
1D-FALCON: Accelerating Deep Convolutional
Neural Network Inference by Co-optimization of

Models and Underlying Arithmetic
Implementation

Partha Maji and Robert Mullins

Faculty of Computer Science and Technology, University of Cambridge,
15 JJ Thomson Avenue, Cambridge, CB3 0FD, United Kingdom

{partha.maji,robert.mullins}@cl.cam.ac.uk

Abstract. Deep convolutional neural networks (CNNs), which are at
the heart of many new emerging applications, achieve remarkable per-
formance in audio and visual recognition tasks, at the expense of high
computational complexity, limiting their deployability. In modern CNNs
it is typical for the convolution layers to consume the vast majority of
the compute resources during inference. This has made the acceleration
of these layers an important research and industrial goal. In this pa-
per, we examine the effects of co-optimizing the internal structures of
the convolutional layers and underlying implementation of fundamen-
tal convolution operation. We demonstrate that a combination of these
methods can have a big impact on the overall speed-up of a CNN, achiev-
ing a tenfold increase over baseline. We also introduce a new class of fast
1-D convolutions for CNNs using the Toom-Cook algorithm. We show
that our proposed scheme is mathematically well grounded, robust, does
not require any time-consuming retraining, and still achieves speed-ups
solely from convolutional layers with no loss in baseline accuracy.

Keywords: Convolutional Neural Network, Deep Learning, Computa-
tional Optimization, Hardware Implementation

1 Introduction

Convolutional neural networks (CNNs) are becoming a mainstream technology
for an array of new embedded applications including speech recognition, lan-
guage translation, image classification and numerous other complex tasks. This
breakthrough has been made possible by recent progress in deep learning. But,
these deep models typically require millions of parameters and billions of opera-
tions to produce human level accuracy ([1],[8], [18]). The memory and compute
requirements especially complicate the deployment of deep neural networks on
low power embedded platforms as they have a very limited compute and power
budget. To avoid running end-to-end inference on embedded systems, the cur-
rent state-of-the-art solutions enable this type of application by off-loading the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/84588604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Accelerating Deep Convolutional Neural Network Inference

computation to cloud-based infrastructures where server-grade machines (GPUs
and other manycore processors) perform the heavy number crunching. Unfor-
tunately, the cloud assisted approach is limited due to the implications on the
privacy, latency, and scalability of mobile applications [18].

In this paper, we propose a robust and easy-to-implement acceleration scheme,
named 1-D FALCON (Fast Approximate Low-rank CONvolution), which can be
applied on readily available state-of-the-art pre-trained models. Our proposed
scheme exploits the inherent redundancy present in the convolution layers in
order to reduce the compute complexity of deep networks. Additionally, we de-
compose each convolution layer into low-rank vectors to exploit row stationary
computing [18]. We then apply a modified version of the Toom-Cook algorithm
to compute the convolution on 1-D vectors to further reduce the number of
multiplications in discrete convolution.

Although many earlier studies have focused on reducing overall memory foot-
print by compression, only a few have aimed at speeding up convolutional lay-
ers. Unlike many previously proposed pruning and regularization techniques, our
scheme does not involve any time-consuming iterative retraining cycle. Further-
more, since rank selection and decomposition are only dependent on individual
layer’s inherent property, each convolution layer can be approximated in par-
allel. Our approximation scheme is mathematically well grounded, robust and
thus easily tunable using numerical formulation and without sacrificing base-
line accuracy. To the best of our knowledge, this paper is the first to study a
co-optimization scheme that combines both the one-shot low-rank model ap-
proximation technique and a fast arithmetic scheme that exploits convolutions
by separability.

2 Related Work

Model pruning has been used both to reduce over-fitting and memory footprint.
Optimal brain damage [3] and optimal brain surgeon [9] are early examples of
pruning which aimed at reducing the number of connections within a network.
Recently, Han et al. proposed a pruning scheme for CNNs which aims at reduc-
ing the total number of parameters in the entire network ([8], [7]). However, the
authors in this paper mentioned that it is challenging to achieve any significant
runtime speed-up of convolutional network with conventional direct implemen-
tation. In addition, pruning involves a very long iterative prune and retraining
cycle. For example, it took seven days to retrain the pruned five (convolution)
layer AlexNet [8], which is not practical for fast time-to-market products.

Liu et al. [14] proposed a Sparse Convolutional Neural Networks (SCNN)
model that exploits both inter-channel and intra-channel redundancy to maxi-
mize sparsity in a model. This method is very effective for number of parameter
reduction in the fully-connected layers. The retraining stage with a modified cost
function is very time-consuming.

Denton et al. showed in a recent research that the generalized eigendecompo-
sition based truncation can help to reduce parameters from the fully-connected



Accelerating Deep Convolutional Neural Network Inference 3

layers [4]. Although, the authors didn’t consider the compute heavy convolu-
tional layers. Jaderberg et al. proposed a singular value decomposition based
technique for layer-by-layer approximation [10]. Their methodology uses itera-
tive steps where a layer can only be approximated after the previous layer has
been compressed. The author used an updated loss function to learn the low-rank
filters which is again a time consuming process. The author also reported that
simultaneous approximation of all the layers in parallel is not efficient. Mamalet
et al. design the model to use low-rank filters from scratch and combine them
with pooling layer [15]. However, their technique cannot be applied to general
network design. Sironi et al. showed that learning-based strategies can be used
to obtain seperable (rank-1) filters from multiple filters, allowing large speedups
with minimal loss in accuracy [17]. We build our methodology on this fundamen-
tal idea. Instead of learning separable filters, we use a one-shot apporach which
can be applied statically.

Gupta et al. [5] studied the effect of limited precision data representation in
the context of training CNNs. They observed that CNNs can be trained using
only 16-bit wide fixed-point number representation with little to no degradation
in the classification accuracy. A number of optimization schemes have been pro-
posed recently that recommend use of fewer bits to represent the parameters
and datapaths ([2],[6],[7]). Our proposed scheme is orthogonal to these tech-
niques and can be combined with quantization to further reduce the compute
complexity and storage requirement.

Cong et al. showed that by using Strassen’s algorithm computation complex-
ity in convolutional layers can be reduced by up to 47% [1]. Vasilache et al. used
a FFT based scheme to speed up convolutions, which are not very effective for
small filters [19]. Recently, both nVidia’s cuDNN and Intel’s MKL library added
support for Winograd’s algorithm to speed up convolutions, which was originally
proposed by Lavin et al. [12]. Although combining sparse methods and Wino-
grad’s convolution holds the potential to achieve significant speed up, pruning
Winograd kernels to induce sparsity poses challenges.

3 Methodology

Sze et al. in their Eyeriss research project showed that a row stationary (RS)
1-D convolution is optimal for throughput and energy efficiency than traditional
tiled 2-D implementation [18]. Our methodology follows the principles of 1-D
row-stationary convolution. To achieve this we first approximate each layer to
the necessary level to reduce compute complexity and then decompose each con-
volutional filter bank into two rank-1 filter banks by introducing an intermediate
layer in between. If the classification accuracy drops at this stage we fine-tune
the model using the training dataset. Then we apply a modified version of the
Toom-Cook algorithm, which computes each 1-D convolution for a chosen set of
distinct data points, to further reduce the number of strong operations (in this
case multiplications). We will show that the combined application of these two
schemes results into significant reduction in compute complexity.



4 Accelerating Deep Convolutional Neural Network Inference

 convolution
partial sum

(m x n x FI) (fig. a)

(fig. b)

M

FI

R

FI

n

m

kernels

input channels
output channels

M

FI

input channels

(m x 1 x FI)

FI

1

m

vertical 
kernels

output 
channels

(1 x n x R)

1

horizontal
kernels

n

R

R FO

intermediate 
channels

intermediate 
channels

FO

stage-1 
convolution

stage-2 
convolution

N

N

Fig. 1: (a) The original convolution with a (m × n) kernel. (b) The two-stage approx-
imate convolution using a (m × 1) column kernel in stage-1 followed by a (1 × n)
row kernel in stage-2. There are R channels in the intermediate virtual layer.

3.1 Layerwise Approximation and Convolution by Separability

In CNNs, multiple layers of convolutional filter (also known as kernel) banks
are stacked on top of each other followed by a non-linear activation function.
A significant redundancy exists between those spatial filter dimensions and also
along cross-channel feature maps. Most of the previous research has focussed on
either exploiting approximation along spatial filter dimensions or along one of
the feature channel dimension. In our approach, we aim at approximating the
redundancy across both the input and output feature maps.

Let us assume, in a convolutional neural network, a 4-dimensional kernel can
be represented as W ∈ RFIx(mxn)xFO , where spatial 2-dimensional kernels are
of size (mxn) and FI , FO are the input and output channels within a layer,
respectively. We can also represent an input feature map as X ∈ RMxNxFI and
corresponding kernels as Wi ∈ RmxnxFI for i-th set of weights, where each input
feature map is of size (MxN). The original convolution for the i-th set of weights
in a given layer now becomes

Wi ∗ X =

FI∑
f=1

Wf
i ∗ x

f (1)

Our goal is to find an approximation of kernel Wi, such that Wi = W̃i + E .
Using the concept of separable filters [17], let us assume for a small error E ,
the chosen rank is R. How the rank R is chosen will be explained in the next
section. The modified kernel now can be represented by the Equation (2), where



Accelerating Deep Convolutional Neural Network Inference 5

V ∈ RRx(mx1xFI) is the approximate column kernel, and H ∈ RFOx(1xnxR) is the
approximate row kernel.

Wi∗X '
R∑

r=1

Hr
i (Vr)T =

R∑
r=1

hri ∗Vr =

R∑
r=1

hri ∗(vr∗x) =

R∑
r=1

hri ∗(
FI∑
f=1

vfr ∗xf ) (2)

Fig 1 depicts the idea of re-constructing the convolution layer using the newly
constructed column and row low-rank kernels and compares them with the orig-
inal 2-D direct convolution. We compute the column and row kernels (V,H)
statically using generalized eigenvalue decomposition by minimizing the error
E . Since we decide the magnitude of the approximation statically, we avoid long
running time from learning based techniques. Additionally, as the approximation
is an inherent property of each layer, we can restructure all the convolutional
layers in a CNN in parallel, which also saves time. If the accuracy of a model
drops at this stage after approximating all the layers, we fine-tune the complete
model for once using the training dataset.

3.2 Rank Search and Layer Restructuring Algorithm

The rank R is chosen by the one-shot minimization criterion described before.
We apply singular value decomposition on the 2-D tensor R(FIm)x(nFO), which we
obtain from the original 4-D tensor RFIxmxnxFO . Unlike other minimization crite-
rion such as Mahalanobis distance metric or data covariance distance metric [4],
our simple criterion gives us an exact decomposition. Algorithm 1 describes the
main steps of our low-rank approximation and CNN layer restructuring scheme.

Algorithm 1: Rank Approximation and Layer Restructuring Algorithm

1 function LayerwiseReduce (M,C,W );
Input : Target ConvNet model: M, Kernel Dimension: pi,

Compression factor of each layer: [c1, c2, .., cn],
Pre-trained weights of individual layer:[w1, w2, .., wn]

Output: Reduced ConvNet Model: M∗,
Reduced weights of each layer: [v1, v2, .., vn], [h1, h2, .., hn]

2 for i← 1 to Layers do
3 if layerType == Conv then

4 targetRank ← piFIFO

ci(FI+FO) ;

5 UΛV T ← SV D(wi);
6 disconnectLayers(wi);

7 vi ← U
√
Λ;

8 hi ← V
√
Λ;

9 addNewLayer(targetRank);
10 M∗ ← reconstructModel(M,vi, hi);

11 end

12 end



6 Accelerating Deep Convolutional Neural Network Inference

3.3 The modified Toom-Cook’s Fast 1-D Convolution

Once we have obtained newly constructed multi-stage 1-D convolution layers,
we then apply a modified version of the Toom-Cook algorithm to reduce number
of multiplication further. In the Toom-Cook method, a linear convolution can
be written as product of two polynomials in the real field [20].

s(p) = w(p)x(p), where deg[x(p)] = N − 1 , deg[w(p)] = L− 1

The output polynomial s(p) has degree L + N − 2 and has L + N − 1 dif-
ferent coefficients. Instead of explicitly multiplying the polynomials w(p).x(p)
using the discrete convolution, the Toom-Cook algorithm evaluates the polyno-
mials w(p) and x(p) for a set of data points βi and then multiplies their values
s(βi) = w(βi)x(βi). Afterwards the product polynomials s(p) is constructed us-
ing Lagrange interpolation. The algorithm consists of four steps:

1. Choose L+N − 1 distinct data points β0, β1,...,βL+N−2.
2. Evaluate w(βi) and x(βi) for all the data points.
3. Compute s(βi) = w(βi)x(βi).
4. Finally, compute s(p) by Lagrange interpolation as follows

s(p) =

L+N−2∑
i=0

s(βi)

∏
j 6=i(x− βj)∏
j 6=i(βi − βj)

(3)

Since, (L+N −1) distinct data points are chosen in step 1, total (L+N −1)
multiplications are required in step 3. The Toom-Cook algorithm can also be
viewed as a method of factoring matrices and can be expressed as the following
form (� denotes element-wise multiplication)

s(p) = S[{Ww(p)} � {Xx(p)}] (4)

whereW,X and S are the transform matrix for kernels, input, and output respec-
tively. The cost of computing {Ww(p)} gets amortized over reuse of the result for
many input slices. The matrices X and S consist of small integers (0,±1,±2, ..),
making it possible to realize them by a number of pre- and post-additions. The
only dominant cost over here are (L+N − 1) elementwise multiplications.

4 Results and Analysis

In order to evaluate the effectiveness of our scheme we compared it against several
popular networks targeting MNIST, CIFAR-10 and ImageNet dataset. In this
paper, we demonstrate our result for VGG-16 model, which won the ImageNet
challenge in 2014. VGG-16 is a deep architecture and consists of 13 convolutional
layers out of a total 16 layers. To make a comparison with wide variety of speed-
up techniques we chose a direct 2-D convolutional scheme [18], a low-rank scheme
based on Tucker decomposition [11], two popular pruning techniques ([8],[16]), a



Accelerating Deep Convolutional Neural Network Inference 7

Table 1: A comparison of speed-up of VGG-16 using different schemes

Optimization Scheme #MULs Speed-up Fine-Tuning Time

2-D convolution [18] 15.3G 1.0x None
Groupwise Sparsification [13] 7.6G 2.0x >10 epochs
Iterative Pruning [16] 4.5G 3.4x 60 epochs
Winograd [F(4x4,3x3)], [12] 3.8G 4.0x None
Pruning+Retraining [8] 3.0G 5.0x 20-40 epochs
Tucker Decomposition [11] 3.0G 5.0x 5-10 epochs
1-D FALCON [Ours] 1.3G 11.4x 1-2 epochs

sparsification scheme [13], and Winograd’s filtering scheme [12]. We used three
main metrics for comparison: (i) MULs: Total number of strong operations
in the convolutional layers, (ii) Speed-up: Total speed-up achieved compared
to baseline 2-D convolution, and (iii) Fine-Tuning Time: Average fine-tuning
time in number of epochs. As can be seen from the Table-1, our FALCON scheme
achieves significant speed-up compared to any other scheme and does not require
long fine-tuning time. The overall speed-up comes from combined application of
both low-rank approximation scheme and fast 1-D convolution technique.

Speed-up from Low-rank Approximation: The computational cost of
the baseline 2-D direct convolution is O(FIMNmnFO). But, using our 1-D
FALCON approximation scheme, the computational cost for vertical-stage and
horizontal-stage are O(FIMNmR), O(RMNnFO), respectively, resulting a to-
tal computational cost of O((mFI + nFO)MNR). If we choose R such that
R(mFI + nFO) << mn(FIFO), then computational cost can be reduced. Our
evaluation on VGG-16 showed an average speed-up of 3-5x in all layers and a
maximum 8-9x speed-up on many individual layers.

Speed-up from Toom-Cook Algorithm: The 1-D Toom-Cook algorithm
requires a (N + L − 1) number of multiplications compared to a direct imple-
mentation which will require NxL number of multiplications, where N, L are the
dimensions of input feature slice and 1-D filter, respectively. In case of VGG-16
model, we chose N = 4 and L = 3, resulting a 2x savings in each 1-D stage.
As our modified VGG-16 model has vertical and horizontal stages, it achieves a
total 4x saving in multiplication.

Efficient Use of Memory Bandwidth and Improved Local Reuse: The
1-D convolution by separability in our FALCON scheme also aims to maximize
the reuse and accumulation at the local storage level for all types of data in-
cluding weights, activations and partial sums. In case of padded convolution
unnecessary data loads are also avoided due to the fact that halo regions are
now needed only either at the vertical or horizontal edges.



8 Accelerating Deep Convolutional Neural Network Inference

5 Conclusions

In this work we demonstrated that co-optimization of internal structure of mod-
els and underlying detailed implementation together can help to achieve signif-
icant speed-up in convolutional neural network based inference tasks. We have
introduced an easy-to-implement and mathematically well grounded scheme to
aim at row stationary 1-D convolution, which can be applied on any pre-trained
model statically. Unlike many pruning and regularization techniques, our scheme
does not require any time consuming fine-tuning. Our evaluation showed that
using our 1-D FALCON scheme, a significant speed-up can be achieved in the
convolutional layers without sacrificing baseline accuracy.

References

1. Cong, J., Xiao, B.: Minimizing Computation in Convolutional Neural Networks,
pp. 281–290. Springer International Publishing, Cham (2014)

2. Courbariaux, M., Bengio, Y.: Binarynet: Training deep neural networks with
weights and activations constrained to +1 or -1. CoRR abs/1602.02830 (2016)

3. Cun, Y.L., Denker, J.S., Solla, S.A.: Advances in neural information processing
systems 2. chap. Optimal Brain Damage, pp. 598–605 (1990)

4. Denton, E., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear
structure within convolutional networks for efficient evaluation. NIPS (2014)

5. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with
limited numerical precision. CoRR abs/1502.02551 (2015)

6. Gysel, P., Motamedi, M., Ghiasi, S.: Hardware-oriented approximation of convo-
lutional neural networks. CoRR abs/1604.03168 (2016)

7. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. ICLR (2016)

8. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for
efficient neural networks. NIPS (2015)

9. Hassibi, B., Stork, D.G.: Second order derivatives for network pruning: Optimal
brain surgeon. NIPS (1993)

10. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural net-
works with low rank expansions. CoRR abs/1405.3866 (2014)

11. Kim, Y., Park, E., Yoo, S., Choi, T., Yang, L., Shin, D.: Compression of deep conv.
neural networks for fast and low power mobile applications. EMDNN (2016)

12. Lavin, A.: Fast algorithms for convolutional neural networks. CVPR (2016)
13. Lebedev, V., Lempitsky, V.: Fast convnets using group-wise brain damage. CVPR

(2016)
14. Liu, B., Wang, M., Foroosh, H., Tappen, M., Pensky, M.: Sparse convolutional

neural networks. CVPR (June 2015)
15. Mamalet, F., Garcia, C.: Simplifying convnets for fast learning. ICANN (2012)
16. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional

neural networks for resource efficient transfer learning. EMDNN (2016)
17. Rigamonti, R., Sironi, A., Lepetit, V., Fua, P.: Learning separable filters (2013)
18. Sze, V., Chen, Y., Emer, J.S., Suleiman, A., Zhang, Z.: Hardware for machine

learning: Challenges and opportunities. CoRR abs/1612.07625 (2016)
19. Vasilache, N., Johnson, J., Mathieu, M., Chintala, S., Piantino, S., LeCun, Y.: Fast

convolutional nets with fbfft: A GPU performance evaluation. ICLR (2015)
20. Wang, Y., Parhi, K.: Explicit cook-toom algo. for lin. convolution. ICASSP (2000)


	Accelerating Deep Convolutional Neural Network Inference
	Introduction
	Related Work
	Methodology
	Layerwise Approximation and Convolution by Separability
	Rank Search and Layer Restructuring Algorithm
	The modified Toom-Cook's Fast 1-D Convolution

	Results and Analysis
	Speed-up from Low-rank Approximation: 
	Speed-up from Toom-Cook Algorithm: 
	Efficient Use of Memory Bandwidth and Improved Local Reuse: 


	Conclusions


