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ABSTRACT 

Objectives 

Porotic hyperostosis, characterized by porotic lesions on the cranial vault, and cribra 

orbitalia, a localized appearance of porotic lesions on the roof of the orbits, are relatively 

common osteological conditions. Their etiology has been the focus of several studies, and an 

association with anemia has long been suggested. Anemia often causes bone marrow 

hypertrophy or hyperplasia, leading to the expansion in trabecular or cranial diploic bone as a 

result of increased hematopoiesis. Hypertrophy and/or hyperplasia is often coupled with a 

disruption of the remodeling process of outer cortical bone, cranially and/or post-cranially, 

leading to the externally visible porotic lesions reported in osteological remains. In this paper, 

we investigate whether individuals with cribra orbitalia have increased thickness of the 

diploë, the common morphological direct effect of increased hematopoiesis, and thus test the 

relationship between the two conditions, as well as explore the type of anemia that underlie it.  

Methods 

An analysis of medical CT scans of a worldwide sample of 98 complete, young to middle-

aged adult dry skulls from the Duckworth Collection was conducted on male and female 

cribrotic individuals (n= 23) and non-cribrotic individuals (n= 75), all of whom lacked any 

evidence of porotic lesions on the vault. Measurements of total and partial cranial thickness 

were obtained by virtual landmark placement, using the Amira 5.4 software; all analyses 

were conducted in IBM SPSS 21. 

Results 

Cribriotic individuals have significantly thinner diploic bone and thicker outer and inner 

tables than non-cribriotic individuals, contrary to the expected diploic expansion that would 



 
 

result from anemic conditions associated to bone marrow hypertrophy or hyperplasia. 

Additionally, individuals without cribra orbitalia and those with the condition have 

distinctive cranial thickness at particular locations across the skull and the severity to which 

cribra orbitalia is expressed also differentiates between those with mild and those with a 

moderate to severe form of the condition.  

 

Conclusions 

Our results suggest a complex pattern of causality in relation to the pathologies that may lead 

to the formation of porotic lesions on the vault and the roof of the orbits. A form of anemia 

may be behind the osteological changes observed in porotic hyperostosis and cribra orbitalia, 

but it is unlikely to be the same type of anemic condition that underlies both types of 

osteological lesions. We suggest that cribra orbitalia may be associated to anemias that lead 

to diploic bone hypocellularity and hypoplasia, such as those caused by anemia of chronic 

disease and, to a lesser extent, of renal failure, aplastic anemia, protein deficiency and anemia 

of endocrine disorders, and not those that lead to bone marrow hypercellularity and 

hyperplasia and potential porotic hyperostosis. This leads us to the conclusion that the terms 

porotic hyperostosis and cribra orbitalia should be used to reflect different underlying 

conditions.    



 
 

Skeletal lesions observed on human remains offer insights onto the general wellbeing 

of humans in the past, as well as informing on the biological and evolutionary responses to 

disease today. Porotic hyperostosis, a term used to describe the excessive development of 

porous lesions in bone tissue, is one of the most common occurring skeletal conditions 

observed in paleoanthropological studies (Ortner, 2003; Jatautis et al., 2011). There is a 

general consensus that anemia is the main factor resulting in porotic lesions, whether by 

acquired anemia due to parasites or nutritional deficiencies, or through genetic conditions, 

such as thalassemia (major and minor) and sickle cell anemia (Martin and Goodman, 2002; 

Facchini, 2004; Dabbs, 2011). Anemia leads to irregular hematopoiesis (blood cell 

production) in the marrow of trabecular bone, which may result in the enlargement of the 

cancellous structure, either by marrow hypertrophy (enlarged tissue due to increased size of 

cells) or hyperplasia (enlarged tissue due to increased number of cells) (Martini et al., 2011). 

Although hypertrophy and hyperplasia are different processes, either response may lead to 

the expansion of the diploë, the trabecular bone of the cranium embedded between the two 

cortical tables.  Exposure of the enlarged diploë may occur when coupled with the irregular 

remodeling of the outer cranial table, consequently unveiling its structure as observable 

porotic lesions. In mild cases, these lesions may be simply characterized by the appearance of 

pores on the outer cranial table, while in severe cases extensive lesion expansion may 

completely expose the cranial diploë and/or result in bony growths that invade orbital spaces.  

The appearance of porotic lesions in different cranial regions has generated a 

terminological division of this condition, such that lesions occurring on the parietals, and 

occasionally on the frontal and occipital bones, are referred to as porotic hyperostosis (PH), 

while lesions on the superior orbital bones are termed cribra orbitalia (CO). Other terms in 

the literature include symmetrical osteoporosis, spongy hyperostosis, and cribra cranii (Ales 

Hrdlička, 1914; Henschen, 1961; Carlson et al., 1974; Ortner, 2003; Facchini, 2004). 



 
 

Notwithstanding the different terminology, all the terms describe the condition in which bone 

forms pore-like lesions that may differ in the severity and region of expression, including its 

occurrence on post-cranial bones (Ortner, 2003). Thus, the terms porotic hyperostosis and 

cribra orbitalia are generally used to describe the same osteological condition expressed in 

different skeletal locations, and are not, by nomenclature, meant to signify different causal 

afflictions. However, the independent appearance of porotic lesions on the vault or orbital 

roof, or their co-occurrence in some cases, has led to different etiological interpretations. 

Some scholars have suggested that orbital lesions may be a preliminary phase to those 

potentially occurring on the vault (Stuart-Macadam, 1989; Wapler et al., 2004), others that 

different types of anemia may result in lesions in either area (El-Najjar et al., 1975; Webb, 

1982; Sandford et al., 1983; Salvadei et al., 2001; Sullivan, 2005; Dabbs, 2011), while still 

others hold that each type of lesion reflects separate conditions entirely (Rothschild, 2012). 

Therefore, despite years of research, whether the same particular etiology may be responsible 

for these two types of cranial lesion, regardless of their singular or co-occurrence on cranial 

bones, remains unresolved (Steinbock, 1976; Wapler et al., 2004; Walker et al., 2009; 

Rothschild, 2012).  

Identifying the precise etiology of cranial porotic lesions is challenging because there 

may be many more illnesses, and co-occurring illnesses, than there are skeletal responses to 

such (McIlvaine, 2015). In other words, the physiological capacity for bone to respond to 

pathological stress is essentially limited to irregular bone formation (deformation) and/or 

remodeling (abnormal bone loss or gain). Thus, there is a very broad range of diseases and a 

more tightly constrained set of physiological processes that result in a very specific set of 

skeletal responses. In such cases, it is the investigation of the physiological processes 

involved that bridges the underlying causal factors with its resulting skeletal condition.  



 
 

Hemoglobulin disorders, such as the various forms of acquired or genetic anemia, 

disrupt the physiological processes of hematopoiesis and may (or not) have an effect on bone 

tissue, particularly in causing cranial diploic expansion associated with boney lesions. Thus, 

hemoglobulin disorders, specifically anemia, are those most often identified as causative 

factors in the appearance of PH of the skull (Stuart-MacAdam, 1985; Hershkovitz et al., 

1991; Martin and Goodman, 2002). Therefore, when PH is observed on skeletal remains, the 

expectation is that these individuals likely suffered from some form of anemia, evidenced by 

a thickened cranial diploë and bone porotic lesions. This study investigates whether, in cases 

among whom PH appears only in the superior orbital bones, the condition is accompanied by 

substantial diploic thickness in and across the cranial vault.  

MATERIALS AND METHODS 

Data on cranial thickness and incidence of CO were collected from a worldwide 

sample of 98 young to middle-aged male and female adult complete dry crania housed in the 

Duckworth Collection at the Leverhulme Centre for Human Evolutionary Studies, University 

of Cambridge (Table 1). Of these individuals, 75 represent a cohort with no macroscopic 

indication of cranial pathology. The remaining 23 individuals were selected on the basis of 

presence of orbital lesions and absence of vault porotic lesions, as well as of any other 

macroscopic pathological condition. The reliability of identification of presence of CO and its 

degree of severity was assessed by the independent recording of the condition by the authors. 

It was recognized that PH and CO are conditions often common in children and adolescents; 

however, immature individuals were excluded to avoid developmental factors in the 

determination of cranial vault thickness.  

(Table 1 Here)  



 
 

The severity of orbital lesions was graded as five stages of development, similar in scheme to 

Nathan and Haas (1966), Stuart-Macadam (1985), and Buikstra and Ubelaker (1994), and the 

presence or absence of healing of some or most of the lesions were noted. No individuals in 

the sample showed the maximum (grade five) level of severity of the condition as defined in 

this study. The grades of development of CO used here are defined as follows (Fig. 1, 

Supplementary Figure S1): 

1. Porotic (Present): presence of pores on the roof of one or both orbits; 

2. Porotic with netting (Present to Moderate): isolated pores with appearance of 

netting or coalescing; 

3. Netting (Moderate): pores cease to be in isolation and merge, forming a net-like or 

maze structure of coalesced pores; 

4. Honeycomb-like netting (Moderate to Severe): enlarged, coalesced pores 

beginning to thicken or form a honeycomb-like structure (non-protruding); 

5. Honeycomb (Severe): protruding trabecular structure or growth beyond outer 

table.  

(Figure 1 Here) 

Nine of the 23 individuals with CO showed minor signs of healing, while the remaining 

fourteen showed no evidence of healing. In the former group, most individuals (n= 6 of 9) 

had grade 2 CO, with two individuals with grade 1 and one individual with grade 3, while 

most individuals in the latter group (no healing) had either grade 1 CO (n= 7 of 9), or grade 4 

CO (n= 4 of 4), with three individuals with grade 2 CO.  

Computed tomography (CT) scans of the 98 crania were carried out at Addenbrooke’s 

Hospital, Cambridge, using a Siemens Somatom Definition Flash scanner, and protocol 



 
 

specifications defined by Dr. Christophe Zollikofer and Dr. Marcia Ponce de León
1
 in 

collaboration with Dr. Marta Mirazón Lahr in 2007. The CT scan specifications included 120 

kV tube voltage and a pitch of 0.7 mm. Reconstructions had a slice thickness of 0.6 mm, with 

an increment of 0.3 mm, and a H60 sharp (FR) kernel with a window width of 4000 

Hounsfield Units (HU) centered at 850 HU. These scans have a fixed matrix size of 512 x 

512, whereby a 205 x 205 mm field of view (FOV) and pixel size of 0.4 mm were set. At the 

time of the study, a sufficiently large μCT scanner was not available, so that radiographic 

resolution was not optimal for further analysis of the trabecular structure of the orbital roof.  

Analyses of thickness dimensions were conducted in Amira 5.4, where Euclidian 

distances were calculated from virtual landmark data placed across the cranial vault. To 

establish clear boundaries for CT landmark placement, a binary image of the scan was set by 

using the half maximum height method (HMH) as recommended by Spoor et al. (1993).  A 

modification of this method, similar to that used by Coleman and Colbert (2007), where the 

mean voxel (or three dimensional pixel) value was used rather than local voxel values, was 

implemented. Voxel means were calculated in Amira within a region of interest (ROI) for the 

frontal and occipital bones of every individual, and with one ROI (and mean value) for both 

parietals in each case. The HMH was then applied according to the voxel mean for each 

particular bone of each individual (Fig. 2).  

(Figure 2 Here) 

Four linear measurements were obtained at each cranial landmark – the total thickness of the 

vault at that point, and the thickness of each of the three cranial layers (outer and inner tables, 

and diploë). A total of 186 thickness measurements were taken on each individual skull, 56 

on the frontal bone measured at 14 landmark points, 96 on the parietal bones measured at 24 
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landmark points, and 34 on the occipital bone measured at 10 landmark points, where only 8 

offered layer-specific data. Vault thickness was sampled at 48 landmarks locations, and care 

was taken to avoid landmark placement directly on sutures so that diploic measurements were 

attained. Landmarks used were as defined by Howells (1973) and Lahr (1992, 1996), and at 

locations along bisecting lines that form quadrants in the anterior/posterior (frontal bone), 

medial/lateral (parietal bones), and inferior/superior (occipital bone) directions across each 

bone (Rivera, 2014). Cranial thickness was also measured in the approximate center of each 

quadrant devised by bisecting landmark dimensions (Fig. 3).  

(Figure 3 Here) 

RESULTS 

In order to test for differences in cranial thickness between individuals with and 

without CO, independent t-tests, using Benjamini-Hochberg false discovery rate to control 

for multiple comparisons, were carried out. Table 2 lists the results of total thickness and of 

each measurement of the cranial vault layers that are significantly different between 

individuals with CO and those without.  

(Table 2 Here)  

Individuals with and without CO have similar total cranial thickness throughout the vault, 

only differing in thickness at the cranial vertex, which is significantly thinner in individuals 

with CO than in those who do not exhibit the condition (Fig. 4). Individuals with orbital 

lesions have thicker inner tables than those without, with the exception of a single cranial 

location – the point of inflection of the occipital bone (lambda subtense fraction, or OCF). At 

this point, cribrotic individuals show a wide range of values of thickness of the inner table, 

including several individuals with very thick inner tables, although the overall median inner 



 
 

table thickness of the sample is lower than in the sample without cribrotic lesions (Fig. 5).  

No statistically significant differences in the thickness of the outer table across all 48 cranial 

landmarks were found between the samples. The diploic layer, which is the layer most 

expected to respond to hematopoietic stress, shows the opposite pattern to that expected. The 

pathological and non-pathological samples showed a number of significant differences in 

diploë thickness across the vault (at 14 landmarks), but in every case the individuals with CO 

were found to have thinner diploic bone than individuals without the condition (Fig. 6).  

(Figure 4 Here) 

(Figure 5 Here) 

(Figure 6 Here) 

To explore the relationship between CO and the different measures of vault thickness 

multivariately, a series of stepwise discriminant function analyses were conducted to 

determine whether non-pathological groups may be distinguished from those with CO on the 

basis of different aspects of cranial thickness.  The analyses used Wilks’ lambda statistic (the 

proportion of the total variance in the discriminant scores not explained by differences among 

the groups) to test the discriminant function, with prior probabilities set according to group 

size (n= 75, no lesions; n= 23, with orbital lesions), and leave-one-out cross-validation to 

predict group membership. The tests were carried out separately for measures of total vault 

thickness, thickness of the outer and inner tables, thickness of the diploë, the thickness of 

each layer as a percentage of total thickness, and for combinations of the three layers. The 

results are listed in Table 3, organized in increasing discriminatory power. 

(Table 3 Here) 



 
 

The results show that the relationship between incidence of CO and vault thickness is 

complex, and that the total thickness of the vault, or of particular layers, whether compact or 

diploic, is not singularly associated with the condition. Only when the variation of two or 

more cranial layers is combined are more than half the cases of CO correctly predicted. The 

strongest statistical association is found when including the variation of the outer and diploic 

layers (corrected by total vault thickness), and particularly when information on all three 

cranial layers (corrected by total vault thickness) is considered. The latter analysis achieves 

the correct discrimination of 93.3% of non-pathological individuals and 82.6% of cases with 

CO (Figure 7). In other words, incidence of CO can be predicted in most cases by the relative 

thickness of the three cranial layers at particular locations in the vault, reflecting a complex 

interaction between the spatial distribution of thickness and the expression of porotic lesions 

on the roof of the orbit.   

(Figure 7 Here) 

This relationship is shaped by 16 variables that correlate positively and negatively 

with the Discriminant Function (Figure 8a). The Discriminant Group Centroid Scores are 

positive for cases with CO (2.738) and negative for those without lesions (-0.840). 

Specifically, cases with CO tend to have particularly thin diploë along the cranial mid-line 

(PAFpost, PAF, FRFinf), particularly thick outer tables on the left and right mid-anterior 

parietals (PQ2r, PTFantl) and inner tables on the left and right mid-posterior parietals (PTFl, 

PQ4l, PQ4r), and thin outer (PTFsupl) and inner tables (PTFsupr) either side of the mid-

sagittal suture (Figure 8b). Individuals without cribrotic lesions show the opposite trend 

(Figure 8c). Examining the variables that correlate significantly with the discriminant 

function shows that the most significant univariate differences are found between the relative 

thickness of the diploë along the cranial mid-line (FRFinf, PAF, PAFpost), the thickness of 



 
 

the outer table at the mid-anterior parietals and of the inner table at the mid-posterior parietals 

(Figure 9).  

(Figure 8a here) 

(Figure 8b here) 

(Figure 8c here) 

(Figure 9 here) 

Individuals with different degrees of severity of CO were found to differ in the pattern 

of cranial vault thickness (Figure 10). Among the 23 individuals in the sample who had CO, 9 

had small pores on the roof of one or both orbits, and were classified as mild (Grade 1), 9 

showed isolated pores with netting, classified as mild to moderate (Grade 2), 1 had clear 

netting, classified as moderate (Grade 3), and 4 had honeycomb-like netting, classified as 

moderate to severe (Grade 4). No case of severe CO (Grade 5) was observed. For the purpose 

of analysis, Grades 3 and 4 were merged, so that 3 degrees of severity of CO were used 

(Grades 1 to 3, representing mild, moderate, and pronounced cribrotic lesions).   

(Figure 10 here) 

Non-parametric analyses Kruskal-Wallis comparisons of means were performed 

(Table 4). These are indicative only because of the small sample size of individuals with 

different degrees of development of the condition, particularly of individuals with Grade 3 or 

pronounced CO (n= 5). Nevertheless, individuals with moderate cribrotic lesions (Grade 2; n 

= 9) are significantly thicker, either in terms of total thickness totality or in one of the cranial 

layers at certain cranial landmarks than either individuals with either mild (Grade 1) or 

pronounced (Grade 3) CO. This is the case for 11 landmarks - total thickness at frontal mid-

midline (frontal fraction), outer table thickness at Bregma (recorded on the left parietal) and 



 
 

at the mid-posterior left parietal (Quadrant 3), as well as of both the outer and inner tables at 

4 landmarks – mid-inferior right frontal bone (Quadrant 2), at opistocranium, and along the 

occipital midline at the lambda-subtense fraction and inion.  No significant difference across 

the 3 degrees of severity of CO was associated with the thickness of the diploë, and at no 

point measured on the cranial vaults were individuals with mild CO significantly thicker than 

those with more severe expression of the disease. 

(Table 4 here) 

The differences in the pattern of cranial thickness in relation to degree of severity of CO is 

sufficiently strong that a discriminant function achieves 100% discrimination (with prior 

probabilities set at groups sizes and leave-one-out classification) of the three grades of 

cribrotic lesions used here (Function 1 Eigenvalue 704.173, 71.6% s2; Function 2 Eigenvalue 

279.045, 28.4% s2) (Figure 11). Discrimination was achieved on  the basis of 15 variables, 

with cases with moderate (Grade 2) and pronounced (Grade 3) cribrotic lesions separated 

along Function 1, and cases with mild lesions (Grade 1) separated from those with moderate 

and pronounced cribrotic lesions (Grades 2 and 3) along Function 2. Function 1 is defined by 

the combination of (in decreasing order of influence) - increased thickness of the diploë at (a) 

the left mid-lower frontal bone, of the outer table at (b) the anterior right parieto-temporal 

fraction, of the diploë (c) at the inferior right parieto-temporal fraction, of the inner table at 

(d) the right frontal fraction, of the outer table at (e) the cranial vertex, and decreased 

thickness of the inner table at (f) inion, the outer table at the lambda subtense fraction, and 

especially, of the diploë at (g) the right mid-superior occipital bone. Function 2 is defined by 

the combination of increased thickness of the diploë at (a) the right mid-superior occipital 

bone, of the inner table at (b) the right frontal fraction, of the total thickness at (c) the left 

mid-inferior frontal bone, and of the outer table at (d) the cranial vertex, and decreased total 



 
 

thickness at (e) the right supraorbital subtense, of the diploë at (f) the left mid-inferior frontal 

bone, and especially, of the outer table at (g) lambda subtense fraction.  

(Figure 11 here) 

However, these differences in cranial thickness among individuals with different 

degrees of development of CO do not describe unique configurations, and a discriminant 

function that includes individuals without the condition misidentifies a third of the cases of 

mild CO (Grade 1) as non-pathological, as well as approximately 22% of the cases with 

Grade 2. A bivariate plot of the individual discriminant scores from this analysis including 

crania with and without CO shows how only a portion of the individuals with Grades 2 and 3 

of development of cribrotic lesions fall outside the range of variation of the non-pathological 

sample, while those with a mild version of the disease are largely embedded within the 

variation of cranial thickness observed among healthy individuals (Figure 12). This suggests 

that changes in localized cranial vault thickness associated with CO take place only once the 

condition has developed beyond a mild stage.  

(Figure 12 here) 

 Given the differences observed in the combination of cranial vault thickness in the 

different degrees of CO, the possible association between the latter and the healing process 

was investigated. Among the 23 cribrotic individuals in the sample, 9 show evidence of 

healing; the majority of individuals with healing cribrotic lesions (6/9) were observed among 

moderate cases of the condition (Grade 2). A oneway analysis of variance of all individuals 

(no cribra, healing cribra, no healing) was performed on the discriminant function scores 

from the analyses above (n=120, no cribra n=97, Grade 1 n=9, Grade 2 n=9, Grade 3 n= 5). 

The differences observed are highly significant for the first two discriminant functions (DF1 

F= 22.895, p< 0.001, df = 119; DF2 F= 21.808, p< 0.001, df= 119, Table 5). Bonferroni post-



 
 

hoc tests show that all three groups (no cribra, healing cribrotic lesions, and no healing) are 

significantly different to each other at p<0.05 for the 1
st
 discriminant function, while 

individuals without CO are significantly different from those with both healing and non-

healing lesions at p<0.05 for the 2
nd

 discriminant function. These results provide further 

support for the view that particular changes in cranial vault thickness occur during the 

different stages of development of the disease. 

(Table 5 here) 

DISSCUSSION 

The study of skeletal remains offers the means by which to understand the life, 

activities, and health of past populations. Porotic hyperostosis is a relatively common 

osteological pathology that has been linked to the effects of anemia based on bone marrow 

morphology (Hrdlička, 1910, 1914; Cooley and Lee, 1925; Cooley, Witwer, and Lee, 1927, 

Angel, 1966; Walker, 2009). This is due to the disruption to hematopoiesis (either through 

blood loss, impaired or reduced erythropoiesis and/or increased hemolysis), leading to a 

compensatory reaction that imposes a stress on the hematopoietic tissues (such as the diploë) 

which, in turn, affects the size and/or number of cells in bone marrow (Halvorsen & 

Bechensteen, 2002; Stockmann & Fandrey, 2006; Walker, 2009). The most common effect of 

this process on the cranium is the expansion of the diploë at the expense of the outer table, 

which becomes resorbed through time, and the appearance of porotic lesions on the cranial 

vault (Moseley, 1965; Cule and Evans, 1968; El-Najjar et al., 1975; Stuart-Macadam, 1987; 

Tayles, 1996; Gowland and Western, 2012).This causative link between anemia, one of the 

most common nutritional disorders in the world (WHO, 2015) and cranial porous lesions, one 

of the most common palaeopathological conditions observed (El-Najjar et al., 1976; Cohen & 

Armelagos, 1985; Walker, 1985, 1986; Steckel & Rose, 2002) has been a major focus of 



 
 

research, with recent studies focusing on the complexity of dietary, hereditary and socio-

cultural factors that may affect the incidence of porotic lesions in the past (Walker, 2009). 

Two major areas of debate are the relationship between porous lesions on the vault (porotic 

hyperostosis), and on the roof of the orbits (cribra orbitalia) as well as the potential causes of 

both conditions.  

A strong relationship between PH and anemia has long been recognized, initially in 

relation to hemolytic anemias (Caffey, 1937; Angel, 1966; Sebes & Diggs, 1979; Hershkovitz 

et al., 1997), and later as a result of iron-deficiency anemia, partly to explain the high 

incidence of porotic lesions in prehistoric Amerindian populations (Dunn, 1965; Agarwal et 

al., 1970; Moseley, 1974; Walker, 1985; de Zuleta, 1994; Sullivan, 2005). Although the latter 

causative relationship has been strongly challenged (Walker et al., 2009), the association 

between PH and anemias that cause expansion of the diploë has found strong support 

(Moseley & Jarcho, 1966; Moseley, 1974; Schultz, 2001; Ortner, 2003). In the course of the 

history of studies about porotic cranial lesions and anemias, CO came to be considered by 

some scholars as part of the complex physiological response of the cranium to anemia, and 

thus with the same causative factors as PH (Hengen, 1971; Stuart-Macadam, 1989; Stodder, 

2006). In a detailed review of the possible conditions that may cause PH and CO, Walker 

(2009) challenges current views of both the association between the two conditions and the 

types of anemia responsible, as well as suggesting alternative etiologies for CO.  

In this study, we provide further evidence for the independence of the two conditions 

characterized by cranial porous lesions by testing whether, in the absence of porotic lesions 

on the vault, the presence of porous lesions on the roof of the orbit results from bone marrow 

hyperplasia and/or hypertrophy (diploë expansion). Our findings are preliminary because of 

small sample sizes, but represent the first detailed investigation of the thickness of the 

different cranial layers across numerous loci on the cranial vault using CT scans. The results 



 
 

suggest that CO in this sample is not associated with an increase in diploic thickness on the 

cranial vault, and therefore cannot be the result of conditions that lead to bone marrow 

expansion, but that the relationship with cranial thickness overall is complex. Furthermore, 

this relationship changes along the stages of development of the condition. These results have 

implications towards understanding the processes that affect localized changes in cranial 

thickness, including the relationship between the two most commonly observed porotic 

conditions (cribra orbitalia and porotic hyperostosis), and may throw light on the types of 

anemia that could be behind the different patterns observed. These issues are discussed 

below.  

Relationship between cribra orbitalia and porotic hyperostosis 

The condition known as porotic hyperostosis was first named by Angel (1966) to refer 

to porous lesions and pitting on the vault that he considered to be the result of hereditary 

anemias (such as Thalassemia major and Sickle-cell Anemia) that were common among the 

prehistoric populations of Southeastern Mediterranean Europe, which he was studying. 

Hematological and radiographic studies further showed that PH was the outcome of anemias, 

either genetic (such as the conditions mentioned above), or acquired such as through blood 

loss, leading to lack of iron, or dietary deficiencies of nutrients necessary to maintain red 

blood cell homeostasis (i.e. the lack of Vitamins A, B12, B6 and B9) (Marin & Ober, 2001; 

Stockman & Fandrey, 2006). One of the most notable processes by which the body meets the 

stress from anemia involves an increase in the production of blood cells, which leads to 

expansion of hematopoietic centers, such as the cranial diploë, with concomitant reduction of 

the cranial outer table (Stuart-Macadam, 1987; Ortner, 2003; Walker et al., 2009). The link 

between these effects and PH has been confirmed by clinical and epidemiological studies 

(Caffey, 1951; Eng, 1958; Moseley, 1974; Stuart-Macadam, 1987; Schultz, 2001; Ortner 

2003). In terms of skeletal samples, the state of cranial diploic bone in previously studied 



 
 

individuals with PH is described as either hypertrophic (Angel, 1966; Tayles, 1996; Wapler 

et al., 2004; Sullivan, 2005; Walker et al., 2009; Dominguez-Rodrigo et al., 2012; Gowland 

and Western, 2012) or hyperplastic (Moseley, 1965; Lanzkowsky, 1968; El-Najjar et al., 

1975; Williams et al., 1975; Ascenzi, 1979; Von Endt and Ortner, 1982; Stuart-Macadam, 

1985; Walker, 1986; Schultz, 1993; Filon et al., 1995; Martin and Goodman, 2002; Yildirim 

et al., 2005; Lagia et al., 2007; Walker et al., 2009; Jatautis et al., 2011; Santos et al., 2013) 

due to an expanded diploë.  

A number of studies argue for a similar physiological context for CO (Hengen, 1971; 

Cybulisk, 1977; Stuart-Macadam, 1989). However, as argued by Walker (1985, 1986), the 

association between the two conditions is not strong. Although the two pathologies can be 

observed in the same individual, and thus reflect a single underlying condition, this is 

relatively rare. Only 26.9 % (405/1506) of cases with porotic cranial lesions included in the 

‘History of Health in the Western Hemisphere’ database (of 4419 skeletal remains from the 

Americas) had both conditions, while the rest had either one or the other form (Steckle et al., 

2002). The two conditions also have relatively similar frequencies across the lifespan 

(Steckel et al., 2002) and, in as far as they reflect responses to anemic conditions, share a 

particular ontogeny related to the changes in locus of hematopoietic production during 

development (Halvorsen & Bechensteen, 2002).  

None of the individuals in the present study, including those with CO, had 

macroscopic lesions of PH. The absence of an association between the cribrotic cases 

analyzed here and of expansion of the diploë strongly suggests that, at least in cases in which 

CO is the sole expression of porotic lesions in the cranium, the underlying mechanism is 

likely to be different from that leading to PH of the cranial vault. This is supported by the fact 

that, although CO has been thought to be an earlier ontogenetic expression of the anemic 

response that leads to porotic lesions in the cranium, many cases of PH in children shows no 



 
 

evidence of cribrotic lesions in the roof of the orbits. The causative independence of PH and 

CO in at least a percentage of cases, calls into question the relationship of the latter with the 

typical physiological response to anemia leading to bone marrow hyperplasia.     

Relationship between cribra orbitalia and bone marrow hyperplasia 

Several histological and radiographic studies have suggested that CO may be 

associated with marrow hypertrophy (Angel, 1966; Walker et al., 2009). However, the 

evidence for this relationship in many cases is unclear. Wapler et al. (2004) found that more 

than 1 in 4 cases of CO among ancient Nubians had no marrow expansion, while other 

studies have shown that there was minimal expansion of the diploë in the orbital roof in cases 

of hemolytic anemia (Caffey, 1937, 1951; Hershkovitz et al., 1997). The results of a detailed 

analysis of distribution of cranial thickness across the vault, as presented here, show that the 

relationship between CO and expansion of the diploë across the skull is not supported. On the 

contrary, cribrotic individuals have a significantly thinner diploë, particularly along the 

midsagittal profile of the frontal and parietal bones and adjacent regions on the parietal 

bones, than individuals without cranial porotic lesions. Furthermore, the analyses show that 

non-cribrotic and cribrotic individuals differ in cranial layer characterization, showing a 

complex pattern of association with localized thickening and thinning of the different layers 

that form the cranial vault. This is further reflected in the distinct combinations of cranial 

layer thickening and thinning observed in individuals with different degrees of development 

of cribrotic lesions.  

The results presented here are contrary to the expectation that individuals with CO 

show bone marrow expansion as observed in cases of PH. This further suggests that, if 

anemia is responsible for the appearance of porotic orbital lesions, it would have to be of the 

type that is characterized by a significant reduction in either erythrocyte size or production, 



 
 

leading to a decrease in the overall thickness of cranial diploic bone along the superior 

portion of the vault. Alternatively, CO may be, at least in a percentage of cases, unrelated to 

any form of anemia, as suggested by Ortner (2003) and Walker et al. (2009). The possible 

causative factors behind porotic lesions in the roof of the orbit are discussed below. 

The complex etiology of cribra orbitalia 

Although a case has been made for hereditary anemias, such as Thalassemia major 

and Sickle-Cell Anemia, as the causative agents of some archaeological cases of porotic 

hyperostosis and cribra orbitalia (Angel, 1964, 1966, 1967, 1984; Tayles, 1996; Hershkovitz 

et al., 1997), iron deficiency anemia gained prominence as an explanation for the disease due 

to its more widespread epidemiological incidence, matching the high frequency of cases of 

cranial porotic lesions particularly in the Americas (Walker, 1985; Sullivan, 2005), and 

analogies with clinical studies (Jeliffe & Blackman, 1962; Powell et al., 1965; Aksoy et al., 

1966; Cule and Evans, 1968; Lanzkowsky, 1968; Moseley, 1974; El Najjar et al., 1975; 

Webb, 1982; Martin and Goodman, 2002; Oxenham and Cavill, 2010). Indeed, not only is 

iron deficiency the most common cause of anemia (Ponka, 1997), but, for instance, only 5-20 

% of cases of Thalassemia, itself one of the more severe but relatively rare and regional 

diseases, show development of PH (Tayles, 1996). However, strong arguments against iron 

deficiency anemia as the cause of bone porotic lesions that result from the expansion of bone 

marrow have been put forth on the basis that this type of anemia inhibits effective 

hemoglobin synthesis, particularly in the development of erythrocytes, and thus leads to the 

reduction in red blood cell production (Rothschild, 2012). While this challenges the long-

standing association between iron deficiency anemia and PH found in the literature (Walker 

et al., 2009), it adds a potential explanation for the cases of CO associated with reduced 

thickness of the diploë. However, several different types of anemia are possible causative 



 
 

agents for the condition, as well as diseases unrelated to the hemotopoietic process. These are 

discussed below. 

Anemia as a symptom of different disorders 

There are various attributes by which the many types of anemia are clinically 

classified, such as erythrocyte morphology (i.e. size, shape, color or content; Erslev, 1983a; 

Naeim, 1992; Turgeon, 1993), general size (i.e. normocytic, microcytic, or macrocytic; 

Wintrobe, 1934; Fred, 2007), or cell morphology and etiology (Erslev, 1983a, Marcovitch, 

2005). Turgeon (1993) suggests that the categorization of anemia should be based primarily 

on etiology. Thus, she identifies four main forms of anemia, including those due to blood loss 

(both acute and chronic), impaired production (i.e. aplastic, iron deficiency, sideroblastic, 

anemia of chronic disease, and megalobalstic), hemolytic (inherited and acquired) and 

hemolytic-hemoglobin disorders, as well as sub-categories within these. A more simplified 

etiological categorization for anemia based on the state of erythropoiesis has also been 

proposed (Erslev, 1983a; Naeim, 1992). Erslev (1983a) classifies the types of anemia as 

either due to reduced erythrocyte production or to increased erythrocyte destruction, with 

sub-categories based on the types of cell (i.e. pluripotent or unipotent cells) primarily 

affected. He recognizes that various forms of anemia may occur due to the co-occurrence of 

both reduced red-blood cell production and increased destruction, but adds that his 

categorical division is based on the principal cause that contributes to anemia. This is 

consistent with the fact that anemias due to increased erythrocyte destruction, and also blood 

loss, result in bone marrow hyperplasia, while those that result from reduced or impaired 

erythrocyte production may result in either normal bone marrow cellularity, hypercellularity 

(and hyperplasia) or hypocellularity (and hypoplasia; Naeim, 1992). Thus, Erslev’s (1983a) 

categorization may best set the basis on which to identify the probable etiology of CO - the 



 
 

state of marrow hematopoiesis is the defining criteria of an anemic physiology, which in turn 

is largely accepted to influence the development (or not) of porotic lesions in the cranium. 

Erslev (1983a) lists many forms of anemia caused by reduced erythrocyte production 

(or hypoproliferative disorders; Turgeon, 1993), including those considered by Naeim (1992) 

as having the greatest effect on bone marrow. These anemias have both acquired and 

inherited etiologies, such as aplastic anemia (and pancytopenia; Turgeon, 1993), pure red cell 

aplasia (acute and chronic), B
12

, folic acid, protein and iron deficiency, β-thalassemia, anemia 

of chronic and endocrine disorders and of renal failure, among others. However, of these, 

only five conditions characteristically lead to hypocellular marrow, namely aplastic anemia, 

protein deficiency anemia, anemia of both chronic and endocrine disorders, and anemia of 

renal failure (Steinbock, 1976; Erslev, 1983b, d, e; Oski, 1983; Naeim, 1992; Kojima, 1999; 

Bain et al., 2010). Notably, pure red cell aplasia (acute and chronic) is characterized by 

marked erythroid hypoplasia; however, hypercellularity and marrow expansion are also a 

distinctive counter responses to this particular condition. As such, pure red cell aplasia is 

more likely characterized by both processes, even if hypocellularity and aplasia are the initial 

response. Other potential causes of hypocellular marrow are due to nutritional deficiency of 

copper, and to toxins (i.e. arsenic), or infections. Among the latter, a range of organisms 

(bacteria, viruses and parasites) can be involved, particularly brucellosis, cytomegalovirus 

(CMV), anaplasmosis (i.e. Anaplasma phagocytophilum), dengue virus (resulting in aplastic 

anemia), and malaria (i.e. caused by Plasmodium falciparum). However, with the exception 

of dengue virus, these other factors lead primarily to hypercellular bone marrow, although 

hypocellularity is observed in some cases (Naeim, 1992; Bain et al., 2010).  

As mentioned above, iron deficiency anemia has been identified as one of the main 

potential conditions leading to bone marrow hyperplasia and diploic thickening, and 

eventually, porotic lesions (Cule and Evans, 1968; El Najjar et al. 1975; Webb, 1982; Martin 



 
 

and Goodman, 2002; Oxenham and Cavill, 2010). This view has been questioned many times 

and on different basis. Fairbanks and Beutler (1972, 1983) argued that, except in cases of 

chronic iron deficiency, in which extensive marrow hyperplasia is characteristic, severe iron 

deficiency anemia has less of an impact on bone marrow expansion than other anemias that 

cause marked hyperplasia, such as thalassemia. Such reduced hyperplastic response to iron 

deficiency anemia has been observed in other studies (e.g., Naeim, 1992), leading to the 

suggestion that atrophic or “hypo-regenerative” marrow may be one of the outcomes of this 

type of anemia (Rothschild, 2012). In fact, Agarwal et al. (1970) found that 95 out of 100 

individuals with iron deficiency anemia showed atrophy or thinning of the outer cranial table, 

with only one or two cases
2
 of diploic expansion. They attribute this to a delay in diploic 

widening from the onset of anemia, which would suggest that complication in bone 

remodeling of the outer cortical table is either a preliminary effect to diploic expansion or 

that it is simultaneous to even the slightest degree of diploic expansion. Nevertheless, the 

most common bone marrow response to iron deficiency anemia is toward hyperplasia rather 

than hypoplasia (and bone marrow atrophy), and can, in some cases, cause an expansion of 

diploic bone similar to that observed in individuals with thalassemia (Fairbanks and Beutler, 

1983). Thus, this form of anemia is unlikely to be the underlying cause of the appearance of 

CO in individuals that not only lack a generalized thickening of the diploë, but are 

particularly characterized by regions of the vault with absolutely thinner diploë than non 

cribriotic individuals as observed in this study.  

Interestingly, Walker et al. (2009) make the case that iron deficiency anemia does not 

result in PH of the vault because this form of anemia is primarily due to reduced erythrocyte 

production; thus, they reason that iron deficiency cannot be responsible for marrow 

expansion as it “inhibits hypertrophy” because of this reduced state of erythropoiesis (p. 112). 

                                                           
2
 In Agarwal et al. (1970), it is noted that two individuals have an expanded diploe, but their Table I notes only 

one such case. 



 
 

Instead, they propose that megaloblastic and hemolytic anemias, due to increased erythrocyte 

destruction, are those that markedly lead to diploic hyperplasia. Although the latter is not 

disputed, it is not the case that all anemias that are primarily due to reduced red blood cell 

production will have the tendency toward marrow hypocellularity. As noted above, pure red 

cell aplasia (both acute and chronic), B12 and folic acid deficiency, and β thalassemia are 

primarily caused by reduced or impaired erythropoiesis, and yet they are characterized by 

hypercellular bone marrow (Erslev, 1983b; Weatherall, 1983; Naeim, 1992). Thus, it remains 

that iron deficiency anemia does not have a tendency toward bone marrow hypoplasia of the 

cranial vault despite its etiological categorization of reduced red blood cell production rather 

than increased destruction. The results in this study suggest an etiology for CO that results in 

a distinctively thin diploë of mid-sagittal portions of the cranial vault and neighboring parts, 

with significant thickening of the outer table on the mid-anterior aspect of the parietal bones, 

and of the inner table on the mid-posterior aspects, and no observable indication of PH of the 

vault. Thus, megaloblastic and hemolytic anemias, which also result in trabecular hyperplasia 

and thus vault diploic thickening, should be excluded as factors leading to the cases of CO 

studied here.  

Hypocellularity, anemias and cribra orbitalia 

To explain the diploic thinning in individuals with CO, the five anemias due to 

reduced erythropoiesis, resulting in marrow hypocellularity, should be considered -  (a) 

aplastic and (b) protein deficiency anemia, (c) anemia of endocrine disorders, (d) anemia of 

chronic disorders or disease, and (e) anemias of chronic renal failure.  

Aplastic anemia (or pancytopenia if all blood cells are affected), namely the acquired 

form, is generally attributed to some pharmaceutical drugs (e.g. nonsteroidal analgesics: 

phenylbutazone, ibuprofen; anticonvulsants: carbamazepine, hydantoins; antibiotics: 



 
 

chloramphenicol and sulfonamides; Shahidi, 1990, pp 26; Brodsky, 2014, pp 966), chemical 

toxins (e.g. benzene, trinitrotoluene, chlorophenothane, lindane, chlorodane, 

hexachlorocyclohexane, Shahidi, 1990, pp 26) and viral infections (e.g. hepatitis, where 0.1 – 

0.2% develop aplastic anemia, Shahidi, 1990), which induce an autoimmune response 

(Brodsky and Jones, 2005; Brodsky, 2014) whereby the bone marrow and its production of 

stem cells, particularly those forming erythrocytes, are impaired or destroyed (Shahidi, 1990; 

Naeim, 1992; Turgeon, 1993; Bain et al., 2010; Brodsky and Jones, 2005; Brodsky, 2014). 

Given the damage to the marrow and lack of proliferation of  these cells, bone marrow 

hypoplasia is a highly distinctive characteristic of this form of anemia, and although mortality 

is variable and dependent on the severity of damage to the hematopoietic process, it can often 

be quite high (Shahidi, 1990; Naeim, 1992; Marín-Fernandez, 1999). Shahidi (1990) reports 

that most cases of aplastic anemia “range from 5 to 13 per million population per year in the 

Western hemisphere” (pp 50), with greater prevalence in those over the age of 50, and with 

more cases documented in Asia. Brodsky (2014) supports this demographic, adding that 

children as well as young adults are also affected, and notes that calculating the incidence of 

aplastic anemia is often muddled by the complexity of its diagnosis, with many idiopathic 

cases of the disease. However, he cites one of the largest longitudinal studies by the 

International Aplastic Anemia and Agranulocytosis Study (IAAAS) that reports an incidence 

rate of 2 cases per million. The high mortality of this condition, together with its hypoplastic 

characteristic, could possibly explain the high numbers of CO identified in archaeological 

collections; however, aplastic anemia is quite rare (Shahidi, 1990; Brodsky, 2014), an 

autoimmune response poorly understood, with most cases idiopathic or largely triggered by 

pharmaceutical drugs (e.g. some antibiotics and anti-inflammatory painkillers) or chemical 

industrial products (e.g. gasoline and pesticides), and, to a lesser degree, viral infections, 



 
 

making it an unlikely explanation for the large numbers of prehistoric skeletal remains with 

CO.  

Protein deficiency anemia interrupts the production of erythropoietin, and is reported 

to result in a decrease in bone mass and possibly result in osteoporosis (Oski, 1983; Holick 

and Dawson-Hughes, 2004). This pattern of generalized outcomes is inconsistent with the 

localized thick outer and inner tables of cribrotic individuals found in this study. 

Furthermore, Oski (1983) notes that, while hypocellularity is possible, most individuals with 

this form of nutritional deficiency have normal bone marrow cellularity. In cases of 

Kwashiorkor, the form of protein deficiency most commonly observed in malnourished 

infants and children but also in adults, phases of bone marrow hypoplasia may occur (Davies, 

1948; Adams, 1969). However, protein deficiency anemia may not be the most likely 

condition to result in CO, given that individuals in this study have localized thicker compact 

tables and are not osteoporotic, despite the diploic tendency in individuals with this 

deficiency to be hypocellular or have hypoplastic marrow. 

Anemia of endocrine disorders occurs when either the production of erythropoietin, 

the hormone that induces erythropoiesis in the thyroid or pituitary glands is disrupted (Naeim, 

1992; Bain et al., 2010). Of the two, a hypopituitary gland has a greater tendency to cause 

bone marrow hypoplasia, while thyroid dysfunction may not lead to a particularly discernable 

reduction in bone marrow cellularity (Erslev, 1983b). In a study considered to be the only 

population assessment of the incidence and prevalence of hypopituitarism (Schneider et al., 

2007), Regal et al. (2001) determined that this condition occurs in 4.21 persons per 100,000 

per year, with a prevalence of 45.5 per 100,000, with a similar incidence in both men and 

women, and where pituitary and/or peripituitary tumors were the main cause, although they 

cite hormone deficiency also as a contributor. Thus, these rates suffice to determine that the 



 
 

hypocellularity associated with anemia originating from hypopituitarism is unlikely to 

explain the ubiquity of CO observed in anthropological studies.  

Anemia of chronic disorders or disease refers to a condition associated with both 

infectious and non-infectious illness (e.g. typhoid and tuberculosis, and vasculitis, sarcoidosis 

and rheumatoid arthritis, respectively; Erslev, 1983e; Weiss and Goodnough, 2005). It tends 

to cause the premature destruction of erythrocytes, disruption to regular iron uptake (Weiss 

and Goodnough, 2005; Weiss, 2009), and may lead to bone marrow hypocellularity. Naeim 

(1992) specifically notes that anemia of chronic disorders have no tendency toward 

hyperplasia. Interestingly, it is the second most prevalent form of anemia after iron deficiency 

anemia (Weiss and Goodnough, 2005), with which it also shares certain physiological 

characteristics (Erslev, 1983e; Bridges and Pearson, 2008), such as the reduction in serum 

concentration of iron and transferrin saturation (Weiss and Goodnough, 2005). However, 

while the two conditions share a hypoferremia phenotype (lack of iron in circulation), the 

underlying processes are different. In the case of anemia of chronic disease, reduced 

circulating iron is due to the uptake of iron by the reticuloendothelial system, given the 

reduced uptake by transferrin (iron transporter) (Weiss and Goodnough, 2005). The authors 

further state that in iron deficiency anemia, the low level of transferrin saturation could be 

caused by an increase in transferrin itself, creating this disproportion, while in anemia of 

chronic disease this is either not the case or transferrin levels are relatively less differential 

(Weiss and Goodnough, 2005). Furthermore, while ferritin (a protein binder for iron) levels 

in iron deficiency anemia may be low in absolute terms, normal levels are either maintained 

or higher in anemia of chronic disease since iron is not depleted but rather stored by the 

macrophage system. Although these physiological processes require clinical analyses to 

identify, there is a critical difference between both forms of anemia that contributes to 

anatomical differentiation - anemia of chronic disorders or disease tends toward hypoplastic 



 
 

bone marrow, while iron deficiency anemia tends toward bone marrow hyperplasia. This 

characteristic, together with the fact that anemia of chronic disorder or disease has a 

sufficiently high prevalence to account for the high frequency of archaeological cases, makes 

it a better candidate as the causative agent of CO associated with thinning of the diploë as 

observed in the present study than iron deficiency anemia.  

Anemia of chronic renal failure is an outcome of failing kidney function (Boulton-

Jones, 1981) that may be caused by multiple factors (e.g. hypertension, congenital kidney 

abnormalities, obstructions due to tumors or stones, diabetes, gout, tuberculosis, malaria). 

Since the kidneys are responsible for the production of erythropoietin (the hormone that 

initiates erythropoiesis in the marrow), reduced erythropoiesis is one of the main factors 

contributing to anemia in individuals with chronic renal failure, and can result in severe bone 

marrow hypoplasia (Naeim, 1992).  Thus, of the anemias leading to bone marrow 

hypocellularity, anemia of chronic renal failure may have one of the most dramatic effects on 

the reduction of cellularity and, therefore, a greater potential response of hypoplastic or 

atrophic marrow. However, chronic renal failure (stage 5 of chronic kidney disease, and when 

accompanying anemia becomes more prevalent) is relatively rare, affecting 120 individuals 

per million of the population per year, or less (Boulton-Jones, 1981; Stel et al., 2017). 

Furthermore, the fact that the individuals more likely to express hypoplastic bone marrow are 

those at the end-stage of kidney disease, or renal failure, with relatively high mortality rates 

when untreated, makes it inconsistent with the degree of healing of cribrotic lesions widely 

observed in archaeological human remains as well as considering the high incidence of CO 

among infants and children.  

Thus among the various anemic conditions that lead to marrow hypocellularity and 

hypoplasia, only anemias caused by chronic disorders or diseases meet the physiological 

pathway, and incidence and prevalence criteria to make it a possible explanation for cases of 



 
 

CO associated with thinning of the cranial diploë. Notably, non-anemic conditions have also 

been suggested as the underlying mechanism behind the condition. 

Non-anemic potential causes of cribra orbitalia 

Two main potential causes of CO, unrelated to any type of anemia, have been 

proposed. Both hypotheses focus on physical properties of the cranial vault, and particularly 

the roof of the orbits. The first of these suggests that diploic expansion can cause “pressure 

atrophy” on the outer cortical table, allowing the diploic bone to extend into the orbit, 

expressing CO, in severe cases (Steinbock, 1976). Following this logic, thickened outer and 

inner cranial tables, as observed in this study, may similarly produce an atrophic pressure on 

the diploë and its resulting counter-pressure would reduce its thickness, as observed by 

McElhaney (1970) and Peterson and Dechow (2002). However, the regions of the vault 

where diploic thinning is observed in individuals with CO in this study show no particular 

thickening of the cortical layers, and the only compensatory co-variation between thickening 

and thinning observed in this study involved the two cortical layers, whereby individuals 

showed thickening of the outer table at the mid-anterior aspect of the parietal bone with 

concomitant thinning of the inner table, and thinning of the inner table of the mid-posterior 

aspects of the parietal bones with concomitant thickening of the outer table – and vice-versa. 

Therefore, physiological pressure does not offer a consistent explanation for the patterns of 

vault thickness observed in this study. 

The second hypothesis was first suggested by Ortner and colleagues (Ortner and 

Ericksen, 1997; Ortner et al., 1999, 2001), and developed by subsequent scholars to account 

for the absence of bone marrow hypertrophy among some individuals with CO (Walker et al., 

2009). Other researchers had observed that diseases such as scurvy, rickets, and 

hemangiomas, as well as trauma can cause subperiosteal hematomas that lead to porotic 



 
 

lesions in the roof of the orbits (Wolter, 1979; Griffeth et al., 1997; Ortner, 2003). These 

conditions lead to localized hematomas, which lift the periosteum away from bone and form 

blood clots in the process of healing, which in turn are transformed into plaques of highly 

vascular, subperiosteal new bone (Woo & Kin, 1997; Sabet et al., 2001; Schultz, 2001; 

Ma’luf et al., 2002; Brickley & Ives, 2006). Although skeletal lesions associated with scurvy 

are most commonly reported for the long bones of the lower limbs (Ortner and Putschar, 

1981), lesions in the cranial vault are well-known, from the distinctive cranial porous bossing 

known as Parrot’s swellings (Barlow, 1883) to lesions that may be macroscopically 

undistinguishable from cases of CO (Fraenkel, 1929). Such subperiosteal hematomas are 

most common in children, among whom the periosteum is not as tightly attached as in adults 

and who have greater density of blood vessels connecting the periosteum to the underlying 

bone (Tonna, 1974; Ortner and Eriksen, 1997; Ma’luf et al., 2002; Augustin et al., 2007). 

This would account for the higher prevalence of CO observed in infants and young children 

in archaeological skeletal remains (Steckel et al., 2002).  

In particular, scurvy, a disease caused by deficiency or absence of Vitamin C 

(ascorbic acid) in the diet has been implicated in the formation of cribrotic lesions (Fraenkel, 

1929; Ortner and Eriksen, 1997). The subperiosteal hematoma in scurvy occurs on the 

inferior surface of the orbital plate of the frontal bone (Jaffe, 1972), causing an inflammatory 

condition that may lead to CO. Accordingly, cribrotic lesions in the orbital roof were 

observed in 12% of autopsy cases of scurvy in infants (Fraenkel, 1929). Vitamin C is critical 

for the formation of connective tissues, including collagen and cement material that binds the 

endothelial layer in blood vessels, which if defective, leads to increased susceptibility to 

haemorrhage (Ortner and Putschar, 1981). Particularly in relation to CO, Vitamin C 

deficiency is known to weaken the Sharpey’s fibers that attach the connective tissue covering 

the orbital roof, thus leading to minor traumatic lesions and bleeding, and potentially the 



 
 

formation of cribrotic lesions (Walker et al., 2009). Thus, cases of CO with absence of 

diploic vault expansion as observed in this study could be associated with scurvy. A recent 

study using CT scans to measure the cranial vault thickness in crania of children with scurvy 

and anemia found that individuals with scurvy had greater vault thickness at most of the 

landmarks studied than crania from a non-pathological control group, particularly among 

children below the age of 8 years, as well as a strong relationship between degree of severity 

of CO and PH and patterns of cranial thickness at different landmarks across the vault 

(Zuckerman et al., 2014). The latter results are consistent with the observations on severity of 

cribrotic lesions in adults and cranial thickness made in this study, although the former differ 

from those of the present study in which total cranial thickness was more often greater among 

non-pathological than cribrotic individuals, although the different age groups being 

considered and the comparatively small sample of cases of scurvy (n= 11) in the study by 

Zuckerman et al. (2014) may account for some of the differences observed.  

Reports of scurvy in archaeological remains have increased in recent years as its 

possible skeletal manifestations become better known (e.g, Maat, 2004; Brickley and Ives, 

2006; Mays, 2008; Brown and Ortner, 2011; Geber and Murphy, 2012) and researchers 

become aware of the potential over-diagnosis of anemia as the explanation for the common 

porotic lesions observed in past populations. However, while scurvy is a possible explanation 

for those cases of CO that show no expansion of the bone marrow such as those included in 

the present study, the skeletal lesions of scurvy overlap substantially with those caused by 

other diseases, making diagnosis in adults uncertain (Brickley and Ives, 2006; Armelagos et 

al., 2014). Nevertheless, of all the possible conditions that may lead to the form of CO 

dissociated with porotic lesions on the vault and diploë expansion observed in the sample 

studied here, scurvy is the most likely of causes if anemia, particularly due to chronic disease, 

can be excluded. 



 
 

CONCLUSION 

Many studies attribute PH and cribra orbitalia to some form of anemia due to its 

hypertrophic and hyperplastic effect on cranial diploic bone (e.g. Moseley, 1965; Angel, 

1966; Lanzkowsky, 1968; El-Najjar, 1975; Williams et al., 1975; Ascenzi, 1979; Von Endt 

and Ortner, 1982; Stuart-Macadam, 1985; Walker, 1986; Filon et al., 1995; Tayles, 1996; 

Schultz, 1993; Martin and Goodman, 2002; Wapler et al., 2004; Gowland and Western, 

2012). Most of the studies focused specifically on CO also cite other potential etiologies, 

such as inflammation (i.e. lacrimal gland, craniofacial sinuses), and infection (i.e. trachoma), 

which do not have an effect on the diploic bone of the cranium (Steinbock, 1976; Schultz, 

2001). However, not all significant detriment to cranial bone marrow is expressed by 

expansion. To the contrary, the individuals with CO included in this study have significantly 

thinner diploic bone along the cranial midline of the vault and neighboring parietal regions, 

and no evidence of PH. Such cases of CO with no associated expansion of the diploë are 

reported in the literature, and contribute to hypotheses that argue against all anemias 

associated with marrow hypertrophy as a causative factor behind cribrotic lesions. Our results 

add to this body of evidence, and provide a detailed description of the complex pattern of 

changes in localized cranial vault thickness in individuals with different degrees of severity 

and healing of CO. 

While a form of anemia remains the most likely underlying condition for CO, the 

macroscopic lesions observed in skeletal remains can be caused by different forms. Cribra 

orbitalia associated with bone marrow hyperplasia and/or porotic hyperostosis, is likely to be 

related to one of the major anemias that compensate an impairment or deficiency in blood 

cells by stimulating increased hematopoiesis, such as with iron-deficiency, hereditary (e.g., 

Thalassemia, Sickle-Cell) and some acquired anemias.  Cribra orbitalia in cases with the 

absence of bone marrow expansion, however, can only be related to those anemias that result 



 
 

in localized diploic atrophy or hypoplasia. Of these, anemia of chronic renal failure may have 

the most dramatic effect on diploic bone, although its rarity and demographic makes it an 

unlikely cause of the widespread archaeological prevalence of CO, while anemia of 

endocrine disorders (particularly of the pituitary) may also contribute. However, anemia of 

chronic disease is highly prevalent (only second in occurrence to iron deficiency anemia), and 

it is characteristically hypoplastic, which is consistent with the lack of diploic expansion in 

cribrotic individuals in this study. However, scurvy can also cause cribrotic lesions in the roof 

of the orbits that is dissociated from cranial vault marrow expansion, and should be 

considered as a likely cause of CO if anemia, particularly those of chronic disease, can be 

excluded. The overlapping expression of these conditions on the skeletal system makes 

differential diagnosis difficult, and highlights the importance of considering the spatial and 

structural pattern of cranial vault thickness when investigating palaeopathological cases of 

CO and PH.     

Lastly, given that porotic hyperostosis of the vault is firmly associated with diploic 

hyperplasia, and that at least some individuals with cribra orbitalia are significantly 

characterized by localized hypoplasia, it is suggested that the terms should be connoted to 

reflect their general, but clearly separate etiologies. 
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Table 1 List of crania included in the analyses 

Regional Distribution of Non-cribrotic Individuals 
Sample 

Size (n) 

Sex 

 Male     Female 

Asia (Burma, India & Sri Lanka, Andaman & Nicobar Islands) 8 3 5 

Africa (West, Southern, Central, East & North Africa) 6 2 4 

Africa (Kenya, East Africa) 10 5 5 

Africa (Somalia, East Africa) 7 6 1 

Africa (Tanzania, East Africa) 8 8 0 

Africa (Sudan, East Africa) 5 5 0 

Europe (France, Austria, Hungry, Switzerland, Sweden, Germany, 

Serbia, Russia, Czechoslovakia, Italy, Minorca, Sardinia, England, 

Malta, Greece) 

9 3 6 

America (South & Central) 6 3 3 

America (North) 9 6 3 

Australia 7 3 4 

TOTAL 75 44 31 

    

Regional Distribution of Cribrotic Individuals    

Africa (South Africa, Kenya, Somalia, Tanzania, Sudan) 16 8 8 

Asia (Mainland India & Andaman Islands) 5 2 3 

Europe (Germany) 1 1 0 

South America (Peru) 1 1 0 

TOTAL 23 12 11 

 



Table 2 Cranial vault thickness measurements that differ between cribrotic and non-cribrotic 

individuals  

Measurement in ranking order Benjamini-Hochberg p value 

(0.25 false discovery rate) 

TOTAL THICKNESS (n=48) 

Vertex p = 0.110 

  

OUTER TABLE THICKNESS (n-46) 

-- -- 

  

DIPLOIC THICKNESS (n=46) 

Bregma subtense fraction posterior (PAFpost) p = 0.015 

Nasion subtense fraction inferior (FRFinf) p = 0.015 

Bregma subtense fraction anterior (PAFant) p = 0.015 

Bregma subtense fraction (PAF) p = 0.018 

Ophryon (O) p = 0.041 

Frontal quadrant 4 (FQ4) p = 0.045 

Parietal quadrant 4 left (PQ4l) p = 0.051 

Parietal quadrant 2 right (PQ2r) p = 0.051 

Frontal quadrant 2 (FQ2) p = 0.057 

Bregma (B) p = 0.060 

Vertex (V) p = 0.112 

Parietal quadrant 2 left (PQ2l) p = 0.167 

Glabella (G) p = 0.167 

Nasion subtense fraction superior (FRFsup) p = 0.196 



  

INNER TABLE THICKNESS (n= 46) 

Opistocranium (Op) p = 0.040 

Parietal quadrant 4 left (PQ4l) p = 0.040 

Parietal temporal fraction superior left (PTFsupl) p = 0.058 

Inion (In) p = 0.109 

Parietal quadrant 3 left (PQ3l) p = 0.149 

Frontal quadrant 1 (FQ1) p = 0.149 

Nasion subtense fraction (FRF) p = 0.149 

Lambda subtense fraction (OCF) p = 0.149 

Parietal temporal fraction posterior right (PTFpostr) p = 0.149 

Parietal quadrant 3 right (PQ3r) p = 0.149 

Nasion subtense fraction left (FRFl) p = 0.239 

Nasion subtense fraction right (FRFr) p = 0.242 

Lambda subtense fraction left (OCFl) p = 0.242 

Parietal temporal fraction posterior left (PTFpostl) p = 0.242 

 



Table 3: Canonical discriminant function results for cranial measurements in increasing order 

Analysis Eigenvalue Canonical 

Correlation 

Wilk’s λ X
2
 Cross-validated classification 

Not observed or 

predicted CO 

Not observed but 

predicted CO 

Observed but not 

predicted CO 

Observed and 

predicted CO 

DT (uncorr) 0.133 0.342 0.883 11.888 75 (100.0%) 0  (0.0 %) 23 (100.0%) 0   (0.0%) 

IT (corr) 0.259 0.453 0.795 21.850 71   (94.7%) 4   (5.3%) 16   (69.6%) 7 (30.4%) 

TT (uncorr) 0.269 0.460 0.788 22.395 72   (96.0%) 3   (4.0%) 16   (69.6%) 7 (30.4%) 

IT (uncorr) 0.298 0.479 0.770 24.549 71   (94.7%) 4   (5.3%) 15   (65.2%) 8 (34.8%) 

OT (uncorr) 0.378 0.524 0.725 30.009 71   (94.7%) 4   (5.4%) 13   (56.5%) 10 (43.5%) 

DT (corr) 0.486 0.572 0.673 37.004 68   (90.7%) 7   (9.3%) 10   (43.5%) 13 (56.5%) 

OT (corr) 0.661 0.631 0.602 46.915 69   (92.0%) 6   (8.0%) 13   (56.5%) 10 (43.5%) 

OT + IT (corr) 0.683 0.637 0.594 48.175 67   (89.3%) 8 (10.7%) 10   (43.5%) 13 (56.5%) 

IT + DT (corr) 0.725 0.648 0.580 50.723 68   (90.7%) 7   (9.3%) 7   (30.4%) 16 (69.6%) 

OT + DT + IT (uncorr) 0.886 0.685 0.530 58.387 71   (94.7%) 4   (5.3%) 8   (34.8%) 15 (65.2%) 

OT + DT (corr) 0.849 0.678 0.541 56.570 71   (94.7%) 4   (5.3%) 6   (26.1%) 17 (73.9%) 

OT + DT + IT (corr) 2.347 0.837 0.299 105.706 70   (93.3%) 5   (6.7%) 4   (17.4%) 19 (82.6%) 

 



Table 4 Results of the Kruskal-Wallis test of differences across average cranial thickness 

among levels of severity of cribrotic lesions (Grades 1 to 3) 

 

Landmark X2  Df P Av 

thickness 

Grade 1 

Av 

thickness 

Grade 2 

Av 

thickness 

Grade 3 
Frontal fraction total thickness 8.043 2 0.018 6.3367 8.1578 6.3376 
Parietal Bregma-left outer table thickness 6.285 2 0.043 1.8124 2.4629 1.6590 
Parietal quadrant 3 left outer table thickness 9.665 2 0.008 1.7829 2.5212 1.7855 
Frontal quadrant 2 outer table thickness 7.752 2 0.021 1.4891 2.1668 1.7467 
Frontal quadrant 2 inner table thickness 7.531 2 0.023 0.9258 1.5477 1.0745 
Opistocranium outer table thickness 6.747 2 0.034 1.8257 2.3726 1.7983 
Opistocranium inner table thickness 6.708 2 0.035 1.2925 2.2144 1.2560 
Lambda subtense fraction outer table 
thickness 

10.374 2 0.006 2.1208 3.1491 2.0901 

Lambda subtense fraction inner table 
thickness 

6.100 2 0.047 1.2658 2.1187 1.2017 

Inion outer table thickness 7.553 2 0.023 2.2159 3.2817 2.0026 
Inion inner table thickness 7.350 2 0.025 1.6648 2.7493 1.6749 

 



Table 5 Discriminant function scores differentiating individuals without cribra, and with and 

without cribrotic healing 

 

 No cribra  

(n=97) 

Healing cribra  

(n= 9) 

No healing of cribrotic lesions 

(n= 14) 

DF1 -0.35439 ± 0.92 

 

2.702847 ± 2.76 

 

0.717893 ± 2.42 

 

DF2 0.328181 ± 1.05 

 

-0.99299 ± 1.58 

 

-1.63548 ± 1.45 

 

 



Figure 1: Cribra orbitalia and grades of severity 

 

 

Figure 2: CT boundaries: grey scale and binary images using Half Maximum Height (HMH) 

 

 



Figure 3: Bisecting and quadrant thickness measurement landmarks for the frontal, parietal 

and occipital bones 

 

 

 



Figure 4: Independent T-test - total thickness at vertex between non-cribrotic and cribrotic 

individuals 

 

 

 

 

 

 

 

 



Figure 5: Independent T-test - inner table thickness of non-cribrotic and cribrotic individuals  

 

 

 

 

 

 

 

 

 

 



Figure 6: Independent T-test - diploic thickness of non-cribrotic and cribrotic individuals  

 

 

 

 

 

 

 

 

 



Figure 7: Discriminant function differentiation of cribrotic and non-cribrotic individuals 

 

 

 

 

 

 



Figure 8: Discriminant function cranial thickness distributions of cribrotic and non-cribrotic 

individuals  

 

Figure 8: Pattern of cranial thickness in individuals with and without cribra orbitalia as 

revealed by a Discriminant Function analysis based on the thickness of the three cranial 

layers across 48 points on the vault. (a) Degree of correlation of the 16 thickness variables 

that contribute to the Discriminant Function; (b) pattern of relative thickness of the sixteen 

variables in individuals with cribra orbitalia (asterisks mark univariate significance levels); 

(c) pattern of relative thickness of the sixteen variables in individuals without cribra orbitalia 

(asterisks mark univariate significance levels). 

 

 

 

 

 

 



Figure 9: Pattern of cranial layer thickness correlating with the Discriminant function 

 

Figure 9: Boxplot of the 16 variables that correlate with the Discriminant Function, organized 

by cranial layer, and clustered by absence (left) and presence (right) of cribra orbitalia. 

Asterisks mark level of significance. 

 

 

 

 

 

 



Figure 10: Severity degrees and differing patterns of cranial vault thickness 

 

Figure 10: Severity of CO per variable across the cranial vault 

 

 

 

 

 

 

 

 



Figure 11: Discriminant function showing differentiation among cribrotic individuals with 

mild, moderate and pronounced severity 

 

Figure 11: Figure 11 Shows the results of a discriminant function (15 variables), where cases 

with moderate (Grade 2) and pronounced (Grade 3) cribrotic lesions separate along Function 

1, and where mild cases (Grade 1) separate from cases of moderate and pronounced CO 

(Grades 2 and 3) along Function 2 

 

 

 



Figure 12: Discriminant function distribution of individuals with and without CO according 

to severity grades 

 

Figure 12: Shows the cranial thickness distribution of non cribrotic individuals and those with 

varying severity of the lesions, where mild cases of CO do not differentiate from those 

without CO 

 



Supplimentary Figure (S1): Severity categories 1 - 3 from mild, moderate and pronounced 

 
Cribra grades: (a) grade 1, presence of pores 



 
b) grade 2, present to moderate 

 

 
(c) grade 3 and 4, moderate and moderate to severe, respectively 
 


