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Brain Tumor Imaging
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A B S T R A C T

Modern imaging techniques, particularly functional imaging techniques that interrogate some
specific aspect of underlying tumor biology, have enormous potential in neuro-oncology for disease
detection, grading, and tumor delineation to guide biopsy and resection; monitoring treatment
response; and targeting radiotherapy. This brief review considers the role of magnetic resonance
imaging and spectroscopy, and positron emission tomography in these areas and discusses the
factors that limit translation of new techniques to the clinic, in particular, the cost and difficulties
associated with validation in multicenter clinical trials.
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MAGNETIC RESONANCE IMAGING
AND SPECTROSCOPY

Basic Principles
Magnetic resonance (MR) images of tissue

water protons can be used to generate relatively
high-resolution maps of tissue anatomy (mm
resolution at the relatively low magnetic field
strengths used routinely in the clinic [1.5 and
3T]). The strength of MR imaging and the reason
that it gives much better soft tissue contrast than
computed tomography is that the intensities of
these proton signals are dependent not only on
water distribution but also on the nuclear MR
relaxation properties of the water proton spins,
which are characterized by the relaxation times T1

and T2. These are influenced by the molecular
composition of the tissue; for example, T2 is
shortened by the presence of paramagnetic iron in
deoxygenated hemoglobin found in hypoxic re-
gions, and T1 can be shortened by gadolinium-
containing contrast agents. The way that the
image is acquired can be used to emphasize the
effect of T1 or T2 and therefore make signal in-
tensity more sensitive to specific aspects of tissue
composition. The signal is also sensitive to dif-
fusion, and again, by changing acquisition pa-
rameters, the image can bemademore sensitive to
the effects of water diffusion. MR images can be
acquired as a series of two-dimensional slices
or as a genuine three-dimensional acquisition.
Slice thickness is usually much greater than
the in-plane resolution; therefore, multislice
images have low resolution in one dimension.
Three-dimensional images can be acquired with

isotropic image resolution but are time con-
suming to acquire and usually have a resolution
. 1 mm. These resolution limitations are usually
not critical for brain tumors because they are
sufficient for diagnostic purposes, planning bi-
opsies, and targeting radiotherapy. However,
a limitation is that infiltrative tumor growth cannot
be visualized directly with standard anatomic
MR imaging. Image analysis algorithms can be
used to improve the diagnostic1 or prognostic2,3

value of these images. This includes radiomics
(reviewed in Gillies et al4), in which images are
analyzed quantitatively on a voxel-by-voxel basis.

As well as detecting water, the technique can
also be used to detect small molecule metabolites.
These are usually detected via their proton res-
onances, because the proton is, with the exception
of tritium, the most sensitive to MR detection;
however, because these metabolites are present at
104 to 1053 lower concentrations than tissue
water, they can only be imaged at relatively low
spatial and temporal resolutions. The brain is well
suited to investigation by MR techniques because
it is relatively superficial, there is minimal re-
spiratory- or cardiac-dependent motion, and the
tissue is, with the exception of positron emission
tomography (PET), less accessible to other
noninvasive functional imaging modalities (op-
tical, photoacoustic).

A standard protocol, which can be acquired
in approximately 20 minutes, has been pro-
posed for imaging brain tumors, consisting of T1-
and T2-weighted sequences, some after contrast
agent administration (contrast-enhanced MR im-
aging [CE-MRI]) and a fluid-attenuated inversion
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recovery sequence that suppresses signal from cerebral spinal fluid.5

Images acquired using this protocol have been used for assessing
treatment response, using the Response Assessment in Neuro-
Oncology Criteria for glioma, which are based on changes in tu-
mor size, and whether there is blood-brain barrier (BBB) breakdown
on CE-MRI. This protocol can also be used for diagnosis and for
assessing progression in follow-up scans after surgery or radiotherapy.
Serial monitoring of patients with glioma after therapy can be used to
determine recurrence or progression through increased contrast
enhancement. However, in the first 3 months after treatment, contrast
agent enhancement can increase due to damage to normal brain
tissue, a phenomenon known as pseudoprogression. This standard
MRprotocol is poor at distinguishing between pseudoprogression and
real progression; therefore, the patient must often wait an additional
3 months for a prognostic assessment.

Functional Imaging
Anatomic images can be complemented by additional func-

tional images that measure a specific biologic property. Diffusion-
weighted MRI (DW-MRI) can be used to assess treatment
response, the loss of tumor cellularity post-treatment leading to an
increase in the apparent diffusion coefficient of tissue water.6-8 DW-
MRI, with two or three b values between 0 and 1,000 s/mm2, has been
proposed for routine imaging of patients with brain tumors5,6 and can
be used to monitor response to radiotherapy and chemotherapy.7-9

The technique can also be used to distinguish between tumors and
abscesses. Dynamic contrast-enhanced MRI can be used to measure
the flow of contrast agent across a damaged BBB, whereas dynamic
susceptibility MRI can be used to indicate angiogenic regions of
a tumor, regardless of BBB integrity.10 Perfusion MRI techniques are
particularly useful for grading glioma.11-13 Although it is unlikely that
functional imaging modalities could ever be as accurate or as cost
effective as biopsy for the purpose of diagnosis or grading, particularly
with the growing importance of predictive genomic and epigenomic
biomarkers, they can nevertheless be used to target biopsies. For
example, using CE-MRI, which in glioma reveals BBB breakdown in
areas that likely contain high-grade tumor. Functional imaging
modalities would appear to have greater potential in distinguishing
true progression from pseudoprogression. For example, dynamic
susceptibility MRI and MR spectroscopic imaging (MRSI) have
shown promise in discriminating pseudoprogression from re-
currence.14 Amide proton transferMRI, inwhichmobile peptides and
proteins are detected using chemical exchange saturation transfer, has
shown some promise in monitoring progression. In an animal model,
the technique was shown to distinguish tumor recurrence from ra-
diation necrosis,15 and Park et al16 showed that amide proton transfer
may be better than MRSI in this regard. Identifying early recurrence
may enable reirradiation17 or the initiation of alternative treatments.

MR spectroscopy (MRS) and spectroscopic imaging of brain
tumor metabolites has been reviewed recently.18 Grading of ce-
rebral neoplasms has been attempted by analyzing the profile of
metabolites detected in 1H MR spectra of tumors in vivo.19,20

However, although it shows improved sensitivity and specificity
compared with anatomic imaging, this technique has so far failed
to provide the diagnostic certainty required for widespread clinical
acceptance. Discovery of the isocitrate dehydrogenase (IDH) 1
mutation in 70% to 90% of low-grade gliomas and secondary

glioblastomas has led to a new diagnostic paradigm where mutant
IDH1 tumors are associated with a more favorable prognosis.21

Human gliomas expressing mutant IDH 1 and 2 have been
identified by 1H MRS detection22 of the oncometabolite and prod-
uct ofmutant IDH, 2-hydroxyglutarate.23 Loss of 2-hydroxyglutarate
has been used to assess treatment response.24

In summary, functional imaging methods have been demon-
strated to provide additional information for diagnosis, delineating
tumor margins,25,26 staging,27 monitoring treatment response,28,29

detecting recurrence,30 and monitoring disease progression.14 Al-
though the utility of individual functional imaging methods for
specific applications have been compared,16,31-33 when combined in
multiparametric MRI protocols they can collectively give better
sensitivity and specificity.30,34,35 However, multiparametric methods
require extra scan time and have inherent systematic errors, which are
difficult to correct for, limiting comparison of absolute parameter
values between different instruments and protocols.30,35,36

Guiding Surgery and Radiotherapy
Maximal surgical resection is prognostic for low-37 and high-

grade glioma.38 However, complete resection must be balanced
against the risk of neurologic morbidity. Preoperative resection
planning and intraoperative surgical resection margins can be
informed by determining eloquent brain regions, such as white
matter tracts, using diffusion tensor imaging (DTI).39,40 Im-
provements in the algorithms that calculate the probable position
of these white matter tracts from DTI data have allowed preser-
vation of language pathways and also assessment of pathway
damage postsurgery.41 Eloquent brain regions can also be de-
termined using functional MRI (fMRI). The patient is imaged
while performing certain tasks to map regions of the cortex for
speech and motor function. Petrella et al42 showed that fMRI
allowed a more aggressive resection strategy and Berntsen et al43

showed that a combination of fMRI and DTI led to changes in
resection margins and even a complete change in therapeutic
strategy. Despite these advances, variable sensitivity and specificity
have been reported and, as such, the gold standard—intraoperative
mapping with electrodes during awake brain surgery—remains the
mainstay in regions adjacent to eloquent cortex. Imaging can also
be used to identify regions within tumors that exhibit poor
prognostic features and therefore could be used to target radiation,
increasing dose to more aggressive areas.44-46 This approach will be
facilitated by the recent introduction of the MR-linac, in which
a linear accelerator is incorporated into a split magnet to allow real-
time MRI guidance and monitoring of radiotherapy.47

Detecting Treatment Response
When MR is being used in a clinical trial of a new drug to

assess treatment response, it would be best to choose a functional
imaging technique that is tailored to detect the expected readout.28

For example, perfusion imaging has the potential to show whether
an antiangiogenic drug has hit its target,48,49 the change in contrast
enhancement providing a faster readout of treatment response
than monitoring changes in tumor size using Revised Assessment
in Neuro-Oncology criteria. The implementation of a multi-
parametric MRI protocol for post-therapy monitoring of patients
with brain tumors should therefore be patient-group and therapy
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specific. Development of such protocols will require large, mul-
ticenter trials to find the best combination of MRI methods
for accurately detecting treatment response and to standardize
image acquisition and analysis across multiple sites and vendor
instruments.

Increasing Sensitivity
A fundamental limitation, particularly of MRS, has been a lack

of sensitivity, which can result in long image acquisition times. The
introduction of high-field (7 Tesla) instruments into the clinic,50,51

in combination with parallel imaging and MR fingerprinting,52-54

will increase sensitivity and should reduce scan times, although it
remains to be seen whether there will be widespread introduction of
these high-field machines into the clinic. The sensitivity of spec-
troscopic measurements of tissue metabolism can also be increased
by the use of hyperpolarized 13C-labeled cell metabolites. Nuclear
spin hyperpolarization of 13C-labeled substrates increases their
sensitivity to detection in the 13C MRS(I) experiment by 104-fold to
105-fold, allowing real-time imaging of metabolic fluxes in vivo. The
13C nuclear spins in a labeled substrate are first hyperpolarized in
a separate low temperature process (approximately 1.2 K) at high
magnetic fields; the frozen sample is then warmed rapidly to room
temperature and injected intravenously into the patient. The
hyperpolarized 13C signal can be used to image the location of the
labeled substrate in the body and its metabolic transformation into
other metabolites, although the transient nature of the hyper-
polarized 13C signal (the half-life in the body is approximately
30 seconds) means that only fast metabolic processes can be
studied over relatively limited spatial regions.55

Nevertheless, the technique has already translated to the clinic
with an initial study in prostate cancer,56 and studies are under way

on other cancers, including glioma. The majority of studies have
used pyruvate because it is rapidly taken up by cells and metabolized
and is a key metabolite that sits at the junction between glycolysis
and the tricarboxylic acid cycle (Fig 1). Early studies focused on
monitoring treatment response57 and disease progression58 in an-
imal models. Initial studies in glioma xenografts reported increased
[1-13C]lactate production from [1-13C]pyruvate in brain tumors
versus normal brain as a result of upregulation of aerobic glycol-
ysis.59 Lower [1-13C]lactate levels were found after treatment of
orthotopic glioblastoma xenografts with the mammalian target of
rapamycin inhibitor everolimus,60 and the efficacy of temozolomide
alone61 or in combination with a second-generation dual PI3K/
mammalian target of rapamycin inhibitor, voxtalisib,62 has been
demonstrated. The hyperpolarized [1-13C]lactate-to-[1-13C]pyru-
vate ratio has been proposed as a biomarker of response to ra-
diotherapy (Fig 2).63 The production of [1-13C]2-hydoxyglutarate,
after injection of hyperpolarized [1-13C]a-ketoglutarate has been
used to image IDH1 status64 in orthotopic xenografts, and the
conversion of hyperpolarized [1-13C] a-ketoglutarate to glutamate
was shown to be reduced in mutant IDH1 tumors.65

POSITRON EMISSION TOMOGRAPHY

Basic Principles
A short half-life positron-emitting isotope (eg, 18F, half-life

110 minutes; 11C, half-life 20 minutes) generated in a cyclotron is
incorporated into a tracer and then injected intravenously into the
patient. The emitted positron (antielectron) migrates a short
distance (typically less than 1 mm) before colliding with an
electron. The subsequent annihilation event results in the emission
of two 511 keV g-rays at almost exactly 180° with respect to each
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Fig 1. Schematic illustration of metabolic
pathways observable using hyperpolarized 13C-
labeled probes. [U-2H, U-13C]glucosemeasures
flux in glycolysis and the pentose phosphate
pathway (PPP). [1-13C] pyruvate exchanges the
hyperpolarized 13C label with the endogenous
lactate and alanine pools and is converted ir-
reversibly into CO2, which is in a rapid equi-
librium with bicarbonate. The label in [2-13C]
pyruvate is incorporated into acetyl-coenzyme
A and allows assessment of flux in the tri-
carboxylic acid cycle. [5-13C]glutamine can be
used to monitor glutaminolysis and [1-13C]
glutamate exchanges the hyperpolarized 13C
label with a-ketoglutarate. [1-13C]a-ketogluta-
rate can be used to probe reversible conversion
to glutamate and to 2-hydroxyglutarate. For
clarity, some intermediate metabolic steps are
not shown. ALT, alanine transaminase; AST,
aspartate transaminase; BCAT, branched chain
amino acid transaminase; CA, carbonic anhy-
drase; GLDH, glutamate dehydrogenase; GLS,
glutaminase; GS, glutamine synthetase; IDH1,
isocitrate dehydrogenase 1; LDH, lactate de-
hydrogenase; OAA, oxaloacetate; PC, pyruvate
carboxylase; PDH, pyruvate dehydrogenase.
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other. These are detected by a circular array of scintillation detectors
placed around the subject. If two detectors are struck effectively si-
multaneously, then one can deduce that the positron-emitting isotope
must lie on a line between these two detectors. By collecting data from
multiple annihilation events, back-projection reconstruction methods
can be used to generate an image of the location of the labeledmaterial
in the body. If attenuation of the g-rays by body tissues is corrected for,
the technique can generate quantitative images with picomolar
sensitivity. PET detector arrays are often used in conjunction with
computed tomography, which provides an anatomic image for po-
sitional reference. More recently, with the development of detectors
that are insensitive to the effects ofmagnetic fields, PET/MRmachines
have been introduced into the clinic.66 These combine the contrast
mechanisms available with MRI with the molecular information
provided by PETand promise to increase the specificity of the imaging
exam. For example, a decrease in tumor uptake of the glucose analog
[18F]fluorodeoxyglucose (FDG) may be a reflection of cell death or
a metabolic change in the tumor; by combining the FDG-PET exam
with DW-MRI measurements, it may be possible to distinguish be-
tween these two possibilities.

PET can be used for whole-body mapping of biologic pro-
cesses67 (Fig 3) and has been used in neuro-oncology when an-
atomic imaging is ambiguous for primary or differential diagnosis,
noninvasive grading, prognostication, surveillance after radio-
therapy, chemotherapy and surgery and for tumor delineation for
targeting biopsy, resection, and irradiation.75

The majority of PET studies in cancer have used the glucose
analog FDG, exploiting the high glycolytic demand of many tu-
mors. FDG is widely available but has suboptimal sensitivity in the
brain because of poor contrast between the tumor and surrounding
cortex and poor specificity because of uptake in nonmalignant
lesions.76 This has led to the development of improved PET tracers
for the brain, the most promising of which are the radiolabeled
amino acids. Although not yet approved for use in glioma by the
Food and Drug Administration in the United States, new clinical
guidelines in Europe recommend the use of amino acid PET tracers
in preference to FDG wherever possible.75

Radiolabeled Amino Acids
One of the most widely used radiolabeled amino acids is the

essential amino acid methionine, labeled with 11C, which is taken
up by the L-type amino acid transporters (LAT) 1 (SLC7A5) and 2

(SLC7A8) and incorporated into protein. Methionine showed
a better correlation with cell proliferation than FDG in gliomas.77

Amino acid PET in gliomas can be used to distinguish pseudo-
progressors from genuine treatment failure.78 However, the short
half-life of 11C requires a local cyclotron; therefore, to increase
availability, several fluorinated amino acid analogs have been de-
veloped, which can bemade at a remote cyclotron and shipped to the
imaging facility. The majority of these are not incorporated into
proteins and simply measure amino acid uptake. [18F]fluo-
roethyltyrosine (FET) and [18F]fluorodihydroxyphenylalanine are
substrates for LAT1 and LAT2 and are widely used in place of
methionine.72 FET has advantages over methionine and [18F]flu-
orodihydroxyphenylalanine in that there is less inflammatory and
striatal uptake, respectively,74 and, unlike the other amino acids, FET
can distinguish high- and low-grade gliomas on the basis of tracer
kinetics.78 4-18F-(2S,4R)-fluoroglutamine, which was developed to
image glutaminolysis, showed high levels of uptake in glioblastoma,
and it was suggested that it may be useful for patient management.68

A glutamate analog, (4S)-4-(3-[18F]fluoropropyl)-L-glutamate, with
affinity for the cystine/glutamate (SLC7A11) transporter, gave high
levels of contrast in human patients with primary and secondary
brain tumors. (4S)-4-(3-[18F]fluoropropyl)-L-glutamate potentially
could be used to assess response to oxidative stress andmay therefore
have a role in therapy selection.69 Trans-1-amino-3-[18F]-
fluorocyclobutane-carboxylic acid is a leucine analog that shows
high uptake in glioma and was shown to be better able to delineate
tumor spread than CE-MRI.71

Other Metabolic Tracers
The nucleoside analog, 39-deoxy-39[18F]-fluorothymidine,

which was developed to image tumor cell proliferation, has
been used for imaging early treatment response and predicting
clinical outcome in brain tumors.79 However, there are instances
where 39-deoxy-39[18F]-fluorothymidine does not correlate with
proliferation rate.80 Human glioblastomas have been shown to
oxidize acetate, which was suggested to be an important bio-
energetic and biosynthetic substrate.81 11C-acetate can be used
to assess the capacity for mitochondrial oxidation and tumor
fatty acid synthesis82 and has been suggested to be a poten-
tially useful tracer for detecting and grading glioblastoma.72

[18F]fluoromisonidazole is reduced and retained by viable
hypoxic cancer cells and is used for defining hypoxic volumes and for
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Fig 2. Representative images of (C) hyper-
polarized [1-13C]pyruvate and (D) [1-13C]lactate
in a C6 glioma-bearing animal before (top)
and 96 hours after radiotherapy (bottom). The
metabolic images are shown in false color,
overlaid on the 1H image of tissue anatomy. (A)
A chemical shift image data set and (B) a con-
trast agent enhanced proton image are shown.
The tumor is visible as a contrast agent–
enhancing region at the top of the brain. (D) The
[1-13C]lactate signal from the tumor was re-
duced after exposure to 15 Gy radiation.
Reprinted with permission from Day et al.63
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noninvasive grading of glioma.83 An attractive application is esca-
lating radiotherapy doses to [18F]fluoromisonidazole-positive tumor
regions, which are hypoxic and therefore likely to be radioresistant.84

Studies are under way to determine whether there is any clinical
benefit from this approach.85

In conclusion, imaging techniques, particularly more so-
phisticated functional or molecular imaging techniques, are per-
ceived as being expensive. However, modern targeted therapies are
also expensive; for example, treatment of patients with glioma with
a course of bevacizumab cost $80,000 in 2015.86 If imaging can
distinguish responders from nonresponders early during the
course of treatment, there are potential financial benefits for the
health care system, as well as welfare benefits for the patient.
Although imaging costs can be brought down by centralization, for
example, the production of FDG at a limited number of centers,
the distributed nature of the imaging facilities themselves means
that it is difficult to reduce costs further. Nevertheless, if the
imaging technique addresses an unmet clinical need, then health
care systems are prepared to meet this; witness the widespread
implementation of FDG-PET in oncology. The requirement to

have multiple local on-site imaging facilities brings the additional
problems of standardization and validation when introducing
a new imaging technique into the clinic.87

Imaging, and in particular, molecular imaging, is likely to play
an increasingly important role in guiding treatment as more
targeted therapies transition to the clinic.88 However, imaging of
early treatment response is only one way in which we can select the
treatment of individual patients. Pretreatment genomic analysis of
tumor biopsies or of circulating tumor DNA is also likely to play an
increasingly important role in treatment selection. Until relatively
recently, imaging of tumor size was the only way to obtain an
indication of treatment response. The demonstration that response
can also be detected through the release of circulating tumor
DNA,89 something that is relatively easy to collect throughout the
course of treatment, requires a consideration of how imaging can
be used alongside measurement of new and emerging circulating
biomarkers in the future. Ultimately, imaging will only be used
widely and routinely if it addresses an unmet clinical need that
cannot be satisfied by competing technologies. In this respect, the
capability of imaging is unique when used to guide surgery or
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biopsy, or spatially targeted treatments, such as intensity-
modulated radiotherapy.
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