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Summary

Traditionally, biomarkers of aging are classified as either pro-

longevity or antilongevity. Using longitudinal data sets from the

large-scale inbred mouse strain study at the Jackson Laboratory

Nathan Shock Center, we describe a protocol to identify two

kinds of biomarkers: those with prognostic implication for

lifespan and those with longitudinal evidence. Our protocol also

identifies biomarkers for which, at first sight, there is conflicting

evidence. Conflict resolution is possible by postulating a role

switch. In these cases, high biomarker values are, for example,

antilongevity in early life and pro-longevity in later life. Role-

switching biomarkers correspond to features that must, for

example, be minimized early, but maximized later, for optimal

longevity. The clear-cut pro-longevity biomarkers we found

reflect anti-inflammatory, anti-immunosenescent or anti-anaemic

mechanisms, whereas clear-cut antilongevity biomarkers reflect

inflammatory mechanisms. Many highly significant blood bio-

markers relate to immune system features, indicating a shift from

adaptive to innate processes, whereas most role-switching

biomarkers relate to blood serum features and whole-body

phenotypes. Our biomarker classification approach is applicable

to any combination of longitudinal studies with life expectancy

data, and it provides insights beyond a simplified scheme of

biomarkers for long or short lifespan.

Key words: aging; anti-aging; inflammation; lifespan; lon-

gevity; mice; senescence.

Introduction

Biomarkers of aging and animal studies

With the reduction in the burden of communicable disease and

improvements in nutrition, attention is turning to longevity and the

challenges that accompany increased longevity such as the desire for

healthy aging (Lozano et al., 2012). The identification of biomarkers,

which reveal information about the expected lifespan of an individual or

predict the status of fitness or health in the near or distant future, is an

important objective for aging research. As Baker & Sprott (1988) pointed

out, chronological age is not necessarily a good predictor of functional or

biological age, especially in later life. They defined a biomarker of aging

as a measurable biological feature of an organism that predicts

functional capacity at some later age better than chronological age. In

many cases, the standard functional capacity to be predicted is life

expectancy, measured in terms of lifespan. Biomarkers of aging then

provide prognostic evidence, and they are derived from correlations

between feature values at a certain age, or at a certain set of ages, and

life expectancy. Finding prognostic biomarkers of aging thus requires the

measurement of features in a (large) set of individuals exhibiting

different lifespans, and such data are scarce. Even longitudinal animal

data are few and far between and may not necessarily reflect the human

situation (Zahn et al., 2007).

In animal experiments, some measurements are destructive (i.e. the

animal must be sacrificed) or interventional (e.g. taking a sufficient

amount of blood may markedly influence the physiology of an animal),

so it is not always possible to determine the normal lifespan of the

animal for which the measurements were taken. In that case, studies

may be combined, with attendant problems of interpretation. If the

animals used are genetically closely related groups such as inbred

strains or breeds, then, for each strain, features can be measured at

certain ages, and, independently, life expectancy can be estimated. For

example, Urfer et al. (2011) enriched their breed-specific data on

cataracts in dogs by mean life expectancy and body size derived from

previous studies and reached the plausible conclusion that cataracts (as

well as body size) are prognostic of lifespan. The Nathan Shock Center

at the Jackson Laboratory has extensively characterized 32 commonly

used inbred strains for aging-related phenotypes and made the

primary data publicly available on the Mouse Phenome Database

(Sundberg et al., 2011; Yuan et al., 2011; Maddatu et al., 2012).

These data sets form the basis for the analyses presented here that

permit investigation of prognostic biomarkers of aging by combining

longitudinal studies of features (including blood count data, leucocyte

data, blood chemistry, body composition, etc.) and a separate study of

life expectancy, all done for about 30 strains. Standardization of

environment, assays and strains means that this represents the most

coherent and well-controlled lifelong study yet conducted in mam-

mals. The same individuals were tracked allowing true longitudinal

analysis, avoiding the interpretation problems of a cross-sectional

study.

The strains of mice include a specific set of short-lived strains that are

predisposed to specific diseases, triggering early death (Yuan et al.,

2009). Our study includes these strains, but we also reanalysed our data

excluding them. Moreover, we went further than (Yuan et al., 2009) by
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checking whether there are systematic differences between the longi-

tudinal trends of the features, comparing short-lived to longer-lived

mice. We find that there are few such differences. These observations

imply that in general, the features we investigated change at a roughly

similar speed in short-lived and longer-lived mice, and short-lived strains

die early due to reasons not related to these features, whereas longer-

lived strains age with slightly different speed towards the end of life. Our

observations justify (post hoc) choosing the same chronological ages for

all strains as time points for measurement and that measurements taken

at a specific chronological age can be analysed by aggregating over all

strains, no matter whether they are short-lived or longer-lived.

Approaches to biomarker classification

As described, biomarkers of aging are often defined by their quality of

being prognostic for life expectancy. As life expectancy data for many

individuals or strains are scarce, however, many studies establish

biomarkers of age instead of biomarkers of aging, and some even

confuse both concepts, (Gavrilov & Gavrilova, 2006). The biomarkers of

age concept is simply based on longitudinal or cross-sectional trends of

features as a function of time. According to Gavrilov & Gavrilova,

(2006), ‘the regular and progressive changes over time per se do not

constitute aging unless they produce some deleterious outcome

(failures)’. Using longitudinal evidence, biomarkers of age can therefore

be validated as biomarkers of aging if something is known about their

effects, using literature data to ascribe deleterious (negative) effects (or

correlates thereof) to biomarkers whose values go up, and beneficial

(positive) effects (or correlates thereof) to the ones whose values go

down.

Importantly, prognostic evidence and validated longitudinal evidence

for biomarkers of aging usually relate to an overlapping but not identical

time span in the life of the animals. Any prognosis involves a later time

point; therefore, prognostic biomarkers of aging tend to relate to early

effects that have consequences upon the later life of the animals. In turn,

longitudinal trends tend to involve late effects. Literature validation of

the biomarkers we found based on longitudinal observations reveals that

their upward or downward trend directly affects fitness at older ages.

Our identification of role-switching biomarkers will mostly depend on

the finding that a biomarker is classified as pro-aging (antilongevity)

based on prognostic evidence, but as anti-aging (pro-longevity) based on

validated longitudinal evidence. In these cases, the early effects that are

relevant for prognosis are opposite to the late effects, where a

longitudinal trend affects fitness. The situation is different in the clear-

cut cases, where prognostic evidence and validated longitudinal

evidence yield the same classification. Here, the direction of effects

does not change as a function of time. We will discuss the role of early

and late effects in more depth in the Discussion section.

In the analysis presented here, we search for biomarkers in the

Nathan Shock Center study data set. For each feature, we first identified

longitudinal trends by regression analysis. Such a regression is necessarily

the same as the estimation of the correlation of the feature with the age

of the animal. Longitudinal evidence without further validation yields

biomarkers of age, so we checked the literature for deleterious or

beneficial effects. Then, to check for prognostic evidence, we combined

the data with the life expectancy data set. More specifically, validated

longitudinal evidence and prognostic evidence allowed us to define a

classification rule to distinguish three major classes of biomarkers:

pro-longevity, pro-aging (antilongevity) and role-switching (antilongevity

at early time points, pro-longevity at later time points). We do not

necessarily suggest that the deleterious or beneficial effects we found in

the literature provide mechanisms directly affecting longevity or aging;

many of these should be considered correlative. Then again, as biological

processes form deeply entangled networks, many of the effects may

have both causative and correlative aspects.

Results

Clear-cut biomarkers of aging

We simultaneously performed regression to investigate the longitudinal

trends of all data set features and correlation as well as Cox analyses to

investigate their prognostic power for lifespan. From all data sets

(Data S1 Table 1), we selected features as putative biomarkers if they

had both validated longitudinal and prognostic evidence (see Fig. 1,

Experimental Procedures and Data S1 Table 3, for the rules employed).

Table 1 summarizes the final classification of these biomarkers based on

both their prognostic and longitudinal evidence. We note seven clear-

cut cases where both kinds of evidence are corroborative. These are

related to immune cells (B cells, lymphocytes; neutrophils), anaemia (red

blood cell count and linked measurements) and inflammation (magne-

sium, neutrophils), and their classification as pro-longevity or antilon-

gevity (neutrophils only) is clear cut. In these cases, there are potential

mechanisms already reported that can be invoked to explain the

observation. Specifically, the decrease in lymphocytes/B cells as protag-

onists of adaptive immunity and the increase in neutrophils suggest an

age-related shift of the immune system cell composition from adaptive

to innate, driven by cellular effects of proinflammatory cytokines and

chemokines. The anti-inflammatory effects of magnesium are described

in Barbagallo et al., (2009).

Role-switching biomarkers of aging

There are another five cases recorded in Table 1 where the two kinds of

evidence are in conflict and a role switch is suggested. These are related

to oxidative damage and anaemia (total serum iron and the CHr

measurement that is closely linked (Mast, 2002), with a weaker pattern)

or to metabolism and robustness (thyroxine, BMI, as well as heart rate

with a signal at 6 M; M = months). The apparently paradoxical

classification of the role-changing biomarkers as ‘early antilongevity,

late pro-longevity’ is biologically plausible and may be resolved. For

example, a switching role of serum iron may be explained from its

known role as a protagonist of oxidative damage through catalytic

generation of ROS (dominating its early effect) (Xu et al., 2010) and as a

correlate of anaemia (dominating its late effect). The switching role of

thyroxine (T4) follows already from its prognostic evidence alone. It is the

only feature with a switch in prognosis, predicting short lifespan at 6 M

and long lifespan at 12 M/18 M. Both cases may be explained by its

well-established promotion of anabolism and growth. Accordingly, we

suggest that its early ‘cellular hyperactivity’ confers metabolic and

physiological decompensation in later life, such as obesity and insulin

resistance. In contrast, its later activity contributes to a reasonable

amount of overweight that yields a state of robustness. This pattern is

reflected by body mass index and heart rate, with essentially the same

rationale. In particular, body mass index (BMI) is discussed extensively in

the literature. For a long time, a high body mass index defining

overweight status was considered disadvantageous for young and old

people alike. More recently, however, it was found that for older people,

overweight (but not obesity) has advantageous effects, possibly due to

the higher robustness it affords against disease (Auyeung & Lee, 2010;

Flegal et al., 2013).
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Detailed analysis and visualization of blood-based

biomarkers

Prognostic evidence in the blood count, leucocyte and blood serum

chemistry data is described by correlation charts in Figs 2–6. Moreover,

the order of features in these charts, from left to right, gives an indication

of their longitudinal trends, from negative (going down) to positive (going

up). The precise regression slopes for the longitudinal evidence are given

in Figs S7, S8 and S13 of Data S1 (Supporting information). Charts for all

other data sets are found in Data S1 (Supporting information) as well. For

all data sets, selection and classification of features can proceed in their

regression-based order, from left to right, checking the prognostic power

of the leftmost and the rightmost features (up to the red delimiter) with a

significant downtrend or uptrend, respectively. There are few gender-

specific differences in the regression-based ordering of the features. For

example, in the blood count data (Data S1 Fig. S7), there is only a notable

difference for the platelet count (nPlt) that is not prognostic.

Thebloodcountdataof femalemice (Fig. 2), and,morepronounced, of

male mice (Fig. 3) display the clear-cut pattern we already reported for

lymphocytes, red blood cells (and, related, haemoglobin and hematocrit)

aswell as for neutrophils (Table 1). Thus, features such as the redblood cell

count on the left,whose values godown longitudinally, tend tobe features

with positive correlations to life expectancy, and vice versa (for the

neutrophil count on the right). In other words, the clear-cut biomarkers

with both validated longitudinal and prognostic evidence are clearly

exposed. For the red blood count, prognostic evidence is muchweaker for

female than for male mice, possibly due to the stronger role of other

factors (e.g. hormonal changes) in female aging processes. On the other

hand, for the lymphocyte data (T cells and B cells, see the next paragraph),

prognostic evidence is weaker in male compared with female mice,

possibly due to ‘age-associated B cells’ (ABCs) that were recently found in

female mice only and implicated in autoimmunity (Rubtsov et al., 2011;

Kogut et al., 2012). ABCs are supposed to originate frommature nai
̈
ve B-

cell precursors, so wemay hypothesize that ABCs and ‘normal’ B cells are,

Fig. 1 Protocol of our biomarker classification scheme.
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to a certain extent, mutually exclusive. Then, in female mice, ABCs are

indicators of aging at the expense of ‘normal’ B cells, and the latter are

prognostic for long lifespan. The absolute number of lymphocytes

(nLYMPH) decreases slightly during aging and their percentage (pct-

LYMPH) strongly,while at the same time, thenumbers of cells of the innate

immune system increase (i.e. monocytes, basophilic, eosinophilic and, in

Table 1 Feature analysis results based on our biomarker classification protocol. Corroborative evidence exists if the prognostic and the longitudinal approaches to

biomarker classification agree. Conflicting evidence exists if the prognostic data (usually concerning early effects with consequences later in life) trigger a different

classification as compared to the validated longitudinal data (usually concerning late effects). Such conflicting evidence can be resolved by suggesting that the early effects of

high biomarker values are opposite to the late effects. In case of thyroxine, this role switch is already found in the prognostic data alone. Qualifiers are indicating that

observations are more pronounced for a specific gender (e.g. ‘pronounced in male’) or found (mostly) in specific age groups (6, 12, 18 or 24 M; M: months)

Feature Abbrevation

Evidence Known effect Classification

Prognostic Longitudinal Early Late Early Late

Corroborative evidence, clear-cut cases

B cells, lymphocytes B cells, LYMPH Long lifespan

(pronounced in female)

Down Anti-immunosenescent Pro-longevity

Red blood cells,

haemoglobin,

hematocrit

RBC, HGB, HCT Long lifespan

(pronounced in male)

Down Anti-anaemic Pro-longevity

Magnesium Mg Long lifespan

(pronounced at 12 M)

Down

(pronounced

in female)

Anti-inflammatory Pro-longevity

Neutrophils NEUT Short lifespan Up Pro-inflammatory Antilongevity

Conflicting evidence, resolvable by a role switch

Iron, also reticulocyte

corpuscular

haemoglobin

Fe, CHr Short lifespan

(pronounced at 12 M)

Down Damaging, in particular

by oxidative stress

Anti-anaemic Antilongevity Pro-longevity

Thyroxine T4 Short lifespan

(6 M, pronounced in male),

long lifespan (12 M/18 M,

pronounced in female)

Down Pro-anabolic Pro-robustness Antilongevity Pro-longevity

Body mass index,

heart rate

BMI, HR Short lifespan

(pronounced at 6 M)

Down Pro-anabolic Pro-robustness Antilongevity Pro-longevity

Fig. 2 Correlation analysis – female complete blood count data (data set: Peters4); irrelevant values (correlation < |0.2| or/and P-value < 0.05) are presented by open bars.

Two red delimiters allow distinguishing, from left to right, features with a significant downtrend, features with no longitudinal trend and features with a significant

uptrend. nBASO, basophil count; pctBASO, basophil percentage; CHr, reticulocyte corpuscular haemoglobin; nEOS, eosinophil count; pctEOS, eosinophil percentage; HGB,

haemoglobin; nLUC, large unstained cells count; pctLUC, large unstained cell percentage; nLYMPH, lymphocyte count; pctLYMPH, lymphocyte percentage; MCH, mean

RBC corpuscular haemoglobin content; MCHC, mean RBC haemoglobin concentration; MCV, mean RBC corpuscular volume; nMONO, monocyte count; pctMONO,

monocyte percentage; MPV, mean platelet volume; nNEUT, neutrophil count; pctNEUT, neutrophil percentage; pctHCT, hematocrit; nPlt, platelet count; nRBC,

red blood cell count; nRetic, reticulocyte count; pctRetic, reticulocyte percentage; nWBC, white blood cell count.
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particular, neutrophilic granulocytes). Thus, as a consequence of age, the

immune system composition shifts from the adaptive towards the innate.

This reflects the processes of ‘inflammaging’ (Franceschi et al., 2006) and

of ‘immunosenescence’ by involution of lymphocyte-producing thymic

tissue, that is, the degeneration of the organ where these cells differen-

tiate/mature (Dom�ınguez-Gerpe & Rey-M�endez, 2003; Takahama, 2006;

Chinn et al., 2012). Consistent with this argument, a ‘T-cell activation’

module has been recently identified in humans, ‘marking age-associated

shifts in lymphocyte blood cell counts’ (Van den Akker et al., 2014). The

increase of neutrophil numbers was also reported by others (Kovacs et al.,

2009), as was an age-dependent increase in granulocyte/macrophage

progenitor cells (GMPs) (Rossi et al., 2005). In terms of percentages, a

Fig. 3 Correlation analysis – male complete blood count data (data set: Peters4). See Fig. 2 for further explanations.

Fig. 4 Correlation analysis – female leucocyte data (Data set: Petkova1); see Fig. 2 for details. The following abbreviations are used; for each abbreviation starting with ‘pct’

referring to a percentage, an analogous abbreviation with the prefix ‘n’ refers to the absolute count. pctBcells, B cells; pctCD4all, CD4 T-cells percentage; pctCD4effector,

CD4 T-cell subtype – effector cells percentage; pctCD4memcentral, CD4 T-cell subtype – central memory cells percentage; pctCD4memeffector, CD4 T-cell subtype –
effector memory cells percentage; pctCD4naive, CD4 T-cell subtype – naive cells percentage; pctCD8all, CD8 T-cells percentage; pctCD8effector, CD8 T-cell subtype –
effector cells percentage; pctCD8memcentral, CD8 T-cell subtype – central memory cells percentage; pctCD8memeffector, CD8 T-cell subtype – effector memory cells

percentage; pctCD8naive, CD8 T-cell subtype – naive cells percentage; pctEOS, eosinophil percentage; pctLYMPH, lymphocyte percentage; pctMONO, monocyte

percentage; pctNEUT, neutrophil percentage; pctNK, NK cells percentage; nWBC, white blood cell count.
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compositional shift in our blood count analyses may be triggered if only

one fraction changes in absolute numbers. However, both fractions

(lymphocytes and neutrophils) change in absolute numbers, in the same

direction as thepercentages. The samemeasurements can alsobe found in

the leucocyte data set, but with a stronger focus on neutrophil decline.

The leucocyte data set (Figs 4 and 5) closely matches the blood count

data set, for the features included in both. Additionally, a pronounced

decline is found in the leucocyte data set for many cells of the adaptive

immune system (CD4 and CD8 T cells, common suffix ‘all’) and, in

particular, for various effector cells (common suffix ‘effector’) and

natural killer (NK) cells as well as B cells. Some other leucocyte

percentages increase over time, such as memory cells (common suffix

‘mem’) and monocytes. The longitudinal increase but low prognostic

value of most memory cells may have a straightforward cause: these cells

simply accumulate as the immune system learns; they are just biomarkers

of age. The CD4 memory (effector) cells (nCD4memeffector) are an

Fig. 5 Correlation analysis – male leucocyte data (Data set: Petkova1). See Fig. 4 for further explanations.

Fig. 6 Correlation analysis – blood chemistry (data set: Yuan3); top: female, bottom: male; see Fig. 2 for details. ALB, plasma albumin; ALP, serum alkaline phosphatase;

ALT, plasma alanine aminotransferase; BUN, plasma blood urea nitrogen; Ca, serum calcium; Cl, serum chloride; CO2, dissolved-ionized carbon dioxide; Fe, serum iron; HDL,

plasma HDL cholesterol; K, serum potassium; LIP, plasma lipase; Mg, serum magnesium; Na, serum sodium; Phos, serum phosphorus; T4, serum thyroxine; TBIL, serum

bilirubin; TP, plasma total protein.
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exception, already noted by Miller et al. (1997). These cells are

prognostic for a short lifespan in female mice (12, 18 and 24 M data),

similarly to CD8 memory central cells (pctCD8memcentral) in male mice,

and while their number increases longitudinally as expected for

antilongevity biomarkers, we could not find a deleterious effect reported

in the literature for either. In fact, Miller et al., (1997) extensively

discussed three explanations of their prognostic value without reaching a

conclusion. Moreover, these authors point out a shift from na€ıve/virgin T

cells to memory cells. The loss of the former reflects immunosenescence.

An age-related increase in CD4 memory effector cells has also been

previously described (Saule et al., 2006). Finally, the percentage of all

CD8 cells (pctCD8all) is declining longitudinally, but it is prognostic for a

short lifespan, specifically in female mice (6, 12 and 18 M). As such, it is

a candidate for a role-switching biomarker (‘antilongevity early, pro-

longevity late’), but we could not find literature evidence for a beneficial

effect on lifespan that may be reduced as it declines.

In blood serum chemistry (Fig. 6), apart from magnesium, thyroxine

(T4) and iron as described above, we found some more interesting

features, which had, however, at most isolated prognostic value,

possibly because there is a strong influence of confounding factors,

some of them related to intake and excretion. Findings for these blood

chemistry features are described in Appendix S1 Results.

Re-analysis of data using Cox regression

To validate our results by a different method, Cox regression was used as

an alternative to lifespan correlation. Importantly, Cox regression analysis

confirmed our results presented in Table 1 (Data S4); concordance of

both types of analysis was already noted by Harper et al. (2004). In some

cases, we even observed a stronger signal, with higher consistency

between age groups and sexes: the percentages of lymphocytes and

neutrophils as well as CHr are more concordant in 6-month-old female

mice. This is also true for the red blood cell count (RBC) in females, which

is also more concordant with male, and in both sexes, the platelet count

(Plt) is more concordant with results obtained from longer-lived strains.

In males, the CHr signal is also stronger, but the signal for lymphocytes

and neutrophils is comparatively weaker. Natural killer cells and HDL

(high-density lipoprotein) emerge as markers in females, while K

(potassium) emerges as a marker in males. We also performed a

multivariate Cox analysis of the biomarkers listed in Table 1. As shown in

Data S5 (Supporting information), in 6-month-old mice, for example, the

most significant features are the number of B cells in females, and the

number of lymphocytes and the level of thyroxine (T4) in males.

Re-analysis of data based on longer-lived strains only

The results of our re-analysis, excluding the short-lived strains, are

documented in Data S2 (Supporting information). There are few

relevant features gained or lost in the longer-lived strains, as follows.

For the blood count data, the platelet count (Plt) surfaces as a strong

pro-longevity prognostic marker, with a longitudinally increasing trend,

particularly in males. The trend is counter to that seen in humans

where there is a general trend downwards with age (Lai et al., 2010).

Several strains have notably high platelet numbers at 18 and 24 M;

these are WSB/EiJ, C57BL/6J and C57BL/10J. Such increased numbers

may be of advantage in cases of bleeding, possibly associated with

aggressive behaviour, or protective against cardiovascular events such

as haemorrhagic stroke. In females, the number of eosinophils (nEOS)

goes up longitudinally (Data S2 Fig. 6), associated with a long lifespan

(Data S2 Fig. 7). This effect has so far not been described in the

literature. A result that receives weaker support is the prognostic value

of T4 in females at a later age. Furthermore, the support for B cells as

pro-longevity markers is no longer as significant as before, particularly

in females. However, many results receive stronger support if the

short-lived strains are excluded. Among female mice, the affected

features are CHr, pctHCT, nRBC, Fe and Mg, and among male mice,

our observations regarding lymphocytes and neutrophils are now more

strongly supported. In the body composition data, the BMI (as well as

percentage fat) becomes prognostic for longevity of 20 M male mice,

corroborating its contribution to robustness already discussed. Finally,

the exclusion of the short-lived strains markedly increased the negative

correlation between IGF and life expectancy, confirming the observa-

tion by Yuan et al. (2009).

Comparison of longitudinal trends of short-lived and longer-

lived mice

We finally investigated whether short-lived mice display the same

longitudinal trends as longer-lived mice, and the results of our trend

comparison are found in Data S3 (Supporting information). We note few

systematic patterns as follows, in the body composition, leucocyte and

blood chemistry data. AKR/J mice show faster downtrends in terms of

body mass index (and some related measurements with negligible

longitudinal trends), possibly due to the thymic lymphoma they develop

by 18 M of age (Storer, 1966; Brayton et al., 2012). Regarding the

leucocyte data, males of the SJL/J strain are singled out by enrichment in

opposite trends. This strain is known to show aggressive behaviour in

males, leading to injury and infection and truncation of lifespan. In case

of blood chemistry, Calcium shows a faster trend in many strains, while

HDL and TP (total protein) show an opposite trend, possibly due to liver

malfunction.

Discussion

The most specific feature of any data analyses in aging research is a

focus on longitudinal data. We present here a detailed analysis of the

most extensive longitudinal mouse phenotype data set published to

date. We have integrated our findings with an extensive review of the

literature; this was an essential component in our analysis pipeline and

we present the analysis results with extensive links to observations

already published, including pointers to observations in human. In the

discussion that follows, we point out some more general aspects of our

work. First, we relate our results to an interpretation of Miller et al.

(1997), comparing feature values in young and old animals. Next, we

relate our observations to work by Harper et al. (2004), on combining

biomarkers. Finally, we discuss the perhaps most far-reaching aspect of

our analysis. Specifically, we suggest that we could demonstrate that a

critical assumption of many previous longitudinal analyses, that is, the

validity of selecting the same measurement time points for all individuals

(strains) of a study, irrespective of differences in individual longevity due

to specific early-onset diseases, may indeed be justified, by showing that

(i) data from the short-lived strains did not affect the major conclusions

of our study and (ii) the trends of the features in the short-lived strains

generally agree with the ones in the longer-lived strains.

Biomarker values in young animals compared with values in

older animals

We have described a biomarker analysis protocol that is applicable

whenever there is access to longitudinal features, corresponding life
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expectancy data and literature knowledge. Applied to the Nathan Shock

Center data set of the Mouse Phenome Database, our protocol enabled

us to detect meaningful pro-longevity, antilongevity and role-changing

biomarkers, the former with prognostic and longitudinal lines of

evidence. We have already discussed in the Introduction that these

two lines of evidence for biomarkers of aging usually relate to an

overlapping but not identical time span in the life of the animals. In case

of clear-cut longitudinally declining pro-longevity biomarkers, their early

prognostic role (high values predict a long lifespan) could in fact be

based on large amounts of effectors (cells) with a positive effect

throughout life (despite the decline), and their late longitudinal role

could be based on their gradual loss at old age. This interpretation

reflects the hypothesis of Miller et al. (1997) that young mice, whose

feature values resemble those of old mice, tend to have a short life

expectancy and vice versa. High biomarker values at young age may thus

enable mice to ‘resist’ any loss and are prognostic of longevity; if a

younger mouse features biomarker values indicating that it can

compensate the normal age-based trend of a feature when it becomes

older, this mouse has a good chance of living longer. Examples for this

hypothesis in the blood count data are the lymphocyte, B-cell and red

blood cell counts, as well as the neutrophil counts. The latter reflect

‘inflamm-aging’ as described. We note that such chronic inflammatory

processes are common to aging mice (Ray et al., 2010; Pettan-Brewer &

Treuting, 2011), consistent with similar findings in aging humans

(Krabbe et al., 2004). Elevation of neutrophil numbers in younger mice

may be due to several specific causes, see the Appendix S1 Discussion.

Biomarker combination

Biomarkers may be combined across data sets for optimal prediction of

lifespan. Corroborating our analysis, Harper et al., (2004) used (i) T-cell

features (CD4 and CD8 cells, CD4 and CD8 memory cells as well as CD4

and CD8 cells featuring P-glycoprotein, from 8- and 18-month-old mice),

(ii) body weight (from 3-month-old mice) and (iii) thyroxine and leptin

levels (from 4-month-old mice) to construct a combined classifier with

better prognostic value than classifiers based only on a subset of these

features. The most prognostic T-cell feature in young mice turned out to

be the percentage of CD8 memory cells in the pool of all CD8 cells.

Inclusion of thyroxine was based on its prognostic value in young male

mice. The biomarkers they used are thus closely related to the

biomarkers we documented. In particular, in the data based on male

mice we studied, CD8 memory central cells were found to be prognostic

of short lifespan and going up longitudinally, but without a known

deleterious effect. Insofar as the biomarkers are based on young mice

only (in case of body mass and thyroxine), we documented them as role-

switching markers, with an early antilongevity effect.

Biomarkers in short-lived vs. longer-lived animals

We included data from short-lived strains in the analyses presented. It is

possible that the specific diseases affecting these strains bias the results

of analyses aiming to find biomarkers of aging. However, our re-analysis

based on all longer-lived strains, excluding the short-lived ones, yielded

essentially the same results (Data S2); a similar procedure carried out for

the same reasons by Yuan et al. (2009) was shown to result in only

small changes in the correlation of IGF1 levels with longevity. Moreover,

we observed that the features we investigated display very similar

longitudinal trends in short-lived and longer-lived mice (Data S3). This

result provides a justification for comparing measurements according to

age groups in the first place. In the extreme case, if the features in

short-lived mice were changing ‘twice as fast’ as in longer-lived mice

due to their specific diseases, 6 M measurements of the former would

need to be compared to 12 M measurements of longer-lived mice, and

12 M measurements of the former to 24 M measurements of the latter.

More generally, measurement timelines would need to be aligned, and

this task is difficult or impossible in hindsight. However, in our

comparison of trends, such systematic patterns are rare, so features

change at a roughly similar speed in short-lived and longer-lived mice.

Thus, we suggest that along their life, mice age at a roughly similar

speed, and early death is usually due to genetic predisposition to specific

diseases. In turn, late death is influenced significantly by other effects

(that relate closely to aging) and an increasing burden of chronic disease

and co-morbidities. That is, only towards the end of life, the speed of

aging becomes markedly slower and more diverse in the longer-lived

strains.

We have confirmed and extended current knowledge in our detection

of clear-cut biomarkers. Our insights into role-switching biomarkers

consolidate previous knowledge, related to inflammation and immunity

on one hand and to anaemia and body mass on the other. Interestingly,

connecting both aspects is a focus of recent research. For example, diet-

induced obesity is known to affect the adaptive immune system

negatively (Dixit, 2012). Also, the role of trade-offs was recently

discussed in terms of robustness, citing inflammation and body size as

examples (Kriete, 2013). We believe that role-switching is an important

point to consider in biomarker analysis. Such considerations may also

have practical consequences, as biomarkers may point to possible

intervention points. Accordingly, interventions designed to promote

longevity may be useful, useless or harmful depending on the age at

intervention. While the data set we analysed is the most comprehensive

one publicly available at this time, analyses and conclusions are of course

limited by the coverage it provides, with a focus on blood. However,

with decreasing costs for high-throughput analysis of the genome,

biofluids, gut microbiome, etc., our strategy can be easily extended to

such data sets.

Experimental procedures

Data

In our analysis, we used seven longitudinal studies of the Nathan Shock

Center data set, available as of July 2013 from the Jackson Laboratory

Mouse Phenome Database (Maddatu et al., 2012) (Data S1 Table S1).

For details, we referred to the webpage of the Mouse Phenome

Database (http://phenome.jax.org). All studies used between 29 and 33

inbred mouse strains raised and taken care of under similar conditions.

Data included life expectancy, as well as blood features, bone mineral

density and body composition, DNA damage, urine values and electro-

cardiogram data.

Simple linear regression to detect longitudinal evidence

To identify the longitudinal trend of a feature over the lifespan of

individuals, we performed simple linear regression modelling using the

measured values as the dependent variable and the age as the

explanatory variable. To be able to compare the slopes between

different features, we standardized the data by subtraction of the

mean and division by the standard deviation. Regression was per-

formed using the method lm for linear models, available as part of an R

package. For each data set, the measured slopes m can be converted

Biomarkers of aging based on inbred mouse strains, M. Moeller et al.736

ª 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.



into Pearson’s correlation coefficients r by the formula r ¼ m
sage

, where

sage denotes the standard deviation, taken over all ages, of the

distribution of the normalized values for the measurements. The

regression analyses we performed are therefore equivalent to correla-

tion analyses between the features and the age the measurement was

taken. We considered only slopes as significant for which P-values

(resulting from a two sided t-test) were smaller than 0.05 (i.e.

a = 0.05). We used regression charts to visualize the results of the

regression analyses, sorting features by slope. Originally, for the blood

count data, only the absolute number of white blood cells and the

percentages of the other cell types were given in the Mouse Phenome

Database. For completeness, we calculated the absolute cell numbers

from percentages for all cell types before performing the regression.

Sample regression analyses are visualized for the features RBC (red

blood cell count) and NEUT (neutrophil count) in Fig. S12 of Data S1

(Supporting information).

Correlation of features and life expectancy, and Cox

regression to detect prognostic evidence

No longitudinal data set included the life expectancy of the individual

mice, so we added the respective life expectancy from data set Yuan2

to each data record in all other data sets. Again, we standardized the

data by subtraction of the mean and division by the standard deviation.

Then, we calculated Pearson’s correlation coefficient as implemented in

the method cor.test, available within the R package stats, between

feature value and life expectancy. This was done separately for each

time point available (i.e. age groups 6, 12, 18, 20 and 24 M). Notably, a

positive correlation means that high feature values are prognostic for a

long lifespan, that is, longevity and vice versa. We only consider

features as relevant in terms of their prognostic evidence, if Pearson’s

correlation coefficient |r| ≥ 0.2 and P-value < 0.05 holds. In a correla-

tion chart, the correlation coefficients are plotted as histograms. Open

bars represent irrelevant values. The horizontal ordering of the features

in each correlation chart was taken directly from the regression analysis

of the same-sex mice of the same data set. Two vertical red delimiters

delineate, from left to right, features with a significant downtrend,

features with no clear trend and features with a significant uptrend.

This enables a visual impression of how the longitudinal evidence relates

to the prognostic evidence of the same feature and eases the selection

of putative biomarkers as described in the next paragraph. Univariate

and multivariate Cox regression were then done using the R package

‘survival’. In Data S4 (Supporting information), for each measured value,

we present its univariate Cox regression coefficient, which would give

rise to a hazard ratio by exponentiation. A negative Cox coefficient

results in a hazard ratio smaller than 1 (i.e. a risk decrease) and a

positive value in a risk increase. Thus, we inverted the y-axis to allow

direct comparison with the corresponding correlation chart data.

Multivariate Cox regression was applied to the biomarkers of Table 1,

exploiting data from 10 to 27 strains (depending on sex and time point)

for which no values were missing, see Data S5 (Supporting informa-

tion).

Biomarker selection and classification

We performed a detailed analysis of all relevant features that may

qualify as biomarkers of aging based on the following two criteria: (i)

the regression analysis yielded a significant slope, that is, the feature

displays a longitudinal trend; (ii) the correlation analysis also demon-

strated that the feature has prognostic evidence, at least for some age

groups. For each feature we selected, we then conducted a literature

search for what is known about its effects. Longitudinal evidence

indicates a biomarker of aging (not just of age) if there is validation by a

matching effect (i.e. a beneficial effect for features with a downtrend

and vice versa) (Gavrilov & Gavrilova, 2006). Based on regression,

correlation and literature data, biomarkers were then classified by the

rules described in Fig. 1 and Table S3 in Data S1 (Supporting

information), and the results were recorded in Table 1. The entire

classification protocol, including the final designation as a clear-cut or

role-changing biomarker, is given in Fig. 1. Specifically, biomarkers

prognostic of a long lifespan are called pro-longevity, and biomarkers

prognostic of a short lifespan are called antilongevity. Biomarkers with a

validated longitudinal uptrend are also called antilongevity, and

biomarkers with a validated longitudinal downtrend are called pro-

longevity. Biomarkers attract a clear-cut classification where there is

corroborative evidence. In particular, features whose values go down

longitudinally, with a matching beneficial effect, and predict long

lifespan or vice versa are thus clearly classified as pro-longevity or

antilongevity, respectively. In case of conflicting evidence, we classified

the features as role-switching. The classification scheme in Fig. 1 is

formulated for an ideal case. In reality, the patterns of feature

regression and correlation are more or less pronounced, due to

biological variability. We therefore added some qualifiers regarding the

resulting classification of biomarkers (Table 1). Moreover, isolated or

inconsistent prognostic evidence of the 18, 20 and 24 M age groups

was ignored, because data for these age groups are clearly the most

volatile. In particular, due to the different life expectancies of the

mouse strains (Data S1 Table S1), only one-third of all strains

contributed data to the 24 M age group. Re-analysis of data based

on longer-lived strains only and comparison of longitudinal trends of

short-lived and longer-lived mice are described in Appendix S1

Experimental Procedures.
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