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The Miles-Howard theorem states that a necessary condition for normal-mode insta-
bility in parallel, inviscid, steady stratified shear flows is that the minimum gradient
Richardson number, Rig,min is less than 1/4 somewhere in the flow. However, the non-
normality of the Navier-Stokes and buoyancy equations may allow for substantial per-
turbation energy growth at finite times. We calculate numerically the linear optimal
perturbations which maximize the perturbation energy gain for a stably-stratified shear
layer consisting of a hyperbolic tangent velocity distribution with characteristic veloc-
ity U∗0 and a uniform stratification with constant buoyancy frequency N∗0 . We vary the
bulk Richardson number Rib = N∗20 h∗2/U∗0 (corresponding to Rig,min) between 0.20
and 0.50 and the Reynolds numbers Re = U∗0h

∗/ν∗ between 1000 and 8000, with the
Prandtl number held fixed at Pr = 1. We find the transient growth of non-normal per-
turbations may be sufficient to trigger strongly nonlinear effects and breakdown into
small-scale structures, thereby leading to enhanced dissipation and non-trivial modifica-
tion of the background flow even in flows where Rig,min > 1/4. We show that the effects
of nonlinearity are more significant for flows with higher Re, lower Rib, and higher initial
perturbation amplitude E0. Enhanced kinetic energy dissipation is observed for higher-
Re and lower-Rib flows, and the mixing efficiency, quantified here by εp/(εp + εk) where
εp is the dissipation rate of density variance and εk is the dissipation rate of kinetic
energy, is found to be approximately 0.35 for the most strongly nonlinear cases.
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1. Introduction

Vertical mixing in the stably-stratified ocean influences the fluxes of heat, carbon, nu-
trients, and other important tracers, and couples with the global overturning circulation
(Wunsch & Ferrari 2004; Kuhlbrodt et al. 2007). Turbulence and mixing in the stably-
stratified ocean interior has traditionally been associated with instability of the shear
associated with internal waves generated via the action of tides interacting with seafloor
bathymetry and winds blowing over the sea surface. Under certain circumstances, such
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stratified shear flows may be susceptible to a Kelvin-Helmholtz-type instability, leading
to a burst of enhanced mixing and dissipation (Garrett 2003; Smyth & Moum 2012).
Regions of turbulence in the ocean are unsteady in time and inhomogeneous in space,
leading to difficulties in measuring and quantifying mixing (Ivey et al. 2008).

The Miles-Howard theorem quantifies the stability of parallel inviscid steady shear
flows to linear instability via the gradient Richardson number, Rig = N2/S2, which is
the ratio between the stabilizing effects of stratification (represented by the buoyancy
frequency N) and the destabilizing effects of shear (given by S, the vertical shear). Flows
with Rig > 1/4 everywhere are stable to linear normal-mode perturbations in a steady
flow; having Rig < 1/4 somewhere in the flow is a necessary (though not sufficient)
condition for the KH instability (Miles 1961; Howard 1961). In flows which do exhibit in-
stabilities such as the canonical ‘Kelvin-Helmholtz’ (KH) instability of inflectional shear
layers, typically the initial perturbations grow and saturate, become susceptible to sec-
ondary instabilities, and eventually break down into small-scale turbulence and mixing
via a ‘zoo’ of secondary instabilities (see e.g. Peltier & Caulfield 2003; Mashayek & Peltier
2012). However, it is very important to appreciate that for such free shear layers, the tur-
bulence which arises is inherently transient. Due to the enhanced dissipation associated
with the turbulence, these flows inevitably relaminarise eventually, even in the limit as
Rig → 0 unless the shear is reinforced by some external mechanism.

Mixing is an inherently small-scale process, not resolved in large-scale circulation mod-
els, and so mixing parameterizations are required. Often, these parameterizations employ
a critical Richardson number, below which the effects of turbulence are turned on. For
example, a critical value of 1/4, corresponding to the Miles-Howard stability criterion,
is sometimes employed (Mellor & Yamada 1982; Price et al. 1986; Kunze et al. 1990).
However, the most appropriate choice of this critical value, and indeed whether such a
critical value exists at all, is unclear (Polzin 1996). In particular, despite the correla-
tion between enhanced dissipation with low-Ri flows, there is observational (Polzin 1996;
Mack & Schoeberlein 2004), experimental (Augier et al. 2014), and numerical evidence
(Riley & deBruynKops 2003) indicating that increased dissipation may also be found at
higher Richardson numbers. It should be noted that these higher dissipation values are
not necessarily in violation of the Miles-Howard theorem, owing to differences between
the idealized flow considered in deriving the theorem and the more complicated flows
possible in the ocean and laboratory, as well as limitations in measurements. However,
they may also suggest that mechanisms other than the classical normal-mode instabili-
ties may be at play in triggering transition to turbulence and mixing in stably stratified
fluids.

More recent work has shown that it is possible for disturbances to grow in stratified
flows even if the Miles-Howard stability criterion is met and all normal-mode pertur-
bations are stable (Farrell & Ioannou 1993b; Kaminski et al. 2014). Owing to the non-
normality of the Navier-Stokes equations, it is possible for perturbations to grow at finite
times and then subsequently decay in these ostensibly ‘stable’ flows (Trefethen et al. 1993;
Farrell & Ioannou 1993a). These ‘optimal perturbations’ (i.e. the perturbations associ-
ated with maximum energy growth over some finite time horizon) are able to exploit
linear transient growth mechanisms such as the Orr mechanism (Orr 1907) and the lift-
up mechanism (Ellingsen & Palm 1975) to amplify perturbation amplitude over finite
time horizons. Even in flows which admit a normal-mode instability, the perturbation
which grows the most at finite times may not be the predicted normal-mode (Tearle 2004;
Arratia et al. 2013). Farrell & Ioannou (1993b), in investigating a uniformly-stratified
constant shear flow, found that at finite times perturbations were able to grow even
for flows stable in the Miles-Howard sense. In fact, though the maximum perturbation
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growth decreased with increasing stratification, no particular significance was associated
with the critical value of Ri = 1/4. More recently, as reported in Kaminski et al. (2014),
we computed the linear optimal perturbations of a flow with uniform background strat-
ification and hyperbolic tangent shear. We showed that while unstable normal-mode
perturbations dominated at long target times, at shorter target times the perturbations
leading to maximum growth were not necessarily the normal modes predicted by the
Taylor-Goldstein equation. Additionally, O(10 − 100) linear perturbation energy gain
could be attained even in flows with no predicted unstable normal modes. As we will
show here, higher Reynolds numbers can lead to even larger transient growth.

In addition to linear non-normal growth, it is also possible to find nonlinear optimal
perturbations for a given base flow. Nonlinear optimal perturbations have been found for
a variety of unstratified flows, including plane Couette flow (Rabin et al. 2012; Duguet
et al. 2013), pipe flow (Pringle & Kerswell 2010), and boundary layers (Cherubini et al.
2015). Recently, nonlinear optimal perturbations have also been identified for stably
stratified plane Couette flow, where the presence of stratification is shown to lead to
altered structures compared to their unstratified counterparts (Eaves & Caulfield 2015).
In general, the structure of the nonlinear optimal perturbations closely matches that of
the linear optimal perturbations at small initial amplitude, and becomes increasingly
localized in space as the initial perturbation amplitude is increased, until some critical
amplitude at which transition to turbulence is able to occur. Nonlinear optimal perturba-
tions have been shown to unpack and grow via a sequence of essentially linear transient
growth mechanisms which communicate via nonlinearity as described in Duguet et al.
(2013) and Kerswell et al. (2014).

In free shear flows at high Reynolds number which are susceptible to primary instabil-
ities of ‘Kelvin-Helmholtz’ type, highly disordered motions with substantially enhanced
dissipation are commonly observed to occur due to the development and subsequent
break down of secondary instabilities on the primary Kelvin-Helmholtz billow (Caulfield
& Peltier 2000). However such a turbulent phase in such flows is inevitably transient, as
the enhanced dissipation extracts energy from the background flow, leading to eventual
laminarization in the absence of any mechanisms by which the background shear is re-
inforced. Nevertheless, the onset of such transient turbulence is commonly referred to as
‘transition’ in such flows, and is associated in stratified shear flows at sufficiently high
Re with the most dynamically significant irreversible mixing of the density field.

Given the substantial linear perturbation growth predicted for finite times, it is natural
to question what the fate of these perturbations would be if allowed to evolve in a
fully nonlinear fashion. In particular, we are interested in whether the transient growth
mechanisms may allow a transition to transition to (inevitably transient) turbulence even
when the flow is sufficiently strongly stratified such that the transition is not mediated
by the growth of a linear instability. Since the concept of being ‘strongly stratified’ is
associated with Rig being sufficiently large everywhere in the flow domain, we shall refer
to such a transition as an ‘Ri−subcritical transition’, relying as it does on the eventual
development of a finite amplitude perturbation sufficient to trigger transient turbulent
motions. It is important to stress that this is not to be confused with the concept of
subcritical transition in bounded unstratified shear flows such as pressure-driven flows
in pipes or in plane Poiseuille flow, or plane Couette flow between two parallel relatively
moving planes, where the ensuing flow is sustained in a statistically-steady turbulent
state through the continued forcing.

Exploring this key issue of Ri−subcritical transition is the central aim of this paper.
We find that the degree to which nonlinear effects are important in the evolution of
the linear optimal perturbations is increased for higher Re, higher initial perturbation
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amplitude E0, and lower Rib. In some cases, the perturbations can grow sufficiently large
to trigger the onset of secondary instabilities and break down into transient turbulent
motions, characterised by markedly enhanced dissipation rates despite the base flow being
linearly stable to a primary Kelvin-Helmholtz instability, and so we can indeed observe
an Ri−subcritical transition to turbulence, in the above-defined sense.

The remainder of the paper is organized as follows. In section 2, we describe the
method by which the linear optimal perturbations are computed for a range of Richardson
and Reynolds numbers. The resulting linear optimal perturbations for different Re are
presented in section 3.1. These perturbations are then given finite initial amplitude and
used as initial conditions for fully nonlinear direct numerical simulations. A qualitative
description of the computed nonlinear flow evolution is presented in section 3.2, and the
evolution of mean quantities and turbulent energetics are presented in sections 3.3 and
3.4, respectively. We discuss our results and draw conclusions in section 4.

2. Formulation

The base flow we consider is a stably-stratified shear flow with velocity U∗(z∗) and
buoyancy B∗(z∗) given by

U∗(z∗) = U∗0 tanh

(
z∗

h∗

)
, B∗(z∗) = N∗20 z∗ , (2.1)

in which dimensional quantities are denoted by an asterisk. To nondimensionalize, we
scale lengths by the half shear layer width h∗, velocities by U∗0 , times by the advective
time scale h∗/U∗0 , and buoyancy by N∗20 h∗. This gives the nondimensional base flow

U(z) = tanh (z) , B(z) = z . (2.2)

Using these scales, three nondimensional parameters which control the flow evolution can
be formed, namely the Reynolds number Re, Prandtl number Pr , and bulk Richardson
number Rib, defined as

Re =
U∗0h

∗

ν∗
, Pr =

ν∗

κ∗
, Rib =

N∗20 h∗2

U∗20
. (2.3)

For the background flow described by (2.2), the minimum gradient Richardson number
occurs at the centre of the shear layer and is equivalent to the value of the bulk Richardson
number, i.e. Rig,min = Rig(z = 0) = Rib. We always choose Pr = 1 for computational
simplicity (as higher values of Pr require higher resolution of the scalar field).

2.1. Linear optimal perturbations

The behaviour of linear perturbations to the background flow given by (2.2) is described
by the Boussinesq Navier-Stokes equations, conservation of buoyancy, and mass continu-
ity linearized about the base flow. In nondimensional form, the perturbation governing
equations are given by

∂ui
∂t

+ uj
∂Ui

∂xj
+ Uj

∂ui
∂xj

= − ∂p

∂xi
+Ribbδi3 +

1

Re

∂2ui
∂xj∂xj

, (2.4)

∂b

∂t
+ uj

∂B

∂xj
+ Uj

∂b

∂xj
=

1

RePr

∂2b

∂xj∂xj
, (2.5)

∂ui
∂xi

= 0 , (2.6)
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where u, b, and p are the velocity, buoyancy, and pressure perturbations, respectively.
We seek the linear optimal perturbations u0(x, y, z, t) and b0(x, y, z, t) for the back-

ground flow (2.2), i.e. the perturbations which grow the most over a finite time horizon.
As described in Kaminski et al. (2014), the problem may be treated as an optimization
problem for total perturbation energy gain,

G(T ) =
1
2 (〈u,u〉+Rib〈b, b〉)

1
2 (〈u0,u0〉+Rib〈b0, b0〉)

, (2.7)

over the finite time interval 0 to T , in which the angle brackets denote the inner product
over the volume, 〈f ,g〉 = 1/V

∫
V

f · g dV . An augmented Lagrangian can be established
which constrains perturbation evolution to follow the governing equations, defined as

L =
〈u(T ),u(T )〉+Rib〈b(T ), b(T )〉

〈u0,u0〉+Rib〈b0, b0〉
(2.8)

−
[
∂tui + uj∂jUi + Uj∂jui + ∂ip−Re−1∂j∂jui −Ribbδi3, vi

]
−
[
∂tb+ uj∂jB + Uj∂jb− (RePr)−1∂j∂jb, ϕ

]
− [∂iui, q]

−〈ui(0)− u0i, v0i〉 − 〈b(0)− b0, ϕ0〉 .

In the above, the square brackets denote the spatio-temporal inner product, [f ,g] =∫ T

0
〈f ,g〉dt. Variations of (2.8) with respect to the forward or “direct” state variables u,

b, and p yield the corresponding adjoint equations,

∂vi
∂t

= vj
∂Uj

∂xi
− ∂

∂xj
(Ujvi) + ϕ

∂B

∂xi
− ∂q

∂xi
− 1

Re

∂2vi
∂xj∂xj

, (2.9)

∂ϕ

∂t
= − ∂

∂xj
(Ujϕ)−Ribv3 −

1

RePr

∂2ϕ

∂xj∂xj
, (2.10)

∂vi
∂xi

= 0 , (2.11)

which govern the evolution of the adjoint velocity v, adjoint buoyancy ϕ, and adjoint
pressure q, as well as conditions to be satisfied at times t = 0 and t = T . The direct
or forward equations (2.4)-(2.6) and adjoint equations (2.9)-(2.11) are then used in a
direct-adjoint looping (DAL) framework to solve for the linear optimal perturbations
(see Kaminski et al. (2014) for more details of the algorithmic approach).

The flow domain used to compute the linear optimal perturbations has nondimensional
size (Lx, Ly, Lz) = (9.44, 15.0, 60.0), with a double hyperbolic-tangent shear layer velocity
profile and uniform stable background stratification. This corresponds to the base flow
described in (2.2), with an additional shear layer of the opposite sign added above in
order to impose periodicity for computational convenience (see also equation (2.2) of
Kaminski et al. (2014)). Accordingly, the vertical extent for this calculation is twice
that used in the fully nonlinear simulations described below. The two shear layers are
sufficiently separated that they may be considered independent. The horizontal extent is
chosen to be one wavelength of the most unstable mode predicted by the Taylor-Goldstein
equation for Rib = 0.20. We choose this extent as our base choice for two reasons. First,
consistently with the previous related studies of Tearle (2004); Arratia et al. (2013) and
Kaminski et al. (2014), for sufficiently long target times in a flow with a linear instability,
the optimal perturbation has the same streamwise extent as the most unstable normal
mode. Second, our focus is to determine whether the nonlinear time-dependent evolution
arising from linear optimal perturbations can trigger (transient) transition. Therefore,
it seems natural for ease of comparison to choose the same streamwise extent as Rib
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is varied. Additional optimal perturbations are computed with larger horizontal and
spanwise extents as shown in appendix A, in order to ascertain the importance of domain
size on the computed gain. Particular attention is paid to the optimal perturbations
computed for the case with Rib = 0.30 and the larger horizontal extent (Lx, Ly, Lz) =
(12.6, 15.0, 60.0) based on two wavelengths of the perturbation structure identified to
have optimal linear gain at this value of Rib as described in Kaminski et al. (2014).

2.2. Fully nonlinear simulations

Direct numerical simulations are carried out by solving the full nonlinear Boussinesq
Navier-Stokes and buoyancy conservation equations. The temporal discretization em-
ploys a third-order mixed Runge-Kutta-Wray/Crank-Nicolson scheme, in which the vis-
cous terms are treated semi-implicitly and the advective terms are treated explicitly (as
described in Taylor (2008)). The horizontal directions are periodic and treated pseu-
dospectrally. In the vertical direction, a second-order finite-difference discretization is
used, and the grid points are clustered around the shear layer in the centre of the domain.
Sponge layers are used at the top and bottom of the domain to mimic open boundaries.

Linear optimal perturbations are computed as described above, and the structure from
the bottom shear layer is subsequently interpolated onto the clustered grid. These pertur-
bations are then given a finite initial amplitude, added onto the background flow (2.2)
and used as an initial condition for the direct numerical simulations. Noise with one-
tenth the initial perturbation amplitude is also added in order to allow for the possible
development of secondary instabilities, and is centred on the shear layer with a Gaussian
profile in z. The noise is white up to a cutoff wavenumber corresponding to the maximum
wavenumber of the smallest grid in table 1, so as to use the same noise spectrum across
all simulations.

Table 1 gives the details of the simulations considered throughout this paper. The
Prandtl number is set to Pr = 1 for all simulations, while Re and Rib are varied. The
initial perturbation amplitude E0 (nondimensionalized by U∗20 /h∗2) ranges from 5×10−6

to 5 × 10−5. The grid spacing is determined by the minimum Kolmogorov scale ηmin

such that ∆xmin 6 2.1ηmin, as suggested by Pope (2000). The domain size is set to
(Lx, Ly, Lz) = (9.44, 15.0, 30.0) (except for the case Rib = 0.30, in which a domain of
size (Lx, Ly, Lz) = (12.6, 15.0, 30.0) is also considered).

3. Results

3.1. Linear optimal perturbations

Linear optimal perturbations are computed for Re = 1000 − 8000, Rib = 0.20, 0.30,
0.35, 0.40, 0.50, and Pr = 1, with a target time of T = 15, as shown in figure 1.
We choose to focus on this particular value of T as it is to the target time for which
maximum transient growth occurs as shown in Kaminski et al. (2014). Crucially and
conveniently, at this target time, the optimal perturbations are two-dimensional with
a horizontal structure corresponding to one or two wavelengths of the domain chosen
here. The perturbations take the form of rolls tilted against the background shear which
subsequently exploit the Orr mechanism for transient growth as they are tilted upwards
over the time interval (0, T ) (Orr 1907). Some of the perturbation energy may be seen
in wave-like structures outside of the shear layer for more strongly stratified background
flows. The total perturbation energy gain decreases with increasing Rib, as seen by Farrell
& Ioannou (1993a) and Kaminski et al. (2014), though O(101 − 102) energy growth is
observed even for the flows with no normal-mode instability. In addition, the optimal
perturbation gain increases with increasing Re; for Rib = 0.40, the optimal gain at
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Re Rib Lx E0 (Nx, Ny, Nz)

1000 0.20 9.44 5E-6, 2E-5, 5E-5 (192, 192, 301), (256, 256, 401), (256, 256, 401)
1000 0.30 9.44 5E-6, 2E-5, 5E-5 (128, 128, 201), (128, 128, 201), (128, 128, 201)

1000 0.30 12.6 5E-6, 2E-5 a, 5E-5 (128, 128, 201), (192, 192, 301), (192, 192, 301)
1000 0.35 9.44 5E-6, 2E-5, 5E-5 (128, 128, 201), (192, 192, 301), (192, 192, 301)

1000 0.40 9.44 5E-6, 2E-5 b, 5E-5 (128, 128, 201), (128, 128, 201), (192, 192, 301)
1000 0.50 9.44 5E-6, 2E-5, 5E-5 (128, 128, 201), (128, 128, 201), (192, 192, 301)

2000 0.20 9.44 5E-6, 2E-5, 5E-5 (256, 256, 401), (384, 384, 601), (512, 512, 801)
2000 0.30 9.44 5E-6, 2E-5, 5E-5 (192, 192, 301), (192, 192, 301), (256, 256, 401)

2000 0.30 12.6 5E-6, 2E-5 c, 5E-5 (256, 256, 401), (256, 256, 401), (384, 384, 601)
2000 0.35 9.44 5E-6, 2E-5, 5E-5 (192, 192, 301), (256, 256, 401), (384, 384, 601)

2000 0.40 9.44 5E-6, 2E-5 d, 5E-5 (192, 192, 301), (256, 256, 401), (256, 256, 401)
2000 0.50 9.44 5E-6, 2E-5, 5E-5 (192, 192, 301), (256, 256, 401), (256, 256, 401)

4000 0.30 9.44 5E-6, 2E-5 (384, 384, 601), (384, 384, 601)

4000 0.30 12.6 5E-6, 2E-5 e (384, 384, 601), (384, 384, 601)

4000 0.40 9.44 5E-6, 2E-5 f (384, 384, 601), (384, 384, 601)
6000 0.40 9.44 2E-6, 5E-6, 2E-5 (384, 384, 601), (256, 384, 601), (384, 512, 801)
8000 0.40 9.44 5E-6, 2E-5 (384, 512, 801), (384, 600, 801)

Table 1. Parameters and grid sizes for direct numerical simulations. Boxed cases denote the
specific cases considered in figures 4-8, and superscripts a-g correspond to the individual panels
a-g in figures 5-8.

T = 15 more than doubles between Re = 1000 and Re = 4000. This is consistent
with the optimal gains computed for unstratified shear flows, in which maximum gain
increased markedly with Re (Arratia et al. 2013).

Figure 1 also shows that the maximum gain is sensitive to the domain size; the gains
corresponding to Rib = 0.30 in the larger domain (Lx = 12.6) are higher than those
for the standard domain (Lx = 9.44). This increase in gain is due to the quantization
of the perturbation structure – only discrete wavelengths may fit into the domain, and
so the optimal structure (across all streamwise wavenumbers) may be suppressed by the
imposed periodicity (associated with the most unstable linear normal mode at Rib = 0.2).
Thus, it is important to note that there may be structures in different-sized domains
that would give somewhat larger (essentially linear) perturbation energy gain compared
to the perturbations computed here, though once again we are principally interested in
the ensuing inherently nonlinear dynamics. Appendix A shows the result of varying the
horizontal and spanwise domain sizes in more detail. However, the fact remains that the
transient growth mechanism leads to at least the O(101 − 102) energy gain shown in
figure 1, with the possibility of higher growth attainable for differently-sized domains.

The structure of the linear optimal perturbations for Rib = 0.40 and Re = 1000 and
4000 is shown in figure 2. The same colour scale is used for both Re values for compar-
ison purposes. Both perturbations have the same initial energy, though the energy and
corresponding velocity amplitudes themselves are arbitrary as these are linear solutions.
While the perturbation in both cases takes the form of rolls tilted against the background
shear described above, the lower-Re case shows evidence of wavelike structures outside
of the shear layer as described in Kaminski et al. (2014). For the higher-Re case, the rolls
have a smaller horizontal scale and the wavelike structures are absent. Increasing the
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Figure 1. Optimal linear gain for a target time of T = 15 for (a) varying Rib and (b) vary-
ing Re with Rib = 0.40. The × symbols in (a) denote the gains associated with the optimal
perturbations with a larger value of Lx.
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Figure 2. Vertical velocity of linear optimal perturbations for Rib = 0.40, T = 15, and (a)
Re = 1000 and (b) Re = 4000. The same colour scheme is used for both and the values in (b)
saturate the colour bar.

Reynolds number changes the structure of the linear optimal perturbation in addition to
the maximum gain attained at the target time.
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3.2. Nonlinear evolution for Re = 4000, Rib = 0.40, and E0 = 2× 10−5

We now shift our focus to the fully nonlinear results. For the nonlinear simulations, we
consider the evolution of the mean quantities, given by the horizontally-averaged fields
u(z, t) and b(z, t), and the fluctuations away from the mean, u′(x, y, z, t) = (u′, v′, w′)
and b′(x, y, z, t). The horizontal average, denoted by an overbar, is defined as

f =
1

Lx

1

Ly

∫ Ly

0

∫ Lx

0

f dx dy . (3.1)

If the perturbations evolve entirely linearly, we expect the mean terms to correspond to
the background expressions U and B, defined in (2.2), and the evolution of u′ and b′ to
corrspond to the linear optimal perturbations u and b described above. Conversely, as
nonlinear effects become important, u, b, u′, and b′ are expected to deviate from their
linear counterparts.

In order to gain a qualitative understanding of how nonlinearity may affect the evo-
lution of the optimal perturbations, figure 3 shows an isosurface of total buoyancy,
b(z, t) + b′(x, y, z, t), at the centre of the shear layer as well as the vertical component of
vorticity, ωz = ∂v′/∂x− ∂u′/∂y, for Re = 4000, Rib = 0.40, and E0 = 2× 10−5 at four
times. At early times (figure 3(a)), the additive noise obscures the small-amplitude two-
dimensional rolls of the optimal perturbation. The rolls are tilted upwards by the mean
shear, and if sufficient growth is attained they develop into ‘billows’ (figure 3(b)). The
billow structure then becomes susceptible to secondary instabilities as highlighted by the
oblique structures in vorticity in figure 3(c), and the flow breaks down into small scales
which then dissipate and mix the mean flow (figure 3(d)). The billows and subsequent
break down into turbulence are reminiscent of the nonlinear evolution of the classical
Kelvin-Helmholtz instability: formation of two-dimensional billows (e.g. Thorpe 1973)
followed by subsequent onset of secondary instabilities leading to (inherently transient)
turbulence onset (e.g. Mashayek & Peltier 2012). However, it should be emphasized that
the development of the billows observed in figure 3 arise not due to a classical normal-
mode instability as the base flow is linearly stable, but rather through a transient Orr-
type growth triggering the development of inherently nonlinear, yet still recognisably
billow-like structures.

3.3. Evolution of mean quantities

We now consider the total perturbation energy evolution,

E(t) =
〈u′(t),u′(t)〉+Rib〈b′(t), b′(t)〉

2
, (3.2)

with respect to time, where the angle brackets denote the same inner product as in (2.7).
Figure 4 shows the fully nonlinear perturbation energy evolution as well as corresponding
energy evolution for a perturbation with the same initial amplitude evolving in an entirely
linear manner (as in the computation of the linear optimal perturbations, described
above). The simulations shown in figure 4 have Rib = 0.30, Lx = 12.6, corresponding
to perturbations which experience large gain on a base flow which is relatively close to
the Miles-Howard criterion, and Rib = 0.40, Lx = 9.44, corresponding to perturbations
growing on a more strongly-stratified base flow. The initial perturbation amplitude is
E0 = 2× 10−5, and a range of Reynolds numbers, Re = 1000, 2000, and 4000 are shown.
These parameters are chosen in order to highlight a range of different behaviours across
the various simulations described in table 1.

The higher gains predicted by figure 1 can be seen in the energy evolution shown in
figure 4. In general, the nonlinear flow evolution begins with a decrease in perturbation
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(a) (b)

(c) (d)

Figure 3. Evolution of total buoyancy b(z, t)+b′(x, y, z, t) through centre of shear layer (isosur-
face) and vorticity ωz = ∂v′/∂x−∂u′/∂y (colour) for Re = 4000, Rib = 0.40, and E0 = 2×10−5.
Snapshots of the flow are shown at (a) t = 6.0, (b) t = 12.2, (c) t = 24.4, and (d) t = 36.7. The
region shown is z = −2.5 to z = 2.5, and the aspect ratio has been stretched by a factor of two
in the vertical to better show the detail of the evolving flow.

amplitude as the additive noise decays. This is followed by a period of linear perturbation
energy growth, in which the perturbations extract energy from the background shear flow
via the stratified Orr mechanism, as described by Kaminski et al. (2014). Eventually,
nonlinear effects become important and the nonlinear perturbation energy saturates,
reaching a lower peak amplitude than the purely linear energy evolution. The energy
decays at later times in both the linear and nonlinear cases.

In general, the cases with lower initial amplitude E0, lower Re, and higher Rib more
closely follow the linear flow evolution of the computed optimal perturbations. Conversely,
cases with higher E0, higher Re, and lower Rib generally show a more dramatic deviation
from the linear case, with nonlinear saturation happening earlier in the flow evolution.
The comparison between the linear and nonlinear energy evolution indicates when non-
linear effects start to become important, both in terms of initial amplitude and time.
It should be emphasized that even in cases in which nonlinear saturation is significant
(e.g. figure 4(c)), this saturation only occurs after an extended period of quasi-linear per-
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Figure 4. Time evolution of total perturbation energy E(t) as defined in (3.2) for (a) Re = 1000,
(b) Re = 2000, and (c) Re = 4000. The times corresponding to the flow snapshots shown in
figure 3 are indicated by asterisks in (c).

turbation growth, indicating that it is the linear growth mechanism leading to the growth
in perturbation energy, rather than some nonlinear response to a large perturbation.

We can examine further the evolution of the optimal perturbation and the subsequent
secondary instabilities by considering different components of the perturbation energy.
For instance, we can consider the relative contributions of two-dimensional (spanwise-
averaged) motions, associated with the optimal perturbations, and of inherently three-
dimensional motions, associated with the observed secondary instabilities and subsequent
small-scale features which arise. By writing the fluctuation velocity and buoyancy as

u′ = u′2D + u′3D and b′ = b′2D + b′3D (3.3)

where u′2D = 1/Ly

∫ Ly

0
u′ dy and b′2D = 1/Ly

∫ Ly

0
b′ dy, we can then define

E2D =
〈u′2D,u′2D〉+Rib〈b′2D, b′2D〉

2
and E3D =

〈u′3D,u′3D〉+Rib〈b′3D, b′3D〉
2

(3.4)

as the energy contributions from two- and three-dimensional motions, respectively. Fig-
ure 5(a) and (b) show the time evolution of E2D and E3D for the cases with Rib = 0.40,
E0 = 2×10−5, and Re = 2000 to 8000. In the case of Re = 2000, almost all of the pertur-
bation energy is contained in the two-dimensional motions. However, for higher values of
Re, there is a clear onset of three-dimensional motion beginning at times around t ∼ 20,
when the secondary instabilities themselves onset (as seen qualitatively in figure 3(b)).

The observed three-dimensionalization of the flow is further supported by decomposing
the fluctuation energy budget into terms corresponding to the streamwise, spanwise, and
vertical velocities, as well as the buoyancy, i.e.

E =
〈u′,u′〉+Rib〈b′, b′〉

2
=
〈u′, u′〉

2
+
〈v′, v′〉

2
+
〈w′, w′〉

2
+
Rib〈b′, b′〉

2
. (3.5)

Panels (c)-(f) of figure 5 show the contribution of each of these components to the over-
all energy evolution. It is clear that as E3D increases, so does the component owing
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Figure 5. Perturbation energy by component for Rib = 0.40, E0 = 2 × 10−5, and varying
Re. (a) Two-dimensional component of energy, E2D(t). (b) Three-dimensional component of
energy, E3D(t). (c) Streamwise velocity component, 〈u′, u′〉/2. (d) Spanwise velocity compo-
nent, 〈v′, v′〉/2. (e) Vertical velocity component, 〈w′, w′〉/2. (f) Potential energy component,
Rib〈b′, b′〉/2.

to the spanwise fluctuation velocity for Re > 4000 – the flow is becoming increas-
ingly three-dimensional both in spatial structure and in velocity component. This three-
dimensionalization of the flow has been identified as an important step in the transition
process for stratified shear flows (Caulfield & Peltier 2000).

Figure 6 shows the evolution of the mean squared buoyancy frequency, defined as

N∗2

N∗20
=
∂b

∂z
, (3.6)

in the vicinity of the shear layer at a series of times over the course of the flow evolution.
The cases shown correspond to the same nonlinear simulations as those shown in figure 4.
For Re = 1000 and Rib = 0.40 (figure 6(b)), there is very little modification of the
background stratification, consistent with the energy evolution shown in figure 4(a): the
linear and nonlinear simulations evolve very similarly, indicating that the perturbation
evolution in this case is primarily linear. Thus, little modification of the mean flow would
be expected in this case, as observed.

For all other cases shown in figure 6, the evolution of the mean stratification shows the
signature of localized mixing. A layer of decreased stratification is surrounded by layers of
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enhanced stratification. The layered structure is similar to that resulting from classical
Kelvin-Helmholtz instability (Klaassen & Peltier 1985; Smyth et al. 2001; Salehipour
et al. 2016). The layer structure is strongest at t = 15 − 25 (at which time the flow
has noticeably deviated from the linear evolution in figure 4), after which further flow
evolution and diffusion act to remove the layer structure and return the mean flow to
its initial uniform stratification. For Re = 1000 and Rib = 0.30 (figure 6(a)) and for
Re = 2000 and Rib = 0.40 (figure 6(d)), the mean stratification evolves smoothly and
is relatively symmetric in the vertical at later times. For the higher-Re flows shown in
figure 6(c,e,f), not only is the layering much more pronounced, but the structure of the
mean stratification becomes much more complicated at later times as a result of the more
vigorous secondary instabilities seen in these flows.

Next, we examine the mean gradient Richardson number of the flow, defined as

Rig =
∂b/∂z

(∂u/∂z)
2 , (3.7)

where the overbar denotes the horizontal average used in (3.1). While the local gradient
Richardson number, N2/S2, varies spatially, this mean quantity gives an overall picture
of the stability of the shear layer as the initial perturbation evolves. Figure 7 shows the
evolution of the mean gradient Richardson number around the centre of the shear layer
for the same simulations as considered in figures 4 and 6.

In the Re = 1000, Rib = 0.40 case, where very little modification of the background
stratification was observed, the mean gradient Richardson number gradually increases as
the mean flow diffuses outwards. In all other cases the evolution of the mean gradient
Richardson number is more complicated. This is particularly true for the higher-Re cases
in which more vigorous secondary instabilities lead to Rig profiles of increasing com-
plexity at later times. Of note are the local minima observed at the centres of the shear
layers. These minima roughly coincide with the time of strongest layering in figure 6,
t ∼ 15− 20, and in most cases fall well below the classical Miles-Howard “critical” value
of 1/4 – even in the case Rib = 0.40 and Re = 4000 (figure 7(f)). That is, the nonlinear
evolution of the non-normal modes is able to drive the flow towards a mean state which
may be unstable in a normal-mode sense, despite starting from an initial background
state which is linearly stable.

3.4. Turbulent energetics and mixing

In the previous subsection, we observed that linear transient growth may lead to a large
increase in the perturbation energy. Subsequently, departure from the linear evolution
may be observed, and the resulting nonlinear effects modify the mean density and Rig
profiles. In this section, we will examine the details of the turbulent energetics and mixing
in greater detail.

We construct energy budgets for the perturbation kinetic energy k = u′ju
′
j/2 and po-

tential energy φ = Ribb
′2/2 from the equations governing conservation of momentum and

buoyancy. Applying the same average as in (3.1), the horizontally-averaged perturbation
kinetic and potential energy budgets are given by

∂k

∂t
= − ∂p′w′

∂z︸ ︷︷ ︸
pressure transp.

− ∂kw′

∂z︸ ︷︷ ︸
turbulent transp.

+ Ribb′w′︸ ︷︷ ︸
buoyancy flux
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Figure 6. Time evolution of scaled mean buoyancy frequency, N∗2/N∗20 = ∂b/∂z, in the vertical
region centred on the shear layer. The left column corresponds to Rib = 0.30, and the right
column corresponds to Rib = 0.40. (a,b) Re = 1000. (c,d) Re = 2000. (e,f) Re = 4000. Note
that E0 = 2× 10−5 for all cases shown here.
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16 A. K. Kaminski, C. P. Caulfield and J. R. Taylor

− u′w′
∂u

∂z︸ ︷︷ ︸
shear prod.

+
1

Re

∂2k

∂z2︸ ︷︷ ︸
viscous transp.

− εk︸︷︷︸
KE diss.

, (3.8)

and

∂φ

∂t
= − ∂φw′

∂z︸ ︷︷ ︸
turbulent transp.

− Ribb′w′
∂b

∂z︸ ︷︷ ︸
buoyancy flux

+
1

RePr

∂2φ

∂z2︸ ︷︷ ︸
diffusive transp.

− εp︸︷︷︸
PE diss.

, (3.9)

respectively. The strictly positive terms εk and εp represent sinks of perturbation kinetic
energy via viscous dissipation and perturbation potential energy via diffusion, respec-
tively and are defined as

εk =
1

Re

∂u′i
∂xj

∂u′i
∂xj

and εp =
Rib

RePr

∂b′

∂xj

∂b′

∂xj
. (3.10)

The shear production term, −u′w′ ∂u/∂z, describes the interaction between the pertur-
bation kinetic energy and the mean shear, while the vertical buoyancy flux terms Ribb′w′

and Ribb′w′ ∂b/∂z describe the conversion between kinetic and potential energy as well as
interaction with the mean stratification. The remaining terms describe turbulent trans-
port of kinetic and potential energy within the domain (∂kw′/∂z and ∂φw′/∂z), viscous
and diffusive transport (1/Re ∂2k/∂z2 and Rib/RePr ∂2φ/∂z2), and pressure transport
(∂p′w′/∂z).

The evolution of the horizontally-averaged turbulent dissipation, εk, is shown as a
function of time t and the vertical coordinate z in figure 8. The simulations shown
correspond to those from figure 4. After a short initial period in which the added noise
perturbation decays (t ∼ 0 − 5), the dissipation is fairly low and slightly offset from
the centre of the shear layer, corresponding to the edges of the rolls as they are tilted
upward by the mean shear. As the rolls lead to the billow structure and smaller-scale
secondary instabilities onset, a period of significantly enhanced dissipation is observed in
most cases (corresponding to those which exhibited strong nonlinear effects in figures 6
and 7). This enhanced dissipation is confined to a narrow region around the centre of the
shear layer. The observed dissipation decreases with increasing Rib, and increases with
increasing Re, as might be expected based on the increasingly complex structure observed
for e.g. figures 6(e,f), indicative of vigorous small-scale structures that would lead to
higher dissipation. Also in accordance with figures 6 and 7, in the case of Rib = 0.40 and
Re = 1000 (figure 8(b)), εk remains low as the flow remains quasi-linear throughout the
evolution of the perturbations.

In order to assess the relative importance of the various terms in the perturbation
energy budgets throughout the domain, we can integrate equations (3.8) and (3.9) in a
control volume defined by the vertical extents z1 and z2. The kinetic and potential energy
budgets then become

∂

∂t

∫ z2

z1

k dz =

[
−kw′ − p′w′ − 1

Re

∂k

∂z

]z2
z1

+

∫ z2

z1

(
Ribb′w′ − u′w′

∂u

∂z
− εk

)
dz (3.11)

and

∂

∂t

∫ z2

z1

φdz =

[
−φw′ − 1

RePr

∂φ

∂z

]z2
z1

+

∫ z2

z1

(
−Ribb′w′

∂b

∂z
− εp

)
dz (3.12)

respectively. For a control volume with vertical extents outside of the shear layer, we
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Figure 8. Planewise-averaged turbulent dissipation, εk(z, t), for the same simulations as in
figures 6 and 7.

might expect that the the shear production, buoyancy flux terms, and sinks owing to
dissipation are important, as in the purely linear case (Kaminski et al. 2014), and that
the energy flux associated with the viscous and advective transport terms would be small.
The pressure transport term may be important if waves are generated during the flow
evolution.

In order to assess the relative importance of the two sinks εk and εp, we consider a
control volume with boundaries at z1 = −6 and z2 = 6. As figure 8 shows, these vertical
extents are well separated from the region of high dissipation occurring near the centre of
the shear layer. The results presented here are relatively insensitive to the vertical extent



18 A. K. Kaminski, C. P. Caulfield and J. R. Taylor

of the control volume provided the boundaries are away from the shear layer and evolving
perturbation. Figure 9 shows the evolution of integrated dissipation in the control volume
as a function of time for the E0 = 2× 10−5, as in the previous figures. In general, as Re
increases, the total dissipation of both kinetic and potential energy in the control volume
reaches a higher maximum value. For Rib = 0.30 and Re = 1000 and 2000 (figure 9(a,c)),
the peak values in dissipation of kinetic and potential energy occur at approximately the
same time, and have roughly the same magnitude. However, at the higher Reynolds
number Re = 4000, shown in figure 9(e), the kinetic energy dissipation reaches a larger
maximum value and remains elevated for a much longer period of time than the potential
energy dissipation, suggesting that ‘mixing’ of potential energy and dissipation of kinetic
energy are not necessarily well time-correlated (see e.g. Mashayek et al. 2013). A similar
trend can be seen when comparing the dissipation rates for Rib = 0.40 (figure 9(b,d,e)):
as Re increases, the kinetic energy dissipation increases relative to the potential energy
dissipation. In the specific case of Rib = 0.40 and Re = 1000, for which the flow evolution
is quasi-linear (as shown in figures 6 and 7), the amount of dissipation in the control
volume is quite low in comparison to the other cases shown in figure 9. In all cases, the
peak values of εk and εp occur after nonlinear effects have become important in the flow,
as discussed in the previous section.

In addition to dissipation of kinetic and potential energy via viscosity and diffusion,
energy may also leave the control volume through the effect of internal waves. Given the
internal waves observed for the linear scenario in Kaminski et al. (2014), it is natural
to question how significant the transport of energy by waves is when compared with
the dissipative terms. We quantify the flux of energy through the edges of the control
volume by the pressure transport p′w′

∣∣z2
z1

. Away from the shear layer, where the flow
is stratified and quasi-linear, we expect the effects of internal waves to dominate the
pressure transport. We plot p′w′

∣∣z2
z1

as a function of time in figure 9 in order to quantify
the importance of the flux via waves relative to the dissipative sink terms.

For Rib = 0.30 (figure 9(a,c,e)), p′w′
∣∣z2
z1

is significantly lower than that of the sinks∫ z2
z1
εk dz and

∫ z2
z1
εp dz, and arises from the localized evolution of the perturbation in

the shear layer rather than from internal waves propagating away from the centre of
the domain. However, when Rib = 0.40, the role of internal waves is potentially very
different. While the dissipative terms are still the dominant terms when Rib = 0.40
and Re = 4000 (figure 9(f)), similarly to the cases with Rib = 0.30, for Re = 2000
(figure 9(d)) the magnitude of the wave flux term is comparable to and in fact slightly
larger than the peak values in the dissipative terms, and for Re = 1000 (the nearly linear
case discussed above, (figure 9(b)) the flux of energy via internal waves is much larger
than the dissipation of both kinetic and potential energy. In general, there is a shift from
an internal wave-dominated regime to one in which turbulent dissipation is dominant as
Re increases and Rib decreases.

As seen in figure 5, for higher-Re flows there is a clear three-dimensionalization of the
flow as secondary instabilities set in on the primarily two-dimensional optimal perturba-
tion. In order to assess the energetics corresponding to these three-dimensional structures,
we construct spectral energy budgets from the nonlinear perturbation governing equa-
tions (as with the spatial energy budgets (3.8) and (3.9), above). We first Fourier trans-
form the governing equations in the x and y directions, denoting transformed variables
with a caret. Then, by multiplying the governing equations by the complex conjugates
of velocity and buoyancy (denoted by an asterisk), we obtain the spectral form of the
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control volume shown in figure 8, as a function of time. The simulations are the same as those
in figures 6 and 7.

kinetic energy budget,

∂

∂t
<
[

û′∗ · û′

2

]
= <

[
−û′∗ · (û′ · ∇u′)− û′∗ŵ′ ∂u

∂z
− û′∗ · ∇̂p+Ribŵ

′∗b̂′ +
û′∗ · ∇̂2u′

Re

]
,

(3.13)
and the spectral form of the potential energy budget,

∂

∂t
<

[
Ribb̂

′∗ · b̂′

2

]
= <

[
−Ribb̂′∗(û′ · ∇b′)−Ribb̂′∗ŵ′

∂b

∂z
+
Ribb̂

′∗ · ∇̂2b′

RePr

]
. (3.14)

Equations (3.13) and (3.14) allow us to examine the evolution of specific lengthscales
in the flow. We define

Plow =

∫ ∫
|k|<kc

(
−û′∗ŵ′ ∂u

∂z

)
dkx dky , Phigh =

∫ ∫
|k|>kc

(
−û′∗ŵ′ ∂u

∂z

)
dkx dky (3.15)
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as the low- and high-wavenumber contributions to the shear production,

Blow =

∫ ∫
|k|<kc

(
Ribŵ

′∗b̂′
)

dkx dky , Bhigh =

∫ ∫
|k|>kc

(
Ribŵ

′∗b̂′
)

dkx dky (3.16)

as the low- and high-wavenumber contributions to the buoyancy flux, and

Tlow =

∫ ∫
|k|<kc

(
−û′∗ · (û′ · ∇u′)

)
dkx dky , Thigh =

∫ ∫
|k|>kc

(
−û′∗ · (û′ · ∇u′)

)
dkx dky

(3.17)
as the nonlinear transfer terms for low- and high-wavenumber motions, respectively. In
the above definitions, k = (kx, ky) and kc is a cutoff wavenumber. We plot these terms
in figure 10 for Rib = 0.40, E0 = 2 × 10−5, and Re = 4000, 6000, and 8000 at the
approximate times when growth rates of E2D and E3D are largest (i.e. t ∼ 7 for the top
row and t ∼ 25 for the bottom row). The cutoff wavenumber is chosen to be kc = 2.

We observe that, consistent with the results of Kaminski et al. (2014), the initial
two-dimensional energy growth is largely due to shear production, with buoyancy flux
acting to convert kinetic energy into potential energy. At later times when the three-
dimensional motions are growing, shear production is acting to decrease energy, while
buoyancy flux is leading to conversion of potential energy into kinetic energy, consistent
with the development of convectively unstable regions of the flow (see figure 3). In ad-
dition, there is a net transfer of energy from larger to smaller scales via the nonlinear
transfer term. The down-scale energy transfer is seen at earlier times for the case with
Re = 8000. Altogether, the spectral energetics suggest that the secondary instabilities
and subsequent three-dimensionalization arise as a result of the nonlinear development
of the linear optimal perturbation itself, rather than due to linear instability arising on
the nonlinearly-modified base flow shown in figures 6 and 7. In fact, at the time when
the mean Rig first drops below 1/4, the shear production term is negative for both the
low and high wavenumber components of the flow.

Mixing efficiency is an important metric characterizing the proportion of energy ex-
pended by a fluid in mixing the density field to the total energy lost to mixing and dissipa-
tion (Peltier & Caulfield 2003). One way to consider this is by comparing the dissipation
of potential energy to the total dissipation (see e.g. Brucker & Sarkar 2007). Defining

the time- and domain-integrated (perturbation) dissipations Ek =
∫ tf
0

∫ Lz

0
εk dz dt and

Ep =
∫ tf
0

∫ Lz

0
εp dz dt, where tf is the end time of the simulation, we can quantify the

relative importance of potential energy dissipation to total dissipation via a “mixing
efficiency”, which we define as

ηε =
Ep

Ek + Ep
. (3.18)

In the above, tf denotes the end time of the simulation, where the end of the simulation
occurs when the fluctuation energy as well as the kinetic and potential energy dissipation
terms are small, and the transient turbulence has relaminarized, as is characteristic of
such free shear flows. In all cases, dEk/dt < 0.005Ek and dEp/dt < 0.005Ep by time tf .

Figure 11 shows this mixing efficiency calculated for a range of Re, Rib, and initial
amplitude E0. It also shows the mixing efficiency as calculated for a purely linear flow
evolution; it should be noted that as the linear quantities are ratios of very small numbers
associated with quantities, the ratio itself may be relatively high despite the magnitudes
of the perturbation dissipation rates being quite low. The linear mixing efficiencies in
figure 11 show that, for Rib 6 0.35, ηε ∼ 0.5 − 0.6, and ηε ∼ 0.4 for Rib > 0.35; these
values are not strongly dependent on Re. In general, across the range of Rib considered
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Figure 10. High- and low-wavenumber contributions to perturbation energy growth when
growth of E2D (top row) and E3D (bottom row) are maximum, for Rib = 0.40, E0 = 2× 10−5,
and Re = 4000, 6000, and 8000. (a,d) Shear production terms, Plow and Phigh. (b,e) Buoyancy
flux terms, Blow and Bhigh. (c,f) Nonlinear transfer terms, Tlow and Thigh. For the cases plotted
here, the cutoff wavenumber is chosen to be kc = 2.

here, it is expected that the kinetic and potential energy dissipations will be of similar
magnitudes in the case of purely linear flow evolution.

For the direct numerical simulations, the mixing efficiency deviates from the linear
values as nonlinear effects become increasingly important. For the lower-Re cases (fig-
ure 11(a,b)), the curves collapse to the linear value for Rib > 0.40. For Rib < 0.40, the
mixing efficiency approaches the linear value as Rib increases and E0 decreases; con-
versely, for high E0 and low Rib, nonlinear effects become much more important and
mixing efficiency becomes substantially lower than the linear value. The exception to
this trend is for Rib = 0.30 in the smaller domain (Lx = 9.44) at Re = 1000 and 2000,
for which the mixing efficiency increases slightly with E0 due to an increase in Ep relative
to Ek. We find that Ep reaches a maximum (dEp/dt ≈ 0) around the time at which the tur-
bulent kinetic energy reaches its maximum value. While there is no evidence of transition
to turbulence for these Reynolds numbers, as E0 is increased the perturbation evolution
does lead to some local modification of the background flow, strengthening buoyancy
gradients and consequently leading to the observed increase in Ep. For Rib = 0.20, where
the initial condition gives rise to the Kelvin-Helmholtz instability and becomes nonlinear
for all initial perturbation amplitudes considered here, the resulting mixing efficiency is
also significantly lower (ηε ∼ 0.30) than the value predicted by the purely linear flow
evolution. Similar results are seen at Re = 4000, with a decrease in mixing efficiency
seen even for Rib = 0.40 and E0 = 2 × 10−5, where nonlinear effects are significant, as
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Figure 11. Mixing efficiency ηε, as defined in (3.18), as a function of Rib for different initial
amplitudes E0 and (a) Re = 1000, (b) Re = 2000, and (c) Re = 4000. Open symbols corre-
spond to simulations with Lx = 9.44; asterisks denote mixing efficiencies from simulations with
Lx = 12.6 and Rib = 0.30. (d) Mixing efficiency for Rib = 0.40 as a function of Re.

shown in figures 3, 6 and 7 – the mixing efficiency in this case drops to approximately
ηε ∼ 0.35, as does the mixing efficiency calculated for Rib = 0.30 and Re = 4000 for
both domain sizes Lx. At higher values of Re, the mixing efficiency tends towards a value
of approximately 0.30, and the nonlinear values begin to deviate more from the linear
values at lower initial amplitudes (figure11(d)). While lower than the mixing efficiency in
the linear cases, these values of the mixing efficiency are still quite large when compared
to the commonly used value of 1/6, but consistent with Mashayek et al. (2013) and the
more recent results of Maffioli et al. (2016) and Venayagamoorthy & Koseff (2016).

For all of the flows considered, the region of elevated kinetic energy dissipation is local-
ized in the vertical around the centre of the shear layer, as seen in figure 8. The decrease
in mixing efficiency seen in figure 11 is associated with flows that experience significant
nonlinearity and therefore an elevated kinetic energy dissipation relative to potential en-
ergy dissipation as seen in figure 9. In these flows, figure 6 shows that the centre of the
shear layer becomes less stratified than the surrounding fluid as the perturbations evolve.
While more kinetic energy is being dissipated by the strongly nonlinear flows, comparing
figures 6 and 8 shows that the bulk of the dissipation is occurring in a weakly stratified
region of fluid, and so the resulting mixing is less efficient than if it were occurring in a
more strongly-stratified flow.
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4. Discussion and conclusions

We have computed the linear optimal perturbations – that is, the perturbations that
experience the largest linear energy growth – of a stably-stratified shear flow for a target
time T = 15 advective time units. The linear optimal perturbations have been computed
for various bulk Richardson numbers ranging from Rib = 0.20 to Rib = 0.50 and for
Reynolds numbers from Re = 1000 up to Re = 8000 in some cases. We then used these
optimal perturbations as an initial condition for direct numerical simulation with varying
initial amplitude in order to examine what, if any, nonlinear effects may occur during
the evolution of the flow.

We find that substantial perturbation energy gains are possible, and the maximum
linear gain at the target time increases with increasing Re and decreasing Rib. Addition-
ally, the structure of the optimal perturbations is sensitive to Re, Rib, and domain size.
However, in all cases considered here O(101 − 102) energy gain is achieved in the purely
linear case.

The effects of varying Re, Rib, and initial amplitude E0 are also apparent when the
perturbations are allowed to evolve nonlinearly. In general, cases with higher E0 and Re
and lower Rib are prone to stronger nonlinear effects, including modification of the mean
flow, formation of billows, vigorous secondary instabilities, three-dimensionalization of
the flow and break down into smaller-scale structures, leading to enhanced yet transient
turbulent dissipation. In some cases, the perturbation evolution may undergo a regime
shift with increasing nonlinearity, from a case in which the perturbations generate strong
internal waves propagating away from the shear layer to one in which dissipation domi-
nates the energetics. In addition, flows which are susceptible to strongly nonlinear effects
exhibit less efficient mixing as a result of higher viscous dissipation.

Here, we have focused primarily on the evolution of quasi-two-dimensional linear op-
timal perturbations for a target time of T = 15, which attain close to maximum tran-
sient growth for the hyperbolic-tangent stratified shear layer (Kaminski et al. 2014). As
we show in appendix B, despite lower perturbation energy gains the inherently three-
dimensional perturbations corresponding to a target time of T = 5 may also lead to
saturation and modification of the mean flow. Additionally, substantial transient growth
may occur over a range of different perturbation wavelengths (see, for instance, the com-
puted gains for differently-sized domains in appendix A, or the results for unstratified
flows in Arratia et al. (2013)) – the nonlinear evolution described above is not restricted
only to a certain wavelength or target time. Altogether, it appears that non-normal per-
turbation growth may lead to significant nonlinear effects for a variety of different initial
conditions, even in flows stable to normal-mode perturbations. Further nonlinear simu-
lations of optimal perturbations with a variety of initial wavelengths and target times
would therefore be of great interest, in particular to examine any correlation between
the length scales of the initial perturbations with those observed during the transition
process.

It is natural to question what would happen for flows with even higher Re and Pr than
those considered here, which would be more relevant for the geophysical flows motivating
this study. As figure 1(b) shows, the maximum perturbation gain increases with increasing
Re, and as we have discussed above the onset of secondary instabilities and mixing of
the mean flow are also strongly affected by increasing Re (as shown, for example, in
figure 11).

To examine further what might happen at higher Re, we can consider a case in which
Re = 6000, Rib = 0.40, and E0 = 2 × 10−6 (a smaller initial amplitude than the cases
considered above). For this set of parameters, by t = 6.0 the gradient Richardson number
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Figure 12. Richardson number and buoyancy frequency for Re = 6000, Rib = 0.40, and
E0 = 2 × 10−6. (a) Local gradient Richardson number on a horizontal plane passing through
z = 0 at t = 6.0. Note that the white region corresponds to Rig = 1/4. (b) Evolution of scaled
mean buoyancy frequency, N∗2/N∗20 = ∂b/∂z, in region around shear layer.

of the flow is everywhere greater than 1/4, as seen in figure 12. Unlike the case considered
in figure 3 or the higher-Re cases described in figures 5 and 10, this flow does not fully
develop into billows or break down into turbulence. However, the perturbation does grow
enough to modify the mean flow as seen in figure 12(b). In fact, more modification
of the base flow occurs in this case than in the flow shown in figure 6(b), despite the
initial perturbation amplitude being a factor of 10 lower in figure 12. This points to
transient non-normal perturbation growth as a possible mechanism to trigger turbulence
and mixing in stably-stratified geophysical environments.

It should be noted that a similar dependence on Reynolds number has been observed
when considering transition to turbulence in unstratified flows. For example, Reddy et al.
(1998) shows a decrease in the required amplitude for transition with increasing Re due to
linear optimal perturbations in Poiseuille and Couette flow. Similarly, Duguet et al. (2013)
and Cherubini et al. (2015) find that the required perturbation amplitude for transition to
turbulence triggered by nonlinear optimal perturbations in plane Couette and boundary
layer flows, respectively, decreases with increasing Re. Furthermore, Chapman (2002)
derives asymptotically the scaling of the decrease in initial perturbation amplitude with
various negative powers of Re for subcritical transition to sustained turbulence in plane
Couette and plane Poiseuillle flow. As such, our observation that nonlinear effects can
be observed at lower initial amplitudes for higher-Re stratified flows is consistent with
these past results.

In all of our simulations, the Prandtl number has been held fixed at a value of Pr = 1,
and examining the role of Pr in both the linear and nonlinear behaviour of the optimal
perturbations would be of great interest. In particular, recent work examining Kelvin-
Helmholtz-unstable flows (Salehipour et al. 2015) suggests that the preferred secondary
instabilities (and therefore the process by which free stratified shear flows undergo the
transition to transient turbulence) as well as the mixing efficiency may depend strongly
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on Pr . Examining the nonlinear evolution of linear optimal perturbations at different
values of Pr for the more strongly-stratified flows considered here may also reveal a
similar dependence on Prandtl number.

An additional point of interest is the emergence of billows as the result of transient
perturbation energy growth in flows with Rib > 1/4. It is interesting to compare the
billows seen in figure 3 to those arising from the canonical Kelvin-Helmholtz instability.
While the billows seen at Rib = 0.40 have a higher aspect ratio than those arising
in a more weakly-stratified environment, the resemblance is still remarkable, despite a
different physical mechanism leading to their formation.

Despite the fact that the predicted growth rate of the normal-mode Kelvin-Helmholtz
instability σKH → 0 as the critical minimum gradient Richardson number of 1/4 is
approached, oceanic observations of the turbulence associated with apparently marginal
instability (Smyth & Moum 2013) indicate that the nonlinear billow state has finite
amplitude for flows with Rig just below the critical value of 1/4. This is suggestive of
an Ri−subcritical transition (as described in the Introduction, with some appropriate
Richardson number as the control parameter) where the nonlinear (unstable) billow state
commonly referred to as the ‘KH billow’ exists above an as yet unknown threshold
Ri−1 > Ri−1KH . For Ri−1 > 4, the flow is linearly unstable and approaches the billow state
transiently, attaining some maximum amplitude, before secondary instabilities onset.
However, for Ri−1KH < Ri−1 < 4, only sufficiently large amplitude perturbations approach
the billow state, (once again attaining transiently some maximum, non-trivial amplitude)
while smaller perturbations are attracted back to the linearly stable laminar state.

It is important to reiterate that the billow state itself is an unstable state embedded
within an inherently transient flow, in that it is typically prone to a ‘zoo’ of secondary
instabilities and the (unforced) flow will inevitably decay back to the laminar state.
Therefore, it is not appropriate to assert that this ‘Ri−subcritical’ transition corresponds
formally to a canonical subcritical bifurcation of a dynamical system. Nevertheless, the
billow state is an identifiable intermediate state of the transient flow evolution for at
least some range of Richardson numbers, and our results support the above-described
scenario that the nonlinear billow state persists for Richardson numbers greater than
those associated with linear instabilities of the laminar state.

Specifically, we observe that the finite-amplitude billow state may be reached for in-
finitesimal perturbations via the normal-mode instability when Ri−1 > 4. For finite
perturbations above a certain initial amplitude, non-normal growth allows perturbations
to develop and approach the billow state when Ri−1KH < Ri−1 < 4. We conjecture that
the billow state ceases to exist for Ri−1 < Ri−1KH , in the sense that a flow with such a high
Richardson number never approaches a billow-like state at finite amplitude, irrespective
of the initial form (or amplitude) of perturbation.

Further examination of the finite-amplitude saturation of perturbations for base flows
with Rig,min ∼ 1/4 would help to clarify the details of the (maximum in time) amplitude
of the billow state, and in particular to identify the value Ri−1KH < 4 (which may be a
function of Re and/or Pr) above which this intermediate billow state is approached. It
is important to note again that here we are not referring to a transition to a sustained
turbulent state, but rather to the unstable finite-amplitude billow state which is then
susceptible to secondary instabilities, leading to a transient period of flow evolution with
enhanced dissipation rates compared to the laminar state. However, it is still undoubt-
edly remarkable that despite the lack of linear instability connection to such a state
when Ri−1 < 4, perturbations with a sufficiently large initial amplitude are still able to
approach closely to a billow state and become at least ‘Kelvin-Helmholtz-like’ at some
point in their transient flow evolution.
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It should also be emphasized that larger linear growth does not necessarily imply a
more efficient transition to turbulence. For example, in the case of unstratified nonlinear
optimal perturbations there may exist quasi-linear optimal perturbations with larger
peak energy gains but less efficient transition (Rabin et al. 2012). Pralits et al. (2015)
have shown that weakly nonlinear optimal perturbations may be able to exploit nonlinear
modification of the mean flow to allow for enhanced growth and transition to turbulence
at amplitudes for which linear optimal perturbations are unable to lead to transition.
Even for the linear optimal perturbations considered here there may be other structures
with suboptimal linear gains that are nonetheless able to transition to turbulence from
lower initial amplitudes. As such, the amplitudes for which the optimal perturbations
are able to transition to turbulence should be viewed, in some sense, as an upper bound
for the minimum amplitude for transition to turbulence in these strongly stratified flows:
there may exist more efficient mechanisms by which lower-amplitude perturbations may
be able to transition. In the language of Pringle & Kerswell (2010), we do not expect
these linear optimal perturbations to be ‘minimal seeds’ for the transition to turbulence,
which must be identified using an inherently nonlinear DAL method (Eaves & Caulfield
(2015)). While we would expect, based on our results above, that transition will occur at
lower initial amplitudes for increasing Re and decreasing Rib, the exact minimal energy
needed for transition remains the topic of future work.

Here, we have considered the stability of stratified shear flows inspired by those ob-
served in geophysical settings. However, further modifications can be made to mimic
oceanic and atmospheric flows better. Given the strong Re- and Rib-dependence ob-
served above, extending this work to more geophysically-relevant parameter regimes is
needed before reaching firm conclusions about the importance of the transient growth
mechanism in these flows. Additionally, while the base flow considered above is steady
and parallel, geophysical flows generally vary in both time and space. Extending this
work to more complicated base flows would also be of great interest in applying these
results to observations.
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Appendix A. Linear perturbation energy gains with different domain
sizes

In the above discussion, we have focused primarily on optimal perturbations computed
over a domain with Lx = 9.44 and Ly = 15.0. However, it has been shown in unstratified
flows that the optimal gain can depend strongly on the spatial wavelengths of the initial
perturbation (see e.g. Andersson et al. 1999; Luchini 2000; Arratia et al. 2013), and so
we consider the optimal gains for different domain sizes here. In figure 13, we show the
resulting perturbation energy gains at T = 15 for three different values of the horizontal
extent Lx and two different values of the spanwise extent Ly for Re = 1000 and Re =
2000. There is little effect on the maximum linear gain when the spanwise extent is
doubled, consistent with the two-dimensional optimal perturbation structure mentioned
above.

While varying the horizontal domain size is observed to have an effect on the maximum
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Figure 13. Perturbation energy gain for a target time of T = 15 and a variety of horizontal
and spanwise domain sizes Lx and Ly. (a) Re = 1000. (b) Re = 2000.

attainable linear growth, generally speaking G(T ) remains the same order of magnitude
across the sizes considered here. Thus, we would expect growing structures over a variety
of wavelengths, rather than restricted to a specific range of length scales.

Appendix B. Nonlinear evolution for linear optimal perturbations
with target time T = 5

In the above discussion, we have considered optimal perturbations corresponding to a
target time of 15 advective units, which are primarily two-dimensional in structure. A set
of additional simulations, the details of which are presented in table 2, were run for linear
optimal perturbations with a target time T = 5, Rib = 0.30 and 0.40, and Re = 1000,
2000, and 4000. The domain size was chosen to be (Lx, Ly, Lz) = (9.44, 15.0, 30.0), and
the grid sizes were selected such that ∆xmin 6 3η. Only one initial amplitude (E0 =
2 × 10−5) is considered here. As described in Kaminski et al. (2014), the perturbations
for this target time take the form of rolls tilted against the background shear flow, as
with T = 15, but with significant three-dimensional structure. The computed linear
perturbation energy gains are approximately 10 − 20, as shown in figure 14(a), and
increase with increasing Reynolds number.

As in figure 4, the nonlinear energy evolution is shown in figure 14(b-d), along with the
theoretical linear evolution. As Re is increased, the nonlinear fluctuation energy saturates
and deviates from the linear predictions, reaching lower peak amplitudes than the linear
case but remaining elevated at later times in the flow evolution. The deviation between
the linear and nonlinear cases is more pronounced for Rib = 0.30 than for Rib = 0.40. The
corresponding kinetic energy dissipation (not shown) reaches peak values comparable to
those in figure 8, though the burst of elevated εk is short-lived.

Figure 15 shows the mean scaled buoyancy frequency N∗2/N∗20 and mean gradient
Richardson number for the simulations with Re = 4000. As in figure 6, the perturbation
evolution leads to modification of the background buoyancy profile. However, the result-
ing structure of the mean flow shows two minima located above and below the centre of
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Re Rib (Nx, Ny, Nz)

1000 0.30 (128, 128, 201)
1000 0.40 (128, 128, 201)
2000 0.30 (192, 256, 301)
2000 0.40 (128, 192, 301)
4000 0.30 (256, 384, 401)
4000 0.40 (256, 384, 401)

Table 2. Parameters for nonlinear simulations of T = 5 optimal perturbations with
E0 = 2× 10−5.
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Figure 14. (a) Perturbation energy gain for T = 5 as a function of Re. (b-d) Linear and
nonlinear perturbation energy evolution for E0 = 2 × 10−5, Rib = 0.30 and 0.40, and (b)
Re = 1000, (c) Re = 2000, and (d) Re = 4000. (e-f) Computed linear and nonlinear mixing
efficiencies, ηε, as a function of Re for (e) Rib = 0.30 and (f) Rib = 0.40.
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Figure 15. (Top row) Time evolution of mean scaled buoyancy frequency,N∗2/N∗20 = ∂b/∂z, for
initial perturbations corresponding to a target time T = 5 with E0 = 2× 10−5, Re = 4000, and
(a) Rib = 0.30 and (b) Rib = 0.40. (Bottom row) Time evolution of mean gradient Richardson
number for the same cases, i.e. (c) Rib = 0.30 and (d) Rib = 0.40.

the shear layer rather the layered profiles seen for the T = 15 cases. The changes in back-
ground stratification are less dramatic than those seen in figure 6, and the corresponding
mean Rig does not drop below 1/4.

The mixing efficiency ηε associated with the evolution of the optimal perturbations
with T = 5 is shown in in figure 14(e-f). Both the linear and nonlinear mixing efficiencies
are much lower for the T = 5 linear optimal perturbations (with values of ηε ∼ 0.2)
than for their T = 15 counterparts. This decrease in mixing efficiency is due primarily
to higher kinetic energy dissipation relative to potential energy dissipation for the three-
dimensional T = 5 perturbations when compared with their two-dimensional T = 15
counterparts. The nonlinear simulations generally have slightly higher mixing efficiencies
that the linear predictions, owing to an increase in εp around t = 10, when the strongest
changes in mean ∂B/∂z are also occurring (figure 15). It would be interesting to see if, at
higher initial amplitude or higher Reynolds number, the nonlinear mixing efficiencies of
the T = 5 optimal perturbations further increased to the ηε ∼ 0.3 values seen for T = 15
above and by Maffioli et al. (2016) and Venayagamoorthy & Koseff (2016).

It is clear from figures 14 and 15 that the inherently three-dimensional linear optimal
perturbations corresponding to shorter target times may also show strongly nonlinear
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effects at higher Re, even for strongly-stratified base flows. This may point to transient
growth as an important process in normal-mode stable flows over a variety of target
times and initial conditions.
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