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Summary 21 

– The Mediterranean orchid genus Ophrys is remarkable for its pseudo-copulatory pollination 22 

mechanism; naïve male pollinators are attracted to the flowers by olfactory, visual and tactile 23 

cues. The most striking visual cue is a highly reflective, blue speculum region at the centre of the 24 

labellum, which mimics the corresponding female insect and reaches its strongest development in 25 

the Mirror Orchid, O. speculum. 26 

– We explored the structure and properties of the much-discussed speculum by scanning and 27 

transmission electron microscopic examination of its ultrastructure, visible and ultraviolet (UV) 28 

angle-resolved spectrophotometry of the intact tissue, and mass spectrometry of extracted 29 

pigments. 30 

– The speculum contrasts with the surrounding labellar epidermis in being flat-celled with a thick, 31 

smooth cuticle. The speculum is extremely glossy, reflecting intense white light in a specular 32 

direction, but at more oblique angles it predominantly reflects blue and UV light. Pigments in the 33 

speculum, dominantly the cyanidin 3-(3”-malonylglucoside), are less diverse than in the 34 

surrounding regions of the labellar epidermis and lack quercetin co-pigments.   35 

– Several physical and biochemical processes interact to produce the striking and much-discussed 36 

optical effects in these flowers, but the blue colour is not produced by structural means and is not 37 

iridescent. 38 

 39 

Key words:  anthocyanin, co-pigmentation, epidermis, labellum, Ophrys speculum, pollinator 40 

deceit, specular reflection, structural colour.  41 

 42 
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Introduction 44 

The Mirror Orchid 45 

The morphological distinctiveness, complexity and commercial importance of orchid flowers 46 

have promoted them to popular models for studies of floral development, functional morphology, 47 

reproductive biology and plant–pollinator interactions. The genus Ophrys is well-suited for study 48 

in each of these disciplines, and particularly for analysis of the interface between floral 49 

morphology and pollinator attraction. 50 

 51 

The floral bauplan of Ophrys is typical of most species of the subfamily Orchidoideae, which 52 

includes most of the European terrestrial orchids (Rudall & Bateman 2002). Stamen and pistils are 53 

congenitally fused into a gynostemium wherein the single fertile stamen bears two anther locules, 54 

each containing a club-shaped pollinarium with an adhesive viscid disc at the proximal end linked 55 

to a pollen mass (pollinium) toward the distal end. The stigmatic surface is located immediately 56 

below the viscid discs. The inferior ovary is rich in minute ovules. The perianth consists of two 57 

closely-spaced whorls each composed of three organs, the three petals being located immediately 58 

distal to the three sepals. The lower median petal, termed the labellum, is often larger and usually 59 

more complex than the lateral petals. The resulting floral morphology, showing unusually strong 60 

bilateral symmetry, was recognized by Darwin (1862) as strongly encouraging transfer of 61 

pollinaria between inflorescences to facilitate cross-pollination. 62 

 63 

The bilateral symmetry of the orchid flower, and morphological complexity of the labellum, are 64 

especially strongly expressed in the genus Ophrys (Fig. 1A). A comparative overview of the 65 

genus by Bradshaw et al. (2010) demonstrated that this complexity extends to the 66 

micromorphological scale, revealing a wide range of epidermal cell types located in specific 67 
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regions of the labellum and presumably reflecting its unusual pseudocopulatory mode of 68 

pollination. Most Ophrys species attract a limited range of species of flying insect (typically 69 

hymenopterans), relying on naïve males to attempt to mate with the female-mimicking flowers on 70 

at least two successive orchid inflorescences (Cozzolino & Widmer, 2005; Jersáková et al., 2006; 71 

Ayasse et al., 2010). 72 

 73 

Ophrys flowers use three successive cues to attract insects (Cozzolino & Widmer, 2005; 74 

Vereecken et al., 2007; Schiestl & Cozzolino, 2008; Schlüter & Schiestl, 2008), each emphasising 75 

the labellum. First to impact upon the insect’s senses is the complex cocktail of volatile pseudo-76 

pheromones (Borg-Karlson, 1990; Schiestl et al., 2003; Mant et al., 2005; Vereecken & Schiestl, 77 

2009). Next come the visual cues of the flower; initially focusing on the various shapes and 78 

colours of the perianth segments in aggregate, the visual focus switches to the labellum as the 79 

insect approaches the flower. Once the insect has landed on the labellum, the shape and 80 

micromorphological textures of the adaxial epidermis maintain the illusion of a female insect by 81 

providing tactile cues that increase the ardour of the male insect and encourage the vertical 82 

orientation needed for successful acquisition or deposition of the pollinaria (Kullenberg, 1961). 83 

 84 

Thus far, the olfactory cues of Ophrys have received more scientific attention than the visual and 85 

tactile cues. Yet the functional morphology of the later-stage cues is equally remarkable; we 86 

presume that these contrasting cues are mutually reinforcing (Giurfa et al., 1994; Kulachi et al., 87 

2008). Many insects use multiple cues to reinforce their search image of a flower, enhancing 88 

recognition of target flowers and thus optimizing their foraging efficiency (Whitney et al., 2009a; 89 

Leonard et al., 2011). 90 

 91 
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The present study focuses on the impressive visual cues provided by the Ophrys labellum, paying 92 

particular attention to the speculum, which is a comparatively reflective blue region, varying in 93 

complexity of outline, located at or near the centre of the labellum of most Ophrys species (Fig. 94 

1A). In many species this remarkable feature is generally accepted as mimicking the glossy wings 95 

and/or body of the pollinating species, and thus plays a key role in pollination within the genus.  96 

 97 

We selected for study the widespread Mediterranean Mirror Orchid, Ophrys speculum, because 98 

(as its name suggests) its remarkable speculum is exceptionally large, simple in outline and highly 99 

reflective, being perceived by the human eye as a brilliant blue (Fig. 1B). The flower of Ophrys 100 

speculum is known to contain several anthocyanin pigments (Strack et al., 1989), but many 101 

authors (including Bradshaw et al., 2010) have speculated that the labellum may owe its 102 

remarkable lustre more to physically-induced structural colour than to biochemically induced 103 

pigmentation colour.  104 

 105 

Structural components of colour 106 

Table 1 provides a series of definitions for optics-based terms used throughout this 107 

manuscript. “Colour” is the appearance resulting from the relative amount of light of each 108 

wavelength across the human visible wavelength range emanating from an object. This 109 

definition can be adapted to take into account the visual capabilities of different animals. 110 

Structural colour is the term given to an apparent colour produced by periodically arranged 111 

materials that do not necessarily contain pigment. If the scale in which the periodicity occurs 112 

is of the same order of magnitude as that of the wavelengths of light striking the object in 113 

question, light reflected from the interfaces between the materials interferes constructively for 114 

certain wavelengths. This results in reflection and/or transmission of light of different 115 
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wavelengths in different directions (Kinoshita, 2008). Although several structural mechanisms 116 

can generate different colour effects, a defining feature of structural colour is that it is 117 

iridescent, or angle dependent – the colour changes as the angle of observation is altered. 118 

Pigment-based colours never show this property. However, a structural component can also 119 

optically modify a pigment-based colour: in such a case, the appearance of the colour is not 120 

only determined by pigments, but also depends on the anatomy of the surrounding structures. 121 

For example, the highly reflective yellow colour of the buttercup, Ranunculus acris, is caused 122 

by structural enhancement of a yellow pigment (Galsterer et al., 1999; Vignolini et al., 2012).   123 

 124 

Structural colour has been well-studied in animals, but its presence in the plant kingdom has 125 

only recently begun to be analyzed in detail (Glover & Whitney, 2010). Blue-green 126 

iridescence in the leaves of tropical understorey plants has been attributed to multilayered 127 

structures (Graham et al., 1993; Gould & Lee, 1996). Similarly, a few reports exist of 128 

iridescent blue fruits (Lee, 1991; Lee et al., 2000). We recently described the presence of 129 

diffraction gratings on the petals of several angiosperm species, confirming that cuticular 130 

striations can generate iridescent colours that are superimposed on the underlying pigment 131 

colour (Whitney et al., 2009b).  132 

 133 

In this interdisciplinary study, we apply several analytical techniques with the aim of determining 134 

both the causes and relative importance of biochemical and structural effects in producing the 135 

much-discussed Ophrys ‘mirror’. We conclude that the visual effect is the product of a 136 

combination of factors. The colour is the product of pigmentation, but the final appearance of the 137 

labellum is modified considerably by the combination of this pigment with specular reflection 138 

arising from the ultrastructure of the cell wall and cuticle. The labellum does not exhibit bona fide 139 
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iridescence, but its colour does appear angle-dependent as a result of the strong reflection of white 140 

light from the glossy cuticle at certain angles. 141 

 142 

Materials and Methods 143 

Plant material 144 

Several plants of Ophrys speculum Link were provided by one of us (SM) from his personal 145 

collection. Plants in the early stages of flowering were shipped to the Department of Plant 146 

Sciences, University of Cambridge, and maintained on a south-facing windowsill with light 147 

watering until all flowers had been exploited. 148 

 149 

Optical analysis 150 

To determine the colour response of the flower, images were obtained with a standard digital 151 

camera and compared with images obtained using a UV-sensitive camera (Fuji Finepix 152 

camera equipped with a quartz objective and a Baader U-filter 2" HWB 325-369).  153 

 154 

Reflection measurements were taken from the central blue region of the labellum (speculum) 155 

using a commercial reflection/backscattering probe [Ocean Optics]. One end of the probe was 156 

directly coupled onto a spectrometer [QE65000 Ocean Optics, 200–950 nm] while the other 157 

end was linked to a light source [DH-2000 Deuterium Tungsten Halogen Light Sources] 158 

providing illumination with a fixed numerical aperture of 0.22.  159 

 160 

In order to better characterize the optical response of the flower, angular resolved spectra were 161 

collected using a goniometer. The illumination arm can be held in a determined fixed position 162 

while the sample and the collection arm are rotated independently. 163 
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 164 

Microscopy 165 

For scanning electron microscope (SEM) examination (Fig. 1C, D), flowers were fixed in 166 

formalin acetic alcohol (FAA) and stored in 70% ethanol. Specimens were passed through an 167 

ethanol series up to 100% ethanol and critical-point dried using a Tousimis Autosamdri 815B. 168 

Specimens were then mounted on aluminium stubs, coated in platinum using a sputter coater 169 

(Emitech K550), and examined under a Hitachi S-4700 SEM at 2 kV.  170 

 171 

For transmission electron microscope (TEM) examination (Fig. 1E, F), 2 mm squares were 172 

dissected from the labellum using a mounted needle, fixed in 2.5% glutaraldehyde in 173 

phosphate buffer at pH 7.4, and stored in 70% ethanol until needed. Samples were then 174 

stained in 2% osmium tetroxide solution and passed through an ethanol and resin series before 175 

being polymerized for 18 h under vacuum. Semi-thin sections (0.5–2 µm) and ultra-thin 176 

sections (14 nm) were cut using an ultramicrotome (Reichert-Jung Ultracut). The semi-thin 177 

sections were mounted on glass slides and stained with toluidine blue in phosphate buffer, 178 

before being examined under a light microscope. The ultra-thin sections were placed on 179 

Formvar-coated grids and stained automatically with uranyl acetate and lead citrate using an 180 

Ultrastainer (Leica EM Stain) before being examined under the TEM. 181 

 182 

For light microscope (LM) examination (Fig. 1G−I), fresh, unstained labella were hand-183 

sectioned using a single-edged razor blade and mounted in a drop of water on a microscope 184 

slide, covered with a glass cover slip, and imaged using a Leitz Diaplan photomicroscope 185 

fitted with a Leica DC500 digital camera. 186 

 187 
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Metabolite analysis 188 

Labella of Ophrys speculum were excised from flowers using a razor blade. The inner blue 189 

section and the outer brown section were separated under a dissecting microscope, flash-190 

frozen in liquid nitrogen and placed in tubes containing 1 mL cold methanol containing 1% 191 

hydrichloric acid. Pigments were extracted by shaking gently overnight at room temperature in 192 

the dark and subsequently stored at -80ºC. 193 

Absorbance spectra of the crude extracts containing pigments from either the blue or brown 194 

regions of the labellum were obtained between 300 and 700 nm on a Jasco V-550 UV-VIS 195 

spectrophotometer (Jasco, Essex, UK). As per Davey et al. (2004), flavonoids from the crude 196 

methanolic extracts were analyzed by High Performance Liquid Chromatography 197 

(HPLC:Surveyor system, Thermo Scientific), the eluant being analyzed by both photodiode 198 

array (PDA) spectrometry and time-of-flight mass spectrometry using electrospray ionization 199 

(Finnigan LCQ DECA XP, Thermo Scientific). Data were analyzed using Xcalibur software 200 

(Thermo Fisher Scientific). Samples (injection volume, 20 µL) were resolved on a Luna C18 201 

column (250 × 2.0 mm: Phenomenex, UK) using 0.5% formic acid (solvent A) and acetonitrile 202 

(solvent B); with a gradient of increasing B such that initial A:B (95:5 v/v); 2 min (95:5); 42 203 

min (0:100); 47 min (0:100); 48 min (95:5); 53 min (95:5), at a flow rate of 0.2 mL min−1. The 204 

eluant was monitored for absorbance between 200 and 800 nm with the MS operating in 205 

positive ion mode (settings: capillary temperature 230ºC; capillary voltage 27 V; spray voltage 206 

3.5 kV; sheath gas flow rate 9.28 (arb.)); centroid data collection). Mass ions were detected 207 

between 100 and 1200 m/z, using quercetin (Sigma) to tune and calibrate the MS. Metabolite 208 

fragmentation (ms/ms) on selected masses was carried out under the following settings: 209 

isolation width 1.0 m/z, 50% normalized collision energy, activation Q = 0.250, activation 210 
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time 30 msec. The identification of metabolites was based on their absorbance spectra and 211 

mass spectral data as compared with published data (the online flavonoid database at 212 

http://metabolomics.jp/wiki/Index:FL) and with a reference flavonol, quercetin-3-β-D-213 

glucoside, 20 µM and anthocyanin, cyanidin 3-O-glucoside chloride, 200µM (Sigma). 214 

 215 

Results 216 

The speculum has a smooth, flat surface with disordered layers in the cell wall 217 

The labellum of Ophrys speculum (Fig. 1A, B) has a complex adaxial epidermal surface (see 218 

also Bradshaw et al., 2010). Its epidermal cells are either smooth, non-striated and non-219 

papillate, or consist of long, spirally twisted trichomes, the latter concentrated along the 220 

periphery of the labellum (Fig. 1C).  221 

 222 

The adaxial epidermis of the speculum region is composed entirely of smooth, flat-topped 223 

cells (Fig. 1D) that show little or no doming in transverse section (Fig. 1E, G). Each epidermal 224 

cell contains a large vacuole, most of the cytoplasm and organelles lying close to the inner cell 225 

wall (Fig. 1E). The epidermis of the speculum incorporates the bulk of the blue pigment (Fig. 226 

1G, I), as does the epidermis of heavily pigmented regions located elsewhere in the flower. 227 

When the fresh tissue of the speculum is cut the blue colour leaches out rapidly (Fig. 1H). The 228 

epidermal cell wall is thickest on the outer surface, where it is overlain by a thick (ca 0.5 µm) 229 

cuticle that covers the entire surface. Although the cutinized cell wall displays some layering 230 

(Fig. 1F), our TEM images do not indicate an ordered multilayered structure of sufficient 231 

regularity and dimensions to generate structural colour of the kind responsible for the blue 232 

scales of Morpho butterfly wings (Vukusic et al., 1999).  233 

 234 
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The speculum is highly UV-reflective 235 

Although the blue colour of the speculum is exceptionally striking to the human eye, many 236 

insects perceive colours differently from human vision. In particular, it is common for insects 237 

to perceive light in the ultraviolet range of the spectrum (Briscoe & Chittka, 2001). To assess 238 

whether the Ophrys labellum is UV reflective, we compared a photograph of the flower taken 239 

using a standard camera with one taken with maximal sensitivity in the 325–369 nm range 240 

(Fig. 2A, B). It is clear from these images that the blue speculum region of the labellum is 241 

highly UV reflective. The reflectivity in this range has two components – it is due partly to the 242 

specular reflected signal from the cuticle and partly to a more diffuse signal caused by light 243 

that has entered the cells but not been absorbed by the pigment within. 244 

 245 

To investigate this response more fully we compared the reflection of the labellum of mature 246 

and senescent flowers using a commercial reflection/backscattering probe [Ocean Optics]. A 247 

peak of reflection was observed between 350 and 400 nm (Fig. 2C) in both flowers but was 248 

more evident in the mature flower, confirming that a strong UV signal is detectable from the 249 

labellum of a receptive flower. This UV signal is likely to enhance the salience of the 250 

speculum, potentially facilitating pollinator landing on the labellum. 251 

 252 

The speculum reflects white light strongly in the specular direction but blue light at other 253 

angles 254 

In order to better characterize the optical response of the speculum, angular resolved spectra 255 

were collected using a goniometer (a schematic diagram of the experimental setup is presented 256 

in Fig. 3A). Figure 3B shows the scattering behaviour of the speculum in colour scale blue to 257 

green to yellow (the yellow colour in the chart shows a greater proportion of reflected light 258 
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compared to blue). The collection angle is plotted on the Y axis and the wavelength on the X 259 

axis. At the specular reflection direction (indicated by the white dotted line in the image) the 260 

absorption from the pigment is less significant compared with the other scattering angles. 261 

Specular reflection is reflection of white light at the same angle as it arrives at a surface, as 262 

seen most strongly in a mirror. Across the horizontal band between 20 and 40°, light of all 263 

wavelengths is reflected equally across the spectrum, constituting an angularly broadened 264 

mirror-like response. This behaviour is in contrast with a perfectly planar surface where 265 

specular reflection occurs only for a collection angle of 30° matching the illumination angle. 266 

However, since the reflective surface of the speculum is convex and the diameter of the 267 

illumination spot on the sample is ~2 mm, the light is reflected not only at one specific angle 268 

but in the angular range between 20° and 40°.  269 

 270 

Above ~40° light reflection is limited predominantly to the UV-blue and the infrared. This 271 

analysis suggests that the speculum contains a pigment that absorbs in the wavelength window 272 

between 420 and 650 nm. The combination of such a pigment with the specular reflection 273 

from a mirror-like surface results in a speculum that appears blue at high observation angles 274 

but whiter in a specular observation direction. 275 

 276 

The contribution of specular reflection to the total reflectivity of the speculum is analyzed 277 

further in Fig. 3C, where the integrated intensity as a function of the collection angle is 278 

recorded for two contrasting incidence angles (15° and 60°) and two wavelength regions. In 279 

the polar graph the integrated intensity is shown for the two incidence angles of 15° (solid 280 

lines) and 60° (dashed lines) and for the two wavelength regions of 300-400 nm, where the 281 

pigment does not absorb (red), and 500-600 nm, where the pigment does absorb (black). For 282 
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an angle of incidence of 15°, glossiness is dominant and the light is almost entirely reflected in 283 

the specular reflection direction across the entire spectrum. This result suggests that the optical 284 

appearance of the speculum results from the interplay of the glossy cuticle and the diffuse blue 285 

and UV light filtered by the pigment. At low illumination and observation angles the signal 286 

from the air–cuticle interface predominates, resulting in a broad-band (white) gloss. At larger 287 

angles of incidence (dashed lines), the contribution of the specular reflection is much smaller, 288 

making the spectral response of pigment scattering across a wide angular range more clearly 289 

visible. This observation is explained by blue (and UV) diffuse isotropic scattering from the 290 

pigment–bearing tissue and specular reflection arising from the smooth surface. Finally, the 291 

red dashed line spans a greater angular range than the black dashed line, presumably because 292 

the pigment within the tissue absorbs some light in the 300–400 nm range.  293 

 294 

The speculum contains only cyanidin pigments, whereas the rest of the labellum also contains 295 

delphinidin and quercetin 296 

Absorption spectra of the crude extracts were obtained from the blue speculum, brown 297 

labellum fringe and the yellow lateral petals (Fig. 4).  Peak absorption in the 500–560 nm 298 

regions indicated the presence of anthocyanins with λmax at ca 529 nm (Harborne, 1984: 64–299 

65). Absorption between 350 and 380 nm in the brown labellar margin suggested the possible 300 

presence of flavonols acting as co-pigments (Shoji et al., 2007). Absorption peaks at 419 nm 301 

and 653 nm indicated the presence of chlorophyll a, especially in the yellow lateral petals. 302 

 303 

The speculum 304 

Only one pigment from the blue speculum was resolved at 17.97 min by HPLC (Figs. 5, 6). 305 

The absorption spectrum and the λmax of 516 nm and 280 nm of the metabolite at this time 306 
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indicated a structure resembling anthocyanins. This spectrum matched published spectra of 307 

cyanidin-3-glucoside or cyanidin-3-sophoroside (Zhang et al., 2008), malonyl ester of 308 

cyanidin-3-glucoside (Lee, 2002) and cyanidin-3-glucoside or peonidin-3-glucoside (Hong & 309 

Wrolstad, 1990). The molecular mass ions of the metabolite eluting at 17.97 min were 310 

determined in the positive ionization mode. The total mass scan of the peak detected the 311 

molecular mass ions m/z 535, 593, 611 and 758 (Table 2). These masses were searched against 312 

the online flavonoid database at http://metabolomics.jp/wiki/Index:FL and in published 313 

manuscripts. The parent anthocyanin aglycone proved to be a cyanidin (Giusti et al. 1999a, b; 314 

Zhang et al., 2008; Mullen et al., 2010) with the following putative identifications for m/z: 535 315 

cyanidin 3-(3''-malonylglucoside), 593 cyanidin 3-(6''-dioxalylglucoside), 611 cyanin or 316 

cyanidin 3,5-diglucoside and 758 gentiocyanin C or cyanidin 3-glucoside-5-(6-p-317 

coumaroylglucoside). Fragmentation spectra were obtained for the parent mass ion of 534, 318 

which produced daughter ions of 448.9 and 287.04 m/z. According to Giusti et al. (1999a, b) 319 

and Mullen et al. (2010), the mass 535.3 is the cyanidin 3-(3-malonylglucoside), which is the 320 

mass of cyanidin (287) + hexose minus H2O (162.2) + malonic acid minus H2O (86.1). When 321 

cyanidin 3-(3-malonylglucoside) is fragmented it also produces the mass 449.1 (535-86.1), 322 

corresponding with cyanidin 3-(3-malonylglucoside) minus the malonyl group. The mass ion 323 

287 is also produced by cyanidin 3-(3-malonylglucoside) (449.1) minus the mass of hexose 324 

(162.2), thus forming the cyanidin aglycone. It was not possible to obtain an authentic 325 

standard for cyanidin 3-(3-malonylglucoside); instead cyanidin 3-O-glucoside chloride was 326 

used to confirm the absorption spectrum (λmax of 514 nm and 280 nm), parent mass (449.01, 327 

minus chloride ion) and fragmentation pattern (forms the mass of cyanidin (287) minus the 328 

glucoside) of a cyanidin-glycoside (Table 2, Fig. 6H). 329 

 330 



 15 

Brown labellum fringe 331 

Six peaks were resolved in the brown section chromatogram (Figs. 5, 6). The absorption 332 

spectra of two peaks (retention times 17.9 and 18.6 min) were characteristic of an anthocyanin 333 

and four peaks (retention times 18.4, 19.3, 20.3 and 21.1 min) were characteristic of flavonols 334 

(Mabry et al., 1970). The peak eluting at 17.92 min had the same absorption spectrum, parent 335 

ion and fragment ion mass as that found at a similar time in the blue section, and hence was 336 

identified as cyanidin 3-(3''-malonylglucoside). The peak at retention time 18.6 min, slightly 337 

co-eluted with another peak at 18.4 min and had a λmax of 522 nm, indicating the presence of 338 

delphinidin-3-rutiniside or cyanidin-3-rutiniside (Toki et al., 1996; Vera de Rosso & 339 

Mercadante, 2007). The remaining peaks at 18.4, 19.3, 20.3 and 21.1 min all had absorption 340 

spectra with a λmax of 356 nm that are characteristic of a flavonol such as isorhamnetin-341 

rutinoside (λmax 356 nm) or a glycoside of quercetin such as quercetin-glucoside, -rutinoside or 342 

-rhamnoside (λmax 358 nm) (Mabry et al., 1970). The mass spectra of these four flavonol peaks 343 

all revealed mass ions of the same molecular weight as glycosylated or malonylated quercetin 344 

(Table 2). Variation in the conjugate species explains the differences in retention time for the 345 

same quercetin compound. The masses of other compounds, especially the flavonols luteolin 346 

and kaempferol, were also present in the online mass searches. However, the Ophrys labellum 347 

compound is unlikely to have these chemistries, as the UV traces for these compounds are 348 

closer to 330 nm and 370 nm, respectively. The reference compound quercetin-3-β-D-349 

glucoside had a similar retention time to the four flavonols in the extract and had a λmax of 356 350 

nm. Therefore, the main compound present in the labellar fringe is likely to be a mix of 351 

cyanidin and delphinidin with a co-pigment of quercetin. 352 

 353 
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Discussion 354 

Analysis of the optical properties of the intensely blue-coloured speculum of Ophrys speculum 355 

indicates that the visual effects are achieved by multiple factors. A pigment located in the 356 

adaxial epidermis, absorbing in the green–red region of the spectrum and diffusely reflecting 357 

blue and UV light, operates in combination with a highly reflective mirror-like surface that 358 

provides intense specular reflection and causes the blue colour to be somewhat angle-359 

dependent. UV photography and simple reflectance spectrometry indicate that the speculum is 360 

highly reflective in the UV, a part of the spectrum known to be visible to many insects, 361 

including the hymenopteran pollinators characteristic of Ophrys flowers (Briscoe & Chittka, 362 

2001). The high degree of salience (conspicuousness) that this UV signal provides to the 363 

Ophrys speculum flower is likely to enhance pollinator handling of the flower, perhaps 364 

facilitating landing in the optimal position for pseudo-copulation and eventual pollen transfer.  365 

 366 

The intense specular reflection from the labellum provides the characteristically extreme 367 

glossiness, a feature that has been hypothesized to improve the sexual mimicry of the flower 368 

by resembling the sheen on the folded wings of an insect at rest. A similar glossiness has been 369 

reported for some other flowers. For example, the dark petal spots of Gorteria diffusa, a South 370 

African daisy, achieves pollination by mimicking female bombyliid flies; here too, glossiness 371 

has been hypothesized to mimic the visual appearance of folded insect wings (Ellis & 372 

Johnson, 2010). Our micrographs indicate that the glossiness arises from a thick (ca 0.5 µm) 373 

and extremely smooth, ridgeless layer of cuticle deposited on top of unusually flat epidermal 374 

cells. The cuticle layer extends between cells, reducing the visibility of individual cell 375 

boundaries. The overall effect produced by this cuticular layer is of a thin mirror coating the 376 

flower surface. The highly reflective yellow colour of the buttercup, Ranunculus acris, is also 377 
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the result of a mirror-like cuticle (Galsterer et al., 1999; Vignolini et al., 2012). The Ophrys 378 

speculum mirror layer is made more effective by the flatness of the adaxial epidermal cells. 379 

Petal epidermal cells are frequently conical-papillate (Kay et al., 1999; Whitney et al., 2011) 380 

and failing that, they are usually lenticular or gently domed. The extreme flatness of the 381 

epidermal cells in the speculum region provides a better backdrop to the mirror than a 382 

biological surface can usually achieve.  383 

 384 

Analysis of the reflection of different wavelengths of light from the speculum at different 385 

angles confirms that there is a structural component to the appearance of the speculum. At the 386 

specular angle (set at 30° in our analysis) light of all wavelengths is reflected with equal 387 

efficiency. Similar results are obtained with different angles of incidence. However, at 388 

increased angles of collection relative to the sample a strong blue and UV reflection is 389 

observed; little if any reflection of other wavelengths is evident until the far-red region of the 390 

spectrum is reached. This analysis explains why the colour of the speculum appears to shift as 391 

the flower is re-oriented. At angles where the specular reflection is strong, a mirror-like effect 392 

dilutes the apparent blueness of the tissue. However, when the flower is shifted to angles other 393 

than the specular, the intense blue reflection again dominates the signal. In addition, the gently 394 

convex shape conferred on the speculum by curvature of the labellum contributes to the 395 

apparent shift of colour with angle of observation, by modifying the contribution of the gloss. 396 

These effects are evident in Fig. 1B, where some apparent blue and white speckling observed 397 

under strong specular illumination is the result of slight variations in angle and cuticle 398 

thickness across the surface of the speculum. This angular dependence is a defining feature of 399 

a structural contribution to colour, but in this case there is no evidence that the blue hue itself 400 

is produced through structural means. If the blue colour was achieved by a multi-layered 401 
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structure, as is the case for the Morpho butterfly, the hue of the colour (that is, the relative 402 

amounts of blue, green, yellow and/or red light) would change at different observation angles 403 

(Vukusic et al., 1999). Instead, it is only the relative contributions of blue and broad-band 404 

reflected (white) light, not blue and other narrow bandwidths of light, that alter as angle 405 

varies. Accordingly we cannot define the speculum as truly iridescent. In response to the 406 

description by Bradshaw et al. (2010) of epidermal morphology of the labellum of a range of 407 

Ophrys species, Vereecken et al. (2011) also reported that unpublished data suggested that the 408 

Ophrys speculum labellum was not truly iridescent. In further support of this observation we 409 

note that, although the cell walls of the speculum epidermal cells appear to contain layers of 410 

cellulose in our TEM analysis, those layers are irregular in depth and shape. Only regular 411 

structures can generate colour by interference, whereas the disordered layering evident in Fig. 412 

1F is unable to generate a colour signal. 413 

  414 

Our optical analysis indicated the likely presence of a blue pigment in the speculum, absorbing 415 

light between 420 and 650 nm. Biochemical analysis confirmed the presence of an 416 

anthocyanin, cyanidin 3-(3''-malonylglucoside). This was the only pigment detected in the 417 

speculum tissue, using an analytical approach competent to reveal any flavonoids present. 418 

Anthocyanins are commonly found in flowers, generating the red–blue range of colours. 419 

Cyanidins produce a bluer colour than some other anthocyanins, such as pelargonidins, 420 

although they are usually more magenta than purple/blue. The particular hue produced by the  421 

cyanidin is determined by several other factors, including the nature of any side groups on the 422 

molecule, their interactions with metal ions, the pH of the vacuolar liquid and the co-423 

occurrence of any other pigments. It is likely that an alkaline vacuolar pH or formation of a 424 

complex with iron or magnesium ions is responsible for the blue hue of this cyanidin, although 425 
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further analyses of cellular ion content would be necessary to define how the particular shade 426 

is produced. Although we detected chlorophyll in the biochemical analysis, it was primarily 427 

found in the brown fringes of the labellum, so it is unlikely that this pigment is contributing 428 

greatly to the blue colour of the speculum. George et al. (1973) also found cyanidins in the 429 

intense blue-purple flowers of the Australian enamel orchids (Elythranthera spp.) from 430 

Australia, though it remains to be determined whether there is a structural component to the 431 

appearance of these highly glossy flowers.  432 

 433 

We detected the presence of the same cyanidin and possibly also delphinidin-3-rutiniside in 434 

the region of the labellum surrounding the speculum. This tissue also contains four co-435 

pigments of a flavonol, which are most likely glycosylated or malonylated quercetins. The 436 

flavonols appear to modify the absorption range of the anthocyanins to produce a brown 437 

colouration in the tissue. It is the exclusion of the flavonoid co-pigments from the speculum 438 

that permits the striking purity of the blue colour of the cyanidin in the labellum of Ophrys 439 

speculum. 440 

 441 

The pure glossy blue of the Ophrys speculum flower has fascinated scientists and naturalists 442 

for many years. The intensity of the colour, and its apparent angular dependence, led to 443 

speculation that it is produced using structural rather than pigment-based mechanisms (cf. 444 

Bradshaw et al., 2010). From our analysis, we conclude that the visual effect is the product of 445 

a combination of factors – the colour is the result of pigmentation, but the final appearance of 446 

the labellum is modified by the combination of this pigment with the specular reflection 447 

arising from the ultrastructure of the cell wall and cuticle. A single pure cyanidin produces the 448 

basic blue colour, most likely as a result of an alkaline vacuolar pH or formation of a complex 449 
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with metal ions. The spectral purity of the pigment colour is enhanced by backscattering from 450 

a disordered multilayer structure in the lower wall of the epidermal cells. The flat surface of 451 

the epidermal cells is enhanced by an exceptionally smooth mirror composed of cuticle, 452 

providing both glossiness and a strong specular reflection, which is angle dependent even 453 

though the colour itself is not iridescent. In combination, these features produce a striking 454 

optical effect that presumably contributes to the pollination efficiency and thus potentially to 455 

the reproductive success of the species. 456 

 457 
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Table 1: Glossary of terms from the field of optics used within this manuscript 581 

 582 

Term Definition 

Colour Appearance resulting from the relative amount of light emanating from 
an object at each wavelength. The perceived colour depends on the 
receptivity of the photoreceptors in the eye of the observer. 
 

Structural colour Colour produced by light interference rather than pigmentation. 
Reflection of particular wavelengths of light by periodically arranged 
materials causes colour, irrespective of the chemical characteristics of 
the material (including whether or not it contains pigments).  
 

Iridescence An optical effect where the apparent colour of an object changes as the 
angle of observation is altered, as a consequence of different 
wavelengths of light being reflected at different angles. 
 

Specular reflection Reflection of white light at the same angle as it arrives at a surface, as 
seen most strongly in a mirror. 
 

Salience Conspicuousness against the background – a red button is more salient 
on a blue coat than a blue button. 

 583 
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Table 2: High Performance Liquid Chromatography (HPLC) and mass spectrometry (MS) 584 

analysis of extract from the blue speculum and brown labellum fringe sections of Ophrys 585 

speculum.  HPLC: RT = retention time in  minutes; λmax = maximum absorption between 200 586 

and 800 nm on the photodiode array detector;  MS: main parent monoisotopic mass ions 587 

(positive ionization) of each peak and the fragment ions where detected.  Metabolite 588 

identification was based on reference to published data and by searching the monoisotopic 589 

mass ions on the flavonoid database at http://metabolomics.jp/wiki/Index:FL   For each mass, 590 

more than one metabolite is usually identified on the database, therefore only one example for 591 

each mass is provided here. 592 

593 
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 594 

 
Peak 
RT 

(min) 
λmax 

Parent 
ions m/z 

Fragment ions 
m/z Putative metabolite identification 

Blue 17.97 516, 
280 534.90 448.9, 287.04 Cyanidin 3-(3''-malonylglucoside), 

   592.78  Cyanidin 3-(6''-dioxalylglucoside), 
   611.16  Cyanin or Cyanidin 3,5-diglucoside 
   757.86  Cyanidin 3-glucoside-5-(6-p-coumaroylglucoside) 

Brown 17.97 515, 
280 534.90 448.9, 287.04 Cyanidin 3-(3''-malonylglucoside), 

   592.78  Cyanidin 3-(6''-dioxalylglucoside), 
   611.16  Cyanin or Cyanidin 3,5-diglucoside 
   757.86  Cyanidin 3-glucoside-5-(6-p-coumaroylglucoside) 
 18.42 356 534.90 448.9, 287.04 Cyanidin 3-(3''-malonylglucoside), 

 18.64 522, 
356 460.7  Apigenin 7-(6''-methylglucuronide) 

   550.9  Quercetin 3-(6''-malonylgalactoside) 
   609.9  Quercetin 3-galactoside-7-rhamnoside 
   684.9  Delphinidin 3-(6''-malonylsambubioside) 
 19.36 355 609.9  Quercetin 3-glucoside-7-rhamnoside 
   685.9  Delphinidin 3-(6''-malonylsambubioside) 
   712.7  Quercetin 3-(6''-malonylglucoside)-7-glucoside 

   765.05 658.69, 496.83 Myricetin 3-O-(4''-O-acetyl-2''-O-galloyl)-alpha-L-
rhamnopyranoside (for 658 fragment) 

   804.78  Gossypetin 3-sophoroside-8-glucoside 

   927.2 658.93, 496.87 Myricetin 3-O-(4''-O-acetyl-2''-O-galloyl)-alpha-L-
rhamnopyranoside (for 658 fragment) 

 20.37 356 590.3  Quercetin 3-(2'',3'',4''-triacetylgalactoside) 
   610.49  Quercetin 3-glucoside-7-rhamnoside 
   683.96  Delphinidin 3-(6''-malonylsambubioside) 
   759.9  Delphinidin 3-sambubioside-5-glucoside 

   764.99 658.85, 496.74 Myricetin 3-O-(4''-O-acetyl-2''-O-galloyl)-alpha-L-
rhamnopyranoside (for 658) 

   927.12 658.97, 552.57 Myricetin 3-O-(4''-O-acetyl-2''-O-galloyl)-alpha-L-
rhamnopyranoside (for 658) 

   1021  Cyanidin 3-(6-malonylglucoside)-7-(6-
caffeoylglucoside)-3'-glucoside 

   1181  Cyanidin 3-(6''-p-coumaryl-2'''-sinapylsambubioside)-
5-(6-malonylglucoside) 

 21.11 356 425.7  Quercetin 7,3',4'-trimethyl ether 3-sulfate 
   494.1  Quercetagetin 3'-methyl ether 3-glucoside 
   550.7  Quercetin 3-(6''-malonylgalactoside) 
   684.83  Delphinidin 3-(6''-malonylsambubioside) 
   759.7  Quercetin 3-sambubioside-7-glucoside 
Quercetin 20.17 356 464.09 396.08 Quercitin-3-β-D-glucoside 
 595 
 596 

597 
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Figure Legends 598 

599 
Fig. 1  Flower of Ophrys speculum; imaged using a standard digital camera (A, B), SEM (C, 600 

D), TEM (E, F) and LM of unstained material (G−I). A. Entire flower from above. B. Close-601 
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up view of the blue speculum region of the labellum. C. Entire dissected labellum, showing 602 

smooth central speculum (sp) and peripheral trichomes. D. Detail of the smooth speculum 603 

surface. E. Transverse section of adaxial epidermis of speculum. F. Detail of outer wall (cw) 604 

and cuticle (cu) of speculum epidermis. G. Transverse section of unstained dissected 605 

speculum, showing adaxial epidermis (e) containing blue pigment and underlying layers 606 

containing green chloroplasts. H, I. Surface views of blue adaxial epidermis; blue colour has 607 

leached out of cut epidermal cells in (H). Key: c = cut cell, cu = cuticle, cw = cutinized cell 608 

wall, e = adaxial epidermis, p = pigment, sp = speculum, v = vacuole. 609 
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Fig. 2  Reflectance from the Ophrys speculum flower. A. Flower photographed under daylight. 611 

B. The same flower photographed with a UV-sensitive camera. C. Reflectance spectra of 612 

mature (black line) and senescent (grey line) flowers. 613 
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 614 

Fig. 3  Optical characterization of the Ophrys speculum flower. A. Diagram of the goniometer 615 

assembly. During measurements the illumination arm can be fixed at a definite angle (30° in 616 



 33 

the diagram) and the collection arm is varied to collect the scattered light in the plane 617 

perpendicular to the sample, as shown by the dotted black double-arrowed curve. B. Scattering 618 

measurements from the speculum obtained with the configuration shown in A. The collection 619 

angle is plotted on the Y axis and the wavelength on the X axis.  The dotted white line 620 

corresponds with the specular reflection direction, while the two coloured rectangles indicate 621 

the regions in which we integrated the spectra for the analysis reported in C. C. Polar 622 

scattering intensity distribution. The graph shows the integrated intensity as a function of the 623 

illumination angle. To obtain the curves, we integrated the intensity of the reflected light in 624 

two wavelength intervals: 300-400 nm (red lines) and 500–600 nm (black lines), for two 625 

angles of collection for two contrasting incidence angles (15° incidence, shown as solid lines, 626 

and 60° incidence, shown as dashed lines).  627 
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Fig. 4 Absorbance spectra from crude solvent extracts (methanol with 1% HCl) of the blue 629 

speculum, brown labellar margins and the yellow lateral petals of Ophrys speculum flowers. 630 

 631 

Fig. 5  HPLC chromatograms (absorbance (abs) at 520 nm and 350 nm) of the crude extract 632 

from the blue speculum and brown sections of the Ophrys speculum labellum. a, b, cyanidin 3-633 

(3''-malonylglucoside); d, delphinidin; c, e–g, flavonols. 634 
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 635 

Fig. 6  Analysis of the labellum pigments of Ophrys speculum. A. Absorption spectrum of the 636 

metabolite from the blue speculum of Ophrys speculum eluting at 17.97 min. B–G. 637 

Absorbance spectra of the metabolites from the peripheral brown section eluting at 17.97, 638 

18.4, 18.6, 19.3, 20.3 and 21.1 min, respectively. H. Absorption spectrum of Quercitin-3-β-D-639 

glucoside (solid line) and cyanidin-3-O-glucoside (dashed line) standards. 640 
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