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Abstract 

This study presents the results of high-resolution (30 km) climate simulations over North India 

using an optimized configuration of the Regional Climate Model (RegCM), driven by a global 

spectral model (T80 model with horizontal resolution of ~1.4°) for a period of 28 years (1982–

2009). The main aim of this work is to analyze the capabilities of the RegCM to simulate the 

wintertime precipitation over North India in the recent past; validation revealed a good 

improvement in reproducing the precipitation compared to results obtained from the T80 model. 

This improvement comes due to better representation of vertical pressure velocity, moisture 

transport, convective heating rate and temperature gradient at two different latitudinal zones. 

Moreover, orography in the high-resolution RegCM improves the precipitation simulation in the 

region where sharp orography gradient plays an important role in wintertime precipitation 

processes. Two bias correction (BC) methods namely mean bias-remove (MBR) and quantile 

mapping (QM) have been applied on the GCM driven RegCM model simulations. It was found 

that the QM method is more skillful than the MBR in simulating the wintertime precipitation over 

North India. A comparison of model-simulated and bias corrected precipitation with observed 

precipitation at 17 station locations has also been carried out. Overall, the results suggest that 

when the BC is applied on dynamically downscaled model, it has better skill in simulating the 

precipitation over North India and this model is a useful tool for further regional downscaling 

studies. 

Key words: North India, winter precipitation, bias correction and downscaling. 
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1. Introduction 

 North India (NI), known as the ‘‘wheat bowl” of the country, receives about 25% to 30% 

of the annual precipitation during winter seasons (December, January and February; DJF). Kalra et 

al. (2008) have shown through their studies that precipitation over this region during winter 

seasons is very important for Rabi crops, particularly for wheat, as it supplements the moisture 

and maintains low temperature for the development of the crops. The precipitation in the form of 

snow over the hilly regions of NI helps in maintaining the glaciers, which serve as the vast 

storehouse of freshwater supply to millions of people downstream throughout the year through 

rivers of western Himalayan origin. Therefore, for a country like India that gets more than 80% of 

its wheat production and fresh water from the north Indian region, the question arises whether 

strategies of winter-time precipitation prediction that have proved useful elsewhere can be adapted 

to the exceptionally complex terrain of the Himalayas as well? 

 Various researchers (Pisharoty and Desai 1956; Mooley 1957; Agnihotri and Singh 1982) 

have shown that NI receives most of its precipitation due to western disturbances (WDs), which 

brings out heavy bursts of rain and snow. These WDs are extra-tropical low-pressure systems, 

which originate in the Mediterranean Sea and move along with subtropical westerlies covering 

several countries for e.g. Iran, Afghanistan, Pakistan and India. Once their passage is hindered by 

the Himalayas, they release significant precipitation over the hilly regions and adjoining plains 

(Mohanty et al. 1999). It has been brought out from the studies of Kar and Rana (2014) that the 

frequency and amplitude of these western disturbances in a given month or season decide if the 

winter season will experience above or below normal precipitation. Over this region, the winter 

precipitation process has been relatively less explored due to its limited spatial extent and total 

amount.  
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 It is well known fact that the coupled general circulation models (GCMs) or atmosphere-

only GCMs (AGCMs) are the most important tools to generate monthly to seasonal scale 

predictions in advance. However, in general, they are unable to represent various regional scale 

processes because of their coarser resolution (Wang et al. 2009, Barnston et al. 2010, Kar et al. 

2011, Zhou et al. 2013a, Tiwari et al. 2014) and requirement of expensive computational 

resources. The seasonal (DJF) prediction skill of 14 climate models for a period of 25 years (1980-

2004) have been analyzed by Wang et al. (2009) and it was found that the models have poor skill 

with temporal correlation (TC) between observation and multi-model ensemble of 14 GCMs being 

less than 0.3 in precipitation prediction over the Indian sub-continent. Several recent AGCMs 

performance have been examined by Barnston et al. (2010) for a period of 11 years (1997-2008) 

and their study shows that these GCMs at seasonal-scale are not able to capture the precipitation 

variability and they found the ranked probability skill score to be less than 0.01. Kar et al. (2011) 

have investigated the 8-member ensemble of National Centre for Medium Range Weather 

Forecasting (NCMRWF) global spectral model and shown that on a short and medium-range the 

model’s skill is satisfactory during the Indian monsoon seasons; however, on seasonal scale the 

performance of the model is poor (with correlation coefficient between observation and model 

precipitation being less than 0.25). Recently Tiwari et al. (2014) have examined the skill of five 

state-of-the-art GCMs in simulating the inter-annual variability of wintertime precipitation over 

the NI and found that the models have varying skill. The TC between observed and model 

precipitation ranged from -0.2 to 0.3. Therefore, it is necessary to study the small-scale physical 

processes that play important roles in modulating short-term climate over the NI region. 

Therefore, in the purview of the above discussion, an alternative approach is the dynamical 

downscaling that is based on nesting of high-resolution regional climate models (RCMs) to 
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simulate finer scale physical processes consistent with large-scale weather evolution prescribed 

from a GCM (Giorgi 1990, Jones et al. 1995, Giorgi et al. 2001, Nobre et al. 2001, Rummukainen 

2010, Santos et al. 2014).  

 The availability of RCMs has opened up an avenue for more accurate climate predictions 

in recent decades (Giorgi et al. 2001, Christensen et al. 2007). However, recent studies (Piani et 

al. 2009, Teutschbein et al. 2012) show that these RCMs have varying skills in simulating 

climatology and inter-annual variability of observed precipitation because of the inherent bias 

present in them. Piani et al. (2009) showed that improvement of forecasts could be made by 

statistical bias correction (BC) of the Danish Meteorological Institute (DMI) regional model over 

Europe. Several techniques for BC have been developed (such as Wood et al. 2002; Kharin and 

Zwiers, 2002; Ines and Hansen, 2006; Piani et al. 2009). Therefore, in the preview of above 

discussion RCMs output must be corrected prior to use at the local scale using appropriate bias 

removal methods. No such studies are available in the context of wintertime precipitation over NI, 

where attempts have been made to evaluate the skill of different BC techniques.  

So, keeping in mind this edge of dynamical downscaling approach over GCM simulations, 

an attempt has been made to study the downscaling skill of the Regional Climate Model (RegCM) 

developed at the Abdus Salam International Centre for Theoretical Physics (ICTP) during winter 

seasons over the NI region. The novelty of the present study lies in the fact that it attempts: 

 to find out the skill of dynamically downscaled precipitation simulations; 

 to find the plausible reasons for model failure, if any; and 

 to find a robust BC method for wintertime precipitation over the NI region 

 The remainder of this paper is organized as follows. The description of model, 

experimental design and methodology is provided in Section 2. Discussions on main findings of 
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the study are presented in Sections 3. The summary and conclusions of the study are given in 

Section 4. 

2. Model, experimental design and methodology 

2.1 Model 

 In the present study, the NCMRWF global spectral model (T80) and ICTP RegCM model 

have been used. The T80 model is the climate version of the medium-range weather forecast 

model of NCMRWF, India, which is one of the leading organizations to generate real-time 

forecast for the Indian region. This is a global spectral model with 80 waves in Triangular 

truncation (T80) and equivalent to 1.4° × 1.4° horizontal grid resolutions. A fairly basic Kuo-

Anthes type of cumulus scheme (Kuo 1974; Anthes 1977) is used to model the deep convection. 

Further details of the model can be found at Kanamitsu et al. (1991), Kar (2007) and Kar et al. 

(2011). The T80 model is atmosphere only model (2-tier). Seasonal simulations were carried out 

forcing the model with forecasted sea surface temperature (SST) from Climate Forecast system, 

version-2 (CFSv2) of the National Centres for Environmental Prediction (NCEP), USA.  

 The RegCM (version 4.1.1) used in the present study consists of hydrostatic dynamical 

core similar to the fifth-generation Pennsylvania State University−National Center for 

Atmospheric Research Mesoscale Model (MM5) (Grell et al. 1994). It is a hydrostatic, terrain 

following model with state-of-the-art multiple physics options. The other details of the model can 

be found in Elguindi et al. (2011) and Giorgi et al. (2012). In the present work the cumulus 

scheme of Grell (1993) with Fritch–Chappell closure (Fritsch and Chappell 1980), land-surface 

scheme of Community Land Model or CLM3.5 (Oleson et al. 2008), radiative transfer of the 

NCAR Community Climate Model version 3 (CCM3, Kiehl et al. 1996) and nonlocal boundary 

scheme by Holtslag et al. (1990) is used. The model domain and configuration used in this work 
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are shown in Fig.1 and Table 1 respectively. The rectangular box drawn on Fig. 1 shows the area 

of interest for which results are analyzed in this study.   

2.2 Experimental design  

 In the present study, the north–south extent of the RegCM model is up to 320 grid points 

and the east–west extent is up to 416 grid points with center point of the model domain positioned 

at 15.10N/74.50E. The model integration is made from 1st November to 28th (29th for a leap year) 

of February of each year, for a period of 28 years (1982-2009) at 30 km model horizontal 

resolution. The initial and lateral boundary conditions from NCMRWF global spectral model 

(T80) have been used. Two sets of downscaling experiments were conducted. The first experiment 

(RegCM_f) used forecast SSTs from NCEP CFSv2. The second experiment (RegCM_o) used 

observed SST from the National Oceanic and Atmospheric Administration Optimal Interpolation 

SST (version 2, NOAA_OISST_V2).  

The model-simulated results are validated with the NCEP- Department of Energy (DOE) 

reanalysis-2 data (hereafter referred to as NNRP2; Kanamitsu et. al. 2002), Climatic Research 

Unit (CRU) gridded precipitation (0.5° × 0.5°) data (Harris et al. 2014), Indian Meteorological 

Department (IMD) gridded precipitation (0.25° × 0.25°) data (Pai et al. 2014) and station level 

data sets from Snow and Avalanche Study Establishment (SASE). It is to be stressed here that DJF 

seasonal rainfall data for a year is constructed by taking average of that year’s December rainfall 

and next year’s January and February rainfall. For example, values of 1982 DJF seasonal rain is 

obtained by averaging rainfall values of December 1982, January 1983 and February 1983. 
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2.3 Methodology  

 Most of the studies of BC methods have examined the bias corrected rainfall in the 

purview of climatology and/or root mean square error (RMSE). In the present work, some other 

skill scores have been introduced to examine all the methods. 

 BC is generally performed in two ways (i) transformation bias correction (TBC) and (ii) 

without transformation bias correction (WTBC). In the TBC approach, the biases are removed by 

constructing a statistical function. On the other hand in the WTBC approach, models are corrected 

by estimating and adjusting the biases explicitly. A leave-one-out cross-validation technique 

(recommended by the WMO standardized verification system) has been applied while executing 

the BC procedures i.e. out of 28 years data (1982–2009) available for this study, each year has 

been successively withheld from the training dataset, and the remaining 27 years have been used 

for calculation of all statistics.  

2.3.1 Transformation bias correction (TBC) 

 In this technique, the BC is performed by statistical transformation function such as 

mapping or fitting between observation and model output. Quantile mapping technique (QM) is 

used in this study, which is described below:  

2.3.1.1 Quantile mapping technique (QM) 

 A transformation function is used for bias removal in this technique (Wood et al. 2002; 

Ines and Hansen, 2006; Piani et al. 2009; Acharya et al. 2012). This bias corrected model output is 

the inverse of cumulative distribution function (CDF) of observed values at the probability 

corresponding to the CDF of model output at the particular value. For example, suppose mean of 

model forecast ( XX ) and mean of observed data (Xy) are known, then, the bias corrected value 

QM for Xt  will be as follows: 
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                                                QM =
y

-1

X (
xX (X))                                 ……………..(1) 

 Where, X-1 is an inverse of CDF. So, the QM approach is a transformation between two 

CDFs. Further, a detailed description of this method can be found in Wood et al. (2002). 

2.3.2 Without transformation bias correction (WTBC) 

 In this correction procedure, the bias removal is done by without any statistical 

transformation function. The Mean Bias Removal (MBR) method used here is described below: 

2.3.2.1 Mean Bias Removal technique (MBR) 

 This technique is termed as bias-removed individual forecast approach by Kharin and 

Zwiers (2002). In this approach, the mean bias which is adjusted in every year, is defined as the 

difference between observed climatology (O) and model climatology (X): 

                                                         mbrt =O-X                                      …………….(2) 

 Here the leave-one-out cross-validation approach is used to calculate this difference (mbrt ) 

for each year and this mean bias is added in the ‘test’ (t) year’s model mean i.e. MBRt = Xt +mbrt . 

More details of this method are provided in Acharaya et al. (2012). 

3. Results and discussion 

3.1 Simulation of precipitation and circulation climatology 

  Figure 2 (a) shows the seasonal mean (DJF) precipitation climatology (mm/day) from the 

CRU gridded dataset. It is seen that the precipitation amount varies from 0.5 to 4 mm/day over 

Afghanistan, Pakistan and adjoining north India and reduces gradually southward. Fig. 2 (b) 

shows the precipitation over Indian land point from IMD gridded precipitation data for the period 

1982-2009. As this data is available only for the Indian domain, precipitation outside the Indian 
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boundary is not seen. A precipitation maxima (4 -5 mm/day) is seen over the Kashmir region of 

NI and the precipitation amount reduces gradually southward. Over the region of interest (marked 

as rectangular box on Fig. 1), the precipitation occurs due to frequent passages of WDs, and the 

rainfall variability is coherent. Though the area of interest is north India only (shown in Fig 1), we 

have provided plots of a larger domain keeping the area of interest in the center for better clarity. 

Figure 2 (c & d) compares the seasonal mean (DJF) precipitation climatology (mm/day) from the 

T80 model and the RegCM simulations for the period 1982-2009 (forced by the T80 model). The 

results over only land points from the T80 and RegCM4 models are shown in the figures. For the 

sake of brevity, all the results from RegCM_f are described in the following text as RegCM 

results, unless otherwise so mentioned. Since these precipitation datasets are of different 

resolutions, the T80 (1.4° × 1.4°) and RegCM (30 km) simulated precipitation are interpolated to 

those of CRU grids at 0.5° × 0.5° using a simple bilinear interpolation technique. It is seen from 

Fig. 2 (c) that the T80 model is able to depict the observed features of climatological precipitation 

up to certain extent spatially, however the model underestimates the precipitation intensity by 

about 2 mm/day over most parts of the RegCM model domain. Even though, the T80 model is 

poor in simulating the DJF precipitation climatology, RegCM improved the precipitation 

simulation (Fig. 2d). However the precipitation is overestimated over north India and adjoining 

areas of Pakistan. Over the southern continental parts of the model domain, there is negligible 

rainfall.  

 Figure 3 (a & b) shows the bias (in %) between the observed and the model (T80 and 

T80_RegCM) simulated precipitation respectively. The T80 model shows dry bias (Fig. 3a) over 

most parts of the NI region with maximum dry bias (>160%) over the northwestern parts of 

Jammu and Kashmir (J&K). On the other hand, a dry bias (>120%) can be noticed (Fig. 3b) over 
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eastern parts of J&K in T80_RegCM model. Figure 3 (c & d) shows the spatial pattern of root 

mean square error (RMSE) and correlation between the rainfall anomalies from the T80 model 

and observations, calculated grid point-wise for the period 1982–2009 respectively. It is seen in 

Figure 3 (c) that over J&K, Himachal Pradesh (HP) and Uttarakhand (UK) regions, the RMSE 

values range from 0.5 to 3 mm/day. The maximum RMSE is seen over the northwest Kashmir. 

Over the western Himalayas parts of India, where the occurrence of rainfall is the maximum 

compared to other regions during winter seasons, the correlation coefficient (Fig. 3d) is low 

compared to that over central India, and the RMSE is high (> 1.5 mm/day). RMSE and correlation 

between the rainfall anomalies from the T80_RegCM and observation are also computed and 

shown in Figure 3 (e & f). It can be seen in Figure 3 (e) that, the RMSE value ranges between 0.5 

to 3 mm/day over most parts of the western Himalayan region with a maximum over eastern part 

of J&K (> 2 mm/day). Furthermore, it can be noticed from the Figure 3 (f) that the correlation 

coefficient (CC) is higher compared to the T80 model over NI though it is not statistically 

significant at 95% confidence level.  It is worth mentioning here that for 28 years of data which is 

analyzed in this study, correlation values greater than 0.38 are statistically significant at 95% 

confidence level for 2-tailed test. Therefore, over the domain of interest during wintertime (DJF), 

the T80 model does not have statistically significant correlation. On the other hand, the T80 driven 

RegCM (T80_RegCM) model simulations has brought out the spatial pattern of observed 

climatology up to certain extent along with the magnitude of precipitation better compared to the 

T80 model. 

Although the RegCM_o uses prescribed observed SST, it shows marginally less 

correlation and higher RMSE than RegCM_f simulation with prescribed SST. This result 

highlights the following facts. The global model (T80) does not respond to interannual variability 
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of SSTs realistically. Internally generated variability dominates over the SST-forced variability. 

Therefore, the lateral boundary conditions for the RegCM_o simulations do not correctly represent 

the atmospheric parameters. The marginal differences in the skill between the RegCM_f and 

RegCM_o is not significant, indicating that SST may not be playing any important role in the 

simulations in the area of interest. However, it may be noted that these are only single realizations 

for each year. A set of ensemble runs are required for obtaining robust differences. 

 Figure 4 represents the vertical structures of the seasonally averaged zonal and meridional 

components of wind averaged over a longitudinal belt (from 28ºE to 128ºE). The latitudinal cross-

section of the zonal wind from observation (NNRP2), T80 and T80 driven RegCM (hereafter 

referred as T80_RegCM) model is shown in Figure 4 (top panels; a-c). It is noticed that upper air 

westerly jet stream (WJS) is well represented in both (T80 and T80_RegCM) model simulations, 

though, the area with core WJS and its strength is close to the observation in T80_RegCM 

simulations compared to the T80 model. Fig. 4 (bottom panel; d-f) also shows the sectorial 

average of meridional component of wind. The diagram depicts that at upper pressure levels (from 

200-100 hPa) this component of wind is also well brought out by the T80_RegCM model 

simulations as compared to the T80 model. It is also noticed that the areas with stronger 

meridional winds are shifted northward (about 5o shift in northward direction) in T80_RegCM 

simulations compared to that in the NNRP2. Overall, the T80_RegCM model simulations are 

closer to observations in terms of intensity, location and pattern of the zonal as well as meridional 

components wind than the T80 model. 

 The horizontal resolution of NCEP reanalysis 2 (2.5°) is too coarse to compare T80 (1.4°) and 

RegCM (30 km). In Fig. 4, the vertical structure of climatological zonal and meridional winds for 

DJF have been compared. Chelliah et al. (2011) have compared the vertical structure of winds 
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from CFSR against NCEP reanalysis-1, NCEP reanalysis-2 and the European Centre for Medium 

Range Weather Forecasting (ECMWF) reanalysis-40 (ERA40) reanalysis. They have concluded 

that the climatological zonal mean winds for both the winter three month seasons from CFSR are 

generally in close agreement with NCEP reanalysis-1, NCEP reanalysis-2 and ERA40 reanalyses 

in the subtropical, middle and high latitudes of both hemispheres. However, systematic differences 

are found mainly in the deep tropics and near the Polar regions. In this study, the model (T80 and 

RegCM) results have not been compared against CFSR reanalysis. 

3.2 Composite Analysis 

 Although the performance of T80_RegCM model simulations are better compared to T80 

model but that is on climatological scale. Therefore, for gaining more insight on model 

simulations of precipitation, interannual variability of simulated precipitation has been compared 

against the observed variability. Observed and model simulated (T80 and RegCM) wintertime 

precipitation anomalies over NI region for each year are shown in Figure 5. The signs of rainfall 

anomalies from the T80 model simulation for most of the wet as well as dry years do not match 

with that of observed anomalies. Further, the TC for T80 and RegCM over the region of interest 

has been computed. The TCs for T80 and RegCM are 0.22 and 0.36 respectively, which shows a 

clear improvement from T80 to RegCM4 simulation. It is also evident from the Figure 5 that, 

though both RegCM simulations (RegCM_o and RegCM_f) show higher skill in predicting rainfall 

anomalies for the wet and dry years compared to the T80 model, there is very little difference 

between them over NI region for each year. From the seasonal mean precipitation anomalies, 

extreme years (wet/dry) are selected from the observed precipitation data of India Meteorological 

Department (IMD) on the basis of their departure form mean i.e. years having standardized 

precipitation anomaly greater than 1 mm/day are considered as wet, while years having less than -



 14 

1 mm/day standardized precipitation anomaly are considered as dry years. Therefore, out of 28 

years, there are 4 years in the category of wet (1991-92, 1994-95, 1995-96, 1997-98) and 4 dry 

(1984-85, 1996-97, 2000-01, 2008-09) years. It may be noted that precipitation anomaly in 2007-

08 is lower than that in 1984-85. However, 2007-08 has not been included to make dry- year 

composite in order to select a year from 1980’s so that a dry-year is included from each decade (at 

least one year from 1980s, 1990s and 2000s). Futher the composite results will not change much if 

2007-08 is included. A composite analysis has been carried out by computing the precipitation 

anomaly pattern during wet/dry precipitation years. 

  Figure 6 (a-c) shows observed and model simulated precipitation difference (in %) 

between wet and dry years. It is noticed that over most parts the domain of interest, a coherent 

positive precipitation pattern has emerged and this positive difference lies in the range of 20% to 

30% in the observation (Fig. 6a). This observed precipitation is well brought by the T80_RegCM 

model simulation compared to the T80 model, which underestimates the precipitation amount and 

shows a negative difference of about 10% to 20 % over Punjab and Himachal Pradesh regions of 

NI. In case of composite analysis of winds (at 500 hPa) shown in Fig. 7 (a-c), the observation has 

anomaly of stronger westerlies (~ 3 m/s) over central part of India succeeded by cyclonic flow due 

to hindrance of the great Himalayan orography. As previously mentioned, the northern part of 

India receives precipitation when WDs passes over the region forming cyclonic anomaly over 

J&K and adjoining regions. The T80_RegCM model simulation is able to bring out the observed 

cyclonic flow feature better compared to the T80 model.  

 The differences in orography of T80 and RegCM models are due to difference in 

horizontal resolution (figure not shown). Higher peaks as well as valleys are noticed over the 

northwest Himalayan region more clearly in the RegCM than in T80 model. It is worth 
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mentioning here that the Himalayan topography is characterized by strong north-south gradient. 

Though the RegCM model shows topographical features of the Himalayan region better than T80 

model, the RegCM model does not represent the real mountain peaks (due to the fact that 

resolution of RegCM is still to coarse to resolve the sharp gradient in orography of the region) and 

hence does not fully captures the actual topographical gradient of the Himalayas. Over all, the 

RegCM model represents the shape of the orographic barriers (which has the dominant role in 

enhancing precipitation by orographic lifting over mountainous region) more clearly compared to 

T80 model. Therefore, when RegCM model orography is used in model simulations, the spatial 

pattern and intensity of precipitation around topography becomes sharper and the spatial extent of 

precipitation seen in the T80 model is improved. 

It may also be noted that, the T80 model uses a fairly basic Kuo-Anthes type of cumulus 

scheme (Kuo 1974; Anthes 1977) to model the deep convection. In the present study, the RegCM4 

model uses the cumulus scheme of Grell (1993) with Fritch–Chappell closure (Fritsch and 

Chappell 1980). Sinha et al. (2014) have examined the performance of the RegCM4 model with 

various convective parameterization schemes in simulating winter circulation and associated 

precipitation over the Western Himalayas. It was found that the atmosphere is colder over 

northern India and the Himalayas than in the southern parts of India during excess rainfall years 

than the deficient rainfall years. The temperature gradient persists from the south to the north 

where the isotherm lines are oriented in nearly east–west directions in the upper air over India and 

its adjoining area in excess years. The pattern and magnitude of the upper air temperature and its 

gradient are sensitive to the cumulus scheme chosen.  The Grell cumulus scheme with Fritsch 

Chappell closure (Grell-FC) has performed better in RegCM simulations compared to other 

schemes. In the Grell scheme, clouds are considered as two steady-state circulations, a downdraft 
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and an updraft. The cloudy air and the environment mix only at the top and bottom of the cloud. 

Along the edges of the cloud no entrainment or detrainment is allowed, and the mass flux of the 

clouds does not vary with height. The FC closure assumes that clouds remove the available 

buoyant energy for convection in a given timescale. The T80 model does not have elaborate 

treatment of convection suitable for highly inhomogeneous high terrain regions. Therefore, in 

addition to better representation of topography, convection scheme in the RegCM model play 

important role for better simulations than the T80 model.   

 The vertical pressure velocity (hereafter referred as omega) is one of the important upper 

air parameter that plays an important role in the model dynamics for precipitation simulation. 

Hence, it would be interesting to study the performance of T80 and T80_RegCM model in 

simulating the omega field. The longitude, height vertical cross-section of the differences between 

seasonal mean (DJF) wet- and dry-year composites of vertical pressure velocity at 35o N is shown 

in Fig. 8 (a-b). The orography of both the T80 and RegCM simulations are also shown (in the 

black shaded bar). It can be noticed in Fig. 8 that the vertical velocity maxima/minima is either 

along the upslope side of topography or over the valley bottom, which shows that the influence of 

the ridge–valley system on the vertical motion and hence precipitation formation processes. These 

vertical distributions across the Himalayan region are more clearly brought out in RegCM 

simulations compared to T80 model. This increased vertical motion could be one of the reasons 

for producing more (less) precipitation in RegCM than the T80 model during wet (dry) years.  

 Furthermore omega field obtained at 500 hPa from NNRP2 reanalysis, T80 and 

T80_RegCM model simulations has been analyzed (figure not shown). It is noticed that during 

winter seasons, negative omega prevails over western parts of Himalaya in the observations 

(reanalysis). The model simulations (both the T80 and T80_RegCM) are able to bring out the 
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negative omega over the region, though the areal extent of this negative omega is less in the both 

the models as compared to the observed data (reanalysis). The area with stronger omega field over 

that region is represented better in the T80_RegCM simulation compared to the T80 model.  

 The difference between wet and dry year composites of seasonal mean (DJF) vertical 

integrated moisture fluxes and transport from observation, T80 and T80 driven RegCM 

simulations are shown in Fig. 9 (a-c) respectively. It can be noticed from the diagram that both the 

model simulations (T80 and T80_RegCM) show large-scale moisture fluxes, with stronger 

transport from westerly directions. Further in both the model simulations, a high flux convergence 

over and across high orographical regions and a weaker flux convergence or even divergent fluxes 

over and along valley regions can be seen. Furthermore investigation indicates that the spatial 

distribution in composite analysis is present in more detail in the RegCM simulations compared to 

that in T80. This could be due to the coarser resolutions of T80 and difference between T80 and 

RegCM topography.   

 Yanai et al. (1973) have shown through their study that most of the rain in tropics consists 

of a combination of convective and stratified form clouds. Therefore, to get a deep insight on 

possible reason affecting the model performance, convective heating rates are computed and their 

corresponding vertical profiles are shown in Figure 10 (a). It can be noticed from the figure that 

the maximum convective heating rate is at 400 hPa in NNRP2 reanalysis (4.1ºC/day). The 

T80_RegCM model is able to bring out this convective heating rate (4.7ºC/day) better compared 

to T80 model (2.7ºC/day) at 400 hPa level. Overall, due to better representation of convective 

heating rates the simulation of precipitation is better in the T80_RegCM experiment compared to 

the T80 model. The temperature gradient between two latitudinal circles (40°N - 45°N & 25°N – 

30°N) has been computed and shown in Fig. 10 (b). It is seen that between 75°E and 90°E, the 
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temperature gradient is less in observation and RegCM compared to the T80 model. It suggests 

that in case of T80 model more cold/dry air intrusion from higher to lower latitudes, which in turn 

leads a drying and underestimation of precipitation. On the other hand, in case of T80_RegCM the 

gradient is low which results in less dry air intrusion from the higher latitudes that in turn leads to 

more precipitation.  

3.3 Bias Correction 

 To examine how well the distribution of model-simulated values corresponds to the 

distribution of observed values, a box-whisker plot (Fig. 11a) has been drawn for domain of 

interest. Boxes indicate the 25th to 75th percentiles of the distribution, while the whiskers show the 

full width of the distribution. It can be noticed that the distribution of the QM values are closer to 

the distribution of observed values compared to T80, T80_RegCM model and MBR method itself. 

Equitable Threat Score (ETS) for Yes/No categorical forecast (Gilbert, 1884 and Wilks, 1995) is 

defined as: 

                   ETS =
(C -Cl )

(C+M +Fa -Cl )
 , where Cl =

(C+M )´ (M +Fa )

N
             …………… (3) 

 Here, M, C and Fa are the number of misses, the number of hits and the number of false 

alarms for each category respectively. The hits due to random chance are denoted by Cl  and N is 

the total number of events. The ETS lies in the range of −0.33 to 1. ETS = 0 indicates no skill and 

ETS = 1 indicates perfect skill in prediction. As the maximum values of precipitation from the 

observation during the study period (1982–2009) vary from 3 to 4 mm/day, three thresholds, 3, 3.5 

and 4 mm/day have been considered for calculating ETS. Fig. 11 (b) shows the ETS values of 

T80, T80 driven RegCM with observed and forecasted SST (RegCM_o and RegCM_f) and two 
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bias corrected methods (QM and MBR). It can be noticed from the diagram that for all the 

thresholds ETS values of QM is higher than T80, T80 driven RegCM model and MBR method.  

 A Taylor diagram (Taylor, 2001) is presented in Figure 12. In this diagram, the skill of the 

T80 model, T80 driven RegCM with observed and forecasted SST (RegCM_o and RegCM_f) and 

two bias corrected methods (QM and MBR) for prediction of rainfall during winter in terms of 

correlation, root mean square error (RMSE) and standard deviation is shown. The figure clearly 

depicts that the QM method shows significant correlation skill with less RMSE as compared to the 

T80, T80_RegCM model and MBR method.    

3.4 Validation of model precipitation with station observations  

 In this section, the T80, T80_RegCM models and two bias corrected methods (QM and 

MBR) are validated against the observations over seventeen stations located over the North Indian 

part of the Western Himalayas (IWH) region (Tiwari et al. 2015). These observed station datasets 

are obtained from Snow and Avalanche Study Establishment (SASE), Chandigarh. The gridded 

precipitation datasets obtained from T80, T80_RegCM and two bias corrected methods (QM and 

MBR) are bi-linearly interpolated to the station location for validation. Station data is used instead 

of CRU/IMD dataset as both the precipitation datasets are based on observed data from the same 

set of observing stations/rain gauges. These datasets are available at 0.5°×0.5° in CRU and 

0.25°×0.25° resolution in case of IMD. IMD observing stations in the western Himalayan region 

are very few. Observing stations installed and operated by SASE are not included in the IMD or 

CRU gridded precipitation data. Therefore, SASE observations are additional source of rainfall 

information in the region. Moreover, in order to avoid any error in interpolation and station data 

being the truth, SASE station data are used to validate the model precipitation over region of 

interest. Table 2 represents the station–wise seasonal mean precipitation obtained from SASE 
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observation, T80, T80_RegCM and two bias corrected methods. The shaded values of model 

simulation and bias corrected method indicate the closest ones to the SASE observations. Further 

to a get deep insight, the Phase synchronizing events (PSE) has been computed for the 

performance evaluation based on Table 2 results. The PSE method matches the sign (positive or 

negative) of the precipitation difference (composite of wet minus composite of dry years) obtained 

from observations (data from SASE stations) and the T80, T80_RegCM and two bias corrected 

methods (QM and MBR) to evaluate the performance of the model.  

The computation of PSE is given below: 

                                                   PSE =
Te -Te

'

Te

æ

è
ç

ö

ø
÷´100                     …………………..(4)    

 where Te is the total number of events and Te' is the number of events in the T80, T80_RegCM 

and two bias corrected methods (QM and MBR) that have opposite in sign as compared to 

observations (out of phase). Thus, PSE=100 for the T80, T80_RegCM and two bias corrected 

methods (QM and MBR) results means that the sign of model anomalies (here the difference from 

composite of wet and dry years) is same as in the observations for all the stations and PSE=0 when 

none of the model results have a similar sign (i.e. either positive or negative both in model and 

observation) with observations. From the Table 2, it can be seen that the PSE value is maximum 

(with 94%) for composite (i.e., model output matches the sign of with observations 94% times) of 

wet minus dry years for QM method followed by MBR method (with 82%), T80_RegCM (with 

71%) and T80 model (with 59%). Therefore, it can be concluded that bias corrected QM method is 

able to represent the precipitation pattern and intensity with high fidelity compared to MBR, 

T80_RegCM and T80.  
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3.5 WD case study 

 As explained in Section 1, WDs are synoptic weather systems that deliver much of the winter 

precipitation over the NI region. Therefore, with an objective to see whether WD is also improved 

in the RegCM simulation compared to T80 model itself, an intense WD case (13 - 17 January 

2002) is considered. Fig. 13 depicts observed, T80 and RegCM model simulated streamlines (at 

500 hPa) and precipitation for an intense WD that occurred during 13 - 17 January 2002. The 

observational analysis shows that on 15th January (Fig. 13 a3), there was a well-marked trough at 

500 hPa in the mid tropospheric westerlies nearly along longitude 68°E and north of latitude 27°N. 

This trough further moved eastwards on 16th and 17th respectively (Fig. 13 a4 & a5). During this 

period a precipitation belt can be seen in the observation confined mainly over the Indian parts of 

western Himalayas (WH) and adjoining plains. In case of the T80 model, the structure of mid 

tropospheric westerlies does not agree well with that from observation and it underestimates the 

precipitation amount (Fig. 13 b6-b10) over WH and adjoining plains. On the other hand, the 

RegCM model simulations (Fig. 13 c1-c10) generally agree well with the observed flow patterns 

though it over-predicts the heavy precipitation amounts over the northern plains.  

 Further an attempt has been also made to assess orographical forcing and the precipitation-

forming mechanism during 13 - 17 January 2002. For this purpose the cross-sectional distribution 

(at 35°N) of vorticity, relative humidity and topography is plotted and shown in Fig. 14. A 

detailed analysis of the diagram suggests that the vertical deflection of flow induced by the 

topography results in adiabatic cooling, and with sufficient moisture forms cloud and hence 

precipitation over the region. Convergence on the upslope due to decreased velocity through 

orographic retardation slows down the flow and results in generating a mid-troposphere positive 

vorticity during the peak of the storm (Fig. 14 b and c). Moreover, positive vorticity prevails over 
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the leeward and valley floors while a weaker negative vorticity (Fig. 14) along the orographic 

surface toward the windward side. The effects of strong ridge-valley flows can be summarized in 

two-fold: (i) the strong valley flow reduces the upslope moisture flow, and (ii) valley boundaries 

provide suitable conditions for precipitation formation. Overall, the analysis reflects the models’ 

robustness at the event scale and paves a path of using dynamic downscaling methods in basin 

scale studies. 

4. Conclusion 

 The downscaling experiment over North India (NI) has been conducted by forcing the 

RegCM with the NCMRWF global spectral model simulation output for a period of 28 years 

(1982–2009) at a horizontal resolution of 30 km. The winter season climate is first compared with 

observations to study the downscaling skill of the RegCM over the NI. The results indicate that 

the wintertime climatology of precipitation, upper airfields at different pressure levels, and the 

interannual variability is more accurately simulated by the T80 driven RegCM (T80_RegCM) than 

the T80 model itself. Composite analysis for extreme precipitation years suggests that the 

precipitation and circulation feature simulated by the T80_RegCM shows better skill compared to 

T80. A complete and statistically robust analysis also suggests that downscaling provides a 

credible means to improve GCM climate simulations. The major findings of the study are 

enumerated as follows:  

 The T80 model, in general, underestimates the observed climatology and IAV of 

precipitation. On the other hand T80_RegCM simulation has brought out the observed 

climatology and IAV better than the T80 model though it shows a wet bias over domain 

of interest. 
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 A composite analysis has been carried out for precipitation by computing the 

precipitation anomaly pattern during wet/dry years. The composite analysis reflects that 

T80_RegCM simulation is able to bring out the rainfall and upper air wind anomaly 

reasonably well and close to observation as compared to T80 model itself. 

 To understand the possible reasons which are affecting the performance of the T80 and 

T80_RegCM model simulations orography representation, vertical pressure velocity, 

moisture transport, convective heating rate and temperature gradient at two different 

latitudinal circles are analyzed and it is seen that these factors influence the rainfall 

during winter season over NI region. While T80_RegCM model is able to demonstrate 

the above said features up to certain extent, the T80 model does not represent those 

features in a realistic manner.  

 Two BC techniques have been used and it has been found that the Quantile mapping 

(QM) method is more skillful than the Mean bias-remove (MBR). The reason behind the 

better skill of QM over MBR technique is that it’s a sophisticated technique based on 

statistical transformation, while the later one is a simple method, where the mean bias is 

adjusted in every year. 

 The skill of bias corrected (BC) approaches have been examined against non bias 

corrected (NBC) on station levels and it is found that the bias corrected QM method is 

able to represent the precipitation amount with high fidelity compared to MBR, T80 and 

T80_RegCM.  

 Further, with an objective to see whether WD is also improved in the RegCM simulation an 

intense WD case has been selected. The analysis revealed that the RegCM is able to 

simulate the flow field and associated precipitation reasonably well. 
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 It should be mentioned that downscaling of one ensemble member can be considered a 

limitation for drawing robust conclusions for the predictive skill of the two BC methods and their 

comparison. Although computationally expensive, using a large number of ensembles are needed 

for a more critical evaluation. Our next study on downscaling of precipitation will be improved by 

applying multiple ensemble runs with a sufficiently longer period. 
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Figure 1. Topography (in m) and full model domain as used in RegCM. The region under the 

purple box is the north India region considered in the study. 

Figure 2. Averaged (1982-2009; DJF) precipitation (in mm/day) from (a) CRU observations, (b) 

IMD gridded precipitation, (c) NCMRWF GCM (T80) and (d) T80 driven RegCM 
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(in %) form (a) NCMRWF GCM (T80) and (b) T80 driven RegCM (T80_RegCM), (c) 

root mean square error (mm/day) and (d) correlation pattern. Panel  (e) and (f) are same 

as (c) and (d) but for T80 driven RegCM. 

Figure 4. Sectorial (28ºE-128ºE) zonal and meridional climatological winter season wind (in m s-1) 

of (a) NNRP2, model simulations using (b) NCMRWF GCM (T80) and (c) T80 driven 

RegCM (T80_RegCM); d, e and f are same as a, b and c respectively. 

Figure 5. Precipitation anomalies (mm/day) from observation, T80 and T80 driven RegCM with 

observed and forecasted SST (RegCM_o and RegCM_f) for winter season over the north 
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Figure 6. Percentage differences between seasonal mean (DJF) wet- and dry-year composites of 

precipitation from (a) observation, (b) T80 and  (c) T80_RegCM model. 

Figure 7. Differences between seasonal mean (DJF) wet- and dry-year composites of winds (in 

m/s) at 500 hPa from (a) observation, (b) T80 and  (c) T80_RegCM model. 
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Figure 8. Longitude–height distribution of the differences between seasonal mean (DJF) wet- and 

dry-year composites of vertical velocity (Pa/s; shaded and broken contour) and 

topography (*1e-3 m; shaded bar, right-hand vertical axis) in (a) T80 and (b) RegCM at 

35°N latitude. 

Figure 9. The difference between seasonal mean (DJF) wet- and dry-year composites of vertical 

integrated moisture flux (shaded) and transport (streamlines) in (a) observation, (b) T80, 

and (c) T80 and T80 driven RegCM (T80_RegCM) simulations, respectively. 

Figure 10. (a) Seasonal (DJF) mean convective heating rate (0C/day) computed from NNRP2, T80 

and T80 driven RegCM (T80_RegCM) models respectively; (b) Temperature gradient 

between two latitudinal circles (400 N - 450 N & 250 N – 300 N). 

Figure 11. (a) Distribution of observed and model simulated precipitation (mm/day) for winter  

season. (b) Equitable threat score (ETS) computed for T80_RegCM and two bias 

correction methods (QM & MBR) for winter season. 

Figure 12. Taylor diagram for the north India average precipitation prediction skill of the T80, 

T80 driven RegCMs and two bias correction methods. 

Figure 13. Observed, T80 and RegCM simulated streamline and precipitation analysis for an 

extreme WD case occurred during 13–17 January 2002. The upper panel shows the 

observed streamlines at 500 hPa (a1-a5) and precipitation (a6-a10). T80 simulated 

streamlines at 500 hPa (b1-b5) and precipitation (b6-b10) are shown in middle panels. 

The lower panels shows RegCM simulated streamlines at 500 hPa (c1-c5) and 

precipitation (c6-c10) respectively. 
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Figure 14. Longitude–height distribution of vorticity (*1e-5/s; shaded), relative humidity (%; 

broken contour), and topography (*1e-3 m; shaded bar, right-hand vertical axis) on (a) 

12 January 2002, (b) 13 January 2002, (c) 14 January 2002, (d) 15 January 2002, (e) 

16 January 2002, and (f) 17 January 2002 at 35°N latitude in the RegCM simulation. 
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          Figure 1. Topography (in m) and full model domain as used in RegCM. The region under the purple 

box is the north India region considered in the study. 
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   Figure 2. Averaged (1982-2009; DJF) precipitation (in mm/day) from (a) CRU observations, (b) IMD gridded 

precipitation, (c) NCMRWF GCM (T80) and (d) T80 driven RegCM (T80_RegCM). The results 

over only land points from the T80 and RegCM4 models are shown in panel (c) and (d) 

respectively. 

 
 
 
 
 
  
 
 

 
 
 
 
 
 



 3 

 

        
 

Figure 3. Precipitation bias  (from 1982 to 2009 for December to February) with respect to IMD (in %) form 

(a) NCMRWF GCM (T80) and (b) T80 driven RegCM (T80_RegCM), (c) root mean square error 

(mm/day) and (d) correlation pattern for T80. Panel (e) and (f) are same as (c) and (d) but for T80 

driven RegCM. 
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     Figure 4. Sectorial (28ºE-128ºE) zonal and meridional climatological winter season wind (in m s-1) of (a) 

NNRP2, model simulations using (b) NCMRWF GCM (T80) and (c) T80 driven RegCM 

(T80_RegCM); d, e and f are same as a, b and c respectively.  
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    Figure 5. Precipitation anomalies (mm/day) from observation, T80 and T80 driven RegCM with observed 

and forecasted SST (RegCM_o and RegCM_f) for winter season over the north India region during 

1982–2008. 

 

 

 

 

 

 

 

 

 

 

          



 6 

              

 

     Figure 6. Percentage differences between seasonal mean (DJF) wet- and dry-year composites of 

precipitation from (a) observation, (b) T80 and  (c) T80_RegCM model. 

 

 

 

 



 7 

             

           

   Figure 7. Differences between seasonal mean (DJF) wet- and dry-year composites of winds (in m/s) at 500 

hPa from (a) observation, (b) T80 and  (c) T80_RegCM model. 
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Figure 8. Longitude–height distribution of the differences between seasonal mean (DJF) wet- and dry-year 

composites of vertical velocity (Pa/s; shaded and broken contour) and topography (*1e-3 m; 

shaded bar, right-hand vertical axis) in (a) T80 and (b) RegCM at 35°N latitude.  
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   Figure 9. The difference between seasonal mean (DJF) wet- and dry-year composites of vertical integrated 

moisture flux (shaded) and transport (streamlines) in (a) observation, (b) T80, and (c) T80 and 

T80 driven RegCM (T80_RegCM) simulations, respectively. 
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Figure 10. (a) Seasonal (DJF) mean convective heating rate (0C/day) computed from NNRP2, T80 and T80 

driven RegCM (T80_RegCM) models respectively; (b) Temperature gradient between two 

latitudinal circles (400 N - 450 N & 250 N – 300 N). 
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Figure 11 (a) Distribution of observed and model simulated precipitation (mm/day) for winter season. (b) 

Equitable threat score (ETS) computed for T80_RegCM and two bias correction methods (QM & 

MBR) for winter season. 
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Figure 12. Taylor diagram for the north India average precipitation prediction skill of the T80, T80 driven 

RegCMs and two bias correction methods.  
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 Figure 13. Observed, T80 and RegCM simulated streamline and precipitation analysis for an extreme WD 

case occurred during 13–17 January 2002. The upper panel shows the observed streamlines at 500 

hPa (a1-a5) and precipitation (a6-a10). T80 simulated streamlines at 500 hPa (b1-b5) and 

precipitation (b6-b10) are shown in middle panels. The lower panels shows RegCM simulated 

streamlines at 500 hPa (c1-c5) and precipitation (c6-c10) respectively. 
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Figure 14. Longitude–height distribution of vorticity (*1e-5/s; shaded), relative humidity (%; broken 

contour), and topography (*1e-3 m; shaded bar, right-hand vertical axis) on (a) 12 January 

2002, (b) 13 January 2002, (c) 14 January 2002, (d) 15 January 2002, (e) 16 January 2002, and 

(f) 17 January 2002 at 35°N latitude in the RegCM simulation.  
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                Table 1. Configuration of RegCM4 model used in the present study 

Dynamics Hydrostatics 

Main Prognostic Variables  u, v, t, q and p 

Central point of domain Latitude: 15.10N, longitude: 74.50E 

Number of horizontal grid points 320 grid points along latitude and 416 grid points 

along longitude 

Horizontal grid distance 30 km 

Map projection  Lambert conformal map projection 

Vertical co-ordinate  Terrain-following sigma co-ordinate  

Cumulus parameterization  Grell with Fritch & Chappell closure 

Land surface scheme Community Land Model (CLM3.5) 

Orography treatment Envelop orography (10 % increase from model 

mean height) 

Radiation parameterization  NCAR/CCM3 radiation scheme 

PBL parameterization  Holtslag  
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Table 2. Seasonal mean precipitation over seventeen (17) stations obtained from SASE 

observation, T80, T80 driven RegCM (T80_RegCM) and bias corrected 

RegCM (BC_RCM) for composite of wet and dry years. The shaded values are 

closer to the observations. The model data is bi-linearly interpolated to the 

station locations 

    Station            Composite Wet             Composite Dry 

SASE T80  T80_R

egCM 

QM MBR SASE T80 T80_R

egCM 

QM MBR 

1. Bahadur  3.64 3.58 4.69 3.61 3.59 2.17 1.79 5.02 2.24 2.21 

2. Banihal  7.81 4.74 7.83 5.49 6.79 3.08 1.62 4.17 3.15 3.17 

3. Bhang  4.86 2.42 8.69 4.90 4.91 2.84 2.96 5.09 3.95 4.94 

4. Dhundi  7.27 3.26 8.87 7.31 7.29 4.73 3.47 4.86 4.38 4.17 

5. Dras  6.91 4.02 9.41 7.52 7.03 1.82 1.73 4.13 1.68 2.43 

6. Gulmarg  7.30 3.18 7.39 7.41 7.16 4.13 3.57 4.16 4.25 4.27 

7. H-Taj  7.96 4.21 9.04 8.05 8.31 2.34 1.13 2.65 2.38 2.37 

8.Kanzalwan  9.85 5.13 9.42 9.86 9.84 3.83 2.14 5.27 3.72 3.28 

9. Kumar  2.34 2.29 6.39 5.14 5.78 0.85 1.04 3.62 3.03 1.06 

10. Neeru  5.10 3.06 7.05 5.11 5.13 2.79 1.21 8.39 2.84 2.82 

11. Patsio  3.50 2.27 4.71 3.88 3.53 1.93 2.32 5.15 2.46 2.11 

12. Pharki  9.03 4.69 9.06 9.04 8.73 4.72 3.24 4.37 4.83 4.82 

13. Solang  8.72 4.83 8.84 7.41 8.81 3.38 1.46 4.61 3.47 3.64 

14. Stg-II  10.6 5.73 9.31 10.6 8.31 3.74 2.19 5.77 4.13 3.82 

15. Z-Gali  7.58 3.09 8.97 7.59 8.43 4.21 3.26 4.38 4.35 4.61 

16. Gugaldhar  7.15 2.78 7.20 7.24 7.21 3.65 2.92 7.66 7.67 7.78 

17. Dawar  4.63 2.08 6.17 4.85 4.86 2.90 2.23 6.51 3.07 4.91 

 


