho rzn:go L{ L e[hnhf,_l]
e g,J 2 _iet ) Just

nJyn —ie +AapR n n 1193

i ¢ i I

(A17)

+A% Re [

Ym Judn-1
F=—-——r+ A AL T
H 3 r Zn:go L{ L m[hnh:_l}

+A% Im —e_i””,J"‘ze—if’ + A% Im it e )
huh, huh,

(A18)

where we have neglected terms o« 1/r in the equation for i,
and terms o 1/r2 in the equation for u4, and have included the
effect due to Eq. (A3). In the limit of A}” — 0, one retrieves
the known expression from [30].

Case (2) - Mechanical drive - In applying the laser theory
for optomechanical limit cycles for this case, we take steps

completely analogous to those taken in the previous case. As
the mechanical reference drive acts directly on the mechanical
self-oscillator, it does not appear in the solution for a(¢) nor in
the elimination of the electromagnetic cavity. This fact makes
calculations more straightforward in the present case, and we
do not explicitly present them here. The EOM obtained has
the same form as Eq. (AT6), with drift coefficients which are
given by

1 Jndne .
Us = ;{ZgoAiRe[ 1]—A’fsm[(a}2"—wm)t+¢]},

hal
(A19)
m J"J”l— m m
Uy = —%r + Zn: goAi Im [hnh,,i + AV cos [(wW — wm)t + B].

(A20)
As in the previous case, we have neglected terms o< 1/7 in the
equation for 4, and terms o 1/7* in the equation for z4. In the
limit of A7 — 0, one retrieves the known expressions from
[30].

Appendix B: Fokker-Planck Equation for the Mechanical
Self-Oscillator

Using laser theory for optomechanical systems allows one
to obtain a Fokker-Planck equation (FPE) describing the dy-
namics of the mechanical self-oscillator. This FPE is of the
form

W = [_8r/~lr - a‘lﬁ/’t(f) + agrDrr + 83¢Dr¢ + 6é¢D¢¢] W (Bl)

where W(r, ¢) is chosen to be the Wigner phase-space distri-
bution, u, and u, are the drift coefficients of the phase-space
variables r and ¢ correspondingly, and D,,, D,s and Dy are
the diffusion coefficients. In App. [A] we aimed to obtain only
the drift coefficients, as they are sufficient to describe synchro-
nization in a parameter regime in which the diffusion does not
play a significant role. For completion and for those inter-
ested, we give in this appendix the expressions for the diffu-
sion coeflicients.

Case (1) - Optical laser drive - The drift coeflicients of the

FPE equation are given in Eqs. (A17)-(A18), while the diffu-
sion coeflicients are given by



1 ')’m(nth +1/2) YCg(z)AL Jz J2 [Jn+2J ] 0
Dyy = 5+ = _ AL +A +24; R 2A” (Jps1 + Jue1) cos(¢ + €t
o = n Z 8P\ Eime T, +2|2 LRe | i |2 +1 1) cos(¢ + €t) )
iq)Jn J 1 . , 73i¢]] 7 )
+2A" Re[—e e BV Re[—*’ "“elff]},
h hn+2 h hn+2
- “Z %gOAL{ LIm[J’”ZJ ]+A"”I [—3¢J"*2J" ! ’f’] + A% Im [—_m" J"“e-"“]} (B3)
271 by bty b
Ym(nun + 1/2) Ye8oAL J? o| Zs2n 2477,
D,=—+ = A + —2A Jns1 + Tz + ot
n Z R |hn+2|2 LR el T TE (Jn+1 1) COS(€ + 61) -
—ZAZP Re |:€ JnJrfJn 1 15[] 2A017 Re _3i¢‘]* J’Hl e—ift]} .
h hn+2 h hn+2

Case (2) - Mechanical drive - The drift coefficients of the FPE
equation are given in Eqs. (AT9)-(A20), while the reference

(

field A7' does not enter the expressions for the diffusion. The
diffusion coefficients are therefore given in Egs. (B2)-(B4),
with AYY = 0.
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