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ABSTRACT
This paper focuses on the reconstruction of a tensor captured
using Compressive Sensing (CS). Instead of processing the
signals via vectorization as is done in conventional CS, in
tensor CS high dimensional signals are kept in their original
formats, which benefits hardware implementation and eases
memory requirements. In addition, more structures exist in a
tensor along its various dimensions than in its vectorized for-
mat. Utilizing these various structures, this paper proposes a
general reconstruction approach for tensor CS. Employing the
proximity operator of a nonconvex norm function, a special
case for a tensor with low rank and sparse structures is elabo-
rated, which is shown to outperform the state-of-art tensor CS
reconstruction methods when applied to magnetic resonance
imaging and hyper-spectral imaging.

Index Terms— Compressive sensing, tensor reconstruc-
tion, sparse and low rank reconstruction.

1. INTRODUCTION
Compressive Sensing (CS) [1, 2, 3], which achieves sensing
and compression at the same time, is drawing increasing at-
tention for data acquisition. It relies upon the fact that most
practical signals can be represented with only a few non-zero
coefficients (i.e., the signal is sparse) in a suitable basis and
guarantees the reconstruction of such signals from far fewer
samples than that required by the Nyquist sampling theorem.

However, it is challenging to apply CS in modern appli-
cations, which often generate signals with multidimensional
structures, e.g., Magnetic Resonance Imaging (MRI) and
Hyper-Spectral Imaging (HSI). In conventional CS, a multi-
dimensional signal, i.e., a tensor, is mapped in vector format
for sensing and reconstruction. Such a vectorized tensor in
real-world applications requires an enormous CS sensing ma-
trix, which imposes large demands in terms of processing
power and memory size. In addition, sensing the vectorized
signal is equivalent to simultaneously multiplexing along all
data dimensions, which is difficult to achieve in hardware.
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Besides, a tensor usually possesses structures along its var-
ious dimensions; while the vectorization results in a loss of
structure.

In the past few years, extension of CS to 2D signals,
i.e., matrices, has been made [4, 5, 6, 7], where a rank defi-
cient model is involved rather than simply assuming a sparse
model. However, research concerning CS for tensors is still
quite rare. In [8], Kronecker product matrices are proposed
to form the CS sensing matrix, thereby the sensing proce-
dure is partitioned along dimensions. The theory presented
in this paper paves the way to tensor CS. Using the canon-
ical polyadic decomposition model of a tensor, in [9, 10],
a framework for recovering tensors that have sparse factor
matrices is proposed. A different approach, based on the
Tucker decomposition model that is more intuitively related
to practical CS, multidimensional CS is proposed in [11, 12].
The authors assume a sparse Tucker core tensor and propose
the Kronecker Orthogonal Matching Pursuit (KOMP) algo-
rithm to reconstruct a tensor from the Kronecker CS samples.
It is also extended to exploit the block sparse structure and
a Block-based KOMP algorithm is proposed. Other related
work lies in the field of tensor completion, where a low rank
tensor model is assumed [13, 14]. However, all the afore-
mentioned work utilizes either a sparse or a low rank model
for the whole tensor, which does not fully exploit the various
structures present in a high dimensional signal.

In this paper, we propose an approach to CS tensor recon-
struction, in which diverse structures along each dimension
(i.e., mode) of a tensor are exploited. Even though simulta-
neous structures have been considered for matrices, e.g., the
matrix signal is both rank deficient and sparse or group sparse
[7, 15, 16], their approaches are not applicable to our problem
because they do not separately sense and reconstruct the sig-
nals along dimensions using the Kronecker structures, which
means that their implementations are limited by the large data
size of a tensor. In some other work [17, 18], dictionary learn-
ing techniques are extended to tensors to take advantage of
structures in modes. However, to the best of our knowledge,
there is no prior work focused on exploiting various struc-
tures in the tensor modes in the reconstruction process of ten-
sor CS. We solve the proposed multi-structure optimization
problem using an approach based upon the Alternating Di-
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rection Method of Multipliers (ADMM) [19], in which we
employ nonconvex reconstruction because the convex relax-
ation commonly used in CS is shown to not perform well in
the case of simultaneous structures [20]. The derived algo-
rithm overcomes the difficulty of high memory requirements
and computation loads encountered for tensor reconstruction
in conventional CS and ADMM, and it provides the flexibility
of involving various structures, thereby improving the recon-
struction accuracy.

1.1. Multi-linear Algebra and Notations
A multidimensional array X ∈ RN1×...×Nn is known as a
mode-n tensor, where the dimension of its i-th mode is Ni.
The mode-i vectors are determined by fixing every index ex-
cept the one in the mode i. The mode-i unfolding matrix
X(i) ∈ RNi×N1...Ni−1Ni+1...Nn is obtained by arranging all the
mode-i vectors as columns of a matrix. Given a matrix A ∈
RJ×Nk , the mode-k tensor by matrix product is defined as
Z = X×k A, where Z ∈ RN1×...×Nk−1×J×Nk+1×...×Nn and it
is calculated by: Z = foldi(AX(i)), where foldi(·) is an oper-
ator that folds up a matrix along mode i to a tensor. The Kro-
necker and Hadamard product between two matrices are de-
noted by A⊗B and A◦B, respectively. The Kronecker prod-
uct of n matrices is denoted by A, where A = An ⊗ ...⊗A1.
The lp norm of a vector is defined as: ||x||p = (

∑n

i=1
|xi |p)

1
p

and the l0 norm is given by the number of nonzero entries.
The operator vec(·), ten(·), diag(·) and svd(·) denote vector-
ization, tensorization, taking a matrix diagonal and singular
value decomposition, respectively.

2. TENSOR COMPRESSIVE SENSING
Extending the sensing model in CS, a tensor X ∈ RN1×...×Nn

is sampled by:
Y = X×1 Φ1 ×2 Φ2...×n Φn, (1)

where Y ∈ RM1×...Mn is the measurement, Φi ∈ RMi×Ni (i =
1, ..., n) are sensing matrices and Mi < Ni. A tensor is re-
garded as K sparse when it can be represented as:

X = S×1 Ψ1 ×2 Ψ2...×n Ψn, (2)
where Ψi ∈ RNi×Ni (i = 1, ..., n) are the sparsifying basis,
e.g., a Discrete Wavelet Transform (DWT), S ∈ RN1×...Nn is
the sparse representation which has only K non-zero coeffi-
cients. Then the sensing procedure is equivalent to:

Y = S×1 A1 ×2 A2...×n An, (3)
where Ai = ΦiΨi (i = 1, ..., n) are the equivalent sensing
matrices.

To see the connection of tensor CS to conventional CS,
equation (3) has been shown in [12] to be equivalent to:

y = (An ⊗An−1 ⊗ ...⊗A1)s, (4)
where y and s are the vectorized Y and S, respectively. By
using the notation A, it becomes a conventional CS model.

To reconstruct S or X from the measurement Y is an un-
derdetermined problem and it is modeled in CS as a l0 mini-
mization problem as follows:

min ||s||0 s.t. Y = S×1 A1 ×2 A2...×n An, (5)

which is NP-hard and is normally solved by replacing the l0
norm with a l1 norm. The reconstruction is guaranteed when
the sensing matrix A obeys the Restricted Isometry Property
(RIP) [1]. The relationship between the RIP of A and each
component Ai has been analyzed in [8]. Nonconvex opti-
mization, where the l0 norm in (5) is replaced by a lp (0 <

p < 1) quasi-norm, has been shown [21, 22] to be capable of
further reducing the required number of samples for recon-
struction, while still being tractable.

Tensor CS enlarges the dimension of the signals that can
be processed in a conventional CS system. Specifically, in
conventional CS, a n-mode tensor X ∈ RN×...×N is vector-
ized as x ∈ RNn , which requires a global multiplexing with a
sensing matrix of size Mn × Nn; while in tensor CS, such a
sensing matrix is partitioned as n smaller sensing matrices of
size M×N , which reduces the memory storage requirements,
and also eases hardware implementation. In addition, ex-
tending CS reconstruction algorithms to utilize the Kronecker
structure reduces the computational complexity. This is pri-
marily because the complexity involved in operations such as
y−As isO(MnNn+Mn); while that for Y−S×1A1...×nAn

is O[MNn(1−Mn/Nn)/(1−M/N) +Mn], which is always
smaller than the former.

3. TENSOR CS RECONSTRUCTION USING
STRUCTURES IN MODES

High dimensional signals often possess various structures
along its dimensions, e.g., sparse, low rank, row sparse, col-
umn sparse. Utilizing these structures simultaneously can
reduce the degrees of freedom of the reconstruction problem
and consequently improve the reconstruction performance
[20]. The reconstruction problem that provides the flexibility
of exploiting various structures is formulated as:

min
X

n∑
i=1

αi||ΩiX(i)||(i−th norm)

s.t. Y = X×1 Φ1...×n Φn, (6)
where Ωi denotes an orthogonal transform for the i-th mode,
|| · ||(i−th norm) is a general form of norms that can be defined
specifically according to the structure of the i−th mode and
αi (i = 1, ..., n) are the tunning parameters. This problem can
be rewritten as:

min
X,Z1,...,Zn

n∑
i=1

αi||ΩiZi(i)||(i−th norm)

s.t. Y = X×1 Φ1...×n Φn,

X = Zi, i = 1, ..., n, (7)
where Zi (i = 1, ..., n) are intermediate variables.

We then propose to solve this problem using the Alter-
nating Direction Method of Multipliers (ADMM) [19]. How-
ever, since large dimensions are involved in the problem, the
original ADMM becomes impractical as it leads to high stor-
age requirements and a significant computational burden. We
thus derive efficient calculations in the ADMM steps to en-
able implementation. The augmented Lagrangian function of



(7) is defined as:
Lρ(X,Z1, ...,Zn,P1, ...,Pn,Q)

=

n∑
i=1

(αi||ΩiZi(i)||(i−th norm)+ < Ωi(X− Zi), ΩiPi >

+
ρ

2
||Ωi(Zi −X)||2F )+ < Y −X×1 Φ1...×n Φn, Q >

+
ρ

2
||Y −X×1 Φ1...×n Φn||2F , (8)

in which ρ > 0, and P and Q are dual variables. The ADMM
then proceeds by iteratively updating Zis (i = 1, ..., n), X, Pis
(i = 1, ..., n) and Q with the others fixed.

Updating each Zi for i = 1, ..., n yields:
Zi
t+1 =min αi||ΩiZi(i)||(i−th norm)

+
ρ

2
||ΩiZi −Ωi(

1

ρ
Pi

t + X)||2F

=ΩT
i proxαi

ρ , (i−th norm)
[Ωi(

1

ρ
Pi

t + Xt)], (9)

where prox(·) denotes the proximity operator [23] and is de-
fined for function f as: prox 1

ρ , f
(x) = arg minyf(y)+

ρ
2
||x−

y||22. The proximity for many widely used functions has been
derived in [23, 24, 25], including the lp norm, the log-penalty
and the lp,q norm. The obtained proximity operators for these
functions are element-wise thresholding functions, which are
simple to compute even for high dimensional data. To take
advantage of the various structures in tensor modes, one can
define the transform operator Ωi and the i-th norm specifically
according to the applications, provided that the proximity for
the norm can be calculated.

With Zi (i = 1, ..., n) determined, we then update X by
minimizing Lρ, which yields:

Xt+1 = (nI + Φ
T
Φ)−1{vec[

n∑
i=1

(Zi −
1

ρ
Pi)

+ (
1

ρ
Q + Y)×1 ΦT

1 ...×n ΦT
n ]}. (10)

We observe that in equation (10), the term (nI + Φ
T
Φ) has

the size N1N2...Nn × N1N2...Nn, which is not feasible to be
processed by a conventional computing device and worse, its
inverse is even more difficult to calculate having a complexity
of O[(N1N2...Nn)

3].
To keep the advantage of low memory requirement in ten-

sor CS, we rewrite the term (nI + Φ
T
Φ)−1 as:

(Un⊗ ...⊗U1)(nI+Vn⊗ ...⊗V1)
−1(UT

n ⊗ ...⊗UT
1 ), (11)

where Ui and Vi comes from the eigendecompositions of
ΦT
i Φi, i.e., UiViU

T
i = ΦT

i Φi, and the matrices Vi (i =

1..., n) are diagonal. Therefore the term (nI+Vn⊗ ...⊗V1) is
also diagonal and its inverse can be easily obtained. The com-
putational complexity is now reduced to that of the eigende-
compositions, i.e., O(

∑n

i=1
N3
i ) and they only need to be cal-

culated once before the iterations start. To avoid the storage
of the large matrix in (11), we partition it into small matrices
and update X by:
Xt+1 = [ten(v) ◦ (G×1 UT

1 ...×n UT
n )]×1 U1...×n Un, (12)

where v = diag[(nI + Vn ⊗ ... ⊗ V1)
−1], G =

∑n

i=1
(Zi −

1
ρ
Pi)+( 1

ρ
Q+Y)×1 ΦT

1 ...×nΦT
n . In this way, the complexity

of the matrix-vector multiplication in (10) is also reduced, as
discussed in Section 2.

In the final steps, the dual variables are updated by:
Pi

t+1 = Pi
t − ρ(Zit+1 −Xt+1), (13)

Qt+1 = Qt − ρ(Xt+1 ×1 Φ1...×n Φn −Y). (14)
The convergence of convex ADMM has been studied

in [19] and a recent work also analyzes the nonconvex and
smooth case [26]. The convergence issue for a nonconvex
and nonsmooth case is still an open question, but it has been
empirically shown to converge reliably for certain cases [6].

4. NONCONVEX CS RECONSTRUCTION FOR
TENSORS WITH LOW RANK AND SPARSE MODES

In this section, we consider a special case when a tensor has
low rank and sparse modes, i.e., rank(X(i)) < ri for some
of the modes i and supp(ΩiX(i)) < K for the others. Such
models widely exist in practical applications, e.g., MRI, HSI,
video processing and sub-wavelength optical imaging [27].

Here, we employ nonconvex functions to model the spar-
sity and rank deficiency. Specifically, we adopt the proximal
lp (p ≤ 1) norm (denoted by Gρ,p) as defined in [6], of which
the proximity has been derived as a p-shrinkage operator that
functions element-wise as follows:

shrinkp(t, µ) = max{0, |t| − µ|t|p−1} t|t| . (15)

The optimization problem then becomes:
min
X

∑
i∈S

αi[Gρ,p(ΩiX(i))] +
∑
i∈L

αi{Gρ,p[σ(X(i))]} (16)

s.t. Y = X×1 Φ1...×n Φn,

where σ(X(i)) is the vector of singular values of X(i), the sets
L and S denote the modes that are low-rank or sparse, respec-
tively. Follow the process in Section 3, the Tensor ADMM
algorithm (TADMM) is summarized in Algorithm 1.
Algorithm 1 TADMM

Input: Y, Φi, Ωi, X0, Pi
0, Q0, Zi

0, L, S, p, ρ, αi, (i = 1, ...n).
Output: X.
1:Repeat
2: For i = 1 to n do
3: if i∈ L
4: ΓΛW T = svd( 1

ρ
Pt
i(i) + Xt

(i));
5: Zi

t+1 = foldi{Γshrinkp[diag(Λ), αi
ρ
]W T };

6: else
7: Zi

t+1 = shrinkp(
1
ρ
Pi

t + Xt, αi
ρ
);

8: end
9: end for
10: Calculate Xt+1 using (12);
11: Update Pi

t+1 (i = 1, ..., n) using (13);
12: Update Qt+1 using (14).
13: Until a stopping criteria is met at iteration t.

5. SIMULATION RESULTS
In this section, we evaluate the proposed approach, i.e.,
TADMM, on 3-mode tensors with low rank and sparse modes
in both MRI and HSI applications. In both experiments, we
compare TADMM with the state-of-art tensor CS algorithms,
which include the sparsity based methods: Kronecker CS
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Fig. 1. PSNRs when various sampling ratios are employed
for (a) MRI; (b) HSI. (p = 0.5). The blue, red and black
curves represent the sparse and low rank based methods,
sparse based methods and low rank based method.
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Fig. 2. Reconstruction of (a) MRI (100-th slice; sampling
ratio: 0.3, p = 0.5); (b) HSI (32 frequency channels are trans-
formed to RGB display; sampling ratio: 0.1, p = 0.5).

(KCS) [8] and Block sparse KOMP (BKOMP) [11]; the low
rank based method: Low Rank Tensor Completion (LRTC)
[13]; and the sparse and low rank based method: Split Breg-
man algorithm (SB) [15]. For the SB algorithm, as it was
originally designed for vectorized signals, we modify it to
utilize the tensor Kronecker product so that it can be applied
to large dimensional signals. We also extend it to utilize the
proximal p-norm so that it becomes a nonconvex method,
denoted by SB-p. We employ the SPGL1 solver [28] for the
KCS method.

In both MRI and HSI experiments, for the TADMM al-
gorithm, mode 1 and 2 of the tensor are sparse in a 4 level
DWT basis and mode 3 is low rank in the original domain.
A 3D 4 level DWT is utilized for the sparsity based methods.
The sensing matrices Φ1, Φ2 are set as i.i.d Gaussian sens-
ing matrices with various sample ratios and Φ3 is an iden-
tity matrix. To initialize the ADMM algorithm, we set X0 =

Pi
0 = Zi

0 = 0 (i = 1, ..., n) and Q0 = Y. The parameters
are chosen empirically as α1 = α2 = α3 = 1, ρ0 = 1e − 4,
ρt+1 = 1.15ρt [13] (increasing ρ gradually improves the rate
of convergence). The stopping criteria for all the methods
are as follows: 1) the normalized consecutive change on X is
small; 2) the normalized residue R = Y −X×1 Φ1...×n Φn

is small; 3) the normalized consecutive change on R is small.

Table 1. Accuracy and Running Time Comparison when
sampling ratio is 0.2.

Algorithm PSNR (dB) Time (h)

TADMM (p = 0.2) 56.22 1.73
TADMM (p = 0.7) 55.64 1.69
TADMM (p = 1) 53.95 1.39
SB (p = 0.2) 53.51 1.74
SB (p = 0.7) 53.84 1.70
SB (p = 1) 52.73 1.35
KCS 51.13 25.1
BKOMP 37.13 0.77
LRTC 36.82 0.54

The Peak Signal to Noise Ratio (PSNR) is employed for the
evaluations. The experiments are conducted on a Macbook
pro with a 2.6GHz Intel Core i5 CPU and 8GB RAM.

We employ a cardiac sequence [29] with size 128× 128×
128 for the MRI experiments and Fig. 1(a) shows the PSNR
results when various sampling ratios (i.e., M1M2/(N1N2))
are used. The superiority of the proposed approach is clear.
The BKOMP and LRTC methods perform poorly because of
model mismatch. The reconstructed 100-th slice of the best
four approaches when the sampling ratio is 0.3 is shown in
Fig. 2(a) for visual comparison.

For the HSI experiments, Scene 4 in the natural scenes
HSI database [30] with size 1024×1024×32 (i.e., 32 frequency
channels) is employed. The PSNR results using various sam-
pling ratios are shown in Fig. 1(b) and the reconstruction re-
sults when the sampling ratio is 0.1 are displayed in RGB in
Fig. 2(b). Our approach is shown to outperform the others
in the HSI application. We then vary the value of p and com-
pare the accuracy and running time in Table 1, where it can be
observed that smaller p leads to more accurate reconstruction
and slower execution time. Note that p = 1 corresponds to the
case of convex relaxation. The TADMM algorithm has the
highest accuracy during all the tests and a similar execution
time to the SB method. In addition, we observe that the sparse
based basis pursuit algorithm KCS runs significantly slower
than the others; while the BKOMP and LRTC methods con-
verge faster but lead to inaccurate solutions as their assumed
models do not closely match the application.

6. CONCLUSION
In this paper, an ADMM based tensor CS reconstruction ap-
proach utilizing various structures in tensor modes is pro-
posed. The general method can be applied to any structures as
long as the proximity operators for the associated norms are
derivable. In addition, efficient calculations that ease memory
requirements and reduce computational complexity for large
data are derived. In particular, the TADMM algorithm for a
tensor with sparse and low rank modes is presented in detail,
in which the nonconvex shrinkage operators are used. The
experiments for MRI and HSI applications demonstrate the
superiority of the proposed method compared to the state-of-
art tensor CS approaches.
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