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In the late 1980s, Sir Sam Edwards proposed a possible statistical-mechanical framework to describe
the properties of disordered granular materials. A key assumption underlying the theory was that all
jammed packings are equally likely. In the intervening years it has never been possible to test this
bold hypothesis directly. Here we present simulations that provide direct evidence that at the unjam-
ming point, all packings of soft repulsive particles are equally likely, even though generically, jammed
packings are not. Typically, jammed granular systems are observed precisely at the unjamming point
since grains are not very compressible. Our results therefore support Edwards’ original conjecture.
We also present evidence that at unjamming the configurational entropy of the system is maximal.

In science, most breakthroughs cannot be derived from known physical laws: they are based on inspired conjec-
tures [1]. Comparison with experiment of the predictions based on such a hypothesis allows us to eliminate conjectures
that are clearly wrong. However, there is a distinction between testing the consequences of a conjecture and test-
ing the conjecture itself. A case in point is Edwards’ theory of granular media. In the late 1980s, Edwards and
Oakeshott [2] proposed that many of the physical properties of granular materials (‘powders’) could be predicted
using a theoretical framework that was based on the assumption that all distinct packings of such a material are
equally likely to be observed. The logarithm of the number of such packings was postulated to play the same role
as entropy does in Gibbs’ statistical-mechanical description of the thermodynamic properties of equilibrium systems.
However, statistical-mechanical entropy and granular entropy are very di↵erent objects. Until now, the validity of
Edwards’ hypothesis could not be tested directly – mainly because the number of packings involved is so large that
direct enumeration is utterly infeasible – and, as a consequence, the debate about the Edwards hypothesis has focused
on its consequences, rather than on its assumptions. Here we present results that show that now, at last, it is possible
to test Edwards’ hypothesis directly by numerical simulation. Somewhat to our own surprise, we find that the hy-
pothesis appears to be correct precisely at the point where a powder is just at the (un)jamming threshold. However,
at higher densities, the hypothesis fails. At the unjamming transition, the configurational entropy of jammed states
appears to be at a maximum.

The concept of ‘ensembles’ plays a key role in equilibrium statistical mechanics, as developed by J. Willard Gibbs,
well over a century ago [3]. The crucial assumption that Gibbs made in order to arrive at a tractable theoretical
framework to describe the equilibrium properties of gases, liquid and solids was that, at a fixed total energy, every
state of the system is equally likely to be observed. The distinction between, say, a liquid at thermal equilibrium and
a granular material is that in a liquid, atoms undergo thermal motion whereas in a granular medium (in the absence
of outside perturbations) the system is trapped in one of many (very many) local potential energy minima. Gibbsian
statistical mechanics cannot be used to describe such a system. The great insight of Edwards was to propose that
the collection of all stable packings of a fixed number of particles in a fixed volume might also play the role of an
‘ensemble’ and that a statistical-mechanics like formalism would result if one assumed that all such packings were
equally likely to be observed, once the system had settled into a mechanically stable ‘jammed’ state. The nature of
this ensemble has been the focus of many studies [2, 4–6].

Jamming is ubiquitous and occurs in materials of practical importance, such as foams, colloids and grains when they
solidify in the absence of thermal fluctuations. Decompressing such a solid to the point where it can no longer achieve
mechanical equilibrium leads to unjamming. Studies of the unjamming transition in systems of particles interacting
via soft, repulsive potentials have shown that this transition is characterised by power-law scaling of many physical
properties [7–12]. However, both the exact nature of the ensemble of jammed states and the unjamming transition
remains unclear.

In this letter, we report a direct test of the Edwards conjecture, using a numerical scheme for computing basin
volumes of distinct jammed states (energy minima) of N polydisperse, frictionless disks held at a constant packing
fraction �. Uniquely, our numerical scheme allows us to compute ⌦, the number of distinct jammed states, and the
individual probabilities pi2{1,...,⌦} of each observed packing to occur. Fig. 1a shows a snapshot of a section of the
system, consisting of particles with a hard core and a soft shell. We obtain jammed packings by equilibrating a hard
disk fluid and inflating the particles instantaneously to obtain the desired soft-disk volume fractions (�), followed by
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FIG. 1: Snapshot of the system studied and illustration of the associated energy landscape at di↵erent volume
fractions. (a) Snapshot of a jammed packing of disks with a hard core (dark shaded regions) plus soft repulsive corona
(light shaded regions). (b)-(c) Illustration of configurational space for jammed packings. The dashed regions are
inaccessible due to hard core overlaps. Single coloured regions with contour lines represent the basins of attraction of
distinct minima. The dark blue region with solid dots indicates the coexisting unjammed fluid region and hypothetical
marginally stable packings, respectively. The volume occupied by the fluid Vunj is significant only for finite size systems
at or near unjamming. When � � �⇤ (b) the distribution of basin volumes is broad but as � ! �⇤ (c) the distribution

of basin volumes approaches a delta function satisfying Edwards’ hypothesis.

energy minimization (see Methods). The minimization procedure finds individual stable packings with a probability
pi proportional to the volume vi of their basin of attraction. Averages computed using this procedure, represented by
h. . . iB, would then lead to a bias originating from the di↵erent vi’s. Recent advances in numerical methods [13, 15–
17] have now enabled direct computation of vi, and therefore, an unbiased characterization of the phase space. A
summary of the technique is provided in Methods.

We report a detailed analysis of the distribution of vi for a fixed number of disks N = 64 (all maximum system
sizes in our study were set by the current limits on computing power). We compute vi using a thermodynamic
integration scheme [13, 15–17], and compute the average basin volume hvi(�). The number of jammed states is,
explicitly, ⌦(�) = VJ(�)/hvi(�), where VJ(�) is the total available phase space volume at a given �. A convenient
way to check equiprobability is to compare the Boltzmann entropy SB = ln⌦� lnN !, which counts all packings with
the same weight, and the Gibbs entropy SG = �

P⌦
i pi ln pi � lnN ! [18–20]. The Gibbs entropy satisfies SG  SB ,

saturating the bound when all pi are equal: pi2{1,...,⌦} = 1/⌦. As shown in Fig. 2a, SG approaches SB from below

as � ! �
⇤(S)

N=64 ⇡ 0.82. Fig. 1b-c schematically illustrates the evolution of the basin volumes as the packing fraction
is reduced.

To characterize the distribution of basin volumes, we analyse the statistics of vi along with the pressure Pi of
each packing. It is convenient to study Fi ⌘ � ln vi as a function of ⇤i ⌘ lnPi. As shown in Fig. 2b, we observe a
strong correlation between Fi and ⇤i which we quantify by fitting the data to a bivariate Gaussian distribution. The
conditional expectation of F given ⇤ then yields a linear relationship (denoted by solid lines in Fig. 2b) such that
hF iB(�;⇤) / �(�)⇤, where hF iB(�;⇤) represents the average over all basins at a given ⇤. Previous studies at higher
packing fractions [13] indicate that this relationship is preserved in the thermodynamic limit. Defining f = F/N , we
have (see Methods for details):

hfiB(�;⇤) =�(�)⇤+ c(�)

=�(�)�⇤+ hfiB(�) ,
(1)

where �⇤ = ⇤ � h⇤iB(�). For Edwards’ hypothesis to be valid, we require that in the thermodynamic limit (i) the
distribution of volumes approaches a Dirac delta, which follows immediately from the fact that the variance �2

f ⇠ 1/N
[16] (see SI) and (ii) Fi needs to be independent of ⇤i, as well as of all other structural observables (see SI), and
therefore �(�) must necessarily vanish. As can be seen from Fig. 2c-d, within the range of volume fractions studied,
�(�) decreases but saturates to a minimum as � ! �

⇤(�)

N=64. We argue below that the saturation is a finite size e↵ect.
An extrapolation using the linear regime in Fig. 2c indicates that � ! 0 at packing fraction �

⇤(�)

N=64 = 0.82 ± 0.07,



3

0.84 0.86
�

1.8

2.0

c

0.84 0.86
�

0.00

0.05

0.10

�

0.83 0.84 0.85 0.86
�

14

16

18

20

22

24

26

28

S
SG

S(Gauss)
B

S(KDE)
B

a

�4 �2 0 2 4 6
�

210

220

230

240

�
ln

p i

0.828
0.830
0.835
0.840
0.845
0.850
0.855
0.860

b

c d

FIG. 2: Numerical results obtained by basin volume calculations for jammed packings of N = 64 disks with a hard
core and a soft shell. (a) Gibbs entropy SG and Boltzmann entropy SB as a function of volume fraction. SB is
computed both parametrically by fitting B(f) with a generalised Gaussian function (‘Gauss’) and non-parametrically
by computing a Kernel Density Estimate (‘KDE’) as in Ref. [13]. Dashed curves are a second order polynomial fit. (b)
Scatter plot of the negative log-probability of observing a packing, � ln pi = Fi + lnVJ(�), where VJ is the accessible
fraction of phase space (see Methods) as a function of log-pressure, ⇤. Black solid lines are lines of best fit computed
by linear minimum mean square error using a robust covariance estimator and bootstrap (see Methods). (c) Slopes
�(�) and (d) intercepts c(�) of linear fits for Eq. 16. Solid lines are lines of best fit and error bars refer to the standard

error computed by bootstrap [14].

remarkably close to where our extrapolation yields SG = SB . The analysis of basin volumes, therefore, strongly
suggests that equiprobability is approached only at a characteristic packing fraction and that the vanishing of �(�)
can be used to estimate the point of equiprobability.

We next show that �(�) does indeed tend to zero in the thermodynamic limit. We use the fluctuations �2
f , �2

⇤,

and the covariance �2
f⇤, obtained from the elements of the covariance matrix �̂ = ((�2

f , �2
f⇤), (�

2
f⇤, �2

⇤)) of the joint
distribution of f and ⇤ (see Methods for details), to define � and c as:

�(�) ⌘
�2

f⇤(�)

�2
⇤(�)

,

c(�) ⌘hfiB(�) �
�2

f⇤(�)

�2
⇤(�)

h⇤iB(�).

(2)

From Fig. 2b we observe that the decrease of � is driven by �2
⇤ increasing to a maximum, while �2

f and �2
f⇤ decrease

(see Fig. S2 of SI). We expect the main features of these distributions to be preserved as the system size N is increased
[13], which suggests that for larger N , where basin volume calculations are still intractable for multiple densities, the
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FIG. 3: Finite size scaling analysis. (a) �P ⌘ N�2(P/hP iB) and (inset) �⇤ ⌘ N�2
⇤, plotted as a function of volume

fraction �. By finite size scaling (see SI) we show that the curves diverge in the thermodynamic limit as � ! �J/⇤,
implying �⇤

N!1 = �J
N!1 = 0.841(3), see main text for discussion. For � � �J

N , �P approaches a constant value
indicating the absence of extensive correlations far from the transition. (b) Observed average log-pressure h⇤iB and
(inset) probability of obtaining a jammed packings by our protocol, as a function of volume fraction �. By finite size

scaling (see SI) we show that h⇤iB ! �1 as � ! �
J(⇤)

N!1 = 0.841(3) and pJ collapses for � ! �
J(pJ )

N!1 = 0.844(2),
thus locating the unjamming point. Error bars, computed by BCa bootstrap [22], refer to 1� confidence intervals.
Solid lines are generalised sigmoid fits of the form f(�) = a � (a � b)/(1 + exp(�w��))1/u. We only show values
of � where the probability of finding a jammed packing is at least 1%, so that the observables are computed over

su�ciently large sample sizes.

maximum in �2
⇤ can be used to identify �⇤

N . We have directly measured �⇤ = N�2
⇤ using our sampling scheme –

that samples packings with probability proportional to the volume of their basin of attraction – for systems of up to
N = 128 disks (see inset of Fig. 3a) and finite size scaling indicates that �⇤ diverges as � ! �

⇤(⇤)

N!1 = 0.841(3) (see
SI). The saturation of � to a minimum as � ! �⇤

N , for small N , is determined by the fact that �⇤ only diverges in
the thermodynamic limit, a detailed discussion is given in Methods.

Interestingly, we find evidence that in the thermodynamic limit, the point of equiprobability �⇤
N!1, coincides with

the point at which the system unjams, �J
N!1. We use two characteristics of the unjamming transition to locate �J

N!1
(i) the average pressure of the packings goes to zero, and therefore h⇤i ! �1 (see Fig 3b) and (ii) the probability
of finding jammed packings, pJ , goes to zero (see inset of Fig 3b). A scaling analysis indicates that h⇤i ! �1 as

�
J(⇤)

N!1 = 0.841(3), and pJ ! 0 as �
J(pJ )

N!1 = 0.844(2) (see SI). We thus find that �⇤
N!1 = �J

N!1 within numerical
error and up to corrections to finite size scaling [21]. Our simulations therefore lead to the surprising conclusion that
the Edwards conjecture appears to hold precisely at the (un)jamming transition. We note that our earlier simulations,
which were performed at densities much above jamming [13, 16], did not support the equiprobability hypothesis. The
earlier simulations were in fact far enough away from unjamming that the emergence of equiprobability at this point
could not be anticipated. Our earlier findings, therefore, do not contradict the more recent ones and are completely
consistent with these.

Why is �⇤ related to the unjamming transition? As the particles interact via purely repulsive potentials, the
pressure P is strictly positive, which implies that the fluctuations of P have a floor and go to zero at unjamming.
The relative fluctuations �P ⌘ N�2 (P/hP iB), can be non-zero, and a diverging �P would then imply a diverging
�⇤. Because of the bounded nature of P [23–25], however, �P can only diverge at the unjamming transition where
hP iB ! 0 (see Methods). We find that �P does diverge (Fig. 3a) and finite size scaling yields �

⇤(P )

N!1 = 0.841(3), in
agreement with what has been found for �⇤. Returning to the N = 64 case that we have analysed using the basin
volume statistics, we find that both �P and �⇤ saturate to their maximum values over similar ranges of � and our
estimate �⇤

N=64 ⇡ 0.82 where SG = SB and � ! 0, falls in this region. In addition, the average number of contacts

hziB(�⇤
N=64) = 4.1 ± 0.2 is close to the isostatic value z

(iso)
N=64 ⌘ 2d � 2/64 ⇡ 3.97 [10] (see SI).

Finally, we note that the states in the generalised Edwards ensemble [5, 23, 26, 27] characterised by � and P have
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basin volumes that are similar, if not identical, over the full range of � that we have explored (see scatter plot in
Fig. 2b), indicating that equiprobability in the stress-volume ensemble [5, 26] is a more robust formulation of the
Edwards hypothesis. This observation is consistent with recent experiments [28].

Although, the equiprobability of jammed states at a given packing fraction was posited by Edwards for jammed
packings of hard particles, our analysis shows that for soft particles, the Edwards hypothesis is valid only for the
marginally jammed states at �⇤

N!1 = �J
N!1, where the jamming probability vanishes, the entropy is maximised,

and relative pressure fluctuations diverge. We have shown not only that there exist a practical ‘Edwardsian’ packing
generation protocol, capable of sampling jammed states equiprobably, but we have uncovered an unexpected property
of the energy landscape for this class of systems. At this stage, we cannot establish whether the same considerations
are valid in 3D, although the already proven validity of Eq. 16 in 3D would suggest so [13]. The exact value of the
entropy at unjamming, whether finite or not, also needs to be elucidated. The implications for ‘soft’ structural glasses
is apparent: at �J the uniform size of the basins implies that the system, when thermalised, has the same probability
of visiting all of its basins of attraction, hence there are no preferred inherent structures. This could be a signature of
the hard-sphere transition occurring at the same point [29]. Our approach can, therefore, be extended to spin-glasses
and related problems, and it would be clearly very exciting to explore the analogies and di↵erences between ‘jamming’
in various systems for which the configuration space can break up into many distinct basins.
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METHODS

Packing preparation protocol

In this section we describe the algorithm that we have used to sample the phase space of jammed packings. This
procedure samples each configuration proportional to the volume of its basin of attraction.

Hard sphere fluid sampling

We start by equilibrating a fluid of N hard disks (that serve as the cores of the particles with soft outer shells)
at a volume fraction �HS in a square box with periodic boundary conditions. The particle radii are sampled from
a truncated Gaussian distribution with mean µ = 1 and standard deviation � = 0.1. We achieve equilibration by
performing standard Markov Chain Monte Carlo (MCMC) simulations consisting of single particle displacements and
particle-particle swaps, as in [13]. To assure statistical independence, we draw fluid configurations every nMC steps,
where nMC is (pre-computed by averaging over multiple simulations) the total number of MCMC steps necessary for
each individual particle to di↵use at least a distance equal to the largest diameter in the system.

Soft shells and minimization

We next take each equilibrated hard disk fluid configuration and inflate the particles (instantaneously) with a
WCA-like soft outer shell [30], to reach the target soft packing fraction �SS > �HS. Each hard sphere is inflated
proportionally to its radius, so that the soft sphere radius is given by

rSS =

✓
�SS

�HS

◆1/d

rHS, (3)

where d is the dimensionality of the box (2 in our case), and rSS and rHS are the soft and hard sphere radii respectively.
Clearly, this procedure does not change the polydispersity of the sample. The radii are identical across volume
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fractions and system sizes, and the hard disk fluid density is chosen so that the radius ratio of hard to soft disks is
(0.88/0.7)1/2 ⇡ 1.121.

Next, particle inflation is followed by energy minimization using FIRE [31, 32], to produce mechanically stable
packings at the desired soft volume fractions �. This protocol has the advantage of generating packings sampled
proportionally to the volume of their basin of attraction. In our simulations, we considered all mechanically stable
packings, irrespective of the number of ‘rattlers’. To guarantee mechanical stability we required that the total number
of contacts is su�cient for the bulk modulus to be strictly positive, Nmin = d(Nnr � 1) + 1 [33], where Nnr is the
number of non-rattlers and d the dimensionality of the system.

Our implementation of FIRE enforces a maximum step size (set to be equal to the soft shell thickness) and forbids
uphill steps by taking one step back every time the energy increases (and restarts the minimizer in the same fashion
as the original FIRE implementation). We use a maximum time step �tmax = 1, although the maximum step size is
directly controlled in our implementation. All other parameters are set as in the original implementation [31].

HS-WCA potential

We define the WCA-like potential around a hard core as follows: consider two spherical particles with a distance
between the hard cores rHS, implying a soft core contact distance rSS = rHS(1 + ✓), with ✓ = (�SS/�HS)1/d � 1. We
can then write a horizontally shifted hard-sphere plus WCA (HS-WCA) potential as

uHS-WCA(r) =

8
>>>>>>>><

>>>>>>>>:

1 r  rHS,

4✏

"✓
�(rHS)

r2 � r2HS

◆12

�
✓

�(rHS)
r2 � r2HS

◆6
#
+ ✏

rHS < r < rSS,

0 r � rSS

(4)

where �(rHS) = (2✓+ ✓2)r2HS/2
1/6 guarantees that the potential function and its first derivative go to zero at rSS. For

computational convenience (avoidance of square-root evaluations), the potential in Eq. 4 di↵ers from the WCA form
in that the inter-particle distance in the denominator of the WCA potential has been replaced with a di↵erence of
squares.

A power series expansion of Eq. 4 yields

lim
r!rSS

uHS-WCA = ✏

✓
12rSS

r2HS � r2SS

◆2

(r � rSS)
2 + O

�
(r � rSS)

3
�
, (5)

hence, in the limit of no overlap the pair potential is harmonic.
We numerically evaluate this potential, matching the gradient and linearly continuing the function uHS-WCA(r) for

r  rHS+", where " > 0 is an arbitrary small constant, such that minimization is still meaningful if hard core overlaps
do occur.

Our choice of potential is based on the fact that (i) the hard cores greatly reduce the amount of configurational
space to explore, replacing expensive energy minimizations (to test whether the random walker has stepped outside the
basin) with fast hard-core overlap rejections, and (ii) the hard cores exclude high-energy minima (jammed packings)
that are not ‘hard-sphere-like’.

Total accessible volume

The basins of attraction of energy minima tile the “accessible” phase space (schematically shown in Fig. 1b-c).
This inaccessible part of the phase space arises due to hard core constraints and the existence of fluid states (see
e.g. [13]). The total phase space volume is equal to V N

box. The inaccessible part of this volume arising from the hard
core constraints (shown as hatched areas in Fig. 1) is denoted by VHS, and the part corresponding to the coexisting
unjammed fluid states is denoted by Vunj (shown as blue regions with squares in Fig. 1b-c). Vunj is significant only
for finite size systems at or near unjamming. We denote the space tiled by the basins of mechanically stable jammed
packings by VJ . We then have VJ = V N

box � VHS � Vunj. In practice we compute VJ using the following equation

lnVJ(N, �HS, �SS) = N lnVbox � Nfex(�HS) + ln pJ(�SS), (6)
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where fex(�HS) is the excess free energy, i.e. the di↵erence in free energy between the hard sphere fluid and the ideal
gas, computed from the Santos-Yuste-Haro (eSYH) equation of state [34] as in [13], and pJ(�SS) is the probability of
obtaining a jammed packing at soft volume fraction �SS with our protocol, shown in the inset of Fig. 3b.

Counting by sampling

We briefly review our approach to computing the number ⌦ of distinct jammed packings for a system of N soft disks
at volume fraction �. We prepare packings by the protocol described above, that generates jammed structures (energy
minima) with probability pi proportional to the volume of their basin of attraction vi. We define the probability of
sampling the i-th packing as

pi =
vi

VJ
, (7)

where VJ is the total accessible phase space, such that

VJ =
⌦X

i=1

vi. (8)

Details of the computation of vi are discussed in Refs. [13, 17]. To find ⌦, we make the simple observation

⌦X

i=1

vi =
⌦

⌦

⌦X

i=1

vi = ⌦hvi, (9)

from which it follows immediately that

⌦ =
VJ

hvi . (10)

The ‘Boltzmann-like’ entropy, suggested in a similar form by Edwards [2], is then

SB = ln⌦ � lnN ! (11)

where the lnN ! correction ensures that two systems in identical macrostates are in equilibrium under exchange of
particles [18–20].

Note that hvi is the unbiased average basin volume (the mean of the unbiased distribution of volumes). We
distinguish between the biased, B(�;F ) (as sampled by the packing protocol), and the unbiased, U(�;F ), basin log-
volumes distributions (F = � ln vbasin). Since the configurations were sampled proportional to the volume of their
basin of attraction, we can compute the unbiased distribution as

U(�;F ) = Q(�)B(�;F )eF (12)

where Q(�) is the normalisation constant, such that

Q(�) =

Z 1

Fmin

dFB(�;F )eF

��1

= hvi(�). (13)

Since small basins are much more numerous than large ones, and grossly under-sampled, it is not su�cient to perform
a weighted average of the sampled basin volumes. Instead, to overcome this problem, one can fit the biased measured
basin log-volumes distribution B(�;F ) with an analytical (or at least numerically integrable) distribution, and perform
the unbiasing via Eq. 12 on the best fitting distribution. Di↵erent approaches to modelling this distribution give rise
to somewhat di↵erent analysis methods, which all yield consistent results as shown in Ref. [13]. In this work we follow
Ref. [13] and fit B(�;F ) using both a (parametric) generalised Gaussian model [35], see Eq. S21 of the SI, and a
(non-parametric) kernel density estimate (KDE) with Gaussian kernels [36, 37] and bandwidth selection performed by
cross validation [13, 38], yielding consistent results in agreement with Ref. [13]. Before performing the fit we remove
outliers from the free energy distribution in an unsupervised manner, as discussed in the “Data Analysis” section of
the Methods.
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No such additional steps are needed to compute the ‘Gibbs-like’ version of the configurational entropy, in fact

SG = �
⌦X

i=1

pi ln pi � lnN ! =
⌦X

i=1

[pi(� ln vi)] + lnVJ � lnN ! = hF iB + lnVJ � lnN ! (14)

is simply the arithmetic average of the observed volumes: The sample mean of F = � ln vbasin is already correctly
weighted because our packing generation protocol generates packings with probability pi.

Power-law between pressure and basin volume

A power-law relationship between the volume of the basin of attraction of a jammed packing and its pressure was first
reported in [13]. In what follows we provide insight into this expression on the basis of this work’s findings. We observe
that distributions of basin negative log-volumes, F = � ln vbasin, and log-pressures, ⇤ = lnP , are approximately
normally distributed (see Fig. S1 and S9 of the SI). We therefore expect their joint probability to be well-approximated
by a bivariate Gaussian distribution B(�;F,⇤) = N (µ, �̂) [48], with mean µ = (µF , µ⇤) and covariance matrix
�̂ = ((�2

F , �2
F⇤), (�

2
F⇤, �2

⇤)) [39]. This is consistent with the elliptical distribution of points in Fig. 2b. For a given
random variable X, with an (observed/biased) marginal distribution B(X), the mean is given by µX(�) = hXiB =R

XB(�;X) dX. Similarly, the (biased) conditional expectation of F for a given ⇤ is then [39]

hF iB(�)(�;⇤) ⌘ E[F |�;⇤] = �2
F⇤(�)

�2
⇤(�)

(⇤ � µ⇤(�)) + µF (�). (15)

This is simply the linear minimum mean square error (MMSE) regression estimator for F , i.e. the linear estimator
Ŷ (X) = aX + b that minimizes E[(Y � Ŷ (X))2]. The expectation of the dimensionless free energy hF iB(�)(�;⇤) =
�hln viB(�)(�;⇤) � � lnhviB(�)(�;⇤) [40] is the average basin negative log-volume at volume fraction � and log-
pressure ⇤. Here the average is also taken over all other relevant, but unknown, order parameters �, such that
hF iB(�)(�;⇤) =

R
d�B(�)F (�;�,⇤). In other words, we write the expectation of F at a given pressure as the

(biased) average over the unspecified order parameters �. An example of such a parameter would be some topological
variable that makes certain topologies more probable than others. Note that F (�,⇤;�) is narrowly distributed around
E[F |�;⇤]. To simplify the notation we write hF iB(�)(�;⇤) ⌘ hF iB(�;⇤). We can thus rewrite the power-law reported
in [13] as

hfiB(�;⇤) =�(�)⇤+ c(�)

=
�2

f⇤(�)

�2
⇤(�)

⇤ �
�2

f⇤(�)

�2
⇤(�)

µ⇤(�) + µf (�)

=
�2

f⇤(�)

�2
⇤(�)

�⇤+ µf (�)

(16)

where f = F/N is the basin negative log-volume per particle and � ⌘ 1/ is the slope of the power-law relation,
which depends crucially on the packing fraction �. The last equality in Eq. 16 highlights how �(�) controls the
contributions of the fluctuations of the log-pressures �⇤ ⌘ ⇤ � µ⇤(�) to changes in the basin negative log-volume.
Note that one can rewrite the ratio of fluctuations as �2

f⇤/�2
⇤ = ⇢f⇤�f/�⇤ where ⇢f⇤ = �2

f⇤/(�f�⇤) is the linear
correlation coe�cient of f and ⇤. Finally, we can gain further insight into the power-law dependence by noting that

�(�) ⌘
�2

f⇤(�)

�2
⇤(�)

(17)

c(�) ⌘µf (�) �
�2

f⇤(�)

�2
⇤(�)

µ⇤(�) (18)

Data analysis

Reduced units

While presenting data from our computations, we express pressure and volume in reduced units as P/P ⇤ and v/v⇤

respectively. The unit of volume is given by v⇤ ⌘ ⇡hr2HSi, where hr2HSi is the mean squared hard sphere radius. The
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unit of pressure is then P ⇤ ⌘ ✏/v⇤, where ✏ is the sti↵ness of the soft-sphere potential, defined in Eq. 4. The pressure
is computed as P = Tr(⌃̂)/2Vbox where ⌃̂ is the Virial stress tensor and Vbox the volume of the enclosing box.

Summary of calculations

For the basin volume calculations we consider systems of N = 64 disks sampled at a range of 8 volume fractions
0.828  �  0.86 and for each � we measure the basin volume for about 365 < M < 770 samples.

For the finite size scaling analysis of the relative pressure fluctuations we study system sizes N = 32, 48, 64, 80, 96, 128
for 48 volume fractions in the range 0.81  �  0.87. For each system size we generate up to 105 hard disk fluid
configurations and compute the pressure for between approximately 103 and 104 jammed packings (depending on the
probability of obtaining a jammed packing at each volume fraction).

Simulations were performed using the open source libraries PELE [41] and MCPELE [42].

Outlier detection and robust covariance estimation

Before manipulating the raw data we remove outliers from the joint distribution B(f,⇤) following the distance-based
outlier removal method introduced by Knorr and Ng [43]. This is applied in turn to each dimension, such that we
choose to keep only those points for which at least R = 0.5 of the remaining data set is within D = 4� (compared to
the much stricter R = 0.9988, D = 0.13� required to exclude any points further than |µ�3�| for normally distributed
data [43]). On our datasets we find that this procedure removes typically none and at most 0.8% of all data points.

Mean and covariance estimates of B(f,⇤) are computed using a robust covariance estimator, namely the Minimum
Covariance Determinant (MCD) estimator [37, 44] with support fraction h/nsamples = 0.99. The MCD estimator
defines µMCD, the mean of the h observations for which the determinant of the covariance matrix is minimal, and
�̂MCD, the corresponding covariance matrix [45]. We use these robust estimates of the location and of the covariance
matrix (computed over 1000 bootstrap samples [14]) to fit our observations by linear MMSE [39], see Fig. 2.

Before fitting B(f) (required to compute ⌦), we perform an additional step of outlier detection based on an elliptic
(Gaussian) envelope criterion constructed using the MCD estimator. We assume a support fraction h/nsamples = 0.99
and a contamination equal to 10% [37]. We compute SG and SB from the resulting datasets. The procedure is strictly
unsupervised and allows us to achieve robust fits despite the small sample sizes. We fit B(f) using both a (parametric)
generalised Gaussian model [35] and a (non-parametric) kernel density estimate (KDE) with Gaussian kernels [36, 37]
and bandwidth selection performed by cross validation [13, 38].

Error analysis

Errors were computed analytically where possible and propagated using the ‘uncertainties’ Python package [46].
Alternatively, intervals of confidence were computed by bootstrap for the covariance estimation [14] and by BCa
bootstrap otherwise using the ‘scikit-bootstrap’ Python package [22, 47].
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VARIANCE OF RELATIVE PRESSURES

In this section we relate the statistics of the log-pressures of the packings to the relative pressures. For a given N

and �, with the set of pressures {Pi}, the log-pressures are given by ⇤i ⌘ lnPi and the relative pressures are Pi/hP i.
The two quantities are then simply related as

ln

✓
Pi

hP i
◆

= lnPi � lnhP i = ⇤i � lnhP i. (S1)

Using Jensen’s inequality [1], we have the following bound for the first moment of the log-pressures

h⇤i = hlnP i  lnhP i. (S2)

Therefore hP i ! 0 implies h⇤i ! �1. In order to relate the means and the variances of Pi and ⇤i ⌘ lnPi, we
perform the Taylor expansion

lnP = lnhP i + d lnP

dP

����
P=hP i

(P � hP i) + ... (S3)

We next compute the moments to leading order

hlnP i ⇡ lnhP i,
�

2(lnP ) ⇡ �

2(P )

hP i2 = �

2

✓
P

hP i
◆
. (S4)

Thus, to first order, the variance of the log-pressures is equal to the variance of the relative pressures.

Bounds

For a fixed N and �, the pressures of the individual packings are bounded as

0 < P

min

 Pi  P

max

. (S5)

where P

max

and P

min

are determined by the packing fraction �, independent of system size, and are physically set
limits [2–4]. We can therefore use Popoviciu’s inequality on variances, yielding

�

2(P )  1

4
(P

max

� P

min

)2 , (S6)

which is also bounded. The relative pressure fluctuations are therefore bounded as

�

2

✓
P

hP i
◆

 1

4

(P
max

� P

min

)2

hP i2 . (S7)

We thus find that the variance of the relative pressures �2

⇣
P
hP i

⌘
can diverge only when hP i ! 0, which is precisely

where the unjamming transition occurs.
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Scaling at � � �⇤

First we show that away from a critical point, the relative pressure fluctuations scale as 1/L2, where L =
p
N

and N is the number of particles. The internal Virial is defined by P =
P

i=1,N pi, where pi is the particle level
“pressure” given by pi =

P
j

P
↵=1,2 r

↵
i,jf

↵
i,j where r↵i,j and f↵i,j are the contact vectors and contact forces, respectively.

The variance of P/hP i is

�

2(P/hP i) = hP 2i � hP i2
hP i2 =

PN
i=1

�

2(pi) +
P

i 6=j cov(pi, pj)⇣PN
i=1

hpii
⌘
2

. (S8)

When away from a critical point we expect
P

i 6=j cov(pi, pj) to scale subextensively, and the variance of relative
pressure fluctuations to be

�

2(P/hP i) =
PN

i=1

�

2(pi)⇣PN
i=1

hpii
⌘
2

⇠ 1

N

(S9)

hence the relative pressure fluctuations away from the critical point will scale as 1/N = 1/L2, and

�

2(⇤) ⇡ �

2(P/hP i) ⇠ 1/L2

, (S10)

as can be verified in Fig. 3a of the main text.
Second, we analyse the covariance of the basin negative log-volume per particle (F/N = � ln(v

basin

)/N) and the
relative pressure fluctuations, cov(F/N,P/hP i). Similarly to the internal Virial we define the particle level basin
negative log-volume as F =

P
i=1,N fi. Then we have

cov(F/N,P/hP i) = hFP i � hF ihP i
NhP i =

PN
i=1

cov(fi, pi) +
P

i 6=j cov(fi, pj)

N

PN
i=1

hpii
. (S11)

From the power-law relation between F and ⇤ we know that away from the critical point cov(fi, pi) > 0 and we
expect

P
i 6=j cov(fi, pj) to scale subextensively in this region, hence

cov(F/N,P/hP i) =
PN

i=1

cov(fi, pi)

N

PN
i=1

hpii
⇠ 1

N

, (S12)

therefore

cov(f,⇤) ⇡ cov(f, P/hP i) ⇠ 1/L2

, (S13)

where f = F/N . We can thus conclude that the slope of the power-law relation is

����⇤ =
�

2(f,⇤)

�

2(⇤)
⇠ O(1), (S14)

In other words, � is independent of system size, a fact that has been verified numerically in Ref. [5].

Scaling as � ! �⇤

Near the critical point, as � ! �

⇤, the variance of ⇤ follows the scaling form

�

2(⇤) ⇠ L

�/⌫�2

, (S15)

with �/⌫ ⇡ 1 as found by finite size scaling, shown in Fig. S11. While we do not have a finite size scaling collapse
for the covariance �

2(f,⇤), due to the high computational cost of performing the basin volume calculations for
multiple system sizes, we do observe that for N = 64 the covariance decreases with respect to the “background” 1/L2

fluctuations as � ! �

⇤, see Fig. S2e. Since we expect this to be generic, we do not expect L2

�

2(f,⇤) to diverge but
rather that

�

2(f,⇤) . L

�2

, (S16)

Hence in the limit � ! �

⇤ we expect that the slope of the power-law relation will be

��!�⇤ =
�

2(f,⇤)

�

2(⇤)
= 0. (S17)
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Relation between scaling exponents

Starting from Eq. 1 of the main text, we use the fact that �2(aX ± bY ) = a

2

�

2(X) + b

2

�

2(Y ) ± 2ab cov(X,Y ) to
compute the variance of f = F/N to find

�

2

f = �

2

�

2

⇤

= (�2

f⇤)
2

/�

2

⇤

(S18)

By rearranging this expressions we find that

(�2

f⇤)
2

/�

2

f = �

2

⇤

⇠
⇢

L

�2 for � � �

⇤

L

�⇣ for � ! �

⇤ (S19)

where we have defined ⇣ ⌘ 2 � �/⌫ ⇡ 1 as in Eq. (S15) and as found by finite size scaling, shown in Fig. S11. For
� ! �

⇤, by assuming scalings �2

f⇤ ⇠ L

�⌘ and �

2

f ⇠ L

�#, we find the following relation between scaling exponents

2⌘ � # = ⇣ (S20)

DISTRIBUTION OF BASIN LOG-VOLUMES

The distributions of basin negative log-volumes, shown in Fig. S1, are well represented by a three-parameter
generalised Gaussian distribution

B(F |µF ,�F , ⇣) ⌘ ⇣

2��(1/⇣)
exp

"
�
✓ |F � µF |

�F

◆⇣
#
, (S21)

where �(x) is the gamma function, �F is the scale parameter, ⇣ is the shape parameter and µF is the mean log-volume
with variance �2�(3/⇣)/�(1/⇣). In Ref. [6] it is shown that in the limit N ! 1 the shape parameter approaches that
of a standard Gaussian distribution, ⇣ = 2. Since �

2

F ⇠ N and µF ⇠ N , we have that

e

�(F�µF )

2/(2�2
) ⇠ e

�N(f�µf )
2 ! �(µf ) as N ! 1, (S22)
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FIG. S1: Observed distribution of the basin log-volume F (a) and log-pressure ⇤ (b) for jammed packings of N = 64
HS-WCA polydisperse disks at various volume fractions 0.828  �  0.86. Solid lines are Kernel Density Estimates

and dashed lines are generalised Gaussian fits.
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where � is the Dirac delta function and f = F/N . The distribution of basin volumes thus becomes infinitely narrow
in the thermodynamic limit. However, this is not su�cient for the Edwards conjecture to be correct, in fact we
also require that the basin volumes are uncorrelated with respect to any structural observables in this limit. In this
manuscript we argue that this occurs only as � ! �

⇤.

DISTRIBUTIONS OF F AND ⇤

In Fig. S1 we show the biased distributions B(F ) and B(⇤) of the basin negative log-volumes and log-pressures,
which are the marginal distributions of the joint distribution B(F,⇤) shown in Fig. 2b of the main text. In Fig. S2
we plot the moments of B(F,⇤), namely the elements of the mean µ = (µf , µ⇤

) and the elements of the covariance
matrix �̂ = ((�2

f ,�
2

f⇤), (�
2

f⇤,�
2

⇤

)), as well as the linear correlation coe�cient ⇢f⇤ = �

2

f⇤/(�f�⇤

).

ESTIMATES OF THE EQUIPROBABILITY DENSITY �⇤
N=64

We summarise the estimated values for �⇤
N=64

in Table S1

� S(Gauss)
B S(KDE)

B

�⇤
N=64 0.82± 0.07 0.82 0.82

hzisig(�⇤
N=64) 4.1± 0.2 4.0 4.0

TABLE S1: Predicted values of �

⇤
N=64

obtained from the linear extrapolation of � ! 0 and from the point of
intersection of the Gibbs entropy SG with the Boltzmann entropy SB , computed both parametrically by fitting B(f)
with a generalised Gaussian function (‘Gauss’) and non-parametrically by computing a Kernel Density Estimate
(‘KDE’) of the distribution. The corresponding average contact number has been computed using a sigmoid fit

(Eq. S23) of the data in Fig. S3.

CONTACT NUMBER

The mean contact number is plotted as a function of volume fraction in Fig. S3. The data are fitted with a
generalised sigmoid function of the form

f(a, b,�
0

, u, w;�) = a � a � b

(1 + e

�w(���0))1/u
(S23)

In Fig. S4 we also show the fraction of rattlers at di↵erent packing fractions for N = 64 disks. We note that the
fraction of rattlers is maximal and saturates over the same range of densities as where the relative pressure fluctuations
are maximal and saturate (see Fig. 3 of the main text and the finite size scaling section for further discussion).
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FIG. S2: Moments of the joint distribution B(f,⇤) for jammed packings of N = 64 HS-WCA polydisperse disks at
various volume fractions 0.828  �  0.86. Elements of the mean µ = (µf , µ⇤

) are shown in (a) and (b) respectively.
Elements of the covariance matrix �̂ = ((�2

f ,�
2

f⇤), (�
2

f⇤,�
2

⇤

)) are shown in (c)-(e). The linear correlation coe�cient

⇢f⇤ = �

2

f⇤/(�f�⇤

) is shown in (f). All values are computed by the MCD estimator with 0.99 support fraction over
1000 bootstrap samples. Error bars are standard errors computed by bootstrap. Dashed lines are second order

polynomial fits and dotted lines are sigmoid fits (Eq. S23). Curves of best fit are meant as guide to the eye.
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FIG. S3: Observed average contact number for jammed packings of N = 64 HS-WCA polydisperse disks. Triangles
are estimates from the basin volume measurements datasets. Circles are estimates from the independent measurements

used for the finite size scaling analysis. The solid line is a generalised sigmoid fit (Eq. S23) of the latter.
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FIG. S4: Fraction of rattlers for jammed packings of N = 64 HS-WCA polydisperse disks. We find this tends to a
maximum and saturates over the same range of packing fractions where relative pressure fluctuations are maximal,

see Fig. 3 of the main text. The solid line is a generalised sigmoid fit, Eq. S23.
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CORRELATIONS WITH STRUCTURAL PARAMETERS

We analyse the correlation of the basin negative log-volume with a number of structural parameters other than the
pressure P = Tr(⌃̂)/(dLd), where ⌃̂ is the stress tensor and d = 2, discussed in detail in the main text (see Fig. 2).

For all observables X we assume a linear correlation defined analogously to Eq. 1, namely

hfiB(�;X) = �X(�) lnX + cX(�). (S24)

We perform the analysis for the individual elements of the stress tensor ⌃̂ij , the average contact number z and the
Q

6

bond-orientational order parameter [7]. Scatter plots with bootstrapped linear MMSE fits are shown in Fig. S5,
and the fitted parameters are plotted as a function of volume fraction in Fig. S6. The results are qualitatively similar
to those obtained for the pressure in that �X is decreasing towards 0 as � ! �

⇤, indicating that the basin volumes
decorrelate from X in this limit. As explained in the main text, this is a necessary condition for the equiprobability
of jammed states.

In Fig. S5d, we observe that �Q6 becomes precisely zero at the lowest volume fractions while for larger volume
fractions �Q6 < 0, implying that larger basins correspond to more ordered structures. At the same time we note from
Figs. S5e-f that larger volumes correspond on average to lower average contact numbers (z) and that z and Q

6

are
(therefore) negatively correlated.

GLOBAL MODEL OF B(F,⇤)

In Fig. 2b of the main text, we fit the joint probability B(�;F,⇤) by linear MMSE, or in other words we fit the data
with a bivariate Guassian such that the conditional expectation of F given ⇤ corresponds to the linear fit. We compute
linear MMSE fits for each volume fraction � independently, as the probabilities of the packings (� ln pi = Fi+lnVJ(�))
are obtained by subtracting di↵erent normalization constants for each � (accessible volume VJ(�)). However, since
µf (�) ⌘ hF/NiB(�) and µ

⇤

⌘ h⇤iB(�) are slowly varying (see Fig. S2a-b), we attempt to fit to the full distribution
of B(f,⇤) (for all � at once) by an exponential function of the form a exp(�b�) + c, and a third order polynomial
p
3

(⇤). Fits are shown in Fig. S7a, showing an evident decay of the correlations between pressure and basin volume.
Evaluating the derivative of these global fits at each µ

⇤

(�) we find that they are in excellent agreement with the
estimates of � obtained by linear MMSE, see Eq. 17 (Methods).

FINITE SIZE SCALING

In order to locate the unjamming transition, we compute the probability of obtaining jammed packings as a function
of volume fraction �. A finite size scaling collapsSI for pJL�/⌫ vs. L1/⌫

�
�/�

J
N!1 � 1

�
, shown in Fig. S8, yields critical

exponents ⌫ ⇡ 1, � = 0 and critical volume fraction �

J(pJ )

N!1 = 0.844(2), in agreement with Vagberg et al. [8]. We
obtain an independent estimate of the unjamming transition by locating the point where the average pressure goes
to zero and therefore h⇤iB ! �1. KDE distributions for ⇤ are shown in Fig. S9. The average log-pressure is
shown in Fig. S10a and a finite size scaling collapse for h⇤iBL⇠/⌫ vs. L1/⌫

�
�/�

J
N!1 � 1

�
, shown in Fig. S10b, yields

⌫ = 0.50(5), ⇠ = 0.62(3) and critical volume fraction �

J(⇤)

N!1 = 0.841(3).
We then analyse the relative pressure fluctuations �P = N�

2(P/hP iB) and the log-pressure fluctuations �

⇤

=
N�

2

⇤

. A scaling collapse for di↵erent system sizes of �PL
��/⌫ vs. L

1/⌫
�
�/�

J
N!1 � 1

�
with L = N

1/d, shown in

Fig. S11a, yields ⌫ = 0.5(3), � = 0.47(5) and �

⇤(P )

N!1 = 0.841(3). An analogous scaling collapse of �
⇤

L

��/⌫ vs.
L

1/⌫ (�/�⇤
N!1 � 1), shown in Fig. S11b, yields ⌫ = 0.5(3), � = 0.89(5) and �

⇤(⇤)

N!1 = 0.841(3).
Together these results lead us to conclude that the point of equiprobability �

⇤
N!1 coincides with the unjamming

point �

J
N!1, to within numerical error and finite size corrections that we do not take into account. Note that

the precise numerical value of ⌫ varies through the literature and has been shown to depend on the quantity being
observed, and also crucially on finite size corrections to scaling [8]. In this work we have not attempted to establish
⌫ definitely, nor elucidate its origin with respect to the diverging correlation length(s) that might be involved.
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FIG. S5: Scatter plots of the negative log-probability of observing a packing, � ln pi = Fi + lnVJ(�), where VJ is
the accessible fraction of phase space, as a function of the individual terms of the stress tensor ⌃̂ (a)-(c), the Q

6

bond-orientational order parameter (d) and the average contact number z (e). The scatter plot in (f) shows the Q

6

bond-orientational order parameter as a function of the average contact number z. Black solid lines are lines of best
fit computed by bootstrapped linear MMSE using a robust covariance estimator.
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FIG. S6: Slopes �X (a) and intercepts cX (b) of Eq. S24 for the individual components of the the stress tensor ⌃̂, the
Q

6

bond-orientational order parameter, and the average contact number z. Estimates were obtained by bootstrapped
linear MMSE fits using a robust covariance estimator and error bars refers to the standard error computed by

bootstrap. Solid lines are guide to the eye.
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FIG. S7: (a) Global fit of B(f,⇤) by an exponential function of the form a exp(�b�)+c, and a third order polynomial
p
3

(⇤). (b) First derivative of the fits evaluated at mean log-pressure µ

⇤

(�) are in excellent agreement with the
estimates of � obtained by linear MMSE, see Eq. 17. Solid lines are guide to the eye.
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FIG. S8: (a) Probability of obtaining a jammed packing pJ by our preparation protocol for N = 32 to 128 HS-WCA
polydisperse disks as a function of volume fraction. Inset: Scaling collapse for pJL�/⌫ vs. L1/⌫

�
�/�

J
N!1 � 1

�
, with

L = N

1/d, yields critical exponents ⌫ ⇡ 1, � = 0 and critical volume fraction �

J(pJ )

N!1 = 0.844(2). Circles are observed
data and solid lines correspond to sigmoid fits, Eq. S23. (b) Derivative of the sigmoid fits for pJ for di↵erent numbers

of disks.
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FIG. S9: Log-transformed observed (biased) distribution of pressures for jammed packings of N = 64 HS-WCA
polydisperse disks, centred around the mean. The variance grows for decreasing volume fractions and becomes more
skewed towards low pressures. The overall Gaussian shape is consistent with a log-normal distribution of pressures.
Curves are kernel density estimates with Gaussian kernels [9, 10] and bandwidth selection performed by cross validation

[5, 11]
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FIG. S10: (a) Average log-pressure h⇤iB for N HS-WCA polydisperse disks. (b) Scaling collapse for h⇤iBL⇠/⌫ vs.
L

1/⌫
�
�/�

J
N!1 � 1

�
, with L = N

1/d. The estimated critical exponents are ⌫ = 0.50(5) and ⇠ = 0.62(3), and the

critical volume fraction �

J(⇤)

N!1 = 0.841(3). Inset: A logarithmic plot of the same data. Circles are observed data and
solid lines are sigmoid fits, Eq. S23. Error bars, computed by BCa bootstrap [12], refer to 1� confidence intervals.
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FIG. S11: (a) Data collapse from finite size scaling analysis of the variance of the relative pressures. The plot shows
�PL

��/⌫ vs. L1/⌫
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�/�

J
N!1 � 1

�
, with L = N

1/d. The estimated critical exponents are ⌫ = 0.5(3) and � = 0.47(5),

and the critical volume fraction is �

⇤(P )

N!1 = 0.841(3). (b) Scaling collapse of the variance of the log-pressures. The
plot shows �

⇤

L

��/⌫ vs. L

1/⌫ (�/�⇤
N!1 � 1). The estimated critical exponents are ⌫ = 0.5(3) and � = 0.89(5), and

the critical volume fraction is �

⇤(⇤)

N!1 = 0.841(3). Error bars, computed by BCa bootstrap, refer to 1� confidence
intervals.
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