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S U M M A R Y
We consider the dispersion of waves in a rapidly rotating, Boussinesq fluid which is threaded
by a magnetic field and stirred by slowly gravitating buoyant blobs. Motivated by dynamics in
the core of the Earth, we focus on the evolution of inertial-Alfvén wave packets radiated from
the buoyant anomalies. These waves resemble conventional low-frequency inertial waves,
in the sense that energy disperses on the fast timescale of the background rotation rate,
though they also exhibit slower Alfvén-like propagation along magnetic field lines. When the
magnetic field is uniform, inertial-Alfvén waves automatically focus energy radiation onto
the rotation axis, a property they share with conventional low-frequency inertial waves in the
hydrodynamic case, and which ensures that they dominate the dispersion pattern. However,
the situation changes significantly when the magnetic field, B, is non-uniform. In particular,
we show any non-uniformity of B causes inertial-Alfvén waves to evolve into a more general
form of magnetic-Coriolis (MC) wave, and that these waves refract, dispersing somewhat off-
axis. Moreover, if inertial-Alfvén waves are launched near the equator they can be confined to
low latitudes by a critical layer at which the axial group velocity drops to zero. Given that the
magnetic field in a planetary core is inevitably non-uniform, we conclude that quasi-geostrophy
is most likely achieved through a combination of weakly modified inertial waves and a form
of slightly off-axis MC wave in which the inertial and Alfvén frequencies are comparable.

Key words: Core; Dynamo: theories and simulations; Geomagnetic induction; Planetary
interiors; Rapid time variations.

1 I N T RO D U C T I O N : I N E RT I A L
A N D I N E RT I A L - A L F V É N WAV E S I N
A R A P I D LY RO TAT I N G F LU I D

Incompressible internal waves play a potentially important role in
magnetic field generation within planetary cores (Moffatt 1970;
Olson 1981). In particular, they are effective at generating and then
transporting the much needed helicity, h = u · ∇ × u, within a plan-
etary core, and in such a way that it is skew-symmetric about the
equator, as required by classical dynamo theory (Davidson 2014;
Davidson & Ranjan 2015). These waves can be maintained by both
the magnetic field (Alfvén waves) and the background rotation (in-
ertial waves), though it is likely in a planetary core that the Coriolis
and Lorentz forces act in unison to produce some kind of hybrid
magnetic-Coriolis (MC) wave. Perhaps the most frequently investi-
gated regime is that in which the Alfvén frequency is significantly
smaller than the inertial wave frequency, as is traditionally assumed
for the Earth’s core, in which rapid rotation dominates the com-
paratively weak magnetic field. The resulting waves are then usu-
ally classified in one of two ways: weakly modified inertial waves
and the so-called magnetostrophic waves (Moffatt 1978; Finlay
et al. 2010). Recently, however, Bardsley & Davidson (2016) noted
that, for Earth-like parameters, there exists a third class of waves
for which the inertial wave frequency is in fact much smaller than
the Alfvén frequency. When the magnetic field is uniform this new

class of waves is particularly efficient at dispersing energy along the
rotation axis and so helps promote quasi-geostrophy in a stirred, ro-
tating fluid. These waves represent a form of hybrid motion, which
retains certain features of both inertial and Alfvén waves, and so
Bardsley & Davidson (2016, hereafter BD16) called them inertial-
Alfvén waves. In order to place this study in perspective, introduce
some notation, and establish the relevant governing equations, it is
useful to briefly summarize the properties of these various classes
of waves.

Consider a rapidly rotating, Boussinesq fluid stirred by slowly
gravitating buoyant anomalies of scale � and threaded by a uniform
magnetic field B0. We adopt a system of co-ordinates which rotates
with the fluid and the field is taken to be steady in the rotating frame.
To focus thoughts we take the background rotation � = �ez , the
magnetic field, and the gravitational acceleration g to be mutually
orthogonal. (In the case of the Earth, B0 might be the local east-west
field in the equatorial regions.) If we consider small perturbations
in the rotating frame, and ignore buoyancy forces and background
motion, the linearized equations of motion for an ideal fluid are

∂u

∂t
= 1

ρμ
(B0 · ∇) b + (2� · ∇) c, (1)

∂b

∂t
= (B0 · ∇) u, (2)
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where ρ and μ are the density and permeability of free space, u and
b the velocity and perturbed magnetic fields, and c the solenoidal
vector potential for u. These combine to give the wave-like equation[

∂2

∂t2
− 1

ρμ
(B0 · ∇)2

]2

∇2u + (2� · ∇)2 ∂2u

∂t2
= 0. (3)

If we search for solutions of the form [u, b] =
[û, b̂]exp {i(k · x − � t)}, we find several classes of waves.
In the absence of a magnetic field we obtain inertial waves,
which have angular frequency � = ±2� · k/k, group velocity
cg = ±2k−3 (k × (� × k)), and maximal helicity h = u · ∇ × u.
On the other hand, with no background rotation we obtain
non-dispersive Alfvén waves whose frequency and group velocity
are � = (±)B0 · k/

√
ρμ and cg = (±)B0/

√
ρμ respectively.

More generally, for finite B0 and �, we obtain the dispersion
relationship

� 2 ∓ ��� − � 2
B = 0, (4)

where �B = B0 · k/
√

ρμ and �� = 2� · k/k. The corresponding
amplitudes are readily shown to satisfy

û = ∓ ω̂

k
, â = ∓ b̂

k
, û = − �

�B

b̂√
ρμ

, (5)

ω being the vorticity and a the (solenoidal) vector potential for b
(see, e.g., Moffatt 1978). Evidently, u and ω are in phase and par-
allel, so that all plane-wave solutions have maximal kinetic helicity
h = u · ω, with the upper (lower) sign in (4) corresponding to neg-
ative (positive) helicity. Moreover, the fact that kû = ∓ω̂, irrespec-
tive of the presence of a magnetic field, tells us that all monochro-
matic solutions have the same spatial structure for u (Moffatt 1978),
while kâ = ∓b̂ tells us that the magnetic helicity hm = a · b is also
maximal.

The group velocity corresponding to (4) can be expressed as(
1 + � 2

B

� 2

)
cg = 2�B

�

B0√
ρμ

± cg�, (6)

where cg� = 2 (� − (ek · �) ek) /k and ek = k/k. Note that all
wave packets propagating in the direction of � carry negative helic-
ity, while those propagating antiparallel to � carry positive helicity.
Note also that all wavevectors lying in the horizontal plane disperse
energy along the rotation axis through the term cg�.

Now the small scales in the geodynamo are expected to operate in
a regime in which �� is greater than ∼30|B|/√ρμ, where we take
� ∼ 10 km and assume a field of around 30 Gauss (consistent with
Gillet et al. 2010). So, if we set aside the special case of � · k ≈ 0,
then |��| � |�B | and the dispersion relationship (4) yields two
distinct pairs of roots, � ≈ ±�� and � ≈ ∓� 2

B/��. The lat-
ter represents a magnetostrophic wave, which is characterized by
a particularly low frequency and, by virtue of (6), a slow group
velocity. However, this is not the only possibility. We know from
studies of rapidly rotating, non-magnetic turbulence that the special
case of � · k ≈ 0 plays a crucial role in the formation of columnar
vortices. To understand this, consider a localized disturbance of ar-
bitrary shape in a non-conducting fluid which excites inertial waves
with a spectrum of wavevectors k. The direction of propagation of
the resulting wave energy will vary, fixed by the orientation of k
through cg = ±cg�. However, the fact that cg is perpendicular to k
means that all waves which satisfy � · k ≈ 0 must propagate in the
direction of �, and so all the energy contained in a thin horizontal
disc in k-space will be focussed onto, and then propagate along, the
rotation axis. This concentrates the radiated energy from a localized

source onto the rotation axis, so that the energy density in axially
propagating wave packets is higher than in off-axis ones (Davidson
et al. 2006).

BD16 noted that essentially the same phenomenon will occur in
the presence of a magnetic field, even in the Earth-like regime where
one might normally expect to find |��| � |�B |. In particular, they
considered those wave packets which satisfy � · k ≈ 0, so that the
frequencies are ranked according to |��| 	 |�B |, despite the fact
that �� � 30|B|/√ρμ. The key idea is that, like low-frequency
inertial waves in the strictly hydrodynamic case, the constraint that k
is perpendicular to cg�, combined with � · k ≈ 0, ensures that wave
energy dispersing from a localized source is focussed preferentially
onto the rotation axis.

The various properties of these waves are readily obtained from
(4) and (5). For � · k ≈ 0, and to leading order in |��|/|�B |, these
yield

� = (±)�B ± ��

2
≈ (±)�B, û = (∓)

b̂√
ρμ

, (7)

where the sign in (±) may be chosen independently from that in ±.
The corresponding group velocity is

cg = (±)
B0√
ρμ

± �

k
. (8)

Evidently these are equipartition waves which have the frequency of
an Alfvén wave, yet disperse energy along the rotation axis at half
the group speed of low-frequency (i.e. � · k ≈ 0) inertial waves.
For Earth-like parameters the axial group velocity of these waves
is fast, traversing the core on a timescale of months, which might
be compared with the speed of Alfvén waves, which traverse the
core in years to decades. Physically, the waves may be considered
a modified version of the low-frequency (� · k ≈ 0) inertial waves
which are responsible for the columnar axial wave packets in the
strictly hydrodynamic case. The key difference is that, when B is
finite, an axially propagating wave packet needs to bend magnetic
field lines and this drops the axial group velocity by a factor of two,
while the helical flow within the wave packet spirals up the field lines
yielding a finite magnetic and cross helicity. Finally, the presence
of the Alfvén frequency in (7) and group velocity in (8) tells us
that the bending of the field lines also initiates slower, horizontally
propagating Alfvén waves. (The initiation of slow, horizontal Alfvén
waves by fast inertial waves is also observed in Jault (2008).)

This general behaviour is readily confirmed via a simple exam-
ple: BD16 consider a localized buoyant blob sitting in an ideal,
rotating fluid which is permeated by a uniform magnetic field.
Through an analytical Fourier-transform solution, they show that
the buoyant anomaly spontaneously radiates axially elongated wave
packets which propagate along the rotation axis and evolve into
quasi-geostrophic vortices. This is illustrated in Fig. 1(a), which
shows the dispersion of wave energy from a small Gaussian-shaped
buoyant anomaly of scale �, which is introduced at the origin at
t = 0. (In this case � is vertical, gravity acts into the page, B0

points from left to right, and
(
B0/

√
ρμ

)
/�� = 0.05.) While some

off-axis radiation is evident, in the form of oblique inertial waves,
the dispersion pattern is dominated by axially propagating inertial-
Alfvén waves as expected. At yet larger times the horizontal propa-
gation is more pronounced, but the dispersion pattern continues to
be dominated by the columnar wave packets above and below the
buoyant anomaly. The corresponding wave pattern in the absence
of a magnetic field is shown in Fig. 1(b), which is also dominated
by dispersion along the rotation axis, in this case composed of low
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Figure 1. The dispersion pattern from a small, localized buoyant anomaly
of scale � located at the origin. � is vertical, B points from left to right, and
g acts into the page. The axial velocity is shown at �t = 50, with red (blue)
signifying uz > 0 (uz < 0), and magnetic field lines are overlaid in black. (a)
(B0/

√
ρμ)/�� = 0.05, (b) B0 = 0. From BD16.

frequency (� · k ≈ 0) inertial waves. (The wave dispersion in the
non-magnetic case is discussed in Davidson (2014).)

In summary, then, hybrid inertial-Alfvén waves are particularly
efficient at generating axially elongated vortices (wave packets)
from localized buoyant anomalies and so can help maintain approx-
imate geostrophy in a continually stirred, rotating fluid. However, a
crucial limitation of the analysis in BD16 is that the magnetic field is
assumed to be spatially uniform, whereas B is clearly non-uniform
in the core of a planet. We now show that any non-uniformity of
B disrupts the ability of inertial-Alfvén waves to focus energy onto
the rotation axis. Indeed, in certain circumstances, these waves are
confined to low latitudes and cannot carry any energy into the polar
regions. In any case, inertial-Alfvén waves cease to play any spe-
cial role in establishing quasi-geostrophy as they evolve into more
general MC waves.

2 S P O N TA N E O U S R A D I AT I O N F RO M
A L O C A L I Z E D S O U RC E W H E N
T H E M A G N E T I C F I E L D VA R I E S
W I T H L AT I T U D E

2.1 Ray tracing in an inhomogeneous magnetic field: a
model problem

We consider a model problem in which waves radiate from a single
localized source, say a buoyant blob of scale �, introduced into

the fluid at time t = 0. We restrict ourselves to the regime �� �
|B|/√ρμ, which is thought typical of the Earth’s core, and consider
the case where � and B0 are mutually orthogonal, with � = �ez

and B0 = B0ey . Moreover we take B0, which we may think of as the
east–west field in the core of the Earth, to be anti-symmetric about
the equator (z = 0) and to vary slowly with z. (By slowly varying we
mean that B0 changes negligibly on the scale of k−1, i.e. kL � 1.)
So we write B0(z) = B∗f(z/L), where f is an odd function in z/L and
B∗ and L are constants which are indicative of the peak east-west
field strength and core radius in the Earth. If we restrict ourselves
to moderate-to-low latitudes, say |z| < L/2, then we might take f as
linear, say B0(z) = B∗z/(L/2). However, the azimuthally averaged
east–west field falls back down to zero at the mantle, so for a broader
range of latitudes, say |z| < L, the form B0(z) = B∗sin (πz/L) might
be more appropriate. Finally, since z = 0 is an atypical location
characterized by zero magnetic field, we let the source sit at an
arbitrary value of z, say z = z0, and not be restricted to the equator,
though we have in mind locations not too far from it.

Note that the spatial variation of B0 implies the existence of a
background current density, J0 = μ−1∇ × B0. This introduces ad-
ditional terms into the perturbation equations (1) and (2). However,
it is ready confirmed that, in the limit of kL � 1, the resulting cur-
rent is weak and these extra terms are second order in (kL)−1 and so
may be neglected in the analysis that follows.

Although the problem is now inhomogeneous in z, the slow vari-
ation in B0 means that we may still look for local plane-wave so-
lutions of the form [u, b] = [û, b̂]exp {i(k · x − � t)}. We can then
use conventional ray-tracing methods (Lighthill 1978) to track the
evolution of the various wave packets emanating from the buoy-
ant anomaly as they propagate away from the source. The local
dispersion relationship is then (4), which is conveniently rewritten
as

��

�
= ±

(
1 − � 2

B

� 2

)
, (9)

where �B = B0 · k⊥/
√

ρμ, �� = 2�k‖/k, and the subscripts ⊥
and ‖ indicate the orientation of k relative to �. Note that the upper
sign in (9) corresponds to northward propagating wave packets and
the lower sign to southward propagation.

According to standard ray-tracing theory the frequency of a wave
packet is always conserved. Moreover, because our model problem
is homogeneous in planes normal to �, the horizontal wavevector
k⊥ is also preserved by a wave packet (Lighthill 1978). It follows
that we may write (9) in the more useful form

��(z)

�0
= 2�k‖/k

�0
= ±

(
1 − � 2

B(z)

� 2
0

)
, (10a)

�B(z) = B0(z) · k⊥0√
ρμ

, (10b)

where � 0 and k⊥0 are the initial launch values of � and k⊥.
Evidently, in our model problem, we may consider � B to be a
specified function of z and our dispersion relationship then tells
us how ��(z), and hence k‖, varies as the wave packet propagates
through the magnetic field.

Relationship (10) is conveniently plotted as shown in Fig. 2,
where for clarity we show only the upper branch corresponding to
northward propagating waves. Any wave packet launched from the
buoyant blob then follows the downward sloping dispersion curve
in Fig. 2, as it pushes northward into regions of stronger B0. The
left-hand part of the dispersion curve corresponds to low values
of B0 and to weakly modified inertial waves, �0 ≈ ��, while the
right-hand part leads to ever stronger magnetic fields and eventually
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Figure 2. The variation of ��(z)/�0 with � 2
B (z)/� 2

0 according to the
dispersion relationship (10). For simplicity, only the upward propagating
branch is shown.

to magnetostrophic waves, �0 ≈ −� 2
B/��. The hybrid inertial-

Alfvén waves of BD16 evidently correspond to the crossover point
where k‖ = 0 and � 0 = � B.

We now show that this slow variation in the background field
disrupts the ability of inertial-Alfvén waves to focus wave energy
onto the rotation axis, and indeed in some circumstances inertial-
Alfvén waves are confined to the equatorial regions.

2.2 The refraction of wave packets and the wave ceiling

Let us now consider the dispersion pattern associated with a single
source. It is important to note that, while |k⊥0| in (10) presumably
scales with the inverse size of the buoyant anomaly, and so can be
estimated a priori, the launch frequency � 0 cannot be similarly
determined. Rather, there will be a range of launch frequencies
dictated by the initial distribution of wave energy in k-space, with
each frequency corresponding to the local dispersion of wave en-
ergy in a particular direction. In short, the launch conditions will
resemble those shown in Fig. 1(a). Hence a single buoyant anomaly
will radiate energy corresponding to a range of orientations of k, or
equivalently a range of values of � 0, and thus to a range of values
of � 2

B(z)/� 2
0 in Fig. 2. However, the dispersion of energy adjacent

to the buoyant anomaly, where the field looks locally uniform, will
be dominated by axially propagating hybrid inertial-Alfvén waves,
as shown in Fig. 1(a). So we shall focus particularly on launch con-
ditions corresponding to the crossover point k‖ = 0 and � 0 = � B in
Fig. 2. (It is evident from Fig. 1(a) that off-axis weakly modified in-
ertial waves also play a significant role in transporting wave energy
along the rotation axis, but we shall set this aside for the moment.)
Our task now is to determine what happens to axially propagating
wave packets as they pass upward into regions of stronger magnetic
field.

For such wave packets we have � 0 = � B(z0) and so (10) be-
comes

��

�0
= 2�k‖/k

�B(z0)
= ±

(
1 − � 2

B(z)

� 2
B(z0)

)
= ±

(
1 − B2

0 (z)

B2
0 (z0)

)
. (11)

It is immediately apparent that, while k‖ = 0 at z = z0, it is non-zero
for z = z0. We conclude that hybrid inertial-Alfvén waves, which are
characterized by � · k ≈ 0, will not remain inertial-Alfvén waves
for long, but rather evolve into off-axis wave packets with a finite

value of k‖. (Recall that cg� is perpendicular to k.) Thus the ability
of inertial-Alfvén waves to focus energy onto the rotation axis,
which rests on the property k‖ ≈ 0, cannot be maintained when B0

is non-uniform.
The ultimate fate of these wave packets depends on where the

waves are launched, that is, the location of the buoyant anomaly.
Away from the equator we have the estimate

�

�B(z0)
∼ ��

B∗/
√

ρμ
(12)

which is usually taken to be large in the core of the Earth (greater
than 30). Provided that the magnitude of B0(z) is never very different
from that at launch, B0(z0) (an obvious exception being wave packets
launched near the equator), a large value of �/� B(z0) means that
|k‖|/k in (11) will remain relatively modest. We conclude that many
(but certainly not all) wave packets continue to have a group velocity
which is approximately aligned with the rotation axis.

This is illustrated by the rays shown in Fig. 3(a) for the particular
case in which B0(z) = 2B∗z/L, � ∼ π/|k⊥| = 10 km, L = 2000 km,
the rotation rate is that of the Earth, the normalized field strength
is

(
B∗/

√
ρμ

)
/�� = 0.033 (B∗ = 30 G), and the launch position

is z0 = 500 km. These trajectories are plotted by integrating the
relationships

dz

dt
= cgz(z),

dx

dz
= cgx (z)

cgz(z)
,

dy

dz
= cgy(z)

cgz(z)
, (13)

for the equations of the rays. The various components of the group
velocity are given by substituting (10) into (6). The circles on the
rays indicate that 0.1 yr have passed since the waves were launched.

Note that, although |k‖|/k remains small in such a case, it is
unreasonable to suppose that the condition |��| 	 |�B | is main-
tained as the wave packets push north and south. Rather, we would
expect the right-hand side of (11) to be of order unity, so that in
general |��| ∼ |�B |. It follows that, although cg� often remains
approximately aligned with the rotation axis, these waves cannot
continue to be classified as hybrid inertial-Alfvén waves, governed
by (7) and (8).

There are, however, certain wave packets for which |k‖|/k does
not remain small and so cg� becomes significantly misaligned with
�. This is particularly relevant for waves launched close to the
equator, and in such cases there exists the possibility that the waves
remain trapped in the equatorial regions, as we now discuss. Eq. (11)
in the form∣∣∣∣ B2

0 (z)

B2
0 (z0)

− 1

∣∣∣∣ =
∣∣∣∣2�k‖/k

�B(z0)

∣∣∣∣ <
2�

�B(z0)
(14)

tells us that, when B0(z0)/B∗ is particularly small (i.e. z0 near
the equator), there is a limited vertical distance over which the
waves can propagate before inequality (14) is violated. To focus
thoughts, let us again consider upward propagating wave packets.
Since ��/(B∗/

√
ρμ) is large, say 30 or greater, this critical height

zc corresponds to

B0(zc)

|B0(z0)| =
√

1 + 2�

�B(z0)
≈

√
2�

�B(z0)
. (15)

We might term this critical height the wave ceiling, and for a linear
variation in B0(z) it evidently scales as

zc

|z0| ∼ ��

B0(zc)/
√

ρμ
. (16)

Clearly, for z0 	 L, the wave packets will traverse only a modest
distance before being arrested, with the wave energy trapped in the
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Figure 3. Rays dispersing from a small, localized buoyant anomaly of scale �. The trajectories shown are for the case of B0(z) = 2B∗z/L, � ≈ π/|k⊥| = 10 km,
L = 2000 km, a normalized field strength of (B∗/√ρμ)/�� = 0.033 and a rotation rate equal to that of the Earth. The launch positions, denoted by ×, are (a)
z0 = 500 km, (b) z0 = 25 km and (c) z0 = 100 km; northward (southward) trajectories are coloured purple (orange). The circles indicate the passage of (a) 0.1,
(b) 10 yr and (c) 1 yr.

Figure 4. Ray dispersing from a small, localized source. The parameters are the same as for Fig. 3(a), except that, at launch, (a) �B/� 0 = 0.3 (weakly
modified inertial waves), (b) �B/� 0 = 1 (inertial-Alfvén waves), (c) �B/� 0 = 3 and (d) �B/� 0 = 30 (magnetostrophic waves). The launch position,
denoted by ×, is z0 = 500 km and the circles indicate the passage of (a) 0.04, (b) 0.1, (c) 0.5 and (d) 30 yr. Colours as Fig. 3.

equatorial regions. As noted by Acheson (1972), the wave ceiling
corresponds to a critical layer at which k‖ � k⊥, k‖/k → 1 and the
axial component of the group velocity in (6) goes to zero. This is
illustrated in Fig. 3(b) for a launch position of z = 25 km, all other
parameters being unchanged. The two sets of trajectories shown in
the figure correspond to: (i) k⊥ aligned with B0, and (ii) k⊥ and
B0 misaligned by a factor of π/4. In both cases the existence of a
wave ceiling is evident. (A misalignment of k⊥ and B0 is equivalent
to reducing the effective value of B0; this does not alter cg� in (6),
but does reduce the horizontal Alfvén velocity and � 0.) Note that
the circles on the rays in Fig. 3(b) indicate the passage of 10 yr,
as opposed to 0.1 yr in Fig. 3(a). The time scale is much longer
because the lateral propagation of wave energy is associated with
slow magnetostrophic waves.

In the interest of completeness, an intermediate case of
z0 = 100 km (with all other parameters unchanged), is shown in
Fig. 3(c). This time there is no wave ceiling below 1000 km, al-
though the wave packets acquire a significant horizontal component
of group velocity. The circles now mark the passage of 1 yr.

Finally, it is of interest to consider the fate of wave pack-
ets which do not belong to the primary rays emitted from the
source, that is, not launched with frequency � 0 = � B. Fig. 4(a)
shows waves launched as weakly modified inertial waves in which
� B/� 0 = 0.30 and �0 = 1.10��, Fig. 4(c) shows waves which

are almost, but not quite, magnetostrophic at launch, corresponding
to � B/� 0 = 3 and �0 ≈ 0.89� 2

B/��, and Fig. 4(d) shows waves
which are strictly magnetostrophic, corresponding to � B/� 0 = 30
and �0 ≈ � 2

B/��. The circles in Figs 4(a)–(d) indicate the passage
of 0.04, 0.1, 0.5 and 30 yr, respectively. The relative sluggishness
of magnetostrophic waves in (d) is evident, as is their tendency to
spread horizontally.

3 R AY S N E A R T H E C RO S S OV E R P O I N T

There is one technical issue associated with this model problem
that needs to be clarified. While the primary rays are generated at
the crossover point in Fig. 2 (k‖ = 0, � 0 = � B), wave packets
launched away from this point may be required to pass through it as
they propagate. However, the usual assumption of a gradually vary-
ing background, which underpins all of ray tracing theory, ceases
to hold at this particular location, since we cannot satisfy the re-
quirement that k‖L � 1. Nevertheless, as with waves near a caustic,
the difficulty can be remedied by a local analysis which smooths
over the difficulties at the crossover point k‖ = 0. This then allows
conventional ray tracing methods to be applied either side of the
crossover point (Lighthill 1978).
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We proceed as follows. Since we have homogeneity in trans-
verse planes we can look for solution of (3) of the form u =
û(z)exp {i (k⊥ · x⊥ − � t)}, which yields

d2û

dz2
+

(
� 2 − � 2

B

)2
k2

⊥
4�2� 2 − (

� 2 − � 2
B

)2
û = 0. (17)

In the vicinity of the crossover point (or turning point) � = � B(z×),
this simplifies to

d2û

dẑ2
+ 4ẑ2

L̂4
û = 0,

1

L̂2
= k⊥

2�

∣∣∣∣d�B

dz

∣∣∣∣
z×

, (18)

where ẑ = z − z× is the distance from the turning point and û is
any one component of û. The general solution of (18) is

û± =
√

|ẑ|
L̂

[
A± J 1

4

(
ẑ2

L̂2

)
+ C± J− 1

4

(
ẑ2

L̂2

)]
, (19)

where J 1
4

and J− 1
4

are the usual Bessel functions and ± indicates

solutions above and below the turning point; the coefficients A+ and
C+ apply above it and A− and C− below.

We now determine the coefficients as follows. Expanding the
Bessel functions for small argument yields, after a little algebra,

û±
(

ẑ

L̂
→ 0

)
= 21/4

�(3/4)
C± + |ẑ|/L̂

21/4�(5/4)
A± + O

(∣∣∣ẑ/L̂
∣∣∣4

)
.

(20)

Continuity across ẑ = 0 now requires that C+ = C− = C and
A+ = −A−, which is sufficient to ensure that û and all its derivatives
are continuous. Moreover, combining (1) with (2) in the form[

∂2

∂t2
− 1

ρμ
(B0 · ∇)2

]
∇ × u = (2� · ∇)

∂u

∂t
(21)

demands that when � = � B(z×), dû/dẑ = 0 at ẑ = 0. This implies
A± = 0, and the solution is therefore symmetric about ẑ = 0, taking
the form

û = C

√
|ẑ|
L̂

J− 1
4

(
ẑ2

L̂2

)
. (22)

Finally, replacing the Bessel function by its asymptotic approxima-
tion at large argument shows that, for large ẑ2/L̂2,

û ≈ C

√
2L̂

π |ẑ| cos

(
ẑ2

L̂2
− π

8

)
, (23)

which is the limiting form of the Wentzel–Kramers–Brillouin
(WKB) solution to the problem in hand (Hinch 1991). A com-
parison of the exact and WKB solutions is shown in Fig. 5. Note
that the singularity in the WKB approximation at ẑ → 0, indicative
of the violation of k‖L � 1, is smoothed over in the exact solution
within a distance of order L̂ . Moreover, the |ẑ|−1 decay of û2 exhib-
ited by the WKB solution is a direct manifestation of the defocusing
of the radiation as it moves away from the turning point. Finally, we
observe that there is no reflection of energy at the turning point, as
would be expected since the axial group velocity remains finite at
ẑ = 0.

4 I M P L I C AT I O N S F O R WAV E
D I S P E R S I O N I N T H E C O R E
O F T H E E A RT H

In the core of the Earth the buoyancy flux outside the tangent cylin-
der (an imaginary cylinder that circumscribes the solid inner core)

Figure 5. Comparison of the exact and WKB solutions (22) and (23).

tends to be concentrated in and around the equatorial regions (see,
e.g. Sakuraba & Roberts 2009) and it is argued in Davidson &
Ranjan (2015) that the waves emanating from such regions may
play an important role in magnetic field generation. The buoyant
anomalies that trigger such waves probably exhibit a wide range of
scales (Roberts & King 2013), perhaps all the way down to a few
kilometres (Davidson 2016).

The model problem discussed above is somewhat idealized, in-
tended simply to explore the influence of a spatially varying mag-
netic field on the dispersive properties of inertial-Alfvén waves. In
this section we consider the implications of this behaviour for the
core of the Earth. Let us start by considering a more realistic distri-
bution of B0(z). Since the azimuthally averaged east–west field in
the core is antisymmetric about z = 0, and zero at both the equa-
tor and core-mantle boundary, perhaps a slightly more plausible
distribution is

B0(z) = B∗ sin
(π z

L

)
, −L < z < L , (24)

where L is indicative of the core radius.
Keeping all other parameters the same as in Fig. 3, the corre-

sponding ray paths are shown in Fig. 6 for the launch positions of
(a) z0 = 500 km, (b) z0 = 25 km and (c) z0 = 100 km. As before, the
circles on the ray trajectories indicate the passage of 0.1 yr in (a),
10 yr in (b) and 1 yr in (c). Although the details differ from those
of Fig. 3, the general trend remains the same, with wave packets
launched near the equator confined by a wave ceiling, whilst those
launched far from the equator maintain a predominantly axial tra-
jectory. The primary difference between the two figures lies in the
intermediate case of z0 = 100 km; for a linear distribution of B0(z)
the rays simply diverge as the magnetic field increases, whereas for
the sinusoidal distribution they eventually revert to something close
to a vertical group velocity as the magnitude of B0(z) falls back
towards B0(z0). (There is also some evidence of this behaviour in
the z0 = 500 km case.)

It is evident from (16) that waves launched below

|z0| ∼ B∗/
√

ρμ

��

L

2
(25)

are likely to be trapped in the equatorial regions and this corresponds
to a z0 of around 30–40 km for the parameters used in Fig. 6, that is,
close to the equator. This is consistent with the trajectories shown in
Fig. 6(b). Note that those waves which are trapped near the equator
develop a large vertical wavenumber, |k‖| � |k⊥|, and so will be
subject to particularly intense Ohmic dissipation. In short, such
waves are not only trapped at low latitudes, but likely to be rapidly
eradicated.
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Figure 6. Rays dispersing from a localized source when the background field B0(z) varies as a sinusoid according to (24). The colours and all parameters apart
from B0(z) are the same as for Fig. 3.

Conversely, the large value of ��/(B∗/
√

ρμ) in the core of
the Earth, combined with (11), ensures that |k‖|/k 	 1 when-
ever waves are launched an appreciable distance from the equa-
tor, that is, |z0|/L = O(1). The dispersion in such cases is mostly
along the rotation axis, consistent with the trajectories shown in
Fig. 6(a). So we conclude that, for most launch locations, the tra-
jectories of the wave packets remain more or less aligned with
the rotation axis, with the axial group speed being of the order
of the fast inertial wave speed, cgz ∼ �/k⊥. As discussed in Sec-
tion 2.2, such waves satisfy |��| ∼ |�B | and so cannot formally
be classified as hybrid inertial-Alfvén waves (|��| 	 |�B |), mag-
netostrophic waves (|��| � |�B |), or even weakly modified in-
ertial waves (|��| � |�B |). We shall refer to them instead as in-
termediate magneto-Coriolis (MC) waves, a generalization of the
nomenclature fast/slow MC waves commonly used to describe in-
ertial/magnetostrophic waves (Finlay et al. 2010).

The general picture that emerges, then, is the following. At least
four sets of waves contribute to the axial dispersion of wave en-
ergy from a localized source: weakly modified inertial waves, mag-
netostrophic waves, inertial-Alfvén waves and intermediate MC
waves. The first set is characterized by cgz ≈ 2�/k⊥ and the ranking
|��| � |�B |, the second by cgz 	 �/k⊥ and |��| � |�B |, the
third by cgz ≈ �/k⊥, |��| 	 |�B | and � · k ≈ 0, and the fourth by
cgz ∼ �/k⊥ and |��| ∼ |�B |. Because the Alfvén velocity is rel-
atively slow, in the sense that �� � 30|B|/√ρμ, the intermediate
MC waves propagate mainly along the rotation axis, with |k‖|/k 	
1 and cg� almost aligned with �, though they do retain some group
velocity component along magnetic field lines. These four classes
of waves—weakly modified inertial waves, magnetostrophic waves,
inertial-Alfvén waves and intermediate MC waves—are shown in
Fig. 7.

Close to the source the dispersion pattern is like that shown in
Fig. 1(a), with much of the energy carried by axially propagating
inertial-Alfvén waves, which are self-focussing and have an axial
group velocity of cgz ≈ �/k⊥. However, a significant fraction of the
energy is also carried by slightly off-axis inertial waves, which have
the faster group speed of cgz ≈ 2�/k⊥ (Davidson et al. 2006, BD16).
Over a longer time scale the Alfvén component of the inertial-
Alfvén waves near the source transports energy horizontally.

Far from the source, on the other hand, the inertial-Alfvén waves
typically convert into intermediate MC waves and acquire an off-
axis component of cg�. (In principle, some of the wave packets
may be trapped by a wave ceiling, but in practice this would oc-
cur only when the source is particularly small and located close
to the equator.) Intermediate MC waves satisfy |��| ∼ |�B | and
disperse energy along the rotation axis in a manner reminiscent of

Figure 7. The relative frequencies of weakly modified inertial waves, mag-
netostrophic waves, inertial-Alfvén waves and intermediate MC waves.

low-frequency inertial waves. However, they also initiate horizontal
Alfvén waves and transport magnetic helicity. We conclude, there-
fore, that quasi-geostrophy in the core is likely to be maintained
through a combination of slightly off-axis inertial waves, which
satisfy |��| � |�B |, and intermediate MC waves which satisfy
|��| ∼ |�B | and have an axial group velocity comparable to that
of inertial waves.

Finally, in order to convey the complexity of the dispersion pat-
tern that can develop, in Fig. 8 we have superimposed rays dis-
persing from three localized sources at slightly different longi-
tudes and with the background field varying as (24). As before,
we take � = 10 km, L = 2000 km, a normalized field strength
of (B∗/

√
ρμ)/�� = 0.033, and a rotation rate equal to that of

the Earth. The waves are launched at latitudes of z0 = 25, 100,
500 km and for each source we allow for launch frequencies of
� B/� 0 = 0.3 (weakly modified inertial waves), � B/� 0 = 1
(inertial-Alfvén waves) and � B/� 0 = 3. Broadly speaking the
waves fall into one of two categories; some rays remain trapped
in the equatorial regions, say |z0| < 100 km, but those which
escape the region propagate towards the mantle as intermediate
MC waves (|��| ∼ |�B |), or else weakly modified inertial waves
(|��| � |�B |). As noted earlier, those waves that remain trapped
near the equator are likely to be subject to strong Ohmic dissipation.

Explicit discussion of the effect of a finite magnetic diffusivity
is beyond the scope of this work, as is the treatment of other large-
scale magnetic field components. While the axial field is likely
subordinate to the rotation, the spatially varying radial field will
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Figure 8. Rays dispersing from three localized sources with a sinusoidal background field. As in earlier figures, we take � = 10 km, L = 2000 km, a normalized
field strength of (B∗/√ρμ)/�� = 0.033, and a rotation rate equal to that of the Earth. The launch positions, denoted by ×, are z0 = 25, 100, 500 km and
at each source we allow for launch frequencies of �B/� 0 = 0.3 (weakly modified inertial waves, dashed), �B/� 0 = 1 (inertial-Alfvén waves, dotted) and
� B/� 0 = 3 (intermediate MC waves, solid). Colours as Fig. 3.

have some bearing on the ray paths; it allows for a transverse field
which varies in direction as well as magnitude. (This is the situation
considered by Acheson (1972) when studying the wave ceiling.)
We defer discussion of this and other interesting cases to future
investigations.

5 C O N C LU S I O N S

There exists a zoo of wave types that can transport helicity across
the Earth’s core, including weakly modified inertial waves, mag-
netostrophic waves, inertial-Alfvén waves, and intermediate MC
waves, as shown in Fig. 7. Weakly modified inertial waves are
characterized by cgz ≈ 2�/k⊥ and |��| � |�B |, magnetostrophic
waves by cgz 	 �/k⊥ and |��| � |�B |, inertial-Alfvén waves by
cgz ≈ �/k⊥, |��| 	 |�B | and � · k ≈ 0, and intermediate MC
waves by cgz ∼ �/k⊥ and |��| ∼ |�B |. Inertial-Alfvén waves
cannot be sustained for long when the ambient magnetic field is
non-uniform, and magnetostrophic waves preferentially send en-
ergy and helicity along the magnetic field lines, rather than along the

rotation axis. On the other hand, because �� � 30|B|/√ρμ in the
Earth’s core, the intermediate MC waves propagate more or less
along the rotation axis, with |k‖|/k 	 1 and cg� almost aligned with
�, as do low-frequency inertial waves. We conclude, therefore,
that the maintenance of a quasi-geostrophic flow in the presence
of continual stirring by buoyancy forces is most likely to be asso-
ciated with weakly modified inertial waves and intermediate MC
waves. Both of these wave types are also good candidates for the
maintenance of an asymmetric helicity distribution about the equa-
tor, with northward propagating waves carrying negative helicity
and south travelling waves positive helicity; such an asymmetric
helicity distribution is beneficial to the maintenance of a dynamo
(Davidson 2014).
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