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Abstract

In this thesis we explore instances in which tools from continuous optimi-

sation can be used to solve problems in extremal graph and hypergraph

theory.

We begin by introducing a generalised notion of hypergraph Lagrangian and

use tools from the theory of nonlinear optimisation to explore some of its

properties. As an application we find the Turán density of a small family of

hypergraphs.

We determine the exact k-colour Ramsey number of an odd cycle on n

vertices when n is large. This resolves a conjecture of Bondy and Erdős

for large n. The first step of our proof is to use the regularity method to

relate this problem in Ramsey theory to one in nonlinear optimisation. We

establish a correspondence between extremal constructions in the Ramsey

setting and optimal points in the continuous setting. We thereby uncover

a correspondence between extremal constructions and perfect matchings in

the k-dimensional hypercube. This allows us to prove a stability type result

around these extremal constructions.

We consider two models from statistical physics, the hard-core model and

the monomer-dimer model. Using tools from linear programming we give

tight upper bounds on the logarithmic derivative of the independence and

matching polynomials of a d-regular graph. For independent sets, this is

a strengthening of a sequence of results of Kahn, Galvin and Tetali, and

Zhao that a disjoint union of Kd,d’s maximises the independence polynomial

and total number of independent sets among all d-regular graphs on the

same number of vertices. For matchings, the result implies that disjoint

unions of Kd,d’s also maximise the matching polynomial and total number of

matchings. Moreover we prove the Asymptotic Upper Matching Conjecture

of Friedland, Krop, Lundow, and Markström.

Through our study of the hard-core model, we also prove lower bounds on

the average size and the number of independent sets in a triangle-free graph

of maximum degree d. As a consequence we obtain a new proof of Shearer’s

celebrated upper bound on the Ramsey number R(3, k).
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Chapter 1. Introduction

Extremal graph theory concerns itself with problems of the following type:

Question A: Given a real-valued graph parameter P and a class

of graphs C, how large (or small) can P be for an element of C?

One of the earliest results in extremal graph theory is Mantel’s theorem [67]

from 1907, which considers the case where C is the class of all triangle-free

graphs on n vertices and P is the number of edges of a graph. Indeed, Man-

tel’s theorem asserts that any triangle-free graph on n vertices must have at

most bn2/4c edges. If we can answer Question A, we may want to go fur-

ther and determine precisely which elements of C optimise P . In the example

of Mantel’s theorem, one can show that the complete, balanced, bipartite

graph on n vertices, is the unique triangle-free graph on n vertices with

bn2/4c edges. We call the graphs in C which optimise P extremal graphs.

Once we have determined these extremal graphs, a curious phenomenon of-

ten occurs. Often one can show that elements of C which almost optimise P ,

must be close (in some combinatorial sense) to one of our extremal elements

of C. We call this phenomenon combinatorial stability.

Extremal graph theory can be viewed as ‘discrete optimisation’ where a

natural continuous analogue might be a question of the following form:

Question B: Given a function f : Rn → R and a subset S ⊆ Rn,

how large (or small) can f(x) be for an element x ∈ S?

We will call a question of this type a question in continuous optimisation.

If we can answer Question B, again we may want to know precisely which

elements of S optimise f . We call elements of S which optimise f optimal

points. Similarly to the discrete case, one can often show that elements of S

that almost optimise f must be close (in Euclidean distance say) to a genuine

optimal point of S. We refer to this phenomenon as analytic stability.

Questions of the form of Question B date back at least as far as 300 BC

when Euclid considered the minimal distance between a point and a line,

and proved that a square has the greatest area among all rectangles with a

given total length of edges. With the invention of the Calculus in the 17th
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Chapter 1. Introduction

century by Newton and Leibniz, many powerful new techniques to attack

problems in continuous optimisation emerged. Euler and Lagrange were

early pioneers in the general theory of continuous optimisation and by now

there are many sophisticated tools to deal with questions of type B.

In this thesis, we explore instances in which problems in extremal graph (and

hypergraph) theory can be related to problems in continuous optimisation.

We investigate a range of questions of type A along with its extensions and

take advantage of the parallels that we saw with questions of type B. The

aim is to attack problems in graph theory by importing powerful analytic

tools which are not usually at one’s disposal in a discrete setting.

We outline how the rest of this chapter is arranged. In Section 1.1 we collect

some common notation and terminology that we make use of throughout this

thesis.

In Section 1.2 we introduce the notion of a hypergraph (a generalisation

of graphs) and discuss the extremal theory of hypergraphs. In particular

we will discuss a relatively recent and powerful tool known as hypergraph

Lagrangians. This will give the relevant background and preparation for

Chapter 2.

In Section 1.3 we discuss graph Ramsey theory in order to provide the

relevant background and preparation for Chapter 3.

In Section 1.4 we introduce notions from the intersection of graph theory

and statistical physics in preparation for Chapters 4 and 5.

Finally, in Section 1.5 we introduce the tools that we will need to borrow

from the theory of continuous optimisation.

1.1 Notation and Terminology

Most of the notation introduced here is standard but we include it for com-

pleteness.

For a natural number k, we let [k] denote the set {1, . . . , k}. For a set S, we

let
(
S
k

)
denote the set of all unordered k-tuples of distinct elements of S.
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Chapter 1. Introduction

A graph is a pair G = (V,E) where V = V (G) is some fixed set and E =

E(G) ⊆
(
V
2

)
. We call V (G) the set of vertices of G and we refer to E(G)

as the set of edges. All graphs in this thesis can be assumed to be finite

meaning that V (G) is a finite set. For a finite graph G we let v(G) = |V (G)|
and e(G) = |E(G)|. If there is no ambiguity, we may slightly abuse notation

by writing v ∈ G and {x, y} ∈ G in lieu of v ∈ V (G) and {x, y} ∈ E(G)

respectively. For u, v ∈ V (G) we may write u ∼ v to indicate that {u, v} ∈
E(G). We may also denote an edge {u, v} simply by uv and refer to u and

v as the endpoints of the edge uv. For two edges e, f ∈ E(G) we may write

e ∼ f to indicate that e and f are incident i.e. they share an endpoint.

For disjoint subsets A,B ⊆ V (G), we denote by G[A,B] the graph with

vertex set A ∪ B and edge set {{a, b} ∈ E : a ∈ A, b ∈ B}, and we let

eG(A,B) denote the size of this set. In the case where A = {v} a singleton,

we write G[v,B] instead of G[{v}, B].

For v ∈ V (G), we let NG(v) = {u ∈ V (G) : u ∼ v} denote the neighbourhood

of v in G and let dG(v) = |NG(v)|, the degree of v. We let δ(G) = min
v∈G

dG(v)

and ∆(G) = max
v∈G

dG(v), the minimum and maximum degree of G respec-

tively.

Subscripts in the above notation may be suppressed if they are clear from

the context.

For two graphs F,G, we say that F is a subgraph of G if there exists an

injective function f : V (F )→ V (G) such that f(e) ∈ E(G) for all e ∈ E(F )

(for a set S ⊆ V (F ), f(S) denotes the set {f(v) : v ∈ S}). For a subset

U ⊆ V (G), we let G[U ] denote the graph with vertex set U and edge set

E(G) ∩
(
U
2

)
and call G[U ] the subgraph of G induced by U .

Throughout this thesis we omit the use of floor and ceiling symbols where

they are not crucial. We will use standard asymptotic notation with a

subscript indicating that the implied constant may depend on that subscript.

All other notation will be explained in the relevant sections.
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Chapter 1. Introduction

1.2 Extremal Hypergraph Theory

A hypergraph is a generalisation of the notion of a graph. An r-uniform

hypergraph (or r-graph for short) is a pair H = (V,E) where V = V (H)

is some fixed set and E = E(H) ⊆
(
V
r

)
. We call V (H) the set of vertices

of H and we refer to E(H) as the set of (hyper)edges. All hypergraphs

we consider will be finite, meaning that they have finite vertex set. Note

that a graph is simply a 2-uniform hypergraph. Many extremal problems in

graph theory can be generalised to the setting of hypergraphs and often the

problems become significantly more difficult. This is certainly the case for

the extremal problem that we focus on in this section, the study of Turán

numbers of hypergraphs (to be defined shortly). For two hypergraphs F

and H, we say that F is a subgraph of H if there exists an injective function

f : V (F ) → V (H) such that f(e) ∈ E(H) for all e ∈ E(F ). If F is not a

subgraph of H we say that H is F -free.

A natural question asked by Turán, first for graphs and then for hypergraphs,

is the following: given a fixed r-graph F , what is maximum number of edges

attained by an F -free r-graph on n vertices? We denote this number by

ex(n, F ) and call it the Turán number of F . We refer to F -free r-graphs

on n vertices with ex(n, F ) edges as extremal. Turán famously determined

the extremal graphs (and hence also the Turán number) in the case where

F = Kt, the complete graph on t vertices, that is the graph on t vertices with

all edges present. The result is known as Turán’s Theorem and it extends

Mantel’s Theorem which we introduced at the start of this chapter. Before

stating Turán’s Theorem we introduce some notation and definitions. We

make these definitions in the more general context of hypergraphs. We say

an r-graph H is `-partite if there exists a partition V (H) = V1 ∪ . . . ∪ V`
such that

E(H) ⊆
{
e ∈

(
V (H)

r

)
: |e ∩ Vi| ≤ 1 for i = 1, . . . , `

}
.

We call H complete `-partite if we have equality in the above inclusion and

we call H balanced `-partite if ||Vi| − |Vj || < 1 for all i, j ∈ [`].

Let Tr(n, `) denote the complete, balanced `-partite graph on n vertices.
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Chapter 1. Introduction

These graphs are called Turán graphs, and we write tr(n, `) for the number

of edges in Tr(n, `).

Theorem 1.1 (Turán [84]). Let ` ≥ 1. Then for n ≥ `+ 1,

ex(n,K`+1) = tr(n, `) .

Moreover Tr(n, `) is the unique extremal K`+1-free graph on n vertices.

For most graphs and hypergraphs H, the exact determination of ex(n,H)

is extremely difficult. Instead we might ask for the asymptotic behaviour

of ex(n,H). By using a simple averaging argument Katona, Nemetz, and

Simonovits [57] showed that for any fixed r-graph H the following limit

always exists

π(H) := lim
n→∞

ex(n,H)(
n
r

) .

We call π(H) the Turán density of H and determining these densities is one

of the central problems in extremal hypergraph theory. Rather remarkably

the Turán density is known for any graph G and it depends only on its

chromatic number. The chromatic number χ(G) of G is the least k such

that there exists a function f : V (G) → [k] with f(u) 6= f(v) for all edges

uv ∈ G (we call such a function a proper vertex colouring of G with k

colours). Erdős and Simonovits [29] discovered the following corollary of a

theorem of Erdős and Stone [30].

Theorem 1.2 (Erdős-Stone-Simonovits). If G is a graph with at least one

edge, then

π(G) = 1− 1

χ(G)− 1
.

Given this result, it may seem surprising that as soon as r ≥ 3, the Turán

density is unknown for most r-graphs. Let K
(r)
n denote the complete r-graph

on n vertices (that is the r-graph on n vertices with all possible hyperedges

present). A natural first question would be to ask for the Turán density

of K
(3)
4 , however this remains a major open problem. Turán showed that

π(K
(3)
4 ) ≥ 5/9 and conjectured that this is the right value. Erdős famously

offered $500 for a verification of this conjecture. Currently the best known

upper bound is due to Razborov [73] who applied the recently developed
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Chapter 1. Introduction

method of flag algebras to show that π(K
(3)
4 ) ≤ 0.561666. For an excellent

survey on progress on hypergraph Turán problems up until 2011 see Keevash

[58].

A huge variety of tools and techniques have now been developed for the

purpose of determining the Turán densities of graphs. We will focus on just

one of them, known as the method of hypergraph Lagrangians.

1.2.1 Hypergraph Lagrangians

First let us introduce the notion of homomorphism between hypergraphs.

Given two r-graphs F,H we say that f : V (F )→ V (H) is a homomorphism

if f(e) ∈ E(H) for all e ∈ E(F ). We say that H contains a homomorphic

copy of F in this case. Note that f is not necessarily injective and so F

may or may not be a subgraph of H. We will say that H is F -hom-free if H

contains no homomorphic copy of F . In analogy to ex(n, F ) we may define

exhom(n, F ) to be the maximum number of edges attained by an F -hom-free

r-graph on n vertices. Although ex(n, F ), exhom(n, F ) can be different, it

will be useful to recall (see e.g. [58]) that they are asymptotically equal i.e.

for any r-graph F

lim
n→∞

exhom(n,H)(
n
r

) = lim
n→∞

ex(n,H)(
n
r

) . (1.1)

Let H be an r-graph on vertex set [n] and let t = (t1, . . . , tn) be a vector of

positive integers. The t-blowup of H, denoted by H(t), is the r-graph with

vertex set V1 ∪ . . . ∪ Vn, where each Vi is a set of size ti, and edge set{
{v1, . . . , vr} : vi ∈ Vxi for i = 1, 2, . . . , r where {x1, . . . , xr} ∈ E(H)

}
.

In other words, we replace each vertex i with a set of size ti and replace

each edge with the corresponding complete r-partite r-graph. A useful ob-

servation is that for r-graphs F and H, H is F -hom-free if and only if H(t)

is F -free for all t.

Note that for an r-graph H on n vertices and a vector t = (t1, . . . , tn) of

positive integers we have

e(H(t)) =
∑

e∈E(H)

∏
i∈e

ti .
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Chapter 1. Introduction

The right hand side is a homogeneous polynomial of degree r in the variables

t1, . . . , tn and we denote this polynomial by pH(t).

Suppose now that H is an n-vertex F -hom-free r-graph so that H(t) is F -free

on |t| :=
∑n

i=1 ti vertices for any vector of positive integers t = (t1, . . . , tn).

It follows that

π(F ) ≥ lim sup
|t|→∞

pH(t)(|t|
r

) = lim sup
|t|→∞

r!pH(t/|t|) , (1.2)

where for the last equality we used that pH is homogeneous of degree r. In

view of (1.2) it is natural to ask for the maximum of pH over the set

S =

{
x ∈ Rn :

n∑
i=1

xi = 1 and xi ≥ 0 for all i

}
.

Note that since pH is continuous and S is compact, the maximum is indeed

attained. S is often referred to as the standard simplex in Rn. Since pH is

continuous and any point in S can be arbitrarily approximated by vectors

of the form t/|t| where t ∈ Nn, it follows from (1.2) that

π(F ) ≥ r! sup
x∈S

pH(x). (1.3)

We call supx∈S pH(x) the Lagrangian of H and denote it by λ(H). The

following simple lower bound on λ(H) is often handy.

r!λ(H) ≥ r!pH( 1
n , . . . ,

1
n) = r!

e(H)

nr
=
e(H)(
n
r

) −O( 1
n) . (1.4)

Note that by (1.1), π(F ) is the limit supremum of
(
n
r

)−1
e(H) over all F -

hom-free H and so by (1.3) and (1.4), π(F ) is the limit supremum of r!λ(H)

over all F -hom-free H as well. We can in fact say a bit more, but first we

require one more observation regarding the Lagrangian.

We say that an r-graph H covers pairs if every pair of vertices in H is

contained in some edge of H. Suppose that H is an r-graph on vertex set

[n] that doesn’t cover pairs i.e. there exists i, j ∈ [n] such that no edge of

H contains both i and j. It follows that pH(x) = Axi + Bxj + C where

A,B and C do not depend on xi and xj . Suppose now that x ∈ S and

suppose without loss of generality that A ≥ B. Let x′ ∈ Rn be the vector

13



Chapter 1. Introduction

with coordinates x′i = xi + xj , x
′
j = 0 and x′k = xk for k 6= i, j, then clearly

x′ ∈ S and pH(x′) ≥ pH(x). It follows that there is a subgraph H ′ of H

such that H ′ covers pairs and λ(H ′) = λ(H). For an r-graph F , let C(F )

be the set of all F -hom-free r-graphs that cover pairs. It follows that

π(F ) = sup
H∈C(F )

r!λ(H). (1.5)

To illustrate the use of this formalism let us show how it can be used to

prove some of the classical results we have already seen in this chapter. First

note that the only graphs that cover pairs are complete graphs and so the

Lagrangian of any graph is equal to the Lagrangian of the largest complete

graph it contains. It is not difficult to show (see e.g. Chapter 2) that the

symmetry of the complete graph Kt means that pKt(x) is maximised over

S when all coordinates are equal and so λ(Kt) = 1
2(1 − 1

t ). Suppose now

that G is a Kt-free graph so that λ(G) = λ(Ks) for some s < t. If G has n

vertices it follows that

2

n2
e(G) = 2pG( 1

n , . . . ,
1
n) ≤ 2λ(G) = 1− 1

s
≤ 1− 1

t− 1
.

This is Turán’s Theorem in the case where t − 1 divides n. This argument

is due to Motzkin and Straus [68] and it is one of the earliest appearances

of the method of Lagrangians. Note also that the Erdős-Stone-Simonovits

Theorem is an immediate corollary of (1.5) since a complete graph Kt is

F -hom-free if and only if t < χ(F ).

The development of the theory of Lagrangians for hypergraphs is attributed

to Sidorenko [78] and Frankl and Füredi [41]. In Chapter 2 we present a

generalised notion of hypergraph Lagrangian and use tools from continuous

optimisation to exploit some of its properties. As an application we calculate

the Turán densities of a new small class of hypergraphs.

1.3 Ramsey Theory

Ramsey theory is a central area of research in combinatorics whose phi-

losophy can be summarised by the following epithet: ‘large structures, no

matter how disordered, must contain ordered substructures.’ In order to
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Chapter 1. Introduction

make this more formal, let us introduce some common language in terms

of which almost all results in Ramsey theory are phrased. Given a set X

and positive integer k, a k-colouring of X is any map χ : X → [k] where

[k] = {1, . . . , k} is the set of colours. Given such a colouring χ, we call a

subset Y ⊆ X monochromatic, if it is contained in the set χ−1({i}) for some

i ∈ [k] (i.e. all elements of Y are given the same colour).

Although Ramsey theory owes its name to the seminal paper of Frank Ram-

sey [72] from 1930, arguably the first result in Ramsey theory was proved

by Hilbert in 1892. Given natural numbers a, d1, . . . , dm, define

H(a; d1, . . . , dm) =

{
a+

∑
i∈I

di

∣∣∣ I ⊆ [m]

}
.

We call such a set a Hilbert cube of dimension m. Hilbert [53] proved that,

given positive integers k,m, there exists a number H = H(k,m) such that

any k-colouring of [H] contains a monochromatic Hilbert cube of dimension

m. Another early and seminal result in Ramsey theory is due to van der

Waerden [85], who showed in 1927 that any colouring of the natural num-

bers with a finite number of colours, contains monochromatic arithmetic

progressions of arbitrary length.

In this thesis we will be concerned with graph Ramsey theory which con-

cerns itself with studying the Ramsey numbers of graphs, defined as follows.

Given graphs G1, G2, . . . , Gk, the Ramsey number R(G1, . . . , Gk) is the least

integer N such that any k-colouring of the edges of the complete graph KN

on N vertices contains a monochromatic copy of Gi in the i-th colour for

some i, 1 ≤ i ≤ k. In the case where G1, . . . , Gk are all isomorphic to the

graph G, we call R(G1, . . . , Gk) the k-colour Ramsey number of G and de-

note it by Rk(G). In the case of two colours we write R(G) in place of R2(G).

We call Rk(G) a diagonal Ramsey number and we refer to R(G1, . . . , Gk)

as off-diagonal if Gi is not isomorphic to Gj for some pair i, j. In Ramsey’s

celebrated paper [72], he showed that Ramsey numbers always exist i.e. for

any collection of finite graphs G1, . . . , Gk, R(G1, . . . , Gk) is finite.

The oldest and most famous examples of Ramsey numbers are those involv-

ing complete graphs. For positive integers t1, . . . , tk, we write R(t1, . . . , tk)

as a shorthand for the Ramsey number R(Kt1 , . . . ,Ktk), we use Rk(t) as a
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shorthand for the case where all the ti are equal to t and we let R(t) denote

R2(t). The systematic study of such Ramsey numbers began with a paper

of Erdős and Szekeres [31] (1935) who established the bound

R(s, t) ≤
(
s+ t− 1

s− 1

)
, (1.6)

for all s, t ≥ 2. The exact value of R(s, t) is only known in a small handful

of cases (see Radziszowski [58] for an excellent survey of such exact results)

and the problem of improving the known bounds on these quantities is no-

toriously difficult. Particular notoriety has been attached to the case where

s = t, where not even the value of R(5) is known. The bound (1.6) shows

that R(t) = O(4t/
√
t) and despite considerable effort over the past 80 years

no improvement has been made to the base of the exponent in this bound.

The current best upper bound is due to Conlon [19] who gave the first su-

perpolynomial improvement showing that there exists a positive constant c

such that

R(t) ≤ t−c log t/ log log t4t .

It wasn’t until a decade after the discovery of the bound (1.6), that a signif-

icant lower bound on the quantity R(t) was established. In 1947 Erdős [27]

pioneered the use of the probabilistic method, producing one of the most

well-known proofs in all of combinatorics, in order to establish the bound

R(t) ≥ (1− o(1))
t√
2e

√
2
t
. (1.7)

In a similar manner to (1.6), this bound has stubbornly resisted improve-

ment. In fact, since 1947 the only significant improvement is due to Spencer

[82] who improved (1.7) by a factor of 2 using the Lovász local lemma.

Extensive research has also been dedicated to the study of the Ramsey

numbers R(s, t) in the case where s is fixed and t is growing. In this case

(1.6) shows that R(s, t) ≤ ts−1. In 1980, Ajtai, Komlós and Szemerédi [1]

improved this by a polylogarithmic factor showing that for s fixed

R(s, t) = O

(
ts−1

logs−2 t

)
.

The proof is an induction on s and the main effort is in establishing the base

case where s = 3. The authors in fact show that a triangle-free graph G
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(i.e. a graph which does not have the complete graph K3 as a subgraph) on

n vertices with average degree d has an independent set (that is a collection

of vertices with no edges between them) of size 0.01 log d
d n. This implies the

bound R(3, t) ≤ 100 log2 t
t . In 1983 Shearer [77] gave an elegant and short

proof of the improved bound

R(3, t) ≤ (1 + o(1))
log2 t

t
. (1.8)

Perhaps surprisingly, in 1995 Kim [60] showed that this is the correct order

of magnitude for R(3, t) i.e. he showed that R(3, t) = Ω
(

log2 t
t

)
. Kim’s

proof was a pioneering use of what has become known as the semi-random

method. Recently Bohman [6] gave an alternative proof of Kim’s result by

analysing a stochastic graph process called the triangle-free process. The

process starts with a graph with no edges and step by step adds edges

uniformly at random from the collection of edges whose addition would not

create a triangle. The process stops when the addition of any new edge

would create a triangle. More recently still, Bohman and Keevash [7] and

independently Fiz Pontiveros, Griffiths and Morris [40] analysed the running

time of the triangle-free process more carefully to show that

R(3, t) ≥
(

1

4
+ o(1)

)
log2 t

t
. (1.9)

It is already rather remarkable that we know R(3, t) to such accuracy, how-

ever it is a major open problem to reduce the gap between (1.8) and (1.9)

further still. In Chapter 4 we give a new proof of Shearer’s bound (1.8) and

suggest new strategies for improving this bound.

Returning to the diagonal case, the difficulty in improving the bounds for

R(t) motivated the study of Ramsey numbers of graphs with a ‘simpler’

structure, where the problem may be more tractable. In stark contrast to

the exponential behaviour of R(t), Chvatál, Rödl, Szemerédi and Trotter [16]

showed that bounded degree graphs have linear Ramsey number. Formally

they showed that for all d there exists a constant cd such that if G is a graph

on n vertices with maximum degree d then

R(G) ≤ cdn .
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The authors remark that their argument extends easily to the k-colour case

i.e. for all k, d there exists a constant ck,d such that Rk(G) ≤ ck,dn for any

graph G on n vertices with maximum degree d. Recently Lee [63] greatly

generalised this result showing that the same conclusion holds if ‘bounded

degree’ is replaced by ‘bounded degeneracy’ (again the result is stated for

two colours, but extends to k-colours). Lee’s result settled the famous Burr-

Erdős conjecture from 1973 [14].

In Chapter 3 we will discuss the Ramsey theory of ‘sparse’ graphs in more

detail and see examples where the Ramsey numbers of graphs can even be

determined exactly. In particular we will focus on a conjecture of Bondy

and Erdős from 1973 which asserts that for all k and odd n > 3

Rk(Cn) = 2k−1(n− 1) + 1 .

Here Cn denotes the cycle on n vertices (see Chapter 3 for a formal defini-

tion). In particular we prove that the conjecture holds for any fixed k and

n sufficiently large. The first step of the proof is to relate the problem in

Ramsey theory to the problem of maximising a linear function over a region

in 3k-dimensional Euclidean space bounded by quadratic constraints.

1.4 Statistical Physics Models on Graphs

Many important graph polynomials, such as the independence polynomial,

matching polynomial and chromatic polynomial, can be viewed in terms of

partition functions of statistical physics models on graphs.

In this section we introduce some examples of these models and present

a general approach for bounding their partition functions. This will help

prepare us for Chapters 4 and 5. To begin with we introduce the hard-core

model from statistical physics. Recall that an independent set in a graph

is simply a collection of vertices with no edges between them. For a graph

G, we let I(G) denote the set of all independent sets in G. The hard-core

model on a graph G at fugacity λ is a random independent set I drawn
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according to the distribution

PG,λ[I] =
λ|I|

PG(λ)
, where PG(λ) =

∑
I∈I(G)

λ|I|.

Here |I| denotes the number of vertices in I. Note that we indicate the graph

and value of the fugacity in the subscript of probabilities and expectations

but drop it from the notation when they are clear from the context. The

function PG(λ) is the partition function of the hard-core model, or in the

language of graph theory, the independence polynomial. Note that evaluat-

ing PG(1) counts the total number of independent sets of G which we will

denote by i(G).

The hard-core model is relevant in statistical physics as a simple model of

a gas consisting of particles of non-negligible size. In this context the host

graph is usually a lattice, the vertices of which may or may not be occupied

by a gas particle. The constraint that the gas particles form an independent

set in the lattice can be interpreted as the condition that these particles are

non-overlapping.

For a positive integer d, we say that a graph G is d-regular if every vertex

in G has degree d. Let Kd,d denote the complete bipartite graph with d

vertices in each part. A classical result of Kahn [55] states that if G is a

d-regular bipartite graph then

i(G) ≤ i(Kd,d)
v(G)/2d .

In particular, if 2d divides n then the bipartite d-regular graph on n vertices

with the most independent sets is a disjoint union of Kd,d’s on n vertices.

Kahn’s argument makes elegant use of the information theoretic notion of

entropy to study the hard-core model. Galvin and Tetali [46] gave a broad

generalisation of Kahn’s result to counting homomorphisms from a d-regular,

bipartite G to any graph H. The case where H is formed of two connected

vertices, one with a self-loop, is that of counting independent sets. Via

a modification of H and a limiting argument, they proved that if G is a

d-regular bipartite graph and λ > 0 then we in fact have

PG(λ) ≤ PKd,d(λ)v(G)/2d . (1.10)
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Zhao [86] then discovered a way to remove the bipartite restriction showing

that (1.10) in fact holds for any d-regular graph G. This resolved a conjec-

ture of Alon [3] whose original motivation was a problem in combinatorial

group theory.

In Chapter 4 we will present a new approach to bounding PG(λ) for regular

graphs. Instead of dealing with the partition function directly we study a

related parameter known as the occupancy fraction. The occupancy fraction

of the hard-core model on a graph G is simply the expected fraction of

vertices of G in a random independent set drawn according to the model i.e.

αG(λ) :=
1

v(G)

∑
I∈I(G)

|I| · P[I] .

In Chapter 4, we study the occupancy fraction from the perspective of an

extremal combinatorialist, asking which graphs maximise or minimise the

occupancy fraction under certain constraints on the graph class. We then

deduce extremal information on the partition function of a graph via the

interpretation of the occupancy fraction as the scaled logarithmic derivative

of the partition function:

αG(λ) =
1

v(G)

∑
I∈I(G) |I|λ|I|

PG(λ)
=

1

v(G)

λP ′G(λ)

PG(λ)
=

λ

v(G)
· (logPG(λ))′ .

In Chapter 4 we will prove that for any λ > 0, the d-regular graph which

maximises the occupancy fraction is Kd,d. This strengthens the results of

Kahn, Galvin-Tetali and Zhao mentioned above. Via the same method,

we provide a lower bound for the occupancy fraction of a bounded degree

graph with no triangles. As a result we obtain new lower bounds for the

average size and the number of independent sets in triangle-free graphs. As

a further corollary we obtain a new proof of (1.8), Shearer’s upper bound

on the Ramsey number R(3, t).

Unlike the partition function, the occupancy fraction is the expected value

of a physical observable of our model. This probabilistic interpretation is

crucial for our proof method. Our proof method has proven sufficiently

general that it can be used to analyse a variety of statistical physics models.

In Chapter 5 we study the monomer-dimer model. A matching in a graph
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G is simply a collection of vertex disjoint edges and we letM(G) denote the

set of all matchings in G. In the language of statistical physics, the edges

of a matching in G are referred to as ‘dimers’ and the unmatched vertices

are the ‘monomers’. The monomer-dimer model is a probability distribution

over matchings M in a graph G, where

PG,λ[M ] =
λ|M |

MG(λ)
, and MG(λ) =

∑
M∈M(G)

λ|M |.

Here |M | denotes the number of edges in the matching M . In graph theory

MG is known as the matching polynomial of G. The monomer-dimer model

dates back to 1935 when Roberts [74] considered the problem of adsorption

of oxygen and hydrogen on a tungsten surface.

We remark that the monomer-dimer model is simply the hard-core model

run on the line graph of G (the line graph of G is the graph on vertex set

E(G) where two vertices e, f are adjacent if and only if they are incident as

edges in G).

As in the hard-core model, we can define the edge occupancy fraction, the

expected fraction of edges occupied by a random matching:

αMG (λ) :=
1

e(G)

∑
M∈M(G)

|M | · P[M ] =
λ

e(G)
(logMG(λ))′ .

In analogy to our result on the hard-core model we prove that for any λ > 0,

the d-regular graph which maximises the edge occupancy fraction is Kd,d.

We get as a corollary that for any d-regular graph G we have

MG(λ) ≤MKd,d(λ)v(G)/2d . (1.11)

This resolves a conjecture of Galvin (Conjecture 7.1 in [45]). In the case

where 2d divides v(G) it is natural to conjecture that (1.11) holds coefficient

by coefficient, that is, over all d-regular graphs on n vertices, a disjoint union

ofKd,d’s maximises the number of matchings of any given size. This is known

as the Upper Matching Conjecture of Friedland, Krop and Markström [44].

In Chapter 5 we prove new upper bounds on the number of matchings of a

given size in regular graphs. Although we do not resolve the Upper Matching

Conjecture, our bounds are sufficient to prove a weakened version known as

the Asymptotic Upper Matching Conjecture [43].
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The proof method that unifies Chapters 4 and 5 can be summarised as fol-

lows. We choose a random vertex or edge from our graph and a random

sample from our model (i.e. an independent set or a matching). We then

look at the way in which our random sample intersects the neighbourhood

of our vertex or edge (we call this a local view). Each local view occurs with

some probability and we can place consistency constraints on these proba-

bilities that must hold for all regular graphs. We then relax the extremal

problem on graphs to an optimisation problem on probability distributions

on local views and pose the relaxation as a linear program (see the next

section). We then use techniques from linear programming to solve this

optimisation problem and show that the optimal distribution matches the

distribution obtained from our conjectured extremal graph.

To end this section we mention a couple of further applications of this

method that do not appear in this thesis. By applying this method to the

Potts model (a generalisation of the famous Ising model), Davies, Perkins,

Roberts and the current author [23] showed that over all 3-regular graphs

on n vertices, a disjoint union of K3,3’s maximises the number of proper

q-colourings.

So far all of the extremal graphs have been complete bipartite. Perkins and

Perarnau [70] showed that by forbidding certain local structures one can

obtain a richer class of extremal graphs. In particular they show that for

λ > 0, over all cubic graphs G of girth at least 5, the occupancy fraction

αG(λ) is maximised by the Heawood graph (see below). They also show that

for 0 < λ ≤ 1, over all triangle-free cubic graphs, the occupancy fraction is

minimised by the Peterson graph.

Peterson graph Heawood graph
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1.5 Tools from Continuous Optimisation

In this section we collect some standard tools and results from the theory

of continuous optimisation that we use throughout this thesis. For us, a

continuous optimisation problem will be a problem of the form

maximise f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m. (1.12)

Here x = (x1, . . . , xn) ∈ Rn is a vector, and we refer to the coordinates

xi as the decision variables. The function f : Rn → R is the objective

function and the functions gi : Rn → R for i = 1, . . . ,m are called the

constraint functions. A vector x is called feasible if it satisfies each of the

constraints gi(x) ≤ 0, i = 1, . . . ,m. A vector x∗ is called optimal if it has

the largest objective value among all feasible vectors i.e. for any z with

g1(z) ≤ 0, . . . , gm(z) ≤ 0, we have f(z) ≤ f(x∗).

In the special case where the objective function and the constraint functions

are all linear, we call a problem of the form (1.12) a linear program (or

LP for short), otherwise we call the problem nonlinear. In the case where

the objective function and the constraint functions are all convex we call

a problem of the form (1.12) a convex optimisation problem. There is an

enormous amount of literature and deep theory in the study of continuous

optimisation and much of this is dedicated to the special case of linear or

convex problems. Here we only borrow some standard tools from this theory.

1.5.1 Linear Programming

Let us introduce some standard vector notation that we use throughout this

thesis. Let Rm×n denote the space of all m×n matrices with real entries. For

A ∈ Rm×n we let AT denote the transpose of A. For two vectors z, w ∈ Rn

we write z ≤ w if the inequality holds componentwise. If f(x) is a scalar

function of x = (x1, . . . , xn) ∈ Rn, then we let ∇f(x) be the gradient of f

at x i.e. the vector in Rn whose ith coordinate is ∂
∂xi
f(x).
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Now, let b, c ∈ Rn and A ∈ Rm×n and consider the linear program

maximise cTx

subject to Ax ≤ b, x ≥ 0. (1.13)

The dual linear program to (1.13) is

minimise bT y

subject to AT y ≥ c, y ≥ 0. (1.14)

We refer to (1.13) as the primal linear program.

We will make use of the following two standard tools from the theory of

linear programming in Chapters 4 and 5 (see [12, p. 244] for a detailed

account).

Theorem 1.3 (Weak LP Duality). Suppose x and y are feasible for the

primal and dual linear programs (1.13) and (1.14), then cTx ≤ bT y. In

particular, if cTx = bT y, then x and y must be optimal for the primal and

the dual.

Theorem 1.3 is simply the observation that if you multiply the inequality

Ax ≤ b on the left by yT and you multiply the inequality AT y ≥ c on the

left by xT , then you obtain cTx ≤ yTAx ≤ bT y. Despite its simplicity,

Theorem 1.3 is extremely useful. In particular it shows that if you manage

to find feasible solutions for a linear program and its dual whose objective

values match, then they must both be optimal solutions.

Theorem 1.4 (Complementary Slackness). Suppose x and y are feasible

for the primal and dual linear programs (1.13) and (1.14). Then x and y

are optimal if and only if (b−Ax)T y = 0 and (AT y − c)Tx = 0.

The proof of Theorem 1.4 is not complicated although we omit it here. In

conjunction, Theorems 1.3 and 1.4 furnish us with the following strategy for

solving linear programs: suppose that we believe x∗ is an optimal solution

to the linear program (1.13). The support of x∗ (i.e. the coordinates i for

which x∗i 6= 0) then tells us, by Theorem 1.4, which of the dual constraints
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AT y ≥ c should hold with equality. The hope is that by solving these equal-

ity constraints, one finds a dual feasible solution y∗ whose objective value

matches that of the original guess x∗. If this is the case, then Theorem 1.3

tells us that x∗ and y∗ are both indeed optimal.

We remark that the linear programs we will come across in this thesis have

the following form:

maximise cTx

subject to Ax = b, x ≥ 0 .

Note that we have equality constraints here rather than inequality con-

straints. Of course this can be manipulated into the same form as (1.13)

(sometimes referred to as symmetric form) by replacing the equality con-

straint Ax = b with the pair of inequality constraints Ax ≤ b and −Ax ≤ −b.
The dual linear program can then be written as

minimise bT y

subject to AT y ≥ c .

Note that y is no longer constrained to be non-negative.

1.5.2 Karush-Kuhn-Tucker Conditions

In this section we introduce a very general tool from the theory of continuous

optimisation known as the Karush-Kuhn-Tucker (KKT) optimality condi-

tions. We only discuss a version of this theory that is sufficiently general to

suit our needs. As before, suppose we have an optimisation problem of the

form of

maximise f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m , (1.15)

where x ∈ Rn and f and gi are differentiable functions Rn → R for all i.

For x∗ ∈ Rn we will say that the KKT conditions hold at x∗ if there exist

λ1, . . . , λm ∈ R such that

(i) ∇f(x∗) =
∑m

i=1 λi∇gi(x∗),

25



Chapter 1. Introduction

(ii) λi ≥ 0, i = 1, . . . ,m,

(iii) λigi(x
∗) = 0, i = 1, . . . ,m.

The KKT conditions are of particular interest since under certain ‘regularity

conditions’, an optimal point of (1.15) must satisfy the KKT conditions (see

Theorem 1.5 below). These regularity conditions are often quite general

and only ask for the constraint functions to satisfy certain mild properties.

These are often referred to as constraint qualifications. Many different types

of constraint qualification appear in the literature. Here we will make use

of the following two well-known constraint qualifications (see [12, p.146] for

a detailed account).

• Slater’s Condition: f, g1, . . . , gm are all convex and there exists z ∈
Rn such that gi(z) < 0 for i = 1, . . . ,m.

• Linearity Constraint Qualification (LCQ): g1, . . . , gm are all affine

functions.

Theorem 1.5. If Slater’s condition or LCQ holds, then any optimal point

of (1.15) must satisfy the KKT conditions.

We remark that when applied to the linear program (1.13), the KKT con-

ditions are precisely the assertion that there exists a feasible solution to

the dual program which satisfies the complimentary slackness conditions of

Theorem 1.4.
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Chapter 2. A Generalised Notion of Hypergraph Lagrangian

2.1 Introduction

Recall that for an r-graph H, the Turán number ex(n,H) is the maximum

number of edges attained by an r-graph on n vertices containing no copy of

H as a subgraph and the Turán density of H is the limit

π(H) = lim
n→∞

ex(n,H)(
n
r

) .

A valuable tool in the arsenal of methods that has been developed over the

years to attack hypergraph Turán problems is the hypergraph Lagrangian

which we introduced in Section 1.2.1. To describe one of the early successes

of the method of Lagrangians we begin with a question of Katona. In an

attempt to generalise Mantel’s Theorem [67], Katona [56] asked for the

largest number of edges an n-vertex 3-graph can have under the constraint

that there is no edge that contains the symmetric difference of two other

edges. Bollobás [8] settled this question by showing that the maximum

is achieved uniquely by the complete balanced 3-graph on n vertices and

went on to conjecture that the same should hold for arbitrary r, not just

r = 2, 3. With an early use of the method of Lagrangians, Sidorenko [79]

settled the r = 4 case of this conjecture. In fact he showed that the extremal

construction is the same under the weaker constraint that there are no three

edges e, f, g such that |f∩g| = 3 and f4g ⊆ e (here4 denotes the symmetric

difference operator).

Let us define a k-avoiding r-graph to be an r-graph H with the property that

for all edges e, f ∈ E(H) we have |e∩f | 6= k. As a key lemma in Sidorenko’s

proof in [79], he shows that the maximum Lagrangian over all 3-avoiding

4-graphs is attained by the hypergraph formed by a single edge (the method

shows that the same is true for (r−1)-avoiding r-graphs where r = 2, 3). In

[42], Frankl and Füredi extend Sidorenko’s method to show that for r = 5, 6

the maximum Lagrangian over all (r − 1)-avoiding r-graphs is attained by

the Steiner systems S(11, 5, 4) and S(12, 6, 5) respectively (a Steiner system,

S(n, r, q), is an r-graph H on n vertices in which every element of
(
V (H)
q

)
is contained in exactly one hyperedge). As a result one can determine the

Turán density of the generalised triangle, the graph on vertex set [2r − 1]
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and edges

{1, 2 . . . , r}, {1, 2, . . . , r − 1, r + 1}, {r, r + 1, . . . , 2r − 1}

for r = 2, 3, 4, 5 and 6. In a similar spirit, Hefetz and Keevash [51] asked

for the maximum Lagrangian attained by an intersecting r-graph (an r-

graph whose edges have pairwise non-empty intersection). They proved

that for r = 3 the maximum is attained by K
(3)
5 and as a consequence they

obtain the Turán density of a related 3-graph. The authors then go on to

propose a more general direction of investigation in extremal combinatorics,

namely to determine the maximum Lagrangian of a hypergraph satisfying a

given property. Natural properties to consider are those which restrict edge

intersection sizes as in the results mentioned above.

In this chapter we prove

Theorem 2.1. Let H be an (r − 2)-avoiding r-graph. Then

λ(H) ≤ λ(K
(r)
r+1) =

1

(r + 1)(r−1)

for r = 3, 4, 5, 6 and 7.

As a result we determine the Turán density of what we shall call the ‘r-

uniform generalised K4’ for these values of r. More precisely the generalised

K4, denoted by K(r)
4 , is the r-graph on 5r − 6 vertices with the 6 edges

{x1, . . . , xr}, {y1, y2, x3, . . . , xr} and {xi, yj , zij1, . . . , zij(r−2)} for i, j ∈ {1, 2}.

(In words, K(r)
4 is the graph obtained by taking two edges with intersection

size r − 2 and for each pair of vertices not in an edge, adding (r − 2) new

vertices to form an edge with that pair).

Theorem 2.2.

π(K(r)
4 ) =

r!

(r + 1)(r−1)

for r = 3, 4, 5, 6 and 7.

We note that K(2)
4 = K4, the complete graph on 4 vertices. We believe

that the method of proof of the above theorems is of independent interest.
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We introduce a generalised notion of hypergraph Lagrangian and use the

Karush-Kuhn-Tucker conditions introduced in Section 1.5.2 to derive some

of its properties.

It is tempting to conjecture that Theorem 2.1 (and therefore Theorem 2.2)

holds for all r. However, the following theorem, which determines the order

of the maximum Lagrangian attained by an (r − 2)-avoiding r-graph (as a

function of r), shows that this is not the case.

Theorem 2.3. Let Ar denote the set of all (r− 2)-avoiding r-graphs. Then

sup
H∈Ar

λ(H) = Θ

(
1

r4r!

)
.

The layout of this chapter is as follows: in Section 2.2 we introduce the gen-

eralised hypergraph Lagrangian. In Section 2.3 we introduce some standard

techniques for explicitly calculating the Lagrangian of an r-graph and use

the results of Section 2.2 to prove Theorem 2.1. We do this by first bound-

ing the generalised Lagrangian over the much simpler class of 1-avoiding

3-graphs. In Section 2.4, we show how Theorem 2.1 can be used to prove

Theorem 2.2. Finally in Section 2.5 we prove Theorem 2.3 and suggest

avenues of future research.

We note that after completing this chapter, the author discovered that the

some of its contents (in particular the cases r = 3, 4 in Theorem 2.1) are

implicit in a previous paper of Sidorenko [80].

2.2 The Generalised Lagrangian

In this section we introduce a generalised notion of hypergraph Lagrangian

and explore some of its properties. Let H be an r-graph on [n] and let w, t

be positive reals. We define

Sw,t =

{
x ∈ Rn : 0 ≤ xi ≤ t for 1 ≤ i ≤ n and

n∑
i=1

xi ≤ w

}
and

λw,t(H) = sup
x∈Sw,t

pH(x).
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Note that this supremum is attained as pH is continuous and Sw,t is compact.

This should be compared to the Lagrangian defined in Section 1.2.1 where

the only difference is in the modification to the standard simplex. Note

that λ1,1(H) = λ(H) for all r-graphs H and so we use the term generalised

Lagrangian to refer to quantities of the form λw,t(H).

For an r-graph H = (V,E) and subset X ⊆ V , we let H(X) denote the

(r− |X|)-graph with vertex set V −X and edge set {e−X : e ∈ E,X ⊆ e}
(for x ∈ V we write H(x) in place of H({x})). Using the Karush-Kuhn-

Tucker conditions (Theorem 1.5) we prove the following result which allows

us to bound the generalised Lagrangian of an r-graph H in terms of a related

generalised Lagrangian of the hypergraph H(x) for some x ∈ V (H). The

advantage of this approach is that H(x) may have a simpler structure and

so its generalised Lagrangian may be more amenable to analysis.

Theorem 2.4. Let H be an r-graph and let w, t > 0. Then there exists an

x ∈ V (H) and s ≤ t, w such that

rλw,t(H) ≤ wλw−s,s(H(x)).

Proof. Let V (H) = [n] and choose a ∈ Sw,t such that pH(a) = λw,t(H). Note

that we are maximising pH over Sw,t which is defined by affine constraints.

We may therefore apply Theorem 1.5 (with the LCQ condition) to find

constants Λ, µi, θi ≥ 0 such that for all i ∈ [n]

∂pH
∂xi

(a) = Λ− µi + θi (2.1)

and

aiµi = 0, aiθi = tθi, and Λ
∑
i

ai = Λw. (2.2)

Note that since pH is a homogeneous polynomial of degree r we have that

rλw,t(H) =
n∑
i=1

ai
∂pH
∂xi

(a).

By (2.1) and (2.2) we then have

rλw,t(H) =
n∑
i=1

ai(Λ− µi + θi) = wΛ + t
n∑
i=1

θi. (2.3)
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Noting that θi > 0 only if ai = t and that
∑

i ai ≤ w we see that θi > 0

for at most bw/tc values of i ∈ [n]. It follows by averaging that we can find

j ∈ [n] such that

θj ≥
t

w

n∑
i=1

θi. (2.4)

We consider two cases:

Case 1: θj > 0. Without loss of generality, let j = n. Since θn > 0 we have

an = t > 0 and so µn = 0. Thus, by (2.1), (2.3) and (2.4) we have

∂pH
∂xn

(a) = Λ + θn ≥ Λ +
t

w

n∑
i=1

θi =
r

w
λw,t(H).

Case 2: θj = 0. In this case, noting that θi ≥ 0 for all i ∈ [n], (2.4) shows

that in fact θi = 0 for all i ∈ [n]. Without loss of generality let an =

max{a1, . . . , an}. Clearly we must have that an > 0 and so µn = 0. Thus,

as in Case 1 we have

∂pH
∂xn

(a) = Λ =
r

w
λw,t(H).

Finally note that in both cases ∂pH
∂xn

(a) = pH(n)(a
′) where a′ = (a1, . . . , an−1)

and an = max{a1, . . . , an} so that a′ ∈ Sw−s,s ⊆ Rn−1 for some s ≤ t, w.

The result follows.

Note that successive applications of Theorem 2.4 allows one to repeatedly

simplify the hypergraph whose Lagrangian we are trying to bound. Starting

with the Lagrangian λ(H) = λ1,1(H) of a hypergraph H and repeatedly

applying Theorem 2.4 leads to the following.

Theorem 2.5. Let H be an r-graph, then for 1 ≤ m ≤ r there exists

X ∈
(
V (H)
m

)
and s ≤ 1/m such that

r!

(r −m)!
λ(H) ≤ λ1−ms,s(H(X))

m−1∏
i=0

(1− is).

Proof. We proceed by induction on m. Noting that λ(H) = λ1,1(H), Theo-

rem 2.4 gives an x ∈ V (H) and an s ≤ 1 such that rλ(H) ≤ λ1−s,s(H(x)).
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This gives the base case m = 1. For fixed 2 ≤ m < r, suppose that there

exists X ∈
(
V (H)
m

)
and t ≤ 1/m such that

r!

(r −m)!
λ(H) ≤ λ1−mt,t

(
H(X)

)m−1∏
i=0

(1− it). (2.5)

By Theorem 2.4 applied to H(X) there exists an x ∈ V (H(X)) and s ≤
t, 1−mt (and so s ≤ 1/(m+ 1)) such that

(r −m)λ1−mt,t
(
H(X)

)
≤ (1−mt)λ1−mt−s,s

(
H(X ∪ {x})

)
. (2.6)

Since s ≤ t and since λw,s
(
H(X ∪ {x})

)
is an increasing function of w, the

right hand side of (2.6) is at most (1 − ms)λ1−(m+1)s,s

(
H(X ∪ {x})

)
. In

view of (2.5) this completes the induction.

In many cases we expect equality in the statement of Theorem 2.5, an ex-

ample of which we see in the next section.

2.3 1-avoiding 3-graphs and a proof of Theorem 2.1.

In this section we consider the class of 1-avoiding 3-graphs and bound the

generalised Lagrangian of such a hypergraph. We will then use Theorem 2.5

to bound the Lagrangian of an (r − 2)-avoiding r-graph. We first need to

introduce some tools that are useful for explicitly calculating the generalised

Lagrangian of a given hypergraph. Recall that for r-graphs F and H, a

homomorphism from F to H is a map f : V (F ) → V (H) such that f(e) ∈
E(H) for all e ∈ E(F ). We call a bijective homomorphism fromH to itself an

automorphism of H and let Aut(H) denote the group of all automorphisms

of H under composition.

Definition 2.6. Given an r-graph H on vertex set [n], let ∼H denote the

equivalence relation on [n] given by i ∼H j if and only if Aut(H) contains

the transposition (ij).

The following lemma can be found as Lemma 2.8 in [51]. It will be useful

to replicate the proof here and to mimic a corollary (Corollary 2.9 of [51])

of that lemma in our modified setting.
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Lemma 2.7. Let H = ([n], E) be a hypergraph and let i, j ∈ [n] be such

that i ∼H j. Suppose a = (a1, . . . , an) ∈ Rn with a ≥ 0 and let a′ ∈ Rn have

coordinates a′k = ak for k 6= i, j and a′i = a′j = (ai + aj)/2. Then we have

pH(a′) ≥ pH(a).

Proof. Since (ij) is an automorphism of H it is easy to see that

pH(a′)− pH(a) =
∑
e∈E
{i,j}⊆e

((ai + aj)
2/4− aiaj)

∏
k∈e\{i,j}

ak ≥ 0

.

Corollary 2.8. If H is an r-graph and w, t > 0 then there exists a ∈ Sw,t
such that pH(a) = λw,t(H) and ai = aj whenever i ∼H j.

Proof. Suppose V (H) = [n]. Let {Pi : i ∈ I} be the set of equivalence

classes of ∼H on [n]. For x ∈ Rn and P ⊆ [n], let xP := 1
|P |
∑

j∈P xj .

Choose an a ∈ R := {x ∈ Sw,t : pH(x) = λw,t(H)} which minimises the sum

T (a) =
∑

m∈I
∑

`∈Pm |a`−aPm | (note that T is continuous and R is compact

and so we may choose such an a ∈ R). We wish to show that T (a) = 0.

Suppose not, then we can find m ∈ I and i, j ∈ Pm such that ai < aPm < aj .

Let a′ have coordinates a′k = ak for k 6= i, j and a′i = a′j = (ai + aj)/2 and

note that a′ ∈ Sw,t. Since i ∼H j we have that pH(a′) = λw,t(H) by Lemma

2.7. This contradicts the choice of a since T (a′) < T (a) .

Recall that we say a hypergraph H is k-avoiding if |e ∩ f | 6= k for all e, f ∈
E(H). The following basic lemma gives a full characterisation of 1-avoiding

3 graphs. We go on to use this characterisation to bound the generalised

Lagrangian of such a hypergraph. We let K
(3)−
4 denote the unique 3-graph

on 4 vertices with 3 edges. For k ≥ 3, we let Sk be the 3-graph with vertex

set [k] and with edge set {{12j} : 3 ≤ j ≤ k}. Sk is sometimes called

a sunflower with k − 2 petals and kernel of size 2. For k = 1, 2 we let

Sk = ([k], ∅). For a hypergraph H and subset X ⊆ V (H), we let d(X)

denote the number of edges of H that contain X.

Lemma 2.9. Let H be a 1-avoiding 3-graph. Then H is a vertex disjoint

union of copies of K
(3)
4 ,K

(3)−
4 and Sk where k ≥ 1.
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Proof. We proceed by induction on N , the number of pairs {u, v} ∈ H with

d({u, v}) ≥ 2. If N = 0 then H is a matching (i.e. a disjoint union of

copies of S3’s) so we’re done. If N > 0, then select {u, v} ⊆ V (H) with

d({u, v}) = k ≥ 2. Let {x1, . . . , xk} be the set of vertices of H such that

{u, v, xi} in an edge of H. If k ≥ 3, the vertices {u, v, x1, . . . , xk} induce

an isolated copy of Sk in H since H is 1-avoiding. Similarly, if k = 2,

the vertices {u, v, x1, x2} induce an isolated copy of S4,K
(3)−
4 or K

(3)
4 . In

each case, removing this isolated subgraph of H and applying the induction

hypothesis completes the proof.

We now calculate the generalised Lagrangian of some specific 1-avoiding

3-graphs and show that given w, t > 0, the 1-avoiding 3-graph H that max-

imises the quantity λw,t(H) is a vertex disjoint union of many copies of K
(3)
4 .

In the following we let mK
(3)
4 denote the disjoint union of m copies of K

(3)
4 .

Lemma 2.10. Let w, t > 0, then

λw,t(mK
(3)
4 ) ≤ 4t3

(⌊w
4t

⌋
+
(w

4t
−
⌊w

4t

⌋)3
)

with equality if m > w/4t.

Proof. Let H = mK
(3)
4 . If m ≤ w/4t then λw,t(H) = 4mt3 as we may assign

the maximum value of t to each variable in the polynomial pH(x). Since m

is an integer we in fact have that m ≤ bw/4tc and so the inequality in the

statement of the lemma is clearly satisfied.

Suppose then that m > w/4t. By considering each copy of K
(3)
4 in mK

(3)
4

separately, we may write

λw,t(mK
(3)
4 ) = λw1,t(K

(3)
4 ) + . . .+ λwm,t(K

(3)
4 )

for some wi satisfying
∑

iwi ≤ w and 0 ≤ wi ≤ 4t (the total weight on

each copy of K
(3)
4 is at most 4t). By Corollary 2.8 we have λwi,t(K

(3)
4 ) =

4(wi/4)3 = w3
i /16 and so

λw,t(mK
(3)
4 ) = (w3

1 + w3
2 + . . .+ w3

m)/16.

35



Chapter 2. A Generalised Notion of Hypergraph Lagrangian

Pick i 6= j and let u = wi + wj . Maximising the function f(x, y) = x3 + y3

subject to the constraints x+ y = u and 0 ≤ x, y ≤ 4t we find that one of x

and y is equal to 0 or 4t. It follows that wk = 0 or 4t for all but at most one

value of k ∈ [m]. Letting l = bw/4tc we may assume wlog that wk = 4t for

k = 1, 2, . . . l, wl+1 = w − 4tl and wk = 0 for k = l + 2, . . . ,m. The result

follows.

Lemma 2.11. Suppose k ≥ 3 and w, t > 0 then

λw,t(Sk) ≤

w3/27 if w ≤ 3t

t2(w − 2t) if w > 3t .

Proof. By Corollary 2.8 we have that λw,t(Sk) = (k − 2)x2y for some 0 ≤
x, y ≤ t such that 2x + (k − 2)y ≤ w. It follows that λw,t(Sk) ≤ x2(w −
2x) which, subject to the constraints 0 ≤ x ≤ t, is maximised when x =

min{t, w/3}. The result follows.

Lemma 2.12. Let w, t > 0, m ≥ w/4t and k ≥ 3. Then

λw,t(Sk) ≤ λw,t(mK
(3)
4 ) .

Proof. By Lemmas 2.10 and 2.11 we have the following: If w ≤ 3t then

λw,t(Sk) ≤ w3/27, λw,t(mK
(3)
4 ) = w3/16 and so we’re done. Suppose then

that w > 3t and let µ = w/4t. We then have

λw,t(Sk) ≤ 4t3
(
µ− 1

2

)
≤ 4t3(bµc+ (µ− bµc)3) = λw,t(mK

(3)
4 ) .

The second inequality can be seen by letting x = µ − bµc and noting that

x− 1/2 ≤ x3 for x ≥ 0.

Lemma 2.13. Let w, t > 0 and let H be a 1-avoiding 3-graph. Then

λw,t(H) ≤ 4t3
(⌊w

4t

⌋
+
(w

4t
−
⌊w

4t

⌋)3
)
.

Proof. By Lemma 2.9 we may write H = H1 ∪ . . . ∪ Hs a disjoint union

where each Hi is isomorphic to K
(3)
4 ,K

(3)−
4 or Sk for some k ≥ 1. It follows
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that

λw,t(H) ≤ λw1,t(H1) + . . .+ λws,t(Hs) (2.7)

for some wi ≥ 0 satisfying
∑

iwi ≤ w. Note that K
(3)−
4 ⊆ K

(3)
4 and so

λw,t(K
(3)−
4 ) ≤ λw,t(K

(3)
4 ) for all w, t > 0. Applying this observation and

Lemma 2.12 to (2.7) gives, for mi suitably large,

λw,t(H) ≤ λw1,t(m1K
(3)
4 ) + . . .+ λws,t(msK

(3)
4 ) ≤ λw,t(mK(3)

4 )

where m =
∑

imi. The result now follows from Lemma 2.10.

We are now in a position to address one of the main results of this chapter.

Proof of Theorem 2.1. If r = 3, setting w = t = 1 in Lemma 2.13 tells us

that λ(H) = λ1,1(H) ≤ 1/16 which is the desired bound. Assume therefore

that r ≥ 4. By Theorem 2.5 there exists X ∈
(
V (H)
r−3

)
and s ≤ 1/(r− 3) such

that

r!λ(H) ≤ 6λ1−(r−3)s,s(H(X))

r−4∏
i=1

(1− is) .

As H is an (r − 2)-avoiding r graph, H(X) is a 1-avoiding 3-graph. By

Lemma 2.13

λ1−(r−3)s,s(H(X)) ≤ 4s3(bµc+ (µ− bµc)3)

where µ = (1− (r − 3)s)/4s. Combining the above two inequalities yields

r!λ(H) ≤ 24s3(bµc+ (µ− bµc)3)
r−4∏
i=1

(1− is) =: fr(s).

To complete the proof it suffices to show that fr(s) attains its maximum

value over the interval (0,1] at s = 1/(r+ 1) for r = 4, 5, 6 and 7. The proof

of this is left to the Appendix (Claim A in Section A).

2.4 The Generalised K4

In this section we prove Theorem 2.2 showing how the above results can be

used to compute the Turán density of K(r)
4 for r = 3, 4, 5, 6 and 7. First let us
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recall a result from our introductory discussion of hypergraph Lagrangians

in Chapter 1 (Section 1.2.1). Recall that we say that an r-graph H covers

pairs if every pair of vertices in H is contained in some edge of H. For an

r-graph F , letting C(F ) be the set of all F -hom-free r-graphs that cover

pairs, recall that

π(F ) = sup
H∈C(F )

r!λ(H). (2.8)

Proof of Theorem 2.2. The lower bound π(K(r)
4 ) ≥ r!/(r + 1)(r−1) can be

established by observing that blowups K
(r)
r+1(m) of the complete r-graph on

(r + 1) vertices are K(r)
4 -free. Indeed consider a pair of edges in K

(r)
r+1(m)

intersecting in exactly r− 2 vertices. This pair of edges spans r+ 2 vertices

and so two of those vertices must lie in the same vertex class of K
(r)
r+1(m).

But then this pair of vertices cannot be contained in an edge K
(r)
r+1(m)

whereas K(r)
4 covers pairs.

Suppose now that H is a K(r)
4 -free r-graph that covers pairs. By (2.8) it

suffices to prove that λ(H) ≤ 1/(r + 1)(r−1). Suppose for contradiction

that λ(H) > 1/(r + 1)(r−1) then by Theorem 2.1 we can find e, f ∈ E(H)

such that |e ∩ f | = r − 2. Let e = {x1, . . . , xr} and f = {y1, y2, x3, . . . , xr}
where xi 6= yj for i, j ∈ {1, 2}. H covers pairs so for i, j ∈ {1, 2} we may

find zij1, . . . , zij(r−2) ∈ V (H) such that {xi, yj , zij1, . . . , zij(r−2)} ∈ E(H). It

follows that H contains a homomorphic copy of K(r)
4 , a contradiction.

2.5 (r − 2)-avoiding r-graphs for large r.

In this section we prove Theorem 2.3 determining the order of the maximum

Lagrangian attained by an (r − 2)-avoiding r-graph (as a function of r).

Theorem 2.3 shows that for large r, the complete graphK
(r)
r+1 is exponentially

far from being optimal.

First we need to define the notion of a Sidon set.

Definition 2.14. Let n be a positive integer. We say that A ⊆ Zn is a

Sidon set if all the ordered sums x+ y, where x, y ∈ A are distinct.
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A simple counting argument shows that a Sidon subset A ⊆ Zn can have

cardinality at most
√

2n (indeed we have
(|A|

2

)
+ |A| ordered sums and they

must all be distinct so that
(|A|

2

)
+ |A| ≤ n). A construction of Singer [81]

shows that there exist Sidon subsets of Zn with the same order of magnitude

as this upper bound:

Proposition 2.15. There exist Sidon subsets of Zn of cardinality

(1− o(1))
√
n .

Proof of Theorem 2.3. First we show that the Lagrangian of any (r − 2)-

avoiding r-graph must be O( 1
r4r!

). This follows easily from the proof of

Theorem 2.1: As in that proof, if H is an (r − 2)-avoiding r-graph (r ≥ 4)

then there exists a 0 < s ≤ 1/(r − 3) such that

r!λ(H) ≤ 24s3(bµc+ (µ− bµc)3)
r−4∏
i=1

(1− is) (2.9)

where µ = (1 − (r − 3)s)/4s. Using the inequality bµc + (µ − bµc)3 ≤ µ in

(2.9) yields

r!λ(H) ≤ 6s2
r−3∏
i=1

(1− is) ≤ 6s2 exp

{
−s
(
r − 2

2

)}
(2.10)

where for the last inequality we use that 1−x ≤ e−x for x ∈ R. Considering

the right hand side of (2.10) as a function of s ≥ 0 we see that it is maximised

when s = 2/
(
r−2

2

)
and so

λ(H) ≤ 24

e2r!
(
r−2

2

)2 .
For the lower bound we construct an (r − 2)-avoiding r-graph whose La-

grangian matches the upper bound up to a constant factor. Fix a positive

integer n to be determined later. Let A ⊆ Zn be a Sidon set and for each

k ∈ [n] define the hypergraph Hk = (A,Ek) where

Ek =

{
e ∈

(
A

r

)
:
∑
v∈e

v ≡ k (mod n)

}
.
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Note that since A is a Sidon set Hk is (r − 2)-avoiding for each k. More-

over the sets E1, . . . , En form a partition of
(
A
r

)
and thus by the pigeonhole

principle we must have

|Ej | ≥
(
|A|
r

)/
n

for some j ∈ [n]. Let m := |A| and let H := Hj . Recalling the definition of

the Lagrangian we have

λ(H) ≥ pH
(

1

m
, . . . ,

1

m

)
≥ 1

nmr

(
m

r

)
=

1

nr!

r−1∏
i=1

(
1− i

m

)
. (2.11)

By Proposition 2.15 we may choose m = (1 + o(1))
√
n. Since we have not

yet specified n we may now do so implicitly by setting m = (r−1)2. Making

these substitutions into (2.11) yields

λ(H) ≥ (1 + o(1))
1

r4r!

r−1∏
i=1

(
1− i

(r − 1)2

)

≥ (1 + o(1))
1

r4r!

(
1− 1

(r − 1)

)(r−1)

= (1 + o(1))
1

er4r!

where we have used the fact that (1− 1/r)r → e−1 as r →∞.

We end this chapter with some suggestions of possible avenues for further

research.

It would be interesting to investigate at which point the complete graph

K
(r)
r+1 ceases to maximise the Lagrangian over (r − 2)-avoiding r-graphs.

As mentioned in Section 2.1, K
(r)
r (i.e. a single hyperedge) maximises the

Lagrangian over all (r−1)-avoiding r-graphs for r = 2, 3, 4 after which more

interesting extremal structures begin to appear. Frankl and Füredi [42] show

that for r = 5, 6 the maximum Lagrangian over all (r−1)-avoiding r-graphs

is attained by the Steiner systems S(11, 5, 4) and S(12, 6, 5) respectively.

The construction based on Sidon sets in the proof of Theorem 2.3 is an

example of a partial Steiner (n, r, r − 2) system (i.e. an r-graph H on

n vertices in which every element of
(
V (H)
r−2

)
is contained in at most one

hyperedge). Note that being a partial Steiner (n, r, r−2) system is a stronger
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condition than being (r− 2)-avoiding. Theorem 2.3 suggests that for r > 7,

a Steiner system S(n, r, r−2) would be a good candidate for maximising the

Lagrangian over (r−2)-avoiding r-graphs if n is relatively small compared to

r. However, to the author’s knowledge no such Steiner systems are known

to exist. Of course for r fixed and n large, Steiner (n, r, r − 2) systems

are known to exist due to the breakthrough work of Keevash [59] on the

existence of designs.

A natural generalisation of a Sidon set is the notion of a Bh-set. For an

integer h ≥ 2, a subset A of an abelian group is called a Bh-set if all

unordered sums a1 + . . . + ah, where ai ∈ A are distinct. It is known [11]

that for fixed h, there exist Bh-sets in Zn with size at least (1 + o(1))n1/h.

Mimicking the construction in the proof of Theorem 2.3, but with the Sidon

set replaced with such a Bh-set (for some h < r), yields a a partial Steiner

(n, r, r− h) system whose Lagrangian is Ω( 1
r2hr!

). It would be interesting to

investigate whether this is within a constant of the maximum Lagrangian

attained by an (r − h)-avoiding r graph for fixed h and large r. In [42] it

is shown that this is the case for h = 1 and Theorem 2.3 shows that it also

holds for h = 2.
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Chapter 3. Ramsey Numbers Via Nonlinear Optimisation

This chapter is based on joint work with my supervisor Jozef Skokan.

3.1 Introduction

Recall that for graphs G1, G2, . . . , Gk, the Ramsey number R(G1, . . . , Gk)

is the least integer N such that any colouring of the edges of the complete

graph KN on N vertices with k colours contains a monochromatic copy of

Gi in the i-th colour for some i, 1 ≤ i ≤ k. In the case where G1, . . . , Gk are

all isomorphic to the graph G, we call R(G1, . . . , Gk) the k-colour Ramsey

number of G and denote it by Rk(G).

In Section 1.3, we surveyed some classical results in Ramsey theory focusing

on the Ramsey numbers of complete graphs. Recall that R(t) denotes the

Ramsey number R(Kt,Kt) and recall the bounds 2t/2 ≤ R(t) ≤ 4t. Despite

considerable effort over the past 80 years, the bases in the exponent in both

of these bounds has not been improved.

This inertia has motivated the study of Ramsey numbers of graphs with a

‘simpler’ structure, where the problem may be more tractable. In this spirit,

there has been a large body of research dedicated to the study of Ramsey

numbers of graphs that are sparse in some sense (e.g. they have bounded

maximum degree). The path on n vertices Pn and the cycle on n vertices

Cn are particularly simple examples and were some of the earliest subjects

in the study of Ramsey numbers of sparse graphs. Formally, Pn is the graph

on vertex set [n] and edge set {{i, j} : j − i = 1} and Cn is the graph on

vertex set [n] and edge set {{i, j} : j − i ≡ 1 (mod n)}.

An early success in the Ramsey theory of sparse graphs was a result of

Gerencsér and Gyárfás [47] from 1967 who showed that for all n ≥ m ≥ 2

R(Pn, Pm) = n+
⌊m

2

⌋
− 1 .

We highlight the fact that here the Ramsey number is determined exactly

in stark contrast to the results of Section 1.3. The behaviour of the Ramsey

number R(Cn, Cm) has been studied by several authors, including Bondy

and Erdős [10], Faudree and Schelp [34], and Rosta [75], and is now fully
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determined. For example it is known that

R(Cn, Cn) =

2n− 1, if n ≥ 5 is odd,

3n
2 − 1, if n ≥ 6 is even.

(3.1)

Results such as these that exactly determine R(G1, G2) for a pair of graphs

G1, G2 are by now fairly plentiful. See Radziszowski [58] for an excellent

survey of such results. However, in the case where more than two colours

are involved such results are still rather rare. Again, cycles and paths serve

as natural starting points. Gyárfás, Ruszinkó, Sárközy and Szemerédi [50]

showed that for n sufficiently large

R(Pn, Pn, Pn) =

2n− 1, if n is odd,

2n− 2, if n is even.
(3.2)

Benevides and Skokan [5] and Kohayakawa, Simonovits and Skokan [61]

showed that for n sufficiently large

R(Cn, Cn, Cn) =

4n− 3, if n is odd,

2n, if n is even.
(3.3)

Both (3.2) and (3.3) were established by the regularity method pioneered by

 Luczak which we will return to shortly. The only non-trivial class of graphs

for which the k-colour Ramsey number is exactly determined for arbitrary k

is that of matchings. Letting mP2 denote a matching of m edges, Cockayne

and Lorimer [18] showed that for m1 ≥ . . . ≥ m` we have

R(m1P2, . . . ,m`P2) = m1 + 1 +
∑̀
i=1

mi.

In this chapter we address the following conjecture attributed to Bondy and

Erdős [10].

Conjecture 3.1. If k ≥ 2 and n > 3 is odd then

Rk(Cn) = 2k−1(n− 1) + 1.
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Note that the conjecture deals specifically with the case where n is odd. Odd

and even cycles behave rather differently in this context due to the fact that

an even cycle is bipartite whereas an odd cycle is not (note the dichotomy

in (3.1) and (3.3)). Erdős and Graham [33] proved the bounds

2k−1(n− 1) + 1 ≤ Rk(Cn) ≤ (k + 2)!n, (3.4)

for all k ≥ 2 and all odd n > 3. In this chapter we show that for fixed k and

n large, the lower bound is correct.

Theorem 3.2. For any fixed k ≥ 2 and odd n sufficiently large,

Rk(Cn) = 2k−1(n− 1) + 1.

We therefore resolve Conjecture 3.1 for large n. We will in fact prove a

stability-type strengthening of this result (see Theorem 3.4 below). Recently

Day and Johnson [26] showed that in the opposite regime, where we fix an

odd n and let k be sufficiently large, one in fact has Rk(Cn) > (n− 1)(2 +

ε)k−1 for some ε = ε(n) > 0, and so Conjecture 3.1 is false when n is small

with respect to k. The qualification that n is sufficiently large in Theorem 3.2

is therefore necessary, however due to the use of compactness arguments in

the proof, we obtain no effective bound on how large n must be with respect

to k.

In view of Theorem 3.2, let us call a k-colouring of the complete graph on

2k−1(n−1) vertices which does not contain a monochromatic copy of Cn an

extremal k-colouring. The lower bound in (3.4) was established by observing

that one can naturally construct extremal k-colourings by induction. Indeed

if there exists a k-colouring of the edges of the complete graph Km with no

monochromatic Cn, then by joining two such copies of Km by edges of colour

k + 1, one obtains a (k + 1)-colouring of K2m with no monochromatic Cn

(here we use that Cn is non-bipartite). The base construction, for k =

1, is simply a monochromatic clique of size n − 1. It was believed that

all extremal k-colourings come from such a doubling argument. We show

that this is not the case, providing a classification of extremal k-colourings

which exposes a surprising correspondence between extremal k-colourings

and perfect matchings in the k-dimensional hypercube Qk.
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The first breakthrough towards Conjecture 3.4 was made by  Luczak [65] who

used the regularity method to show that the k = 3 case holds asymptotically

i.e. that for n odd,

R(Cn, Cn, Cn) = 4n+ o(n) as n→∞.

 Luczak’s method of applying regularity in this setting has proven extremely

fruitful (see e.g. [38, 50, 61, 65, 66]) and has since become a standard tool.

We will come to describe the method in more detail as we make crucial use

of it in this chapter.

Building on  Luczak’s ideas, Kohayakawa, Simonovits and Skokan [61] paired

the regularity method with stability arguments to resolve Conjecture 3.1 for

k = 3 and n large. The case where k ≥ 4 remained open. Progress was

made by  Luczak, Simonovits and Skokan [66] who showed that for k ≥ 4

and odd n,

Rk(Cn) ≤ k2kn+ o(n) as n→∞.

To conclude this section we give a broad overview of the proof method of

Theorem 3.2. Let Gn denote the (finite) set of all k-coloured cliques with

no monochromatic copy of Cn. Determining Rk(Cn) is then equivalent to

determining the maximum number of vertices an element of Gn can have.

Using the regularity method, we relate this problem to finding the maximum

`1-norm of an element in a certain compact subset S of R3k . This allows us

to import analytic tools in support of our proof. The relation is such that

maximal elements of S correspond to maximal elements of Gn i.e. extremal

k-colourings for Theorem 3.2. Moreover by classifying the extremal points

of S we can classify the extremal k-colourings and prove a stability type

strengthening of Theorem 3.2, generalising the main result from [61]. We

show that each perfect matching of the hypercube Qk gives rise to a class of

extremal k-colourings. On the other hand, any extremal k-colouring must

be ‘close’ to one such construction. We defer precise statements to Section

3.2. The number of essentially different classes of extremal k-colourings is

equal to the number of equivalence classes of perfect matchings in Qk with

respect to its automorphism group and this number is doubly exponential

in k. Such a plethora of extremal constructions is usually forbidding when
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trying to establish stability type results, we believe that the fact we can

overcome this obstacle is largely down to our analytic perspective.

Before continuing, let us collect some notation and terminology that we use

throughout this chapter.

Let W = w0w1 . . . w` be a walk in G (that is a sequence of vertices w0, . . . , w`

such that wiwi+1 is an edge of G for all i < `). If all of the wi are distinct

then we call W a path of length ` (so that Pn is a path of length n− 1). We

may also refer to W as a w0w`-path to distinguish its endpoints. If all the

wi are distinct except w0 = w` then we call W a cycle of length `. We will

also concatenate walks in the natural way. For example if U = u0 . . . um is a

walk in G such that um = w0, we let UW denote the walk u0 . . . umw1 . . . w`.

If x is a vertex such that w`x is an edge of G then we let Wx denote the

walk w0 . . . w`x.

A k-coloured graph is a graph G = (V,E) equipped with some function

ϕ : E → [k]. Furthermore, for i ∈ [k], we let Gi denote the subgraph

(V, ϕ−1{i}) of G. We call Gi the ith colour class of G.

A digraph D = (V,A) consists of a set of vertices V and a set A ⊆ V 2 i.e. a

set of ordered pairs from V which we call directed edges. For v ∈ V we let

d+(v) denote the size of the set {u : (v, u) ∈ A} and call d+(v) the outdegree

of v. Similarly we define the indegree of v as d−(v) = |{u : (u, v) ∈ A}|.

For x ∈ Rd we let ‖x‖ denote the `1-norm of x i.e. ‖x‖ =
∑d

i=1|xi|. Fur-

thermore, given ε > 0, we let Bε(x) := {z ∈ Rd : ‖z−x‖ < ε}, the open ball

of radius ε centred at x. We let supp(x) denote the support of x i.e. the set

{i ∈ [d] : xi 6= 0}.

In the statements of theorems and lemmas it will be useful to use the no-

tation α � β to mean that there is an increasing function α(x) so that

the statement is valid for 0 < α < α(β). When we need to refer to this

function at a later stage, we include the number of the lemma (or theorem)

the function appears in as a subscript. For example, δ3.46(x) denotes the

implied function δ(x) from Lemma 3.46.

47



Chapter 3. Ramsey Numbers Via Nonlinear Optimisation

3.2 A Graph Decomposition, Extremal Colourings

and Stability

In this section we describe the extremal colourings and give precise state-

ments of the stability results discussed in Section 3.1. We also introduce

some key concepts and results that will be used throughout the chapter and

give a more detailed overview of our proof methods. We begin by introducing

a way of decomposing an arbitrary k-coloured graph. This decomposition

will play a central role for us and is similar to a decomposition introduced

in [66].

3.2.1 A Graph Decomposition

Let G be a k-coloured graph. For each i ∈ [k], we write Gi = G′i∪G′′i , where

G′i is the union of the bipartite components of Gi and G′′i is the union of the

non-bipartite components of Gi. For each i ∈ [k], write V (G′i) = V i
0 ∪ V i

1

where V i
0 and V i

1 are the vertex classes of a bipartition of G′i and set V i
∗ =

V (G′′i ). For τ ∈ {0, 1, ∗}k, let Vτ =
⋂k
j=1 V

j
τj and note that

V (G) =
⋃

τ∈{0,1,∗}k
Vτ , a disjoint union.

We call (Vτ : τ ∈ {0, 1, ∗}k) a profile partition of G and we call the corre-

sponding vector (|Vτ | : τ ∈ {0, 1, ∗}k) a profile of G. We will often denote a

profile of G by x(G). Note that G may admit multiple profile partitions since

we made an arbitrary choice in choosing the bipartition V (G′i) = V i
0 ∪ V i

1

for each i ∈ [k].

3.2.2 Extremal Colourings and the Hypercube

For k ∈ N, we let Qk denote the k-dimensional hypercube i.e. the graph

on vertex set {0, 1}k and edge set consisting of pairs differing in exactly

one coordinate. It will be useful to think of an element τ ∈ {0, 1, ∗}k as a

subcube of the k-dimensional hypercube Qk via the correspondence

τ ↔ Q(τ) := {c ∈ {0, 1}k : cj = τj if τj ∈ {0, 1}}.
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In other words we think of a coordinate j where τj = ∗ as a ‘missing bit’ and

let Q(τ) be the set of all possible ways of filling in these bits. For example,

if k = 3 and τ = (0, ∗, ∗) then

Q(τ) = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)}.

We define the weight of τ to be the size of the set {i ∈ [k] : τi = ∗} (i.e. the

number of missing bits) and denote it by ω(τ). Note that |Q(τ)| = 2ω(τ). In

the language of the hypercube, ω(τ) is the dimension of the subcube Q(τ).

In particular if ω(τ) = 1, then we think of Q(τ) as an edge of Qk.

We can now describe a class of extremal k-colourings in terms of perfect

matchings in Qk. Let M be a perfect matching of Qk. We express each

edge of M as an element (of weight 1) of {0, 1, ∗}k. Let G = KN where

N = 2k−1(n − 1) and let V (G) =
⋃
τ∈M Vτ be a partition of V (G) where

|Vτ | = n − 1 for all τ ∈ M. For each τ ∈ M, colour all edges in G[Vτ ]

with the colour i, where i is the coordinate for which τi = ∗. For τ, σ ∈
M, arbitrarily colour the edges between Vτ and Vσ with any colour j for

which {σj , τj} = {0, 1} (i.e. edges τ, σ lie in opposite subcubes of Qk of

codimension 1 separated by the jth coordinate). It follows that each colour

class of such a colouring is the disjoint union of cliques of size n − 1 and a

bipartite graph and therefore contains no monochromatic copy of Cn. We

call such a colouring a hypercube colouring with clique size n−1. See Figure

3.1 for an illustrated example.

If we inductively construct a perfect matching on Qk by taking two perfect

matchings on a disjoint pair of subcubes of codimension 1 and consider

the associated hypercube colouring, we recover the inductive colourings of

Erdős and Graham [33] described in Section 3.1. However, for k ≥ 4, not

all perfect matchings of Qk decompose as the union of two matchings on

a pair of codimension 1 subcubes, and so we obtain some genuinely new

colourings (an example of which is depicted in Figure 3.1). In particular, a

novel feature that appears for k ≥ 4 colours is that there exist extremal k-

colourings that contain monochromatic cliques of size n− 1 in all k possible

colours.
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(∗, 1, 1, 1)(∗, 0, 0, 0)

(0, ∗, 1, 0)

(1, ∗, 1, 0)

(1, 1, 0, ∗) (0, 1, 0, ∗)

(0, 0, ∗, 1)

(1, 0, ∗, 1)

Figure 3.1 An extremal colouring for Theorem 3.2 in the case k = 4. Each

node represents a clique of size n− 1 and is labelled by an edge of Q4 where a ‘∗’
corresponds to the coordinate which changes across the edge. Each coordinate is

associated with a colour and the position of the ‘∗’ determines the colour of each

clique. Edges between cliques labelled τ, σ are coloured arbitrarily with colours j

for which {τj , σj} = {0, 1}.

3.2.3 Stability

In this subsection we state a theorem to the effect that the hypercube colour-

ings considered in the previous subsection are the only extremal k-colourings

for our problem. Moreover we assert that almost extremal colourings are in

some sense ‘close’ to a hypercube colouring. Let us make this more precise.

Definition 3.3. Let G and H be k-coloured graphs with V (H) ⊆ V (G).

Let ε > 0, then we say that G is ε-close to H if |Gi4Hi| ≤ εv(G)2 for all

i ∈ [k].

Informally we may say that G and H as above are close in edit distance. We

may now state the main result of this chapter.

Theorem 3.4. Let k ≥ 2, let 1
n � η � ε � 1, where n is odd, and let

N > (2k−1 − η)n. Then if G = KN is k-coloured with no monochromatic

copy of Cn, then N ≤ 2k−1(n− 1) and there exists a hypercube colouring H

such that G is ε-close to H.

Note that Theorem 3.2 follows as an immediate corollary. The k = 3

case of Theorem 3.4 was proved in [61] where the two classes of colour-
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ings the authors consider can be viewed as the colourings that arise from

the two isomorphism classes of perfect matchings in Q3. An interesting

feature of Theorem 3.4 is that it deals with a wide variety of extremal

colourings. Indeed if M1 and M2 are perfect matchings of Qk that lie in

distinct equivalence classes under the action of the automorphism group

of Qk, then there are hypercube colourings associated to M1 that are

not isomorphic to any hypercube colouring associated to M2. It is also

interesting to note that even though we can prove a stability statement

around hypercube colourings, the structure of these colourings is not well

understood. This is simply due to the fact that the structure of perfect

matchings in the hypercube is not well understood. Indeed, even enumer-

ating the perfect matchings (or their equivalence classes) in Qk is a well-

studied and difficult problem. Let f(k) be the number of equivalence classes

of perfect matchings in Qk. It is clear that f(3) = 2 and so we ob-

tain two essentially different extremal 3-colourings as in [61]. Graham and

Harary [48] showed that f(4) = 8 and recently Österg̊ard and Pettersson [69]

determined (with a large amount of computer time) f(5), f(6) and f(7).

The function f(k) grows rather rapidly; it is amusing to note that already

f(7) = 607158046495120886820621 and so we have this many essentially dif-

ferent classes of extremal 7-colourings. It was shown in [17] that the number

of perfect matchings in Qk is [(1 +o(1))k/e]2
k−1

(although this result in fact

follows from a theorem in [64, p.312]). Since the automorphism group of Qk

has size k!2k it follows that f(k) = [(1 + o(1))k/e]2
k−1

also.

3.2.4 Proof of Theorem 3.4: An Overview

 Luczak’s application of the regularity method, discussed briefly in the intro-

duction of this chapter, plays a central role in our proof. We include an in-

formal discussion of the method here, deferring details until later. Those

unfamiliar with the regularity method may skip this subsection and wait for

the formal discussion in Section 3.7. We start with a definition.

Definition 3.5. Let F be a connected graph whose largest matching sat-

urates m vertices, then we call F a connected matching of order m. We

distinguish a particular matching of largest size MF in F and refer to an
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edge of MF as a matching edge of F . If in addition F is non-bipartite, we

call F an odd connected matching of order m.

The idea behind  Luczak’s application of the regularity method is as fol-

lows. Suppose that G is a k-coloured complete graph on N vertices. Let

G1, . . . , Gk be its colour classes. We apply the multicolour version of the

Regularity Lemma [83] and obtain a regular partition of the vertex set V (G)

into t + 1 classes V (G) = V0 ∪ . . . ∪ Vt. We construct an auxiliary graph

R with vertex set 1, ..., t and the edge set formed by pairs {i, j} for which

(Vi, Vj) is regular with respect to G1, . . . , Gk. We colour each edge {i, j} in

R by the majority colour in the pair (Vi, Vj). The crucial point is that if R

contains a monochromatic odd connected matching of order greater than m,

then G contains a monochromatic cycle C` where ` can take essentially any

odd value smaller than mN/t. It follows that if G contains no monochro-

matic copy of Cn, then R cannot contain a monochromatic odd connected

matching of order larger than nt/N . The advantage of this perspective is

that forbidding a large connected matching is far more restrictive than for-

bidding a cycle of a given length. Indeed a cycle is itself an example of

a connected matching, and so if a graph contains no connected matching

of order greater than m then it contains no cycle of length greater than m.

The following theorem of Erdős and Gallai [32] shows that this is a very

strict condition.

Theorem 3.6. Let m ≥ 3. If G is a graph which contains no cycle of length

greater than m, then e(G) ≤ m(v(G)− 1)/2.

The price one pays is that R is not a complete graph, however it can be

chosen to be as dense as one likes. We are now able to state a theorem that

is a major stepping stone toward the proof of Theorem 3.4. (Recall that ‖ ·‖
denotes the `1-norm).

Theorem 3.7. Let k ≥ 2 and let 1
n � δ � ε� 1, where n is odd. If G is a

k-coloured graph with v(G) = 2k−1n and e(G) ≥ (1− δ)
(
v(G)

2

)
containing no

monochromatic odd connected matching of order ≥ (1 + δ)n, then for any

choice of profile x(G) of G, there exists a hypercube colouring H with profile
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x(H) satisfying

‖x(G)− x(H)‖ ≤ εn.

The proof of Theorem 3.7 occupies the majority of this chapter. In the

final section we show how Theorem 3.4 follows from Theorem 3.7 via com-

binatorial stability arguments and the regularity method. The outline of

the proof of Theorem 3.7 is as follows. Let G be as in the statement of

Theorem 3.7 and let x(G) denote a profile of G. Our starting point is to

translate the combinatorial constraint of containing no large monochromatic

odd connected matching into an analytic constraint on x(G) of the form

F (x(G)) ≤ 0, (3.5)

where F is a quadratic form which we derive in the next section. We then

view (3.5) as a constraint in an optimisation problem where we wish to

maximise the objective function ‖x(G)‖. Recalling that ‖x(G)‖ = v(G),

we get a corresponding upper bound on the order of G. It turns out that

optimal solutions to this optimisation problem correspond to the profiles

of hypercube colourings. Solving the optimisation problem is the subject of

Sections 3.4 and 3.5. In Section 3.6 we use compactness arguments to show

that almost optimal solutions must be close in `1-norm to the profile of a

hypercube colouring. We then translate this analytic stability into the more

combinatorial stability statement of Theorem 3.7. Note that Theorem 3.7

will be applied to a reduced graph like the one described above. The focus

of the final section is to show that if the profile of this reduced graph is close

in `1-norm to the profile of a hypercube colouring, then the original graph

is close in edit distance to a hypercube colouring.

3.3 Deriving the Analytic Constraints

Given a k-coloured graph G, we will show how to translate the combinatorial

constraint of containing no large monochromatic odd connected matching

into an analytic constraint on the profile of G.

From here on, throughout the chapter, we let k ≥ 2 be a fixed integer. Let G

be a k-coloured graph. First we distinguish between two types of edges of G.

53



Chapter 3. Ramsey Numbers Via Nonlinear Optimisation

If e ∈ E(G) is coloured with the colour j and lies in a bipartite component

of Gj then we call e a bipartite edge. We call e non-bipartite otherwise.

Let (Vτ : τ ∈ {0, 1, ∗}k) be a profile partition of G. We make two simple

observations regarding the profile partition of a k-coloured graph.

Observation 3.8. If e ∈ E(G) is a bipartite edge of colour j then it must

have endpoints in parts Vτ , Vσ for some τ, σ ∈ {0, 1, ∗}k such that τj = 0

and σj = 1.

Observation 3.9. If e ∈ E(G) is a non-bipartite edge of colour j then

it must have endpoints in parts Vτ , Vσ for some (not necessarily distinct)

τ, σ ∈ {0, 1, ∗}k such that τj = σj = ∗.

This motivates the following definitions.

Definition 3.10. We say that σ, τ ∈ {0, 1, ∗}k are distinguishable if {σj , τj} =

{0, 1} for some j ∈ [k]. We say that σ and τ are indistinguishable otherwise.

Definition 3.11. If σ, τ ∈ {0, 1, ∗}k are such that either (i) σ, τ are distin-

guishable or (ii) σj = τj = ∗ for some j ∈ [k], then we say that σ and τ are

compatible. We say that σ, τ are incompatible otherwise.

Viewing elements of {0, 1, ∗}k as subcubes of Qk, we may reinterpret these

definitions as follows.

Lemma 3.12. Let σ, τ ∈ {0, 1, ∗}k. Then σ, τ are distinguishable if and

only if Q(τ) ∩ Q(σ) = ∅. Furthermore, σ, τ are incompatible if and only if

|Q(τ) ∩Q(σ)| = 1.

Proof. By the definition of the sets Q(τ), Q(σ) we have

Q(τ)∩Q(σ) = {c ∈ {0, 1}k : cj = τj if τj ∈ {0, 1} and cj = σj if σj ∈ {0, 1}}.

This is empty if and only if there exists a j ∈ [k] such that σj , τj ∈ {0, 1} and

σj 6= τj i.e. if and only if σ, τ are distinguishable. Let T = {i ∈ [k] : σi =

τi = ∗}. If σ, τ are indistinguishable then we see that |Q(τ) ∩Q(σ)| = 2|T |.

Therefore, |Q(τ) ∩ Q(σ)| = 1 if and only if σ, τ are indistinguishable and

T = ∅ i.e. σ, τ are incompatible.
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From now on, we let

∆ =

{
{σ, τ} ∈

(
{0, 1, ∗}k

2

)
: σ, τ are distinguishable

}
.

It will also be convenient to make the following definition.

Definition 3.13. Let α > 0 and let G be a graph such that e(G) ≥ α
(
v(G)

2

)
.

Then we say that G is α-dense.

This next proposition provides the link between our combinatorial prob-

lem and a problem in nonlinear optimisation. (Recall the definition of a

connected matching, Definition 3.5).

Proposition 3.14. Let C > 1, 0 < δ < 1 and let n > 1/δ. Suppose

that G is a (1 − δ)-dense, k-coloured graph with v(G) = Cn, containing no

monochromatic odd connected matching of order ≥ (1 + δ)n. Let x be a

profile of G and let v = x/n. Then the following hold:

1.  ∑
τ∈{0,1,∗}k

vτ

2

− 2
∑

{σ,τ}∈∆

vσvτ −
∑

τ∈{0,1,∗}k
ω(τ)vτ ≤ δkC2.

2. vτ ≤ 1 + 2
√
δC whenever ω(τ) = 1.

3. vτvσ ≤ 2δC2 whenever σ and τ are incompatible.

Proof. Let us first remind ourselves of the graph decomposition discussed

in Subsection 3.2.1. For each i ∈ [k], we write Gi = G′i ∪ G′′i , where G′i is

the union of the bipartite components of Gi and G′′i is the union of the non-

bipartite components of Gi. For each i ∈ [k], write V (G′i) = V i
0 ∪ V i

1 where

V i
0 and V i

1 are the vertex classes of a bipartition of G′i and set V i
∗ = V (G′′i ).

For τ ∈ {0, 1, ∗}k, set Vτ =
⋂k
j=1 V

j
τj . Let x = (|Vτ | : τ ∈ {0, 1, ∗}k) be the

profile corresponding to this partition. Let N = v(G) and note that

N =
∑

τ∈{0,1,∗}k
xτ . (3.6)
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It follows from Observation 3.8 that the number of bipartite edges in G is at

most
∑
{σ,τ}∈∆ xσxτ . Letting e0 denote the number of non-bipartite edges

in G we therefore have that

e0 ≥ e(G)−
∑

{σ,τ}∈∆

xσxτ . (3.7)

Since N ≥ 1/δ, we have

e(G) ≥ (1− δ)
(
N

2

)
≥ (1− 2δ)

N2

2
. (3.8)

Combining (3.6), (3.7) and (3.8) gives

e0 ≥
1

2

 ∑
τ∈{0,1,∗}k

xτ

2

−
∑

{σ,τ}∈∆

xσxτ − δN2. (3.9)

We now find a corresponding upper bound for e0. Recall that for τ ∈
{0, 1, ∗}k, the weight ω(τ) of τ is defined to be the size of the set {i ∈ [k] :

τi = ∗}.

By assumption, for each i ∈ [k], every connected component of G′′i has no

matching on (1 + δ)n vertices and so in particular G′′i has no cycle of length

greater than (1 + δ)n. The Erdős-Gallai Theorem, Theorem 3.6, therefore

implies that

e(G′′i ) ≤ (1 + δ)
n

2
|V i
∗ |. (3.10)

Observe that

|V i
∗ | =

∑
{τ∈{0,1,∗}k:τi=∗}

xτ . (3.11)

Since each non-bipartite edge of G belongs to E(G′′i ) for some i, (3.10) and

(3.11) provide the upper bound

e0 ≤
k∑
i=1

e(G′′i ) ≤ (1 + δ)
n

2

k∑
i=1

|V i
∗ | = (1 + δ)

n

2

∑
τ∈{0,1,∗}k

ω(τ)xτ . (3.12)

Since ω(τ) ≤ k for all τ ∈ {0, 1, ∗}k by definition, (3.6) and (3.12) imply the

bound

e0 ≤
1

2
δnkN +

n

2

∑
τ∈{0,1,∗}k

ω(τ)xτ . (3.13)
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Recall that v = x/n. Comparing the bounds (3.9) and (3.13) and scaling

the resulting inequality by 2/n2 yields

 ∑
τ∈{0,1,∗}k

vτ

2

− 2
∑

{σ,τ}∈∆

vσvτ − 2δC2 ≤
∑

τ∈{0,1,∗}k
ω(τ)vτ + δkC.

This establishes (1). Notice that if τ ∈ {0, 1, ∗}k is such that ω(τ) = 1,

then G[Vτ ] is monochromatic with all edges non-bipartite by Observations

3.8 and 3.9. G[Vτ ] therefore contains no cycle of length greater than (1+δ)n

and so by Theorem 3.6 and the fact that G has at most δ
(
N
2

)
edges missing(

xτ
2

)
− δ
(
N

2

)
≤ e(G[Vτ ]) ≤ (1 + δ)

n

2
xτ .

It follows that

v2
τ ≤ (1 + 2δ)vτ + δC2,

from which (2) follows. Finally, let us note that by Observations 3.8 and

3.9, if σ, τ are incompatible, then there can be no edges lying between Vσ

and Vτ . Since G has at most δ
(
N
2

)
edges missing we must then have

xτxσ ≤ 2δN2

(note that this inequality also accounts for the case where σ = τ) and so (3)

follows.

Given a graph G its profile lies in the space R{0,1,∗}k which we will denote

by R∗. In view of Proposition 3.14 we define the function F : R∗ → R by

F (x) =

 ∑
τ∈{0,1,∗}k

xτ

2

− 2
∑

{σ,τ}∈∆

xσxτ −
∑

τ∈{0,1,∗}k
ω(τ)xτ .

Let us also define the following subsets of R∗.

X(γ): For γ ≥ 0, let X(γ) denote the set of elements x ∈ R∗ satisfying:

(X1) F (x) ≤ γ
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(X2) xτ ≤ 1 + γ whenever w(τ) = 1.

(X3) xτxσ ≤ γ whenever σ and τ are incompatible.

(X4) xτ ≥ 0 for all τ .

Now let G be as in the statement of Theorem 3.7 and let x be a profile of

G. By the above proposition we have x/n ∈ X(
√
δk22k) whereas we also

have ‖x‖ = 2k−1n. We will show that for δ small, this means that x/n is

an element of almost maximal norm in X(
√
δk22k). We will also show that

elements of large norm in X(
√
δk22k) have a very specific structure (in fact

they resemble the profile of a hypercube colouring) and so this imposes a

lot of structure on x. For now we focus our attention on the set X(0) which

we denote simply by X. Later on, we use compactness arguments to relate

properties of X and X(γ) for γ small.

Our next goal is to classify elements of maximal `1-norm in X. To describe

these elements we need a definition.

Definition 3.15. Call a set A ⊆ {0, 1, ∗}k distinguishable if every pair of

distinct elements of A are distinguishable and also ω(τ) ≥ 1 for all τ ∈ A.

The requirement that elements have weight at least 1 is for notational con-

venience later in the chapter. Viewing elements of {0, 1, ∗}k as subcubes of

Qk, a distinguishable set is simply a collection of disjoint subcubes of Qk

(of dimension at least 1). If this collection covers the whole cube we give it

a special name.

Definition 3.16. Call a distinguishable set A ⊆ {0, 1, ∗}k a decomposition

if
⋃
τ∈AQ(τ) = {0, 1}k.

Let us quickly record a simple result concerning distinguishable sets which

will become useful later.

Lemma 3.17. Let D ⊂ {0, 1, ∗}k be a distinguishable set. Then∑
τ∈D

2ω(τ) ≤ 2k,

with equality if and only if D is a decomposition.
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Proof. This is simply the observation that a distinguishable set D is a col-

lection of disjoint subcubes of Qk and so the sum of their sizes
∑

τ∈D 2ω(τ)

is bounded by the size of Qk. Moreover we have equality if and only if these

subcubes cover all of Qk i.e. D is a decomposition.

We define the following subset of R∗.

O: Let O denote the set of elements x ∈ R∗ satisfying:

(O1) supp(x) is a decomposition where ω(τ) = 1 or 2 for all τ ∈ supp(x).

(O2) For all τ ∈ supp(x), if ω(τ) = 1 then xτ = 1 and if ω(τ) = 2 then

xτ = 2.

It is easy to check that O ⊆ X. The next proposition asserts that O is the

set of elements of maximal `1-norm in X.

Proposition 3.18. If x ∈ X, then ‖x‖ ≤ 2k−1 with equality if and only if

x ∈ O.

We note that the ‘if’ statement in the above proposition is immediate. In-

deed if x ∈ O then supp(x) is a decomposition so that
∑

τ∈supp(x) 2ω(τ) = 2k

by Lemma 3.17. Moreover 2ω(τ) = 2xτ for all τ ∈ supp(x) by (O2).

Definition 3.19. If x ∈ X is such that ‖x‖ = supz∈X‖z‖ then we say that

x is an optimal point of X.

We note that since X is compact, optimal points of X exist. The proof of

Proposition 3.18 is split over the next two sections.

3.4 Compressions and a Spherical Constraint

In this section we make the first steps towards a proof of Proposition 3.18.

Broadly speaking we apply the combinatorial technique of ‘shifting’ or ‘com-

pression’ to transform the complicated nonlinear constraint in the definition

of X = X(0) into a spherical constraint which is much more amenable to

analysis. In Section 3.5 we apply optimisation tools to this transformed

problem. We begin with a simple lemma concerning elements of {0, 1, ∗}k.
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Lemma 3.20. If σ, τ ⊆ {0, 1, ∗}k are indistinguishable and compatible and

ω(τ) = 1, then Q(τ) ⊆ Q(σ). In particular if ω(σ) = 1 also, then σ = τ .

Proof. Since σ, τ are indistinguishable and compatible we have |Q(τ) ∩
Q(σ)| ≥ 2 by Lemma 3.12. However, |Q(τ)| = 2 and so it follows that

Q(τ) ⊆ Q(σ). If ω(σ) = 1 also, then clearly Q(σ) = Q(τ) i.e. σ = τ .

Definition 3.21. Let x ∈ R∗. If all pairs of (not necessarily distinct) ele-

ments of supp(x) are compatible, then we say that x has compatible support.

Let us note that condition (X3) (with γ = 0) in the definition of the set

X is simply the condition that elements of X have compatible support. In

particular, if x ∈ X and τ ∈ {0, 1, ∗}k has weight 0, then xτ = 0 since τ is

not compatible with itself.

The following lemma establishes an important property of optimal points.

For τ ∈ {0, 1, ∗}k we let eτ ∈ R∗ denote the standard unit vector whose

entries are all 0 except the entry labelled τ which is 1.

Lemma 3.22. Let x ∈ X be an optimal point then F (x) = 0.

Proof. Suppose for contradiction that F (x) < 0. Assume first that there

exists τ ∈ supp(x) with ω(τ) ≥ 2. By the continuity of F we may choose

α > 0 small enough so that F (x + αeτ ) < 0. Let x′ = x + αeτ . Since

supp(x′) = supp(x) it is clear that x′ ∈ X. However, ‖x′‖ = ‖x‖+ α > ‖x‖
contradicting the fact that x is optimal.

We may assume then that supp(x) consists only of elements of weight 1 and

therefore is a distinguishable set by Lemma 3.20 and the fact that x has

compatible support. It follows from the definition of F that

F (x) =
∑

τ∈supp(x)

(x2
τ − xτ ) < 0,

and so xτ < 1 for some τ ∈ supp(x). As before there exists some α > 0

sufficiently small so that F (x + αeτ ) < 0. Let x′ = x + αeτ . If we pick α

small enough so that x′τ = xτ +α ≤ 1 also, then again we have x′ ∈ X with

‖x′‖ > ‖x‖ contradicting the optimality of x.
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We now describe the transformations alluded to at the beginning of this

section. They will be of great use in simplifying our analysis of optimal

points of X.

Definition 3.23. Let x ∈ R∗ and let π, ρ ∈ {0, 1, ∗}k be distinct. We define

the (π, ρ)-compression of x, denoted x(π, ρ), as follows:

• If ω(ρ) ≥ 2, or if ω(ρ) ≤ 1 and xπ + xρ < 1, then let x(π, ρ) be the

vector x′ with coordinates: x′π = 0, x′ρ = xπ + xρ and x′τ = xτ for all

τ ∈ {0, 1, ∗}k\{π, ρ}.

• If ω(ρ) ≤ 1 and xπ + xρ ≥ 1 then let x(π, ρ) be the vector x′ with

coordinates: x′π = xπ + xρ − 1, x′ρ = 1 and x′τ = xτ for all τ ∈
{0, 1, ∗}k\{π, ρ}.

If x(π, ρ) = x then we say that x is (π, ρ)-compressed.

Let x ∈ X be an optimal point, we will be interested in instances where

x(π, ρ) is also an optimal point of X. We observe that if x ∈ R∗ and

π, ρ ∈ {0, 1, ∗}k are distinct then ‖x(π, ρ)‖ = ‖x‖. However, if x ∈ X then

it does not follow in general that x(π, ρ) ∈ X.

For reasons that will become clear, we only consider (π, ρ)-compressions in

the case where π and ρ are indistinguishable. It will therefore be useful

to associate to each point x ∈ X, the digraph D(x) = (V (x), E(x)) where

V (x) = supp(x) and

E(x) = {(π, ρ) : π, ρ are distinct, indistinguishable and x(π, ρ) ∈ X} .

In particular if x ∈ X is (π, ρ)-compressed, where π and ρ are distinct and

indistinguishable, then (π, ρ) ∈ E(x). We draw attention to the fact that

edges of D(x) only occur between indistinguishable pairs. Conversely, the

following lemma shows that, when x ∈ X is optimal, at least one edge occurs

between any indistinguishable pair in D(x).

Lemma 3.24. Let x ∈ X be optimal and suppose that π, ρ ∈ V (x), are

indistinguishable and distinct. Then one of the following holds:

(i) x is (π, ρ)-compressed, xρ = 1, ω(ρ) = 1, ω(π) ≥ 2 and (ρ, π) /∈ E(x),
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(ii) x is (ρ, π)-compressed, xπ = 1, ω(π) = 1, ω(ρ) ≥ 2 and (π, ρ) /∈ E(x),

(iii) (ρ, π) and (π, ρ) both lie in E(x).

Proof. Recall that

F (x) =

 ∑
τ∈{0,1,∗}k

xτ

2

− 2
∑

{σ,τ}∈∆

xσxτ −
∑

τ∈{0,1,∗}k
ω(τ)xτ ,

where ∆ is the set of unordered distinguishable pairs from {0, 1, ∗}k. Since

π, ρ are indistinguishable, the sum
∑
{σ,τ}∈∆ xσxτ does not contain the term

xρxπ. We may therefore express F (x) in the form

F (x) =

 ∑
τ∈{0,1,∗}k

xτ

2

−Axρ −Bxπ − C, (3.14)

where A,B and C do not depend on xρ or xπ and A,B ≥ 0. Suppose that

A ≥ B and let x′ = x(π, ρ). Let us show that (π, ρ) ∈ E(x) i.e. x′ ∈ X.

By (3.14) we have F (x′) ≤ F (x) and so x′ satisfies (X1) in the definition

of X. By the definition of (π, ρ)-compression it is clear that x′ also satisfies

(X2) and (X4). Since ρ ∈ supp(x), we also have supp(x′) ⊆ supp(x). Since

x has compatible support the same is true for x′ i.e. x′ satisfies (X3) and

so x′ ∈ X. Note that since compressions preserve the `1-norm, x′ is also an

optimal point of X.

In the case A = B, an identical argument shows that (ρ, π) ∈ E(x) also,

and so (iii) holds.

Suppose then that A > B. In this case, looking again at (3.14), we see

that if x is not (π, ρ)-compressed then we in fact have F (x′) < F (x) =

0, contradicting Lemma 3.22. We conclude that x is (π, ρ)-compressed.

Suppose ω(ρ) ≥ 2, then by the definition of (π, ρ)-compression we have

xπ = x′π = 0 contradicting the fact that π ∈ supp(x) and so ω(ρ) = 1.

Since π and ρ are compatible, indistinguishable and distinct, it follows from

Lemma 3.20 that ω(π) ≥ 2. Let x′′ = x(ρ, π). It follows that x′′ρ = 0 and

x′′π = xρ+xπ and so by (3.14), F (x′′) > F (x) = 0. We conclude that x′′ /∈ X
i.e. (ρ, π) /∈ E(x). The fact that xρ = 1 follows from the fact that ω(ρ) = 1
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and x is (π, ρ)-compressed. Thus, (i) holds, and similarly if A < B then (ii)

holds.

We obtain the following immediate corollary.

Corollary 3.25. Let x ∈ X be an optimal point and suppose that I is an

independent set in D(x). Then I is a distinguishable set.

Definition 3.26. We call an optimal point x ∈ X compressed if it is (π, ρ)-

compressed for all (π, ρ) ∈ E(x).

We now show that compressed optimal points of X exist. In fact we show

that given any optimal point of x ∈ X we may obtain a compressed opti-

mal point by applying a finite number of compressions to x. The simpler

structure of compressed optimal points will make it easier to bound their

`1-norm which is the goal of Proposition 3.18.

Lemma 3.27. Compressed optimal points of X exist.

Proof. Let x be an arbitrary optimal point of X and define a sequence

x0, x1, x2, . . . of elements of X recursively as follows: Set x0 = x. Hav-

ing chosen x0, . . . , xt, if xt is compressed then stop the sequence at xt. If

not, then there exists (π, ρ) ∈ E(xt) such that xt is not (π, ρ)-compressed.

By Lemma 3.24, we must therefore have that x(π, ρ) and x(ρ, π) are both

optimal points of X. Note that by the definition of D(xt), ρ and π are in-

distinguishable and {π, ρ} ⊆ supp(xt). Since xτ has compatible support, it

follows from Lemma 3.20 that either ω(π) ≥ 2 or ω(ρ) ≥ 2. If ω(ρ) ≥ 2 then

set xt+1 = x(π, ρ), if not (so that ω(π) ≥ 2) set xt+1 = x(π, ρ). In either

case xt+1 is an optimal point of X satisfying |V (xt+1)| = |V (xt)| − 1. Since

0 ≤ |V (x)| ≤ 3k for all x ∈ X it follows that the sequence must terminate

in at most 3k steps.

Having discovered compressed optimal points, we now explore some of their

properties. First we need a definition.

Definition 3.28. A star is a digraph with vertex set {ρ, π1, . . . , πm} (for

some m ≥ 0) and edge set {(ρ, π1), . . . , (ρ, πm)}. We refer to ρ as the root
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of the star and we call π1, . . . , πm leaves. Note that we have included the

possibility of a star with no leaves.

Lemma 3.29. Let x ∈ X be a compressed optimal point, then D(x) is a

disjoint union of stars. Moreover if ρ is a root of positive outdegree then

ω(ρ) ≥ 2 and if π is a leaf then ω(π) = 1 and xπ = 1.

Proof. It suffices to prove the following:

1. If (ρ, π) ∈ E(x) then ω(ρ) ≥ 2, ω(π) = 1, xπ = 1 and (π, ρ) /∈ E(x).

2. If (ρ1, π), (ρ2, π) ∈ E(x) then ρ1 = ρ2.

Suppose that (ρ, π) ∈ E(x), in particular ρ and π are indistinguishable. If

(π, ρ) ∈ E(x) also, then since x is compressed we have by definition that

x(ρ, π) = x = x(π, ρ). However, from the definition of compression we see

that the only way we can have x(ρ, π) = x(π, ρ) is if ω(π) = ω(ρ) = 1. But

then by Lemma 3.20, π = ρ, a contradiction. We conclude that (π, ρ) /∈ E(x)

and so (1) follows from Lemma 3.24.

Suppose now that (ρ1, π), (ρ2, π) ∈ E(x). By (1) we know that ω(π) = 1 and

ω(ρi) ≥ 2 for i = 1, 2. By Lemma 3.20 it follows that Q(π) ⊆ Q(ρ1)∩Q(ρ2)

and so ρ1, ρ2 are indistinguishable by Lemma 3.12. If ρ1 6= ρ2 then by

Lemma 3.24 we have that either (ρ1, ρ2) ∈ E(x) or (ρ2, ρ1) ∈ E(x), but this

contradicts (1).

Given a compressed optimal point x ∈ X let

L(x) = {τ ∈ V (x) : d−(τ) > 0}

and

R(x) = V (x)\L(x).

By Lemma 3.29, L(x) and R(x) are the set of leaves and the set of roots of

D(x) respectively.

Lemma 3.30. Let x ∈ X be a compressed optimal point. Then

F (x) =
∑

τ∈R(x)

(
x2
τ + (2d+(τ)− ω(τ))xτ

)
.
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Proof. Lemma 3.29 shows that for any indistinguishable pair π, ρ ∈ V (x),

where π 6= ρ, exactly one of (π, ρ) and (ρ, π) is in E(x) and so

F (x) =
∑

τ∈V (x)

x2
τ + 2

∑
(σ,τ)∈E(x)

xσxτ −
∑

τ∈V (x)

ω(τ)xτ .

By Lemma 3.29 we may write

∑
(σ,τ)∈E(x)

xσxτ =
∑

ρ∈R(x)

xρ

 ∑
π:(ρ,π)∈E(x)

xπ

 =
∑

ρ∈R(x)

d+(ρ)xρ.

Moreover by Lemma 3.29 we have
∑

τ∈L(x)(x
2
τ − ω(τ)xτ ) = 0. The result

follows.

The key feature here is that for a compressed optimal point x, the constraint

equation F (x) = 0 is spherical. This allows us to more easily apply standard

optimisation techniques and this will be the concern of the next section. For

now it will be useful for us to establish some degree conditions on the vertices

of D(x) for a compressed optimal point x ∈ X.

Lemma 3.31. Let x ∈ X be a compressed optimal point, then d+(σ) ≤
2ω(σ)−1 for all σ ∈ V (x).

Proof. Suppose that ρ ∈ V (x) is such that d+(ρ) > 0. By Lemma 3.29,

ρ is the root of a star in D(x). Let L be the set of leaves of this star (so

in particular |L| = d+(ρ) and ω(π) = 1 for all π ∈ L). Note that L is an

independent set in D(x) and therefore it is a distinguishable set by Corol-

lary 3.25. Note further that for each π ∈ L, ρ and π are indistinguishable

and compatible and hence Q(π) ⊆ Q(ρ) by Lemma 3.20. It follows that

2d+(ρ) =
∑
π∈L
|Q(π)| ≤ |Q(ρ)| = 2ω(ρ).

We can now bootstrap, using the previous two lemmas to establish a much

stronger degree condition. The idea behind the proof of the following lemma

is readily explained however it is notationally laborious. The idea is that if

x ∈ X is a compressed optimal point and a star in D(x) with root ρ has
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> ω(ρ) leaves, then one can contradict the optimality of x by replacing this

star with a collection of stars whose roots have less weight. First let us

generalise an earlier notation.

Definition 3.32. Let σ ∈ {0, 1, ∗}k and let W = {i ∈ [k] : σi = ∗}. Then

for S ⊆W define

Q(σ;S) = {τ ∈ {0, 1, ∗}k : τi ∈ {0, 1} for i ∈W\S and τi = σi otherwise}.

Note that elements of Q(σ;S) are pairwise distinguishable and that Q(σ; ∅)
is simply the set Q(σ). We may think of Q(σ;S) as a decomposition of Q(σ)

into ‘parallel’ subcubes of dimension |S|.

Lemma 3.33. Let x ∈ X be a compressed optimal point, then d+(σ) ≤ ω(σ)

for all σ ∈ V (x).

Proof. By Lemma 3.29 we may write V (x) = S1 ∪ . . . ∪ Sq, a disjoint union

where each Si is the vertex set of a star in D(x). Suppose that there exists

σ ∈ V (x) such that d+(σ) > ω(σ). Without loss of generality assume σ is

the root of S1. By Lemma 3.30 we then have that ω(σ) < d+(σ) ≤ 2ω(σ)−1

and so ω(σ) ≥ 3. Without loss of generality assume that σ1 = σ2 = ∗. By

Lemma 3.29 we have xτ = 1 for all τ ∈ L(x) and so

‖x‖ = |L(x)|+
∑

τ∈R(x)

xτ . (3.15)

We proceed by modifying x, being careful to stay within the set X. Take

π ∈ Q(σ; {1, 2}) and note that ω(π) = 2. Consider now the element x′ ∈ R∗

defined as follows. Let x′π = xσ, x′τ = 1 for all τ ∈ Q(σ; {1}), x′τ = xτ for

all τ ∈ S2 ∪ . . . ∪ Sq and x′τ = 0 otherwise. We now check that x′ ∈ X.

Clearly x′τ ≤ 1 whenever ω(τ) = 1. Note that supp(x′) = {π} ∪Q(σ; {1}) ∪
S2 ∪ . . . ∪ Sq. Now, if τ ∈ {π} ∪ Q(σ; {1}) we have Q(τ) ⊆ Q(σ) and since

σ ∈ S1, we know that σ, and hence also τ , is distinguishable from each

element of S2 ∪ . . . ∪ Sk. Since τ1 = ∗ for each τ ∈ {π} ∪ Q(σ; {1}) we see

that {π} ∪Q(σ; {1}) contains no incompatible pairs. It follows that x′ has

compatible support. Finally, note that by a calculation similar to that in
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the proof of Lemma 3.30 we have

F (x′) = x2
σ + 2xσ +

∑
τ∈R(x)\{σ}

(
x2
τ +

(
2d+(τ)− ω(τ)

)
xτ
)

(3.16)

= F (x)− (2d+(σ)− ω(σ)− 2)xσ.

Recalling that d+(σ) > ω(σ) we have 2d+(σ)− ω(σ) > ω(σ) ≥ 3. Since σ ∈
supp(x), we also have xσ > 0 and so (3.16) implies that F (x′) < F (x) = 0.

Thus, we do indeed have x′ ∈ X. Note that

‖x′‖ = |L(x)| − d+(σ) + |Q(σ; {1})|+
∑

τ∈R(x)

xτ , (3.17)

and observe that d+(σ) ≤ 2ω(σ)−1 = |Q(σ; {1})| by Lemma 3.30. It now

follows from (3.15) and (3.17) that ‖x′‖ ≥ ‖x‖, and so x′ is an optimal point

of X. However, we have shown that F (x′) < 0 contradicting Lemma 3.22.

Gathering all the information we have obtained on compressed optimal

points, we show that a proof of the following proposition is almost enough

to deduce Proposition 3.18. Let us remind ourselves that in the definition

of a distinguishable set (Definition 3.15), we require all elements of the set

to have weight at least 1.

Proposition 3.34. Let D ⊆ {0, 1, ∗}k be a distinguishable set and let Ω =

{dτ : τ ∈ D} be a set of integers satisfying 0 ≤ dτ ≤ ω(τ) for all τ ∈ D,

and dτ = 0 whenever ω(τ) = 1. Suppose that x ∈ R∗ is a vector with

supp(x) = D satisfying

1. ∑
τ∈D

(
x2
τ + (2dτ − ω(τ))xτ

)
= 0,

2. xτ ≤ 1 whenever ω(τ) = 1.

Then ∑
τ∈D

xτ ≤ 2k−1 −
∑
τ∈D

dτ .

Furthermore we have equality only if x ∈ O and Ω = {0}.
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A proof of Proposition 3.34 will be the focus of the next section, for now we

note that it has the following corollary

Corollary 3.35. O is the set of compressed optimal points of X. In partic-

ular, if x ∈ X then ‖x‖ ≤ 2k−1.

Proof. Let x ∈ X be a compressed optimal point. Note that R(x) is an

independent set in the digraph D(x) and hence by Corollary 3.25, R(x) is

a distinguishable set. Set Ω = {d+(τ) : τ ∈ R(x)} and let x′ be the element

of R∗ supported on R(x) such that x′τ = xτ for all τ ∈ R(x). Note that by

Lemmas 3.22, 3.30, 3.33 and by the definition of the set X, we have that Ω

and x′ satisfy the conditions in the statement of Proposition 3.34. Assuming

Proposition 3.34, it therefore follows that∑
τ∈R(x)

xτ ≤ 2k−1 −
∑

τ∈R(x)

d+(τ), (3.18)

with equality only if x′ ∈ O and d+(τ) = 0 for all τ ∈ R(x). The latter

condition implies that x′ = x and so we have equality in (3.18) only if x ∈ O.

By Lemma 3.29,

‖x‖ =
∑

τ∈R(x)

xτ +
∑

τ∈R(x)

d+(τ),

and so it follows that ‖x‖ ≤ 2k−1 with equality only if x ∈ O. The result

follows by noting that for all z ∈ O, ‖z‖ = 2k−1 and z is compressed.

It is now clear that Proposition 3.18 would follow if we could also prove the

following.

Proposition 3.36. If x ∈ X is an optimal point, then x is compressed.

We prove Proposition 3.36 in Section 3.6.
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3.5 Constrained Optimisation and a Proof of Propo-

sition 3.34

In this section we prove Proposition 3.34 thus finalising the main stepping

stone toward a proof of Proposition 3.18. We exploit the convexity of the

spherical constraint found in the previous section by using the Karush-Kuhn-

Tucker framework with Slater’s condition (Theorem 1.5). This will lead us

to consider the possible distributions of weights in distinguishable sets which

we optimise over in a separate argument.

In view of the statement of Proposition 3.34 it is natural to apply Theo-

rem 1.5 to establish the following.

Lemma 3.37. Let α1, . . . , αm be integers where αi = 1 for i = 1, . . . , `,

(0 ≤ ` ≤ m) and consider the following optimisation problem for x ∈ Rm.

maximise

m∑
i=1

xi

subject to

m∑
i=1

(x2
i − αixi) ≤ 0 , (3.19)

xi ≤ 1, i = 1, . . . , ` .

If
∑m

i=1 α
2
i > m, then we have the unique optimal point x∗ = (x1, . . . , xm)

where xi = 1 for i ≤ ` and xi = 1
2

(
αi +

√
1

(m−`)
∑m

i=`+1 α
2
i

)
for i > `.

If instead
∑m

i=1 α
2
i ≤ m, then we have the unique optimal point x∗ where

xi = 1
2

(
αi +

√
1
m

∑m
i=1 α

2
i

)
for all i.

Proof. Note first that if αi = 0 for all i (so in particular ` = 0) then

constraint (3.19) implies that xi = 0 for all i in which case there’s noth-

ing to prove. Suppose then that this is not the case and define functions

f, g1, . . . , g`+1 : Rm → R as follows. Let f(x) =
∑m

i=1 xi, gi(x) = xi − 1 for

i = 1, . . . , ` and g`+1(x) =
∑m

i=1(x2
i −αixi). Note that the functions just de-

fined are all convex and differentiable. Let x0 = (α1/2, . . . , αm/2), the centre

of the spherical region described by (3.19) and observe that gi(x0) < 0 for

i = 1, . . . , `+ 1. Let S = {x ∈ Rm : gi(x) ≤ 0 for i = 1, . . . , `+ 1}. Since S
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is compact and f is continuous there exists an optimal point x∗ of our op-

timisation problem. Let x∗ = (x1, . . . , xm). By Theorem 1.5 (with Slater’s

condition), there exist real numbers λ1, . . . , λ` and Λ such that the following

hold (for notational convenience we define λj = 0 for j > `):

(1) Λ(2xi − αi) + λi = 1 for all i,

(2) Λ ≥ 0 and λi ≥ 0 for all i,

(3) Λ
(∑m

i=1(x2
i − αixi)

)
= 0 and λi(xi − 1) = 0 for all i.

We consider three cases depending on the value of Λ. First let us suppose

that Λ = 0. In this case, by (1) we must have λi = 1 for all i. Recalling that

λj = 0 for j > ` by definition, we must also have ` = m and so αi = 1 for

all i. Moreover, it follows from (3) that xi = 1 for all i and so we’re done.

By (2), we may now assume that Λ > 0 and so we may rewrite (1) as

xi =
1

2

(
1− λi

Λ
+ αi

)
for all i. (3.20)

Moreover,
∑m

i=1(x2
i − αixi) = 0 by (3) which by (3.20) gives

1

Λ2

m∑
i=1

(1− λi)2 =
m∑
i=1

α2
i . (3.21)

Now, note that for i ≤ ` we have αi = 1 and xi ≤ 1 and so by (3.20) we

have

1− Λ ≤ λi for i ≤ `. (3.22)

If Λ < 1 then by (3.22) we have λi > 0 for i ≤ ` and so by (3), xi = 1 for

i ≤ ` and so in fact by (3.20)

1− Λ = λi for i ≤ `.

Recalling that αi = 1 for i ≤ ` and λi = 0 for i > ` by definition, (3.21)

then gives

1

Λ
=

√√√√ 1

m− `

m∑
i=`+1

α2
i . (3.23)
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From (3.20) it now follows that

xi =
1

2

αi +

√√√√ 1

m− `

m∑
i=`+1

α2
i

 for i > `,

Recalling that Λ < 1, it follows from (3.23) that
∑m

i=1 α
2
i > m.

It remains to consider the case where Λ ≥ 1. Recall that if λi > 0 for some

i then xi = 1 by (3) and so Λ = 1− λi by (3.20). However, this contradicts

the assumption that Λ ≥ 1 and so we conclude that λi = 0 for all i. It

follows from (3.21) that

1

Λ
=

√√√√ 1

m

m∑
i=1

α2
i , (3.24)

so that by (3.20),

xi =
1

2

αi +

√√√√ 1

m

m∑
i=1

α2
i

 for all i.

The result follows, noting that by (3.24) we have
∑m

i=1 α
2
i ≤ m in this

case.

We are almost ready to prove Proposition 3.34, but first we need the follow-

ing inequality.

Lemma 3.38. Let α1, . . . , αm be integers ≥ 2 then

m∑
i=1

αi +

√√√√m
m∑
i=1

α2
i ≤

m∑
i=1

2αi ,

and equality holds if only if αi = 2 for all i.

Proof. Let α = (α1, . . . , αm). We induct on the value of Sα :=
∑m

i=1(2αi−2−
1). If Sα = 0, then αi = 2 for all i, so that

m∑
i=1

αi +

√√√√m
m∑
i=1

α2
i = 4m =

m∑
i=1

2αi .

Suppose then that Sα > 0 so that αj ≥ 3 for some j ∈ [m]. Without

loss of generality assume that j = 1. Define a new sequence of integers
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α′ = (α′1, . . . , α
′
m+1), as follows: Let α′1 = α′2 = α1 − 1 and α′i = αi−1 for

i = 3, 4, . . . ,m + 1. Note that α′i ≥ 2 for all i and Sα′ = Sα − 1 and so by

the inductive hypothesis

m+1∑
i=1

α′i +

√√√√(m+ 1)
m+1∑
i=1

α′2i ≤
m+1∑
i=1

2α
′
i , (3.25)

Note that

m+1∑
i=1

2α
′
i =

m∑
i=1

2αi and
m+1∑
i=1

α′i −
m∑
i=1

αi = α1 − 2 > 0, (3.26)

and also

(m+ 1)

m+1∑
i=1

α′2i −m
m∑
i=1

α2
i =

m∑
i=1

α2
i + (m+ 1)(α2

1 − 4α1 + 2)

≥
m∑
i=1

α2
i − (m+ 1), (3.27)

where in the last inequality we used the fact that α2−4α+2 ≥ −1 for α ≥ 3.

Note that since αi ≥ 2 for all i, we certainly have that
∑m

i=1 α
2
i > m+ 1. It

follows then from (3.27) that

(m+ 1)
m+1∑
i=1

α′2i > m
m∑
i=1

α2
i . (3.28)

Combining (3.25), (3.26), and (3.28) we have

m∑
i=1

αi +

√√√√m
m∑
i=1

α2
i <

m+1∑
i=1

α′i +

√√√√(m+ 1)
m+1∑
i=1

α′2i ≤
m+1∑
i=1

2α
′
i =

m∑
i=1

2αi

as required. Note the strict inequality, and so we only have equality in the

case where αi = 2 for all i.

Proof of Proposition 3.34. Consider first the case where
∑

τ∈D(ω(τ)−2dτ )2 >

|D|. Suppose that ` elements of D have weight 1 and let D′ = {τ ∈ D :

ω(τ) ≥ 2}. Note that by Lemma 3.17 we have
∑

τ∈D 2ω(τ) ≤ 2k and hence∑
τ∈D′

2ω(τ) ≤ 2k − 2`. (3.29)
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Applying Lemma 3.37, recalling that 0 ≤ dτ ≤ w(τ) for all τ ∈ D, that

dτ = 0 whenever ω(τ) = 1 and using (3.29) and Lemma 3.38 we have

∑
τ∈D

xτ ≤ `+
1

2

∑
τ∈D′

(ω(τ)− 2dτ ) +

√
|D′|

∑
τ∈D′

(ω(τ)− 2dτ )2

 (3.30)

≤ `+
1

2

∑
τ∈D′

ω(τ) +

√
|D′|

∑
τ∈D′

ω(τ)2

−∑
τ∈D

dτ (3.31)

≤ `+
∑
τ∈D′

2ω(τ)−1 −
∑
τ∈D

dτ (3.32)

≤ 2k−1 −
∑
τ∈D

dτ . (3.33)

We analyse the conditions for equality to hold. For equality to hold in

(3.31) it must be the case that for all τ ∈ D, either dτ = 0 or dτ = ω(τ). By

Lemma 3.38, for equality to hold in (3.32) it must be the case that ω(τ) = 2

for all τ ∈ D′. It now follows from Lemma 3.37 that for equality to also hold

in (3.30), we must have xτ = 1 whenever ω(τ) = 1, xτ = 2 for all τ ∈ D′

such that dτ = 0 and xτ = 0 for all τ ∈ D′ such that dτ = ω(τ). However,

since each xτ is non-zero by assumption we conclude that dτ = 0 for all

τ ∈ D i.e. Ω = {0}. Finally, for equality to hold in (3.33) we must have

equality in (3.29) and so D is a decomposition by Lemma 3.17. It follows

that x ∈ O.

It remains to consider the case where
∑

τ∈D(ω(τ) − 2dτ )2 ≤ |D|. By

Lemma 3.37 and Lemma 3.17 we then have∑
τ∈D

xτ ≤
1

2

(
|D|+

∑
τ∈D

ω(τ)

)
−
∑
τ∈D

dτ

≤ 1

2

(
|D|+

∑
τ∈D

2ω(τ)−1

)
−
∑
τ∈D

dτ

≤ 2k−1 −
∑
τ∈D

dτ . (3.34)

For equality to hold in (3.34), we must have that |D| = 2k−1 and so D is a

decomposition consisting only of elements of weight 1. It follows that dτ = 0

and xτ ≤ 1 for all τ ∈ D. If equality holds throughout the above, we then

have that xτ = 1 for all τ ∈ D and so x ∈ O.
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3.6 Towards an Exact Result: Analytic and Com-

binatorial Stability

In this section we prove Proposition 3.36 thus concluding our proof of Propo-

sition 3.18. Note that Proposition 3.18 classifies the optimal points of X.

We use compactness arguments to prove a result to the effect that ‘almost

optimal’ points of X must be close (in `1 norm) to a genuine optimal point

of X. Furthermore, compactness allows us to derive similar properties for

X(γ) when γ is small. We then investigate what implications this has in

our original combinatorial setting and complete the proof of Theorem 3.7.

Proof of Proposition 3.36. Let H be the matrix with rows and columns in-

dexed by {0, 1, ∗}k where

Hστ =

1 if σ, τ are indistinguishable,

0 if σ, τ are distinguishable.

Note that in particular, all diagonal entries of H are equal to 1. Let w =

(−ω(τ) : τ ∈ {0, 1, ∗}k) ∈ R∗, then for x ∈ R∗ we may write

F (x) = wTx+ xTHx.

Suppose now that x ∈ X is an optimal point. By the proof of Lemma 3.27,

there is a finite sequence x = x0, x1, . . . , xm of distinct optimal points of X

where xm is compressed, and for i = 0, . . . ,m− 1, xi+1 = xi(πi, ρi) for some

indistinguishable pair πi, ρi ∈ supp(xi). Moreover we know that ω(ρi) ≥ 2

and that πi /∈ supp(xi+1) for all i.

Suppose that x is not compressed so that m ≥ 1. Let y = xm−1, z = xm and

let π = πm−1, ρ = ρm−1. Since z = y(π, ρ), it follows from the definition of

compression that z = y + α(eρ − eπ) for some α > 0. Let p = eπ − eρ. It

follows, by the Taylor expansion of F , that

F (y) = F (z + αp) = F (z) + αpT∇F (z) + α2pTHp. (3.35)

Recall that F (y) = F (z) = 0 by Lemma 3.22. Furthermore by direct cal-

culation we also have pTHp = 0. It follows from (3.35) that pT∇F (z) = 0
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i.e.
∂F

∂xπ
(z) =

∂F

∂xρ
(z). (3.36)

Let Iρ be the set of elements of {0, 1, ∗}k that are indistinguishable from ρ

excluding ρ itself. Define Iπ similarly. From the definition of F we have

∂F

∂xρ
(z) = 2zρ + 2

∑
τ∈Iρ

zτ − ω(ρ). (3.37)

Since z is a compressed optimal point we have z ∈ O by Corollary 3.35.

Since ω(ρ) ≥ 2 and ρ ∈ supp(z) we conclude that in fact ω(ρ) = 2 and so

zρ = 2. Moreover since supp(z) is a distinguishable set we conclude that

zτ = 0 for all τ ∈ Iρ. It follows from (3.37) that ∂F
∂xρ

(z) = 2 and hence from

(3.36) that
∂F

∂xπ
(z) = 2zπ + 2

∑
τ∈Iπ

zτ − ω(π) = 2. (3.38)

Since z ∈ O we know that for all τ ∈ supp(z), ω(τ) = 1 or 2 and zτ = ω(τ).

Let w1, w2 be the number of elements of Iπ ∩ supp(z) with weights 1, 2

respectively. Since π /∈ supp(z), we can then infer from (3.38) that

2w1 + 4w2 − ω(π) = 2. (3.39)

We also know that supp(z) is a decomposition and so

Q(π) =
⋃

τ∈supp(z)

(Q(τ) ∩Q(π))

=
⋃

τ∈Iπ∩supp(z)

(Q(τ) ∩Q(π))

⊆
⋃

τ∈Iπ∩supp(z)

Q(τ). (3.40)

The second equality comes from the fact that Q(τ) ∩Q(π) = ∅ whenever τ

and π are distinguishable. Comparing the cardinality of the sets in (3.40)

yields

2ω(π) ≤
∑

τ∈Iπ∩supp(z)

2ω(τ) = 2w1 + 4w2. (3.41)

Note also that ρ ∈ Iπ ∩ supp(z) and ω(ρ) = 2 so that w2 ≥ 1. Using (3.39),

this last observation implies that ω(π) ≥ 2 whereas combining (3.39) and

(3.41) we have

2ω(π) − ω(π) ≤ 2w1 + 4w2 − ω(π) = 2 (3.42)
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We deduce that ω(π) = 2 and so we have equality throughout (3.42), in

particular we have equality in (3.41) and so also in (3.40). Note that |Q(π)| =
|Q(ρ)| since ω(π) = ω(ρ) = 2. Recalling that ρ ∈ Iπ ∩ supp(z) equality in

(3.40) would therefore imply that Q(π) = Q(ρ) i.e. π = ρ. This is a

contradiction and so x must be compressed.

Proposition 3.18 has the following corollary that says an almost optimal

point of X must be close in norm to an actual optimal point of X.

Proposition 3.39. Let η � ε. If x ∈ X satisfies ‖x‖ > 2k−1 − η, then

there exists an x∗ ∈ O such that ‖x− x∗‖ < ε.

Proof. Consider the set

X̃ := X
∖ ⋃
x∗∈O

Bε(x
∗).

X̃ is compact and so supz∈X̃‖z‖ = ‖x̃‖ for some x̃ ∈ X̃. By the definition

of X̃, x̃ /∈ O and so by Proposition 3.18, ‖x̃‖ = 2k−1 − η for some η > 0. It

follows that if x ∈ X satisfies ‖x‖ > 2k−1− η then x /∈ X̃ and so x ∈ Bε(x∗)
for some x∗ ∈ O.

The following lemma allows us to relate properties of X and X(γ) for γ

small.

Lemma 3.40. Let γ � η. If x ∈ X(γ), then there exists x0 ∈ X for which

‖x− x0‖ < η.

Proof. Let (γi)i∈N be a strictly decreasing sequence tending to 0, and let

Xi = X(γi) for i ∈ N. Then X1, X2, . . . is a decreasing sequence of compact

sets i.e. Xi+1 ⊆ Xi for i ∈ N. Consider the set

U =
⋃
z∈X

Bη(z),

an open set containing X. Note that (Xi\U)i∈N is also a decreasing sequence

of compact sets and that

∞⋂
i=1

(Xi\U) =

( ∞⋂
i=1

Xi

)∖
U = X\U = ∅.
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By Cantor’s Intersection Theorem (see [76, Theorem 2.36, p.38]) it follows

that Xm\U = ∅ for some m ∈ N. In other words, if x ∈ X(γm) then x ∈ U so

that x ∈ Bη(x0) for some x0 ∈ X. The result follows by taking γ ≤ γm.

Corollary 3.41. Let γ � ε. If x ∈ X(γ) satisfies ‖x‖ = 2k−1, then there

exists an x∗ ∈ O such that ‖x− x∗‖ < ε.

Proof. Given ε > 0, let η = min{η3.39(ε/2), ε/2} and suppose that γ ≤
γ3.40(η). Suppose that x ∈ X(γ) satisfies ‖x‖ = 2k−1. By Lemma 3.40 there

exists an x0 ∈ X such that ‖x0 − x‖ < η and so ‖x0‖ > ‖x‖− η = 2k−1 − η.

It follows from Proposition 3.39 that there exists an x∗ ∈ O such that

‖x0 − x∗‖ < ε/2 and so

‖x− x∗‖ ≤ ‖x− x0‖+ ‖x0 − x∗‖ < η + ε/2 ≤ ε.

Let

O∗ = {x ∈ O : ω(τ) = 1 for all τ ∈ supp(x)}.

In words, O∗ is the set of all elements x ∈ R∗ such that x is supported on

a perfect matching of Qk and all non-zero entries of x are equal to 1. We

can also view O∗ as the set of profiles of hypercube colourings normalised by

clique size. Our aim is to use the stability-type statement of Corollary 3.41

to prove Theorem 3.7 in the following form.

Theorem 3.42. Let 1
n � δ � ε � 1. If G is a (1 − δ)-dense, k-coloured

graph with v(G) = 2k−1n, containing no monochromatic odd connected

matching of order ≥ (1 + δ)n, then for any choice of profile x(G) of G,

there exists some x∗ ∈ O∗ such that

‖x(G)/n− x∗‖ < ε.

First we need the following two colour Ramsey type result which is a direct

consequence of the more general Theorem 1.8 in [4].

Lemma 3.43. Let 1
n � δ � ε. If H is a (1 − δ)-dense, 2-coloured graph

with v(H) ≥ (3
2 +ε)n, then H contains a monochromatic connected matching

of order ≥ (1 + δ)n.
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Proof of Theorem 3.42. Given ε > 0, let γ = γ3.41(ε) and δ′ = δ3.43(ε).

Suppose that δ < min{γ2k−22−4k, δ′2−2k} and that n ≥ max{n3.43(δ′), δ−1}.
Let G be a k-coloured graph as in the statement of Theorem 3.42. Let x(G)

be any choice of profile for G and let the corresponding profile partition be

(Vτ : τ ∈ {0, 1, ∗}k). Note that ‖x(G)/n‖ = 2k−1 and by Proposition 3.14,

we have that x(G)/n ∈ X(
√
δk22k) ⊆ X(γ). By Corollary 3.41 there exists

an element x∗ ∈ O such that

‖x(G)/n− x∗‖ < ε. (3.43)

Suppose that x∗ ∈ O\O∗, then xτ = 2 for some τ ∈ {0, 1, ∗}k such that

ω(τ) = 2. It follows from (3.43) that x(G)τ = |Vτ | > (2− ε)n ≥ (3/2 + ε)n.

Let H = G[Vτ ]. By the definition of Vτ , H is a 2-coloured graph. Moreover

since G has at most δ
(
v(G)

2

)
≤ δ′

(
v(H)

2

)
edges missing, the same is true for

H. It follows by Lemma 3.43 that H contains a monochromatic connected

matching of order ≥ (1+δ′)n > (1+δ)n. However, by the definition of Vτ =

V (H), any monochromatic component of H is contained in a non-bipartite

monochromatic component of G. Thus, G contains a monochromatic odd

connected matching of order> (1+δ)n contrary to assumption. We conclude

that x∗ ∈ O∗.

3.7 The Regularity Method

In this section we discuss the tools and results we need from the regularity

method. Our starting point is Szemerédi’s Regularity Lemma [83] which we

discuss briefly now.

Let G be a graph and let A,B be disjoint subsets of V (G). We call

dG(A,B) :=
eG(A,B)

|A||B|

the density of the pair (A,B). For δ > 0, we say that the pair (A,B) is

δ-regular with respect to G if, for every A′ ⊆ A and B′ ⊆ B satisfying

|A′| ≥ δ|A| and |B′| ≥ δ|B|, we have

|dG(A′, B′)− dG(A,B)| < δ.
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If, for d > 0, we also have that |NG(a) ∩ B| ≥ d|B| for all a ∈ A and

|NG(b) ∩ A| ≥ d|A| for all b ∈ B, then we say that (A,B) is (δ, d)-super-

regular with respect to G. We may omit the subscripts from the above

notation if the graph G is clear from the context. The following is a version

of Szemerédi’s Regularity Lemma that appears as Theorem 1.18 in [62].

Theorem 3.44 (Multicolour Regularity Lemma). For all δ > 0 and k, ` ∈ N
there exists L = L(δ, k, `) and M = M(δ, k, `) such that the following holds.

For all k-coloured graphs G on at least M vertices, V (G) may be partitioned

into sets V0, V1 . . . , Vt such that

• ` ≤ t ≤ L;

• |V0| < δv(G) and |V1| = |V2| = . . . = |Vt|;

• apart from at most δ
(
t
2

)
exceptional pairs, the pairs (Vi, Vj), 1 ≤ i <

j ≤ t, are δ-regular with respect to Gs for s = 1, . . . , k.

We now state some technical lemmas related to  Luczak’s method of con-

nected matchings. First we need a definition. (It might be useful at this

point to recall Definition 3.5.)

Definition 3.45. Let δ, d ∈ [0, 1] and q,m ≥ 1 be integers.

• Let F be a graph on vertex set [q] and let U1, . . . , Uq be disjoint sets

of size m. We call a graph H on vertex set
⋃
i∈[q] Ui a (δ,m)-regular

blow-up of F if whenever {i, j} ∈ E(F ), we have that (Ui, Uj) is a

δ-regular pair.

• If in addition to the above, d(Ui, Uj) ≥ d for each edge {i, j} of F then

we say that H has minimum density d.

• Suppose that F is a connected matching and H is a (δ,m)-regular blow-

up of F with minimum density d. If for each matching edge {i, j} of

F , the pair (Ui, Uj) is in fact (δ, d)-super-regular in H, then we say

that H is a (δ, d,m)-super-regular blow-up of F .

Versions of the following two lemmas abound in the literature (e.g. [61],

[65]), but here we give statements tailored to our needs. However, since

they are not new, we defer their proofs to the Appendix (Section B).
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Lemma 3.46. Let q ≥ 4 and suppose that 1
m � δ � d. Let F be a connected

matching of order q such that every vertex of F is incident to a matching

edge and let H be a (δ, d,m)-super-regular blow-up of F . Then the following

holds:

If i, j ∈ V (F ) and there is an ij-path of length r in F , then for every pair

of vertices u ∈ Ui, w ∈ Uj, there exists a uw-path of length ` in H for each

3q ≤ ` ≤ (1− 6δ)qm such that ` ≡ r (mod 2).

Lemma 3.47. Let q ≥ 4 and let 1
m � δ � d. Let F be an odd connected

matching of order q and suppose that H is a (δ,m)-regular blow-up of F

with minimum density d. Then H contains a cycle of length ` for each odd

3q ≤ ` ≤ (1− 6δ)qm.

We borrow the following fact.

Fact 3.48. ([50, Lemma 9]). Let H be a (1− δ)-dense graph on t vertices.

Then H has a subgraph H ′ such that v(H ′) ≥ (1 −
√
δ)t and δ(H ′) ≥ (1 −

2
√
δ)t.

We will also need the following two standard facts whose proofs we omit it

here.

Fact 3.49. Let 0 < δ ≤ 1/2 and let (A,B) be a δ-regular pair with density d.

Suppose that A′ ⊆ A, B′ ⊆ B such that |A′| ≥ (1− δ)|A|, |B′| ≥ (1− δ)|B|.
Then (A′, B′) is 2δ-regular with density d′ > d− δ. Moreover, if (A,B) is in

fact (δ, β)-super-regular for some β > 0, then (A′, B′) is (2δ, β − δ)-super-

regular.

Fact 3.50. Let 0 < δ ≤ 1/2 and let (A,B) be a δ-regular pair with density d.

Then there exist A′ ⊆ A, B′ ⊆ B such that |A′| = (1−δ)|A|, |B′| = (1−δ)|B|
and (A′, B′) is (2δ, d− 2δ)-super-regular.

3.8 Proof of Main Theorem

In this final section we prove our main result Theorem 3.4, and therefore

also Theorem 3.2. The idea is to invoke Theorem 3.42 to show that the
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profile of a certain reduced graph is close in `1-norm to the profile of a

hypercube colouring. We then translate this information to show that the

original graph is close in edit distance to a hypercube colouring.

The stability-type methods of this section require some care due to the

plethora of extremal constructions. Luckily hypercube colourings share

enough common features for these methods to be viable and surprisingly

we require no case analysis.

First let us state a result which is a corollary of a classical theorem of

Bondy [9].

Theorem 3.51. Let G be a graph on at least 3 vertices with minimum

degree > v(G)/2, then G is pancyclic i.e. G contains cycles of all lengths

3 ≤ ` ≤ v(G).

Proof of Theorem 3.4. Let 0 < ε < 2−4k, let

η < δ ≤ min

{
1

9
δ2

3.42(ε), δ3.46

(
1

k

)
, δ3.47

(
1

k

)}
, (3.44)

let n0 ≥ max{n3.42(δ), δ−1/2} and let L = L3.44(δ, k, 2kn0). Let n be odd

with

n ≥ max{Lm3.46(δ), Lm3.47(δ),M3.44(δ, k, 2kn0)}. (3.45)

Finally let G be a k-coloured copy of KN where N > (2k−1−η)n and assume

that

G contains no monochromatic copy of Cn. (†)

Applying Theorem 3.44 toG we obtain a partition of V (G) into sets V0, . . . , Vt0

such that

(i) 2kn0 ≤ t0 ≤ L;

(ii) |V0| < δN and |V1| = |V2| = . . . = |Vt0 |;

(iii) apart from at most δ
(
t0
2

)
exceptional pairs, the pairs (Vi, Vj), 1 ≤ i <

j ≤ t0, are δ-regular with respect to Gs for s = 1, . . . , k.

It follows that for i ∈ [t0],

m := |Vi| ≥
(1− δ)N

t0
. (3.46)
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We construct a reduced graph R0 with vertex set {1, ..., t0} and edge set

formed by pairs {u,w} for which (Vu, Vw) is δ-regular with respect to Gi

for i = 1, . . . , k. It follows from (iii) of the above that R0 is (1 − δ)-dense.

Fact 3.48 allows us to find a subgraph R ⊆ R0 satisfying v(R) ≥ (1−
√
δ)t0

and δ(R) ≥ (1−2
√
δ)t0. Let t = v(R) and assume without loss of generality

that V (R) = {1, . . . , t}. We k-colour R by colouring an edge {u,w} with

the least colour i for which

dGi(Vu, Vw) ≥ 1

k
. (3.47)

Let t′ = t/2k−1 and note that by (3.46) and the definition of t,

mt′ ≥ (1− 2
√
δ)n. (3.48)

Suppose that R contains a monochromatic odd connected matching F of

order q ≥ (1 + 3
√
δ)t′. Then G contains a monochromatic (δ,m)-regular

blow-up of F with minimum density d for some d ≥ 1/k by (3.47). Note

that since t0 ≤ L we have m ≥ m3.47(δ) by (3.46) and (3.45). It follows

from Lemma 3.47 that G contains a monochromatic copy of Cn since n is

odd and

3q ≤ 3L ≤ n ≤ (1− 6δ)(1 + 3
√
δ)mt′ ≤ (1− 6δ)qm,

contradicting (†). We conclude that R contains no such odd connected

matching. Let (Wτ : τ ∈ {0, 1, ∗}k) be a profile partition of R and let

x(R) = (|Wτ | : τ ∈ {0, 1, ∗}k) be the corresponding profile. It follows by

Theorem 3.42 that there exists x∗ ∈ O∗ such that

‖x(R)/t′ − x∗‖ < ε. (3.49)

This tells us a lot about the structure of R, indeed it is ‘close to’ a hypercube

colouring. The aim is to use this fact to eventually say the same for G. By

the definition of O∗ we have that

supp(x∗) =M⊆ {0, 1, ∗}k,

for some perfect matchingM of the hypercube Qk and x∗τ = 1 for all τ ∈M.

Let

W = R
∖ ⋃
τ∈M

Wτ .

82



Chapter 3. Ramsey Numbers Via Nonlinear Optimisation

We will treat W as a ‘leftover set’ of vertices of R and study only the

structure of R\W . Note that by (3.49) we have

(1− ε)t′ < |Wτ | < (1 + ε)t′ for all τ ∈M, (3.50)

and so by removing at most 2εt′ vertices from each part Wτ , where τ ∈M,

and absorbing these removed vertices into W , we may assume that these

parts Wτ all have the same size > (1 − ε)t′. Note that even after this

absorption we have

|W | = t−
∑
τ∈M
|Wτ | < t− 2k−1(1− ε)t′ = εt.

We make a couple of observations regarding the colouring of R with respect

to these vertex classes. For j ∈ [k] we let

Ij = {τ ∈M : τj = ∗}.

Lemma 3.52. Let τ ∈ Ij. Then R[Wτ ] is monochromatic in the colour j

and has minimum degree at least (1− 2k+1
√
δ)|Wτ |.

Proof. By the definition of the profile partition, for each colour i 6= j, each

pair v, w ∈ Wτ must lie in the same vertex class in an induced bipartite

subgraph of Ri. It follows that if {v, w} ∈ E(R) then it cannot receive the

colour i and hence must receive colour j. Since δ(R) ≥ (1− 2
√
δ)t we have

δ(R[Wτ ]) ≥ |Wτ | − 1− 2
√
δt ≥ (1− 2k+1

√
δ)|Wτ |

where for the last inequality we used (3.50).

Definition 3.53. Let σ, τ ∈ {0, 1, ∗}k. We denote the set {i ∈ [k] :

{σi, τi} = {0, 1}} by ∆(σ, τ). We call |∆(σ, τ)| the distance between σ and

τ and denote it by d(σ, τ).

Lemma 3.54. Let σ, τ ∈M be distinct, then

(i) Each edge of R[Wσ,Wτ ] receives a colour from the set ∆(σ, τ);

(ii) R[Wσ,Wτ ] has minimum degree ≥ (1 − 2k+1
√
δ)|Wσ|, in particular

R[Wσ,Wτ ] is connected and contains a perfect matching.
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Proof. Let σ ∈ Ij , τ ∈ I`. Suppose that j 6= `. By the definition of the

profile partition, for each colour i /∈ ∆(σ, τ), each pair v ∈ Wσ, w ∈ Wτ

must lie in either the same vertex class in an induced bipartite subgraph

of Ri or they lie in different connected components of Ri. It follows that

if {v, w} ∈ E(R) then it must receive a colour from ∆(σ, τ). Similarly, if

j = ` then each edge of R[Wσ,Wτ ] must receive a colour from ∆(σ, τ)∪{j}.
However, by Lemma 3.52, R[Wτ ] and R[Wσ] are both monochromatic in the

colour j and both have minimum degree at least (1−2k+1
√
δ)|Wσ| > |Wσ|/2

(recall that |Wσ| = |Wτ |). It follows, by Theorem 3.51 for example, that

R[Wτ ] and R[Wσ] are both Hamiltonian and non-bipartite. Using (3.50), we

deduce that if an edge of R[Wσ,Wτ ] receives the colour j, then R contains

a monochromatic odd connected matching in the colour j of order at least

|Wσ|+ |Wτ | − 2 ≥ 2(1− ε)t′ − 2 ≥ (1 + 3
√
δ)t′,

which we showed previously was not the case. Part (i) of the lemma follows.

If v ∈Wτ then, since δ(R) ≥ (1− 2
√
δ)t, we have

|N(v) ∩Wσ| ≥ |Wσ| − 2
√
δt ≥ (1− 2k+1

√
δ)|Wσ|.

Similarly if w ∈ Wσ, then |N(w) ∩ Wτ | ≥ (1 − 2k+1
√
δ)|Wσ|. Since 1 −

2k+1
√
δ > 1/2, it follows that R[Wσ,Wτ ] is connected and (e.g. by Hall’s

theorem) contains a perfect matching.

Let Γ denote the k-coloured multigraph on vertex set M where we have

an edge between σ and τ in each colour j for which R[Wσ,Wτ ] contains an

edge of colour j. Note that since δ(R) > (1 − 2
√
δ)t and |Wσ| = |Wτ | >

(1 − ε)t′ > 2
√
δt, R[Wσ,Wτ ] always contains an edge. Let Γ∗ denote the

subgraph of Γ where we keep only those edges that occur as the unique edge

between a given pair of vertices in Γ. Recall that for j ∈ [k], Γj , Γ∗j denote

the jth colour class of Γ, Γ∗ respectively.

Lemma 3.55. For each j ∈ [k], the vertices of Γ∗j can be covered by a

matching Tj ⊆ Γ∗j and the set Ij. Moreover Ij is a set of isolated vertices in

Γj.
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Proof. Fix j ∈ [k]. If σ ∈ Ij then σ is an isolated vertex in Γj by Lemma 3.54(i).

If σ /∈ Ij then we may assume without loss of generality that σj = 0. Let

σ′ be the element of {0, 1, ∗}k such that σ′j = 1 and σ′i = σi for all i 6= j.

Let H be the graph on M with edge set {{ρ, π} : ∆(ρ, π) = {j}}. By

Lemma 3.54(i) we have H ⊆ Γ∗j . The neighbours of σ in H are precisely

those elements of M that are indistinguishable from σ′ i.e. those elements

of M (viewed as edges of Qk) that intersect Q(σ′). Since M is a perfect

matching of Qk, and |Q(σ′)| = 2, there are either 1 or 2 such elements ofM.

It follows that H is the disjoint union of cycles (where we consider an edge

a cycle) and the independent set Ij . Since H is bipartite with bipartition

{τ ∈M : τj = 0 or ∗}∪ {τ ∈M : τj = 1}, the cycles in H are all even. The

result follows.

Let j ∈ [k], then for each {σ, τ} ∈ Tj (Tj as in the statement of Lemma 3.55),

we may fix a monochromatic perfect matching M j
στ in the colour j in

R[Wσ,Wτ ] by Lemmas 3.54(ii) and 3.55. Let

Tj =
⋃

{σ,τ}∈Tj

M j
στ .

and note that Tj is a matching in R, monochromatic in the colour j, which

covers the vertex set
⋃
τ /∈Ij Wτ . The following corollary hints at an important

common feature of all hypercube colourings.

Corollary 3.56. Given j ∈ [k] and ρ ∈ M\Ij, there exists π ∈ M such

that R[Wρ,Wπ] contains a monochromatic connected perfect matching in the

colour j whose matching edges are edges of Tj.

Proof. Since ρ /∈ Ij , by Lemma 3.55 there must exist π ∈M such that {ρ, π}
is an edge of Tj ⊆ Γ∗j . By the definition of Γ∗, we have that R[Wρ,Wπ] is

monochromatic in the colour j. The result follows from the definition of Tj
and Lemma 3.54(ii).

It will be useful to prune the sets Vi for i ∈ R in such a way that if {x, y} is

an edge of the matching Tj then Gj [Vx, Vy] is super-regular.

Lemma 3.57. For each i ∈ R there exists V ′i ⊆ Vi such that
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(i) |V ′i | = (1− 2kδ)m for all i ∈ R,

(ii) Gj [V
′
x, V

′
y ] is 2k+1δ-regular with density ≥ 1

k+1 for all j ∈ [k], {x, y} ∈
Rj,

(iii) Gj [V
′
x, V

′
y ] is (2k+1δ, 1

k+1)-super-regular for all j ∈ [k], {x, y} ∈ Tj.

Proof. For i ∈ R we define a sequence of subsets V 0
i , . . . , V

k
i of Vi recursively.

Let V 0
i := Vi for all i ∈ R. Suppose that for all i ∈ R we have found V `

i ⊆ Vi
with the following properties.

(a) |V `
i | ≥ (1− 2`δ)m for all i ∈ R,

(b) Gj [V
`
x , V

`
y ] is 2`δ-regular with density ≥ 1/k−2`δ for all j ∈ [k], {x, y} ∈

Rj ,

(c) Gj [V
`
x , V

`
y ] is (2`δ, 1/k − 2`+1δ)-super-regular for all j ∈ [`], {x, y} ∈ Tj .

By Fact 3.50, for each edge {u,w} in the matching T`+1 (so in particular

{u,w} ∈ R`+1) there exists V `+1
u ⊆ V `

u and V `+1
w ⊆ V `

w such that |V `+1
u | =

(1 − 2`δ)|V `
u |, |V `+1

w | = (1 − 2`δ)|V `
w| and G`+1[V `+1

u , V `+1
w ] is (2`+1δ, 1/k −

2`+2δ)-super-regular. If i is not incident to any edge of T`+1 then simply set

V `+1
i = V `

i . Note that by (a), for all i ∈ R,

|V `+1
i | ≥ (1− 2`δ)|V `

i | ≥ (1− 2`δ)2m ≥ (1− 2`+1δ)m.

For j ∈ [k] and {x, y} ∈ Rj , by (b) and Fact 3.49 we have thatGj [V
`+1
x , V `+1

y ]

is 2`+1δ-regular with density ≥ 1/k − 2`+1δ. Using (c) and Fact 3.49, it

also follows that Gj [V
`+1
x , V `+1

y ] is (2`+1δ, 1/k − 2`+2δ)-super-regular for all

j ∈ [`], {x, y} ∈ Tj . We have shown that the sets V `+1
i , i ∈ R, satisfy (a)-(c)

(with ` replaced by `+ 1). The result follows by letting V ′i be any subset of

V k
i of size (1− 2kδ)m for all i ∈ R and appealing to Fact 3.49, noting that

1/(k + 1) ≤ 1/k − 2k+2δ.

Given σ ∈M, let

W̃σ =
⋃
i∈Wσ

V ′i ⊆ V (G),
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and let

W̃ = V (G)
∖ ⋃
τ∈M

W̃τ .

As with W , we think of W̃ as a small leftover set of vertices. Let m′ :=

(1− 2kδ)m and note that by (3.48), m′t′ ≥ (1− 3
√
δ)n and so by (3.50)

|W̃τ | ≥ (1− ε)m′t′ ≥ (1− 2ε)n for all τ ∈M. (3.51)

We also have

|W̃ | ≤ N − 2k−1(1− ε)m′t′ = N − (1− ε)(1− 2kδ)mt ≤ 2εN. (3.52)

Where for the last inequality we recalled (3.46).

We can now establish our first piece of structure on the graph G. We show

that almost all of V (G) can be covered by 2k−1 monochromatic cliques of

equal size. First we make a quick definition.

Definition 3.58. If τ ∈ {0, 1, ∗}k has weight 1, we let c(τ) denote the

unique element of i ∈ [k] for which τi = ∗.

Lemma 3.59. For all σ ∈M, G[W̃σ] is monochromatic in the colour c(σ).

Proof. Suppose that G[W̃σ] contains an edge {x, y} of colour j 6= c(σ) (so

that σ /∈ Ij). By Corollary 3.56 there exists τ ∈ M such that Rj [Wσ,Wτ ]

contains a connected perfect matching, F , whose matching edges are edges

of Tj . Let q := v(F ), then by (3.50) we have 2(1 − ε)t′ ≤ q ≤ 2(1 + ε)t′.

By Lemma 3.57 we see that Gj [W̃σ, W̃τ ] contains a spanning (2k+1δ, 1/(k+

1),m′)-super-regular blow-up of F (with the V ′i playing the role of the Ui

in Definition 3.45). Suppose that x ∈ V ′a and y ∈ V ′b , then a and b lie on

the same side of the bipartition of the connected graph F and so F contains

an ab-path of even length. Note that m′ ≥ n3.46(δ), by (3.46) and (3.45).

We may therefore apply Lemma 3.46 to deduce that Gj [W̃σ, W̃τ ] contains a

path of length n− 1 joining x and y since n− 1 ≡ 0 (mod 2) and

(1− 6 · 2kδ)qm′ ≥ 2(1− 6 · 2kδ)(1− ε)m′t′ ≥ n− 1 ≥ 3L ≥ 3q, (3.53)

where we used (3.44), (3.45) and (3.51). Together with the edge {x, y} this

creates a monochromatic copy of Cn in G, contrary to assumption (†).
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Our aim now is to say something about the edges of G lying between W̃

and the rest of the graph (see Lemma 3.62 below). With the multigraph Γ

in mind, we make the following definition.

Definition 3.60. Let M′ be a perfect matching of Qk and let ϕ :M→M′

be a bijection such that c(ϕ(τ)) = c(τ) for all τ ∈ M. Suppose that Ψ is a

k-coloured multigraph on vertex set M. We call ϕ an admissible labelling

of Ψ if for all σ, τ ∈ M, the edges between σ, τ in Ψ only take colours from

the set ∆(ϕ(σ), ϕ(τ)).

Note that by Lemma 3.54(i) the identity map ι :M→M is an admissible

labelling of Γ. The following Lemma gives a useful way of generating new

admissible labellings of Γ. For τ ∈ {0, 1, ∗}k, such that τj ∈ {0, 1}, we

let τ j := (τ1, . . . , τj−1, 1 − τj , τj+1, . . . , τk) i.e. τ j denotes τ with the jth

coordinate flipped.

Lemma 3.61. Let ϕ be an admissible labelling of Γ. Let j ∈ [k] and let C

be the vertex set of a component of Γj such that τj 6= ∗ for all τ ∈ C. Let

ϕ′ be the function on M given by ϕ′(τ) = ϕ(τ)j for all τ ∈ C, ϕ′(τ) = ϕ(τ)

otherwise. Then ϕ′ is an admissible labelling of Γ.

Proof. First note that by the definition of ϕ′ and the fact that ϕ is admissi-

ble, each element of ϕ′(M) has weight 1 and c(ϕ′(τ)) = c(ϕ(τ)) = c(τ) for

all τ ∈ M. Let us check that the image of ϕ′ is a perfect matching of Qk

(i.e. a distinguishable set of size 2k−1). It suffices to show that if σ, τ ∈ M
are distinct, then ϕ′(σ), ϕ′(τ) are distinguishable (i.e. ∆(ϕ′(σ), ϕ′(τ)) 6= ∅).
We do this by considering an edge between σ and τ in Γ and showing that

if it has the colour i then i ∈ ∆(ϕ′(σ), ϕ′(τ)). Note that this in fact suffices

to show that ϕ′ is admissible.

Suppose then that there is an edge between σ, τ in Γ in the colour i. Since

ϕ is admissible we have i ∈ ∆(ϕ(σ), ϕ(τ)). Suppose that i 6= j then by the

definition of ϕ′, ϕ′(τ)i = ϕ(τ)i and ϕ′(σ)i = ϕ(σ)i and so i ∈ ∆(ϕ′(σ), ϕ′(τ))

also. Suppose then that i = j, so that either σ, τ ∈ C or σ, τ ∈ M\C. If

σ, τ ∈ C, then ϕ′(τ)i = 1 − ϕ(τ)i, ϕ
′(σ)i = 1 − ϕ(σ)i and if σ, τ ∈ M\C,

then ϕ′(τ)i = ϕ(τ)i, ϕ
′(σ)i = ϕ(σ)i. In either case i ∈ ∆(ϕ′(σ), ϕ′(τ)).
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The following lemma allows us to associate each vertex in W̃ to some class

W̃σ in G.

Lemma 3.62. Let v ∈ W̃ . Then there exists σ ∈ M such that G[v, W̃σ] is

monochromatic in the colour c(σ).

Proof. Suppose otherwise, then for each σ ∈M there exists a u ∈ W̃σ such

that the edge {v, u} receives a colour jσ 6= c(σ). We augment the multigraph

Γ in the following way. We add the vertex v to Γ and for each σ ∈ M we

add an edge between v and σ in the colour jσ. Let us call this augmented

multigraph Γ+.

Claim 3.63. Γ+ contains a monochromatic odd cycle.

Proof of Claim. Suppose otherwise and choose an admissible labelling ϕ of

Γ that minimises the function

S(ϕ) =
∑
i∈[k]

|{τ ∈M : jτ = i and ϕ(τ)i = 1}|.

Suppose that S(ϕ) > 0, then there exists a colour j ∈ [k] and an element

σ ∈ M for which jσ = j and ϕ(σ)j = 1. Let C denote the component of

Γj containing the vertex σ and note that by the definition of admissibility

C is bipartite with parts {τ ∈ C : ϕ(τ)j = 0} and {τ ∈ C : ϕ(τ)j = 1}.
Note that since C is connected in Γj this is the unique bipartition of C.

Since Γ+
j is bipartite by assumption we must therefore have that ϕ(τ)j = 1

for all τ ∈ C such that jτ = j. Let ϕ′ denote the function on M given

by ϕ′(τ) = ϕ(τ)j for all τ ∈ C, ϕ′(τ) = ϕ(τ) otherwise. By Lemma 3.61,

ϕ′ is an admissible labelling of Γ, however S(ϕ′) < S(ϕ) contradicting the

minimality of ϕ. We conclude that S(ϕ) = 0 i.e.

For all i ∈ [k], τ ∈M, if jτ = i then ϕ(τ)i = 0. (3.54)

Since ϕ(M) is a perfect matching of Qk, there must exist ρ ∈M such that

the edge ϕ(ρ) is incident to the vertex (1, 1, . . . , 1) (formally Q(ϕ(ρ)) con-

tains (1, 1, . . . , 1)). Without loss of generality suppose ϕ(ρ) = (∗, 1, . . . , 1).

However, whatever value jρ takes, we contradict (3.54). This concludes the

proof of the claim. �
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Suppose that Γ+ contains a monochromatic odd cycle in the colour j. Since

Γj is bipartite and Γ+
j is not, there must exist σ, τ ∈ M such that σ, τ lie

in opposite parts of the bipartition of a connected component in Γj and

the edges {v, σ}, {v, τ} both have colour j in Γ+. By the definition of Γ+,

there exist vertices u ∈ W̃σ, w ∈ W̃τ such that {v, u} and {v, w} both have

colour j in G and j 6= c(σ) or c(τ) i.e. σ, τ /∈ Ij . Suppose that u ∈ V ′a and

w ∈ V ′b then by Lemmas 3.54(ii) and 3.55 and the definition of Tj , a and

b lie in opposite parts of a bipartite connected matching, F , in Rj whose

matching edges span F and are edges of Tj (in particular there is an ab-path

of odd length in F ). Moreover we may assume that F spans the vertex sets

Wσ,Wτ in Rj and so by (3.50), 2(1 − ε)t′ ≤ v(F ) ≤ v(R) ≤ L. By Lemma

3.57, we have a (2k+1δ, 1/(k+ 1),m′)-super-regular blow-up of F in Gj . By

Lemma 3.46 (using inequalities as in (3.53) and noting that n − 2 is odd)

there exists a path of length n−2 joining u and w in Gj . This together with

the edges {v, u}, {v, w} forms a monochromatic copy of Cn in G contrary

to assumption (†). This concludes the proof of Lemma 3.62.

Using Lemma 3.62 we may define a function f : W̃ →M where f(v) is an

element ofM such that G[v, W̃f(v)] is monochromatic in the colour c(f(v)).

For each τ ∈ M, let Uτ = W̃τ ∪ f−1({τ}). By (3.51), (3.52), (3.46) and

Lemma 3.59 we have that

δ(Gc(τ)[Uτ ]) ≥ (1− 2k+1ε)|Uτ | for all τ ∈M. (3.55)

Note that the sets Uτ , τ ∈ M, partition the vertex set of G and so if

N ≥ 2k−1(n − 1) + 1 then by the pigeonhole principle there exists σ ∈ M
such that |Uσ| ≥ n. However, by (3.55) and Theorem 3.51, it follows that

Uσ contains a monochromatic copy of Cn in the colour c(σ), contrary to

assumption (†). We therefore have that N ≤ 2k−1(n− 1). Note that at this

point we have done enough to prove Theorem 3.2.

It remains to show that G is close in edit distance to a hypercube colouring.

Recall that |W̃ | ≤ 2εN and so there are at most 2εN2 edges of G incident to

W̃ . We now aim to show that G\W̃ is close to a hypercube colouring. Recall

that we have partitioned the vertex set of G\W̃ into the monochromatic,

equally sized cliques {W̃τ : τ ∈ M}. For σ ∈ M, we showed that |W̃σ| ≥
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(1 − 2ε)n and W̃σ is monochromatic in the colour c(σ). First note that at

most 2εn vertices of G\W̃σ have more than 2εn neighbours in W̃σ in the

colour c(σ) else we immediately find a monochromatic Cn in the colour c(σ)

in G. It follows that there are at most 2εnN edges leaving the clique W̃σ in

the colour c(σ). Over all τ ∈M, there are therefore at most 2kεnN < 3εN2

edges in total leaving a clique W̃τ in the colour c(τ).

Let Φ now be the multigraph on vertex setM where we have an edge between

σ and τ in the colour j for each j /∈ {c(σ), c(τ)} for which G[W̃σ, W̃τ ]

contains a matching of two edges in the colour j. First we observe that

to complete the proof it suffices to show that there exists an admissible

labelling ϕ of Φ (recall Definition 3.60). Indeed suppose that this is the

case, then since ϕ is admissible, for each pair of distinct σ, τ ∈ M and

each j /∈ ∆(ϕ(σ), ϕ(τ))∪ {c(σ), c(τ)}, we have that Gj [W̃σ, W̃τ ] contains no

matching of two edges and hence contains at most |W̃σ| < n edges in total.

It follows that there is a hypercube colouring H associated to the perfect

matching ϕ(M) of Qk, where H has vertex set V (G)\W̃ , such that for each

i ∈ [k],

|Gi4Hi| ≤ 2εN2 + |(G\W̃ )i4Hi| ≤ 2εN2 + 3εN2 + n

(
2k−1

2

)
≤ 6εN2.

The 2εN2 term accounts for edges of Gi incident to W̃ , the 3εN2 term

accounts for edges of Gi leaving a clique W̃τ where c(τ) = i, and the n
(

2k−1

2

)
term accounts for edges of Gi lying between pairs W̃τ , W̃σ for which i /∈
∆(ϕ(σ), ϕ(τ)) ∪ {c(σ), c(τ)}. We have thus shown that G is 6ε-close to H.

It remains to show that we have the desired labelling of Φ.

Claim 3.64. Φ contains no monochromatic odd cycle.

Proof of Claim. Suppose otherwise and let σ1 . . . σ` be an odd cycle in Φ

in the colour j. This allows us to fix a matching of size two in graphs

Gj [W̃σi , W̃σi+1 ] for i = 1, . . . , ` (where σ`+1 := σ1). Let S be the subset of

vertices of G saturated by these matchings and note that |S| < 2k+1. We

first aim to build a short even path in Gj with endpoints in W̃σ1 and W̃σ` .

Let x ∈ S ∩ W̃σ1 and suppose that for some 2 ≤ r < ` there exists y ∈ W̃σr

such that Gj contains an xy-path Pr of length r − 1 + 2L(r − 2) where

91



Chapter 3. Ramsey Numbers Via Nonlinear Optimisation

|Pr ∩ S ∩ W̃σr | = 1 and Pr ∩ S ∩ W̃σs = ∅ for r < s ≤ ` (note that this does

indeed hold for r = 2). We may then pick w ∈ W̃σr∩S and z ∈ W̃σr+1∩S such

that {w, z} is an edge of Gj [W̃σr , W̃σr+1 ] and w 6= y (here we are using that

we have a matching of size two available to us by the definition of Φ). By the

definition of Φ, σr is not in Ij and so by Corollary 3.56 there exists π ∈ M
such that Rj [Wσr ,Wπ] contains a connected perfect matching, F , whose

matching edges are edges of Tj . By Lemma 3.57 we see that Gj [W̃σr , W̃π]

contains a spanning (2k+1δ, 1/(k+ 1),m′)-super-regular blow-up of F where

2(1− ε)t′ ≤ v(F ) ≤ 2(1 + ε)t′ by (3.50). Moreover w and y lie in the same

part in the bipartition of this blow-up. By calculations similar to those made

previously, we may apply Lemma 3.46 to deduce that Gj [W̃σr , W̃π] contains

an yw-path Q of length 2L. Moreover, since |Pr ∪ S| ≤ 2kL and using

Fact 3.49 it is easy to ensure that Q only intersects Pr ∪ S at its endpoints.

It follows that Pr+1 := PrQz is an xz-path of length r + 2L(r − 1) where

|Pr+1 ∩ S ∩ W̃σr+1 | = 1 and Pr+1 ∩ S ∩ W̃σs = ∅ for r + 1 < s ≤ `. It

follows by recursion that there exists u ∈ W̃σ` and an xu-path P` of length

p := `− 1 + 2L(`− 2) and |P` ∩ S ∩ W̃σ` | = 1. Note that the length of P` is

even.

Finally, let {v, t} ⊆ S be an edge in Gj [W̃σ` , W̃σ1 ] where v ∈ W̃σ` and v 6= u.

If x = t then applying Lemma 3.46 as above we find a uv-path Q0 in the

colour j of length n−p−1 intersecting P`∪S only at its endpoints. It follows

that P`Q0x is a monochromatic copy of Cn contradicting (†). Similarly, if

x 6= t, we find a uv-path Q1 of length 2L and a tx-path Q2 of length

n − p − 2L − 1 both in the colour j so that P`Q1tQ2 is a monochromatic

copy of Cn contradicting (†). �

We now construct an admissible labelling of Φ recursively. Suppose thatM′

is a perfect matching of Qk and that ψ : M → M′ is some bijection. Let

σ, τ ∈M and suppose there is an edge f in Φ between σ and τ with colour

j not in ∆(ψ(σ), ψ(τ)). We will call such an edge ‘bad’ (with respect to ψ).

Let {f1, . . . , ft} be the set of edges of Φ that are bad with respect to the

identity map ι : M → M and note that ι is an admissible labelling of

Φ\{f1, . . . , ft}. Suppose now that ϕi is an admissible labelling of Φi :=
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Φ\{f1, . . . , fi} for some 1 ≤ i ≤ t. Suppose that fi is bad with respect

to ϕi and that fi has colour j and lies between σ, τ ∈ M. Note that

j /∈ {c(σ), c(τ)} by the definition of Φ. Moreover by the admissibility of ϕi

we have c(σ) = c(ϕi(σ)) and c(τ) = c(ϕi(τ)). Since fi is bad it follows that

we must have ϕi(σ)j = ϕi(τ)j ∈ {0, 1}. Let us show that σ, τ lie in separate

components of Φi
j (the jth colour class of Φi). Suppose otherwise and take a

path in Φi
j joining σ and τ . Since ϕi is admissible for Φi and ϕi(σ)j = ϕi(τ)j

this path must have even length. It follows that fi completes this path to a

monochromatic odd cycle in Φ contradicting Claim 3.64. Let C then denote

the component of Φi
j containing τ (so that σ /∈ C). Let ϕi−1 be the function

on M given by ϕi−1(τ) = ϕi(τ)j for all τ ∈ C, ϕi−1(τ) = ϕi(τ) otherwise.

By Lemma 3.61, ϕi−1 is an admissible labelling of Φi. Since

j ∈ ∆(ϕi(σ), ϕi(τ)j) = ∆(ϕi−1(σ), ϕi−1(τ)),

we also have that ϕi−1 is an admissible labelling of Φi−1. If fi is not bad

with respect to ϕi we simply let ϕi−1 = ϕi. Running this recursion to the

end we obtain an admissible labelling ϕ0 of Φ as required.

This completes the proof of Theorem 3.4. We end this chapter with a few

remarks about the off-diagonal case and a related problem. A simple adap-

tation of the proof method in this chapter proves the following generalisation

of Theorem 3.2.

Theorem 3.65. For all k ≥ 3 there exists Nk such that the following holds.

If Nk ≤ n1 ≤ n2 . . . ≤ nk are all odd then

R(Cn1 , . . . , Cnk) = 2k−1(nk − 1) + 1.

The off-diagonal case has been well-studied. Erdős et al. [28] determined the

value ofR(Cn, C`1 , C`2) andR(Cn, C`1 , C`2 , C`3) for `i fixed and n sufficiently

large. In a similar vein, as a corollary to a more general result in the study

of Ramsey goodness, Allen, Brightwell and Skokan [2] determined the value

of R(Cn, C`1 , . . . , C`k) for `i fixed and odd satisfying `i > 2i for 1 ≤ i ≤ k

and n sufficiently large. In [39], Figaj and  Luczak asymptotically determine

93



Chapter 3. Ramsey Numbers Via Nonlinear Optimisation

the Ramsey number of a triple of large cycles with any fixed combination

of parities for the cycle lengths. In the case where not all of the cycles have

the same parity, Ferguson [35, 36, 37] strengthened the asymptotic results

of [39] to exact results. It would be interesting to extend the methods of

the present chapter to such a mixed parity setting. More generally, we

would like to investigate whether the analytic approach presented here has

wider applications in Ramsey theory. As a starting point, we believe that

the methods presented in this chapter would be useful for approaching the

following conjecture of Benevides,  Luczak, Scott, Skokan and White [4] (at

least for large n).

Conjecture 3.66 ([4], Conjecture 8.1). Let n ≥ 3 and let k be an integer.

Let G be a k-coloured graph on n vertices with δ(G) ≥ (1 − 2−k)n, then

either:

• For all ` ∈ [min{2k, 3}, dn/2k−1e], G contains a monochromatic copy

of C`, or;

• G is a complete 2k-partite graph with vertex classes of equal size where

each colour class is bipartite.
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Chapter 4. Independent Sets and the Hard-Core Model

This chapter is based on joint work with Ewan Davies, Will Perkins and

Barnaby Roberts published in [24] and [25].

4.1 Introduction

4.1.1 Independent Sets in Regular Graphs

In this chapter we explore extremal problems related to independent sets in

regular graphs and triangle-free graphs of bounded degree. For a graph G

let I(G) be the set of independent sets in G. Recall from Section 1.4 that

the hard-core model with fugacity λ on G is a random independent set I

drawn according to the distribution

PG,λ[I] =
λ|I|

PG(λ)
, where PG(λ) =

∑
I∈I(G)

λ|I|.

The occupancy fraction αG(λ) of G is both the expected fraction of vertices

of G belonging to a random independent set I and the scaled logarithmic

derivative of the partition function PG:

αG(λ) =

∑
I∈I(G) |I|λ|I|

v(G)PG(λ)
=

λP ′G(λ)

v(G)PG(λ)
=

λ

v(G)
(logPG(λ))′ . (4.1)

In this chapter we will prove:

Theorem 4.1. For all d-regular graphs G and all λ > 0, we have

αG(λ) ≤ αKd,d(λ) =
λ(1 + λ)d−1

2(1 + λ)d − 1
.

Moreover, the maximum is achieved only by disjoint unions of Kd,d’s.

If 2d divides n, let Hd,n denote a disjoint union of Kd,d’s on n vertices. Note

that by linearity of expectation, we have αKd,d(λ) = αHd,n(λ).

From (4.1), it follows that

1

v(G)
logPG(λ) =

∫ λ

0

αG(t)

t
dt. (4.2)
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Thus, an immediate corollary of Theorem 4.1 is the result of Zhao [86]

stating that for λ > 0, PG(λ)1/v(G) is maximised over d-regular graphs by

Kd,d. Even more, it says that the ratio PKd,d(λ)1/(2d)/PG(λ)1/v(G) is strictly

increasing in λ for any d-regular graph G that is not a disjoint union of

Kd,d’s.

Broadly speaking, the proof of Theorem 4.1 proceeds by writing the oc-

cupancy fraction in terms of local probabilities related to our model and

then adding consistency constraints on these probabilities that must hold

for all regular graphs. We then view the occupancy fraction as an objec-

tive function and maximise under these constraints via linear programming.

If we restrict our attention to triangle-free graphs, and minimise at this

point, rather than maximise, we obtain a general lower bound on αG(λ) for

triangle-free graphs.

4.1.2 Independent Sets in Triangle-Free Graphs

The following theorem is written naturally in terms of the Lambert W func-

tion W (z): for z > 0, W (z) denotes the unique positive real satisfying the

relation W (z)eW (z) = z. It will be useful to note that for z ≥ e we have

W (z) ≥ log z − log log z.

Theorem 4.2. Let G be a triangle-free graph with maximum degree d. Then

for any λ > 0,

αG(λ) ≥ λ

1 + λ

W (d log(1 + λ))

d log(1 + λ)
. (4.3)

Note that we only require our graphs to be of maximum degree d, rather

than d-regular here. Theorem 4.2 yields the following corollary.

Corollary 4.3. Let G be a triangle-free graph on n vertices with maximum

degree d. Then

1

|I(G)|
∑

I∈I(G)

|I| ≥ (1 + od(1))
log d

d
n.

In other words, the average size of the independent sets in any n-vertex,

triangle-free graph of maximum degree d is at least (1 + od(1)) log d
d n. This
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should be compared to Shearer’s celebrated result [77] that in any n-vertex,

triangle-free graph of average degree d, the maximum size of its independent

sets is at least (1+od(1)) log d
d n. Both Theorem 4.3 and Shearer’s result imply

the best known upper bound on the Ramsey number R(3, k). We give the

short argument here.

Corollary 4.4 (Shearer [77]).

R(3, k) ≤ (1 + o(1))
k2

log k
.

Proof. Let G be a triangle-free graph with no independent set of size k.

Since G is triangle-free, all vertex neighbourhoods are independent sets and

so G must have maximum degree less than k. Applying Corollary 4.3 we

see that G contains an independent set of size at least (1 + ok(1)) log k
k v(G)

but less than k, and so v(G) < (1 + ok(1)) k2

log k as required.

Independent work of Bohman and Keevash [7] and Fiz Pontiveros, Griffiths,

and Morris [40] shows that R(3, k) ≥ (1/4 + o(1))k2/ log k. Reducing the

factor 4 gap between these bounds is a major open problem in Ramsey

theory. The above proof of Corollary 4.4 simply uses the average size of an

independent set as a lower bound for the maximum size. In Section 4.5 we

consider whether the discrepancy between the maximum and average size

can be exploited to improve the upper bound on R(3, k).

It is interesting to note that the lower bound in Theorem 4.2 is not monotone

in λ whereas for any graph G, αG(λ) is monotone increasing (see Proposi-

tion 4.11). Simply substituting λ = 1 into Theorem 4.2, does not quite

suffice to prove Corollary 4.3. Surprisingly it turns out to be better to use

a smaller λ and then appeal to the monotonicity of αG(λ). As an example,

using λ = 1/ log d in Theorem 4.2 is enough to prove Corollary 4.3. This

shows that Theorem 4.3 holds even when we replace the average size of an

independent set with a weighted average biased toward small sets. In fact

we can afford to bias using any λ of the form d−o(1).

We can use equation (4.2) to turn our lower bound on occupancy fraction

(Theorem 4.2) into a lower bound on partition function.
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Theorem 4.5. Let G be a triangle-free graph on n vertices with maximum

degree d. Then for all λ > 0,

PG(λ) ≥ exp
([
W (d log(1 + λ))2 + 2W (d log(1 + λ))

] n
2d

)
.

Taking λ = 1 in this Theorem yields the following immediate corollary.

Corollary 4.6. Let G be a triangle-free graph on n vertices with maximum

degree d. Then

|I(G)| ≥ e(
1
2

+od(1)) log2 d
d

n.

In comparison, Cooper, Dutta, and Mubayi [20] (improving on previous

results of Cooper and Mubayi [21]) proved that any triangle-free graph of

average degree d has at least e(
1
4

+od(1)) log2 d
d

n independent sets.

As a further corollary we get the following lower bound without degree

restrictions.

Corollary 4.7. Let G be a triangle-free graph on n vertices. Then

|I(G)| ≥ e
(√

2 log 2
4

+o(1)
)√

n logn
.

This improves on a result of Cooper, Dutta, and Mubayi [20] by a factor

of
√

2 in the exponent. The authors of [20] also provide a construction

based on the analysis of the triangle-free process in [7, 40] showing that the

optimal constant is at most 1 + log 2 ≈ 1.693 (compared to the constant
√

2 log 2
4 ≈ .294 in Corollary 4.7).

The layout of this chapter is as follows. In the next section we introduce

our method in the simpler context of triangle-free graphs. We give a proof

of Theorem 4.2 and show how the proof can be easily adapted to prove The-

orem 4.1 in the case where we restrict ourselves to triangle-free graphs. In

Section 4.3 we deduce Theorem 4.5. In Section 4.4 we prove Theorem 4.1 in

full generality. Finally in Section 4.5 we end with some conjectures and sug-

gest new strategies for improving the upper bound on the Ramsey number

R(3, k).
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4.2 Occupancy Fraction in Triangle-Free Graphs

In this section we restrict our attention to triangle-free graphs and introduce

the occupancy method. We will prove Theorem 4.2 and show how the proof

can be easily adapted to prove the triangle-free case of Theorem 4.1. We

also derive the various corollaries of Theorem 4.2.

There are two key steps to our proof of Theorem 4.2. First, we define a

random variable that depends on two sources of randomness: the random

independent set drawn from the hard-core model on G and a uniformly

chosen random vertex v ∈ V (G). We then express the occupancy fraction

in terms of two different expectations involving this random variable. This

gives a constraint on the distribution of the random variable. We then

optimise over all random variables that satisfy the constraint, and deduce a

bound on the occupancy fraction.

First let us introduce some useful terminology. Let I be an independent

set of G. We say a vertex v is occupied by I if v ∈ I and unoccupied by

I otherwise. Furthermore we say v is covered by I if N(v) ∩ I 6= ∅ and

uncovered by I otherwise. If there is no ambiguity we will simply say that v

is covered etc. without referring to the independent set I. Note that if v is

covered, it must be unoccupied. Finally, for a subset S ⊆ V (G), we define

the free vertices of S to be the set

SI := {v ∈ S : v uncovered by I \ S}.

In other words, if we reveal I only on the vertices outside of S, the free

vertices of S are those that could potentially be in I.

Before moving on to the proof of Theorem 4.2 let us establish a lemma

that we will make repeated use of throughout the rest of this chapter. We

establish what we will refer to as the ‘Gibbs property’ of the hard-core

distribution. The following lemma is simply a consequence of the well-

known fact that the hard-core distribution is a Gibbs distribution, however

we include a proof for completeness.

Lemma 4.8 (Gibbs Property). Let G be a graph and let U ⊆ S ⊆ V (G).

Let I be an independent set of G drawn from the hard-core model at fugacity
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λ. Then for T ∈ I(G[U ]) we have (provided that P(SI = U) > 0)

P[I ∩ U = T |SI = U ] =
λ|T |

PG[U ](λ)

i.e. conditioned on the event that SI = U , I ∩ U is distributed according to

the hard-core model on G[U ] at fugacity λ.

Proof. For any J ∈ I(G[U ]) let

IJ := {I ∈ I(G) : SI = U and I ∩ U = J}.

Note that for J ∈ I(G[U ]) the function

f : I∅ −→ IJ

I 7−→ I ∪ {J}

is a bijection. It follows that
∑

L∈IJ λ
|L| = λ|J |

∑
L∈I∅ λ

|L| and so

P[I ∩ U = T |SI = U ] =

∑
L∈IT λ

|L|∑
J∈I(G[U ])

∑
L∈IJ λ

|L| =
λ|T |∑

J∈I(G[U ]) λ
|J |

as required.

Proof of Theorem 4.2. Let G be a triangle-free graph on n vertices and let

I be a random independent set drawn from G according to the hard-core

model at fugacity λ. We begin by recording two simple consequences of

Lemma 4.8.

Claim 4.9. P[v ∈ I] = λ
1+λP[v uncovered]

Proof. Note that if P[v uncovered] > 0 then P[v ∈ I|v uncovered] = λ/(1 +

λ) by Lemma 4.8 with S = U = T = {v}. The result follows by noting that

if v is occupied then v is also uncovered. 2

Claim 4.10. If P[|N(v)I | = j] > 0, then

P[v uncovered||N(v)I | = j] = (1 + λ)−j .
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Proof. First note that the event that v is uncovered is the same as the event

that the free vertices in N(v) are all unoccupied. Let W be any subset of

N(v) of size j for which P[N(v)I = W ] > 0. Note that since G is triangle

free, N(v) is an independent set and so PG[W ](λ) = (1 + λ)j . The result

follows by taking S = N(v), U = W and T = ∅ in Lemma 4.8. 2

We now write the occupancy fraction as:

αG(λ) =
1

n

∑
v∈G

P[v ∈ I]

=
λ

1 + λ
· 1

n

∑
v∈G

P[v uncovered] (4.4)

=
λ

1 + λ
· 1

n

∑
v∈G

d∑
j=0

P[|N(v)I | = j] · (1 + λ)−j (4.5)

where (4.4) follows from Claim 4.9 and (4.5) from Claim 4.10. We define

the random variable Z = |N(v)I | for a uniformly chosen vertex v. Z has

two layers of randomness, that of I drawn from the hard-core measure, and

that of selecting v at random. Interpreting the RHS of (4.5) in terms of Z,

we obtain

αG(λ) =
λ

1 + λ
E[(1 + λ)−Z ] . (4.6)

Note also that since G is triangle-free, Z is simply the number of uncovered

neighbours of v (since N(v) is an independent set, elements of N(v) can

only be covered by vertices outside of N(v)). It follows that

EZ =
1

n

∑
v∈G

∑
u∼v

P[u uncovered] =
1 + λ

λ
· 1

n

∑
v∈G

∑
u∼v

P[u ∈ I],

where for the last equality we used Claim 4.9. Observe that in the sum∑
v∈G

∑
u∼v P[u ∈ I] each vertex u appears deg(u) times. Since G has

maximum degree d we can relate Z and αG(λ) in a second way as follows:

αG(λ) =
1

n

∑
v∈G

P[v ∈ I] ≥ 1

dn

∑
v∈G

∑
u∼v

P[u ∈ I] =
λ

1 + λ

EZ
d
. (4.7)

We aim to minimise the occupancy fraction subject to the constraints on the

distribution of Z given by (4.6) and (4.7). In fact we relax the optimisation

problem to optimise over all distributions of random variables Z that satisfy
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these constraints, not only those that arise from the hard-core model on a

graph.

By Jensen’s inequality applied to (4.6) we have

αG(λ) ≥ λ

1 + λ
· (1 + λ)−EZ .

Recalling also the lower bound (4.7) we have

1 + λ

λ
· αG(λ) ≥ max

{
EZ
d
, (1 + λ)−EZ

}
≥ min

x∈R+
max

{x
d
, (1 + λ)−x

}
.

To compute the minimum observe that x/d is increasing in x, whereas (1 +

λ)−x is decreasing. Then the minimum occurs at the value of x which makes

these quantities equal i.e. the x that satisfies

xelog(1+λ)x = d

and hence

log(1 + λ)x = W (d log(1 + λ)).

The result follows.

Before we explore the consequences of Theorem 4.2, we show how essentially

the same proof can be used to establish Theorem 4.1 in the case where G

is triangle free. The following proof is not needed for the general proof of

Theorem 4.1, however we believe it is worth giving a unified argument for

two results which have classical results of Kahn [55] and Shearer [77] as

corollaries.

Proof of Theorem 4.1 for triangle-free graphs. Note that since G is triangle

free, equation (4.6) holds for G and since G is d-regular, (4.7) holds with

equality throughout. That is we have

αG(λ) =
λ

1 + λ

EZ
d

=
λ

1 + λ
E[(1 + λ)−Z ], (4.8)

where we recall that Z is a random variable bounded between 0 and d. Now

instead of asking for the minimum value of αG(λ) over all distributions of Z

as we did in the proof of Theorem 4.2, we ask for the maximum. Note that

since 0 ≤ Z/d ≤ 1, convexity of the function x 7→ (1 + λ)−x implies that

(1 + λ)−Z ≤ Z

d
(1 + λ)−d + 1− Z

d
. (4.9)
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Substituting this into (4.8) and using linearity of expectation yields

αG(λ) =
λ

1 + λ

EZ
d
≤ λ(1 + λ)d−1

2(1 + λ)d − 1
, (4.10)

where the right hand side is the occupancy fraction of Kd,d. For uniqueness,

note that to have equality in (4.10) we must have had equality in (4.9) which

is only possible if Z takes only the values 0 and d. This distribution of Z

can only occur in a disjoint union of copies of Kd,d. To see this recall that Z

is the number of uncovered neighbours of a randomly selected vertex v. The

only way every vertex v can always have either 0 or d uncovered neighbours

is for all the neighbours of v to have the same neighbourhood. For d-regular

graphs this property holds only for disjoint unions of Kd,d.

In Section 4.4 we establish Theorem 4.1 in full generality. For now let us

return to Theorem 4.2. A curious feature of this result is that the lower

bound λ
1+λ

W (d log(1+λ))
d log(1+λ) is not monotone increasing with λ, whereas for any

graph G, the occupancy fraction αG(λ) is monotone increasing.

Proposition 4.11. For any graph G, αG(λ) is monotone increasing in λ.

Proof. We will show that the derivative of αG(λ) with respect to λ is positive.

By (4.1) (using P for PG(λ)), we have

v(G) · α′G(λ) =

(
λP ′

P

)′
=
P ′

P
+
λPP ′′ − λ(P ′)2

P 2

=
P ′

P
+

1

λ

(
λ2P ′′

P
−
(
λP ′

P

)2
)

=
E(|I|) + E(|I|2)− E(|I|)− (E(|I|))2

λ

=
var(|I|)

λ
≥ 0

where I is a random independent set drawn from the hard-core model at

fugactiy λ.

We now prove Corollary 4.3. Rather than substituting λ = 1 in Theorem 4.2,

it turns out to be better to use a smaller λ and then appeal to monotonicity.
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Proof of Corollary 4.3. Substituting λ = 1/ log d in (4.3) and recalling the

bound W (z) ≥ log z − log log z for z ≥ e we obtain

αG(λ) ≥ (1 + o(1))
log d

d
.

By monotonicity (Proposition 4.11), we have αG(1) ≥ αG(λ) and the result

follows.

4.3 Counting Independent Sets in Triangle-Free

Graphs

In this section we prove Theorem 4.5 (and hence Corollary 4.6) by integrat-

ing the lower bound on the occupancy fraction of a triangle-free graph given

in Theorem 4.2. We also prove Corollary 4.7.

Proof of Theorem 4.5. By (4.2) and Theorem 4.2 we have

logPG(λ) ≥ n

d

∫ λ

0

W (d log(1 + t))

(1 + t) log(1 + t)
dt

=
n

d

∫ W (d log(1+λ))

0
(1 + u) du

=
n

2d

[
W (d log(1 + λ))2 + 2W (d log(1 + λ))

]
, (4.11)

where for the first equality we used the substitution u = W (d log(1 + t)).

In particular when λ = 1, using the inequality W (z) ≥ log z − log log z for

z ≥ e, we have

logPG(λ) ≥
(

1

2
+ od(1)

)
log2 d

d
n.

Proof of Corollary 4.7. In a triangle-free graph the neighbourhood of any

vertex forms an independent set. Let d be the largest degree of a vertex in

G, then we have the bound

PG(λ) ≥ max
{

(1 + λ)d, exp
[ n

2d
W (d log(1 + λ))2

]}
,

by considering the neighbourhood of a vertex of maximum degree and by

inequality (4.11). The first expression is increasing in d while the second is
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decreasing, and at

d =
1

2

√
n

2 log(1 + λ)
log

(
n log(1 + λ)

2

)
they are equal. It follows that for λ > 0,

PG(λ) ≥ exp

[
1

2

√
n log(1 + λ)

2
log

(
n log(1 + λ)

2

)]
. (4.12)

Take λ = 1 to complete the proof.

Inequality (4.12) may be of independent interest, giving a general lower

bound for the independence polynomial of a triangle-free graph on n vertices.

4.4 Proof of Theorem 4.1

In this section, we prove Theorem 4.1 in full generality. Let G be a d-regular

graph on n vertices. For a vertex v ∈ G and an independent set I, we define

the free neighbourhood F (v) of v to be the subgraph of G induced by the

neighbours of v which are not adjacent to any vertex in I \ N(v) (i.e. the

graph induced by N(v)I). Recall that in the triangle-free case, the free

neighbourhood of a vertex v was simply an independent set of size j for

some 0 ≤ j ≤ d. Here, the free neighbourhood could be any graph on at

most d vertices. The vertices in the free neighbourhood may be uncovered

or covered by I, but if they are covered it must be from another vertex in

the free neighbourhood. Note that if v ∈ I, then the free neighbourhood of

v is necessarily empty.

Let C be the random free neighbourhood of v when we draw I according to

the hard-core model and choose vertex v uniformly at random from G. For

any graph F , let pF be the probability that C is isomorphic to F . Note that

pF =
1

n

∑
v∈G

P[F (v) = F ]. (4.13)

Note that we write F (v) = F to mean that F (v) is isomorphic to F . Let Cd
be the set of all graphs on at most d vertices, including the empty graph.

A key observation is that the occupancy fraction αG(λ) can be expressed
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in two distinct ways in terms of the random free neighbourhood C. Recall

that PC(λ) denotes the independence polynomial of C at fugacity λ.

Claim 4.12.

αG(λ) =
λ

1 + λ
E
[

1

PC(λ)

]
=
λ

d
E
[
P ′C(λ)

PC(λ)

]
where the expectations are over the random free neighbourhood C.

Proof. We proceed in a similar way to the proof of Theorem 4.2. First note

that for v ∈ G, v is uncovered if and only if all the vertices in the free

neighbourhood of v are unoccupied and so for F ∈ Cd

P[v uncovered|F (v) = F ] =
1

PF (λ)
(4.14)

by Lemma 4.8, taking S = N(v), T = ∅ and letting U be any subset of

N(v) for which G[U ] is isomorphic to F . Equation (4.14) is the analogue of

Claim 4.10 in this more general setting. Now we may write

αG(λ) =
1

n

∑
v∈G

P[v ∈ I]

=
λ

1 + λ
· 1

n

∑
v∈G

P[v uncovered] (4.15)

=
λ

1 + λ
· 1

n

∑
v∈G

∑
F∈Cd

1

PF (λ)
P[F (v) = F ] (4.16)

=
λ

1 + λ

∑
F∈Cd

1

PF (λ)

(
1

n

∑
v∈G

P[F (v) = F ]

)

=
λ

1 + λ

∑
F∈Cd

1

PF (λ)
pF . (4.17)

For (4.15) we used Claim 4.9, for (4.16) we used (4.14) and for (4.17) we

used (4.13). This establishes the first equality .
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Alternatively we may write

αG(λ) =
1

dn

∑
v∈G

∑
u∼v

P[u ∈ I] (4.18)

=
1

dn

∑
v∈G

∑
F∈Cd

(∑
u∼v

P[u ∈ I|F (v) = F ]

)
P[F (v) = F ] (4.19)

=
1

dn

∑
v∈G

∑
F∈Cd

λP ′F (λ)

PF (λ)
P[F (v) = F ] (4.20)

=
1

d

∑
F∈Cd

λP ′F (λ)

PF (λ)

(
1

n

∑
v∈G

P[F (v) = F ]

)

=
1

d

∑
F∈Cd

λP ′F (λ)

PF (λ)
pF .

For (4.18), we used that G is d-regular. For (4.20) note that the inner

bracket of (4.19) is the expected number of occupied neighbours of v, given

that F (v) = F which by Lemma 4.8 is
λP ′F (λ)

PF (λ) i.e. the expected size of an

independent set drawn from the hard-core model on F . 2

Now let

α∗ =
λ

1 + λ
· sup

{
E
[

1

PC(λ)

]
: E
[

1

PC(λ)

]
=

1 + λ

d
· E
[
P ′C(λ)

PC(λ)

]}
(4.21)

where the supremum is over all distributions of random free neighbourhoods

C supported on graphs of at most d vertices. From Claim 4.12, the distri-

bution obtained from G satisfies the constraint above and so αG(λ) ≤ α∗.

To complete the proof of Theorem 4.1 we will show that α∗ = αKd,d(λ).

Moreover we will show that any distribution attaining the supremum in

(4.21) must be supported only on the empty graph and the graph consisting

of d isolated vertices, Kd. The theorem follows since a disjoint union ofKd,d’s

is the only graph which gives rise to a distribution with such a support:

Claim 4.13. Suppose that G is a d-regular graph and pF = 0 for all F ∈
Cd \ {∅,Kd}. Then G is a disjoint union of Kd,d’s.

Proof. First note that if F = G[N(v)] for some v ∈ G, then pF > 0 since

we could pick v and the empty independent set. It follows that all vertex

neighbourhoods must induce a copy of Kd in G i.e. G is triangle-free.
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Suppose that G has a component H not isomorphic to Kd,d and pick v ∈
H. Since H is not isomorphic to Kd,d we can pick u,w ∈ N(v) such that

N(u) 6= N(w) i.e. we can choose z such that z is adjacent to u but not w.

If we choose the independent set consisting only of the vertex z then w is in

the free neighbourhood of v, but u is not. Thus, the free neighbourhood of

v is neither ∅ not Kd. 2

To prove our claim regarding the distributions that achieve α∗, we use the

language of linear programming introduced in Chapter 1.

4.4.1 The Linear Program

Recall that pF is the probability of a given free neighbourhood F . Equation

(4.21) leads us to consider the following linear program with the decision

variables {pF }C∈Cd .

maximise
λ

1 + λ

∑
F∈Cd

pF · aF

subject to
∑
F∈Cd

pF = 1

∑
F∈Cd

pF (aF − bF ) = 0

pF ≥ 0 ∀F ∈ Cd

where aF = 1
PF (λ) and bF =

(1+λ)P ′F (λ)

dPF (λ) . Note that an optimal solution of

this linear program will have objective value α∗.

The dual linear program is

minimise Λ1

subject to Λ1 + Λ2(aF − bF ) ≥ λ

1 + λ
aF ∀F ∈ Cd

where Λ1,Λ2 are the decision variables.

We will show that Λ1 = αKd,d(λ) = λ(1+λ)d−1

2(1+λ)d−1
and Λ2 = λ

1+λ−Λ1 is a feasible

solution to the dual program i.e. we will show that

Λ1 + Λ2(aF − bF ) ≥ λ

1 + λ
aF ∀F ∈ Cd. (4.22)
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We can calculate a∅ = 1, b∅ = 0, aKd
= (1 + λ)−d, bKd

= 1 and so (4.22)

holds with equality for F = ∅,Kd. We will in fact show that (4.22) holds

with strict inequality for all F ∈ Cd \ {∅,Kd}. Substituting our values of

Λ1,Λ2, this inequality reduces to showing that

λP ′F (λ)

PF (λ)− 1
<
λd(1 + λ)d−1

(1 + λ)d − 1
∀F ∈ Cd \ {∅,Kd}. (4.23)

The LHS of (4.23) is the expected size of the random independent set from

the hard-core model on F conditioned on it being non-empty. The RHS is

the same quantity for Kd.

Inequality (4.23) follows directly from the observation that, over all F ∈ Cd,
the graph Kd maximises the ratio of subsequent terms in the polynomial

PF . Let ti =
(
d
i

)
, the coefficient of λi in PKd

, and write PF = 1 +
∑d

i=1 riλ
i.

We have (i + 1)ti+1 = (d − i)ti and (i + 1)ri+1 ≤ (d − i)ri by counting

independent sets of size i+ 1 (recall that F has at most d vertices).

To verify (4.23) we show that for each 1 ≤ k ≤ d the coefficient sk of λk in

the polynomial (λP ′
Kd

)(PF − 1)− (λP ′F )(PKd
− 1) is non-negative. We have

sk =
k−1∑
i=1

itirk−i −
k−1∑
i=1

itk−iri

=

bk/2c∑
i=1

(k − 2i)(tk−iri − tirk−i) .

Observe that each term in the above sum is non-negative by comparing the

ratio of successive coefficients in PKd
and PF . Furthermore, if PF 6= PKd

then at least one sk must be positive and (4.23) follows. It follows by weak

duality (Theorem 1.3) that

α∗ ≤ Λ1 = αKd,d(λ). (4.24)

Of course we in fact have equality in (4.24) as witnessed by the distribution

associated to Kd,d: p∅ = 1−(1+λ)−d

2−(1+λ)−d
, pKd = 1

2−(1+λ)−d
, pF = 0 for all F ∈ Cd \

{∅,Kd}. The strict inequality in (4.23) shows, by complementary slackness

(Theorem 1.4), that any optimal solution must be supported only on the

configurations ∅ and Kd. Recall that by Claim 4.13, disjoint unions of Kd,d

are the only graphs which induce a distribution with this support. The

result follows.
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4.5 On the Ratio of the Maximum and Average

Independent Set Size

In light of Corollary 4.3, showing that the average size of an independent set

in a triangle-free graph with maximum degree d is at least (1 + od(1)) log d
d n,

we now raise the question of whether the largest independent set should

be significantly larger. This gives a new way to pursue an upper bound

on R(3, k). There is always a gap between the maximum and average size

of an independent set (since the empty set is an independent set), but in

general the ratio of maximum to average size can be arbitrarily close to 1.

For example, the complete graph Kn has maximum independent set size 1

with average size n/(n+ 1).

We conjecture that such a narrow gap cannot occur in triangle-free graphs.

The following two conjectures make this claim precise in different ways. We

let α(G) denote the average size of the independent sets in G and let α(G)

denote the largest size of an independent set in G.

Conjecture 4.14. For every triangle-free graph G,

α(G)

α(G)
≥ 4/3.

Replacing 4/3 with any number strictly greater than 1 would give an im-

provement to the R(3, k) bound. The graph with the smallest ratio α/α

we have found is the triangle-free cyclic graph that exhibits the bound

R(3, 9) ≥ 36 [49]. For this graph α/α = 197136
137585 = 1.43283 . . . . We choose

4/3 since it is a nice fraction less than 1.43 and since it is the ratio of maxi-

mum to average size in a triangle. One might wonder if the extremal R(3, k)

graphs are good candidates for pushing the ratio α/α down to 1. However,

for large k it may be the case that graphs arising from the triangle-free pro-

cess are asymptotically extremal, as is conjectured in [40]. We believe that

for such graphs the ratio α/α in fact converges to 2. This motivates the

following conjecture.

Conjecture 4.15. For every triangle-free graph G of minimum degree d,

α(G)

α(G)
≥ 2− od(1).
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Lemma 4.16. The following improvements to Shearer’s upper bound on

R(3, k) would follow from the above conjectures and Corollary 4.3.

1. Conjecture 4.14 implies R(3, k) ≤ (3/4 + o(1))k2/ log k.

2. Conjecture 4.15 implies R(3, k) ≤ (1/2 + o(1))k2/ log k.

Proof. Let G be a triangle-free graph on n vertices with no independent set

of size k. Since vertex neighbourhoods in G are independent sets we see that

G must have maximum degree less than k. Corollary 4.3 and Conjecture 4.14

would then imply that α(G) ≥ (4/3 + ok(1)) log k
k n. However, we also have

that α(G) < k and so n ≤ (3/4 + o(1))k2/ log k.

To show (2), we select a vertex in G with degree less than k/ log2 k and

remove it along with all its neighbours. We then repeat this process until

it is no longer possible and call the remaining graph G′. Since the selected

vertices form an independent set in G, we can repeat the process at most

k times and so v(G′) ≥ n − k2/ log2 k. If G′ is empty then n ≤ k2/ log2 k,

otherwise G′ is a graph of minimum degree at least k/ log2 k. Since G′ also

has maximum degree k it follows from Corollary 4.3 and Conjecture 4.14 that

α(G′) ≥ (2 + ok(1)) log k
k (n − k2

log2 k
). However, we also have that α(G′) ≤

α(G) < k and so n ≤ (1/2 + o(1))k2/ log k.

One possible approach to the above conjectures is via the following simple

consequence of the proof of Proposition 4.11. For any graph G on n vertices

α(G) = v(G) lim
λ→∞

αG(λ) = α(G) +

∫ ∞
1

varλ(|I|)
λ

dλ.

In this chapter we gave a lower bound for α(G), the expected size of an

independent set drawn from a triangle-free graph according to the hard-

core model. The above equation shows that one approach to the above

conjectures would be to do the same for the variance.
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This chapter is based on joint work with Ewan Davies, Will Perkins and

Barnaby Roberts published in [24].

5.1 Introduction

Recall from Section 1.4 that the matching polynomial of a graph G is

MG(λ) =
∑

H∈M(G)

λ|H|

whereM(G) is the set of all matchings of G (including the empty matching)

and |H| is the number of edges in the matching H. Just as in the hard-core

model we can define a probability distribution over matchings:

PG,λ[H] =
λ|H|

MG(λ)
.

For a d-regular graph G, the edge occupancy fraction, or the dimer density,

is the expected fraction of the edges of G in such a random matching:

αMG (λ) :=
1

e(G)

∑
H∈M(G)

|H| · P[H] =
λ

e(G)
(logMG(λ))′ .

We then have
1

e(G)
logMG(λ) =

∫ λ

0

αMG (t)

t
dt. (5.1)

Our next result is an upper bound on the edge occupancy fraction of any

d-regular graph:

Theorem 5.1. For all d-regular graphs G and all λ > 0, we have

αMG (λ) ≤ αMKd,d(λ) .

Moreover, the maximum is achieved only by disjoint unions of Kd,d’s.

It follows by (5.1) that Kd,d (and thus also Hd,n) maximises MG(λ)1/e(G)

over all d-regular graphs for any λ > 0. This resolves Conjecture 7.1 in [45].

A corollary of Bregman’s theorem [13] on the permanents of 0/1 matrices

with given row sums is that the number of perfect matchings of a d-regular,
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n-vertex bipartite graph is maximised by Hd,n, and this was extended by

Kahn and Lovász to all d-regular graphs (see [45] for a full discussion). Our

result on MG(λ) extends this: letting λ→∞ recovers the result for perfect

matchings, while setting λ = 1 shows that Hd,n maximises the total number

of matchings of any d-regular graph on n vertices.

For a graph G, let mk(G) denote the number of matchings with k edges in

G. The Upper Matching Conjecture of Friedland, Krop, and Markström [44]

asserts that over all n-vertex d-regular graphs, Hd,n should in fact maximise

mk(G) for all k (when 2d divides n). Previous bounds towards this conjec-

ture were given in [15, 54]; for d fixed and k linear in n, all previous bounds

were off the conjectured values by a multiplicative factor exponential in n.

In Section 5.3 we use Theorem 5.1 along with a theorem of Heilman and

Lieb [52] to give a bound that is tight up to a factor of 7
√
k (which is at

worst 7
√
n/2), for all d.

Theorem 5.2. For all d-regular graphs G on n vertices where 2d|n,

mk(G) ≤ 7
√
k ·mk(Hd,n) .

Although the Upper Matching Conjecture remains open, Theorem 5.2 is

strong enough to imply the Asymptotic Upper Matching Conjecture of Fried-

land, Krop, Lundow, and Markström [43]. We defer the precise statement

of this conjecture to Section 5.3.

5.2 Proof of Theorem 5.1

The proof of Theorem 5.1 follows the same general approach as the proof

of Theorem 4.1 from the previous chapter. Given a graph G, we express its

edge occupancy fraction as a linear function of certain ‘local probabilities’

related to the monomer-dimer model on G. We then optimise the occupancy

fraction subject to linear consistency constraints on these probabilities that

must hold for all regular graphs.

First let us introduce some useful notation and terminology similar to that

used in the previous chapter. Let G be a graph and let H be a matching in
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G. We refer to an edge e of G as covered by H if an edge incident to e is in

H. We say that e is uncovered by H otherwise. We may simply say that e

is covered/uncovered if the matching H is clear from the context.

For a subset S ⊆ E(G), we define the set

SH := {e ∈ S : e uncovered by H \ S}.

In other words, if we reveal H only on the edges outside of S, the edges of

SH are those that could potentially be in H.

By applying Lemma 4.8 from the previous chapter to the line graph of a

graph G we recover the Gibbs property for the monomer-dimer model. In

the following statement we identify a graph with its edge set.

Lemma 5.3. Let G be a graph and let U ⊆ S ⊆ E(G). Let H be a matching

in G drawn from the monomer-dimer model at fugacity λ. Then for T ∈
M(U) we have (provided that P(SH = U) > 0)

P[H ∩ U = T |SH = U ] =
λ|T |

MU (λ)
.

I.e. conditioned on the event that SH = U , H ∩ U is distributed according

to the monomer-dimer model on U at fugacity λ.

Now, let G be a d-regular graph on n vertices and let H be a random

matching drawn from the monomer-dimer model on G at fugacity λ.

For an edge e, we define the free neighbourhood F (e) of e to be the subgraph

of G containing all of the edges incident to e that are uncovered by edges

outside of both e and its incident edges. Note that when considering in-

dependent sets in the previous chapter, the free neighbourhood was empty

if the random vertex v was in the independent set. Here the presence or

absence in the matching of e or an edge adjacent to e does not affect F (e).

Let us give each edge ofG an arbitrary orientation that we fix throughout the

proof i.e. for each edge e ∈ G, one endpoint of e is chosen to be the ‘left side’

and the other endpoint the ‘right side’. The possible free neighbourhoods of

an edge e are then completely defined by three parameters: `(e), r(e), t(e) ∈
{0, 1, . . . , d− 1}, counting the number of edges incident to the left side of e
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in F (e) with an endpoint of degree 1, the same for the right side, and the

number of triangles formed by e and F (e). We write F (e) = (i, j, k) as a

shorthand to denote the event that (`(e), r(e), t(e)) = (i, j, k). An example

is pictured below.

e

t = 1

r = 2` = 3

We denote the matching polynomial for such a free neighbourhood by Mi,j,k,

where we can compute

Mi,j,k(λ) = 1 + (i+ j + 2k)λ+
[
k2 + k(i+ j − 1) + ij

]
λ2 .

Let e be an edge of G chosen uniformly at random and let q(i, j, k) denote

the probability that F (e) = (i, j, k) i.e.

q(i, j, k) =
2

dn

∑
e∈G

P[F (e) = (i, j, k)].

We can write αMG as the expected fraction of edges incident to e that are in

the random matching H:

αMG (λ) =
2

dn

∑
e

∑
f∼e

1

2(d− 1)
P[f ∈ H] (5.2)

=
2

dn

∑
e

∑
i,j,k

1

2(d− 1)

∑
f∼e

P[f ∈ H|F (e) = (i, j, k)]

P[F (e) = (i, j, k)]

=
2

dn

∑
e

∑
i,j,k

1

2(d− 1)

λM ′i,j,k(λ)

(λ+Mi,j,k(λ))
P[F (e) = (i, j, k)] (5.3)

=
∑
i,j,k

λM ′i,j,k(λ)

2(d− 1)(λ+Mi,j,k(λ))
q(i, j, k) .
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For (5.2) we used that G is d-regular and for (5.3) we used Lemma 5.3: con-

ditioned on the event F (e) = (i, j, k), H ∩ (F (e)∪e) is distributed according

to the monomer-dimer model on F (e)∪e at fugacity λ. Note that the match-

ing polynomial of F (e) ∪ e is λ + Mi,j,k and so α(i, j, k) := 1
2(d−1)

λM ′i,j,k
λ+Mi,j,k

is the expected fraction of neighbours of e that are in H conditioned on

the event F (e) = (i, j, k). With this notation the above expression can be

written αMG =
∑

i,j,k α(i, j, k)q(i, j, k).

5.2.1 The Linear Program for Matchings

Our goal is to introduce linear consistency constraints on the q(i, j, k) and

then optimise αMG =
∑

i,j,k α(i, j, k)q(i, j, k) subject to these constraints. We

could write multiple expressions for αMG , equate them, and solve the max-

imisation problem as we did for independent sets in Chapter 4. Using three

expressions for αMG we were able to prove Theorem 5.1 for the case d = 3, in

which the optimal distribution is supported on only three values: q(0, 0, 0),

q(1, 1, 0), q(2, 2, 0). But in general we need at least d− 1 constraints (in ad-

dition to the constraint that the q(i, j, k)′s sum to one) as the distribution

induced by Kd,d is supported on d values.

Instead we write, for all t, two expressions for the probability that the num-

ber of uncovered neighbours on a randomly chosen side of a random edge is

equal to t. We find the two expressions by choosing uniformly: a random

edge e, a random side of e left or right, and f , a random neighbouring edge of

e from the given side. We first calculate the probability that e has t uncov-

ered neighbours on the side incident to f , then we calculate the probability

that f has t uncovered neighbours on the side incident to e.

Given an edge e of G with free neighbourhood F (e) = (i, j, k), e can have

0, 1, i+k−1, or i+k uncovered left neighbours; an edge f to the left of e can

have 0, 1, i+ k− 2, i+ k− 1, i+ k, or i+ k+ 1 uncovered neighbours on the

side containing e (depending on whether f itself is in F (e)). To save space

we use ‘nbrs’ as an abbreviation for ‘neighbours’ in some of the following

displayed equations.
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Let

γei,j,k(t) := P[e has t uncovered left nbrs |F (e) = (i, j, k)]

and

γfi,j,k(t) := P[f has t uncovered nbrs on the side containing e|F (e) = (i, j, k)]

where f is a uniformly chosen left neighbour of e.

Claim 5.4. Let βt = 1 + tλ. Then we have

γei,j,k(t) =
1

λ+Mi,j,k

(
1t=0 · λ+ 1t=1 · [iλβj+k + kλβj+k−1] (5.4)

+ 1t=i+k · βj + 1t=i+k−1 · kλ
)

γfi,j,k(t) =
1

(d− 1)(λ+Mi,j,k)

(
1t=0 · [iλβj+k + kλβj+k−1] (5.5)

+ 1t=1 · [(d− 1)λ+ (d− 2)(iλβj+k + kλβj+k−1)]

+ 1t=i+k−2 · [(i+ k − 1)kλ] + 1t=i+k−1 · [(d− i− k)kλ+ (i+ k)jλ]

+ 1t=i+k · [(d− 1− i− k)jλ+ (i+ k)] + 1t=i+k+1 · [d− 1− i− k]
)
.

Proof. We refer to edges of F (e) that are incident to the left endpoint of e

as left edges, we define right edges similarly, and we refer to edges of F (e)

that are in a triangle of F (e) ∪ e as triangle edges.

To compute the γei,j,k’s we consider the following disjoint events: 1) a left

edge is in the matching 2) e is in the matching 3) no left edge or triangle

edge is in the matching 4) no left edge is in the matching, but a right

triangle edge is in the matching. These events happen with probability
iλβj+k+kλβj+k−1

λ+Mi,j,k
, λ
λ+Mi,j,k

,
βj

λ+Mi,j,k
, and kλ

λ+Mi,j,k
respectively (by Lemma 5.3).

Under these events the number of uncovered neighbours of e is 1, 0, i + k,

and i+ k − 1 respectively. This gives (5.4).

To compute the γfi,j,k’s we refine the above events to include the possible

choices of f : f can be an edge outside F (e) with probability (d − 1 − i −
k)/(d− 1); a non-triangle edge in F (e) with probability i/(d− 1); a triangle

edge in F (e) with probability k/(d− 1). If a left edge is in the matching we

choose it as f with probability 1/(d−1), and if a right triangle edge is in the

matching we choose f adjacent to it with probability 1/(d− 1). Computing

the number of uncovered neighbours of f in each case gives (5.5).
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We are now in a position to build our extra constraints on the q(i, j, k)′s.

Let e be an edge of G chosen uniformly at random and let s be a uniformly

chosen side left/right of e. Then, by conditioning on the free neighbourhood

of e and the value of s, for each t ∈ {0, . . . , d− 1} we have,

P[e has t uncovered nbrs on side s] =
∑
i,j,k

q(i, j, k)
1

2

[
γei,j,k(t) + γej,i,k(t)

]
.

Let f be a neighbouring edge of e from the side s chosen uniformly at random

and let h be the side of f which contains e. Note that since G is d-regular,

(f ,h) is also an edge chosen uniformly at random from G with a uniformly

chosen side. It follows that

P[e has t uncovered nbrs on side s] = P[f has t uncovered nbrs on side h].

Again by conditioning on the free neighbourhood of e and the value of s we

have,

P[f has t uncovered nbrs on side h] =
∑
i,j,k

q(i, j, k)
1

2

[
γfi,j,k(t) + γfj,i,k(t)

]
.

It follows that for each t ∈ {0, . . . , d− 1} we have the constraint∑
i,j,k

q(i, j, k)
1

2

[
γfi,j,k(t) + γfj,i,k(t)− γ

e
i,j,k(t)− γej,i,k(t)

]
= 0.

This leads us to consider the following linear program.

max
∑
i,j,k

q(i, j, k)α(i, j, k)

s.t.
∑
i,j,k

q(i, j, k) = 1

∑
i,j,k

q(i, j, k)
1

2

[
γfi,j,k(t) + γfj,i,k(t)− γ

e
i,j,k(t)− γej,i,k(t)

]
= 0 ∀ t = 0, . . . , d− 2

q(i, j, k) ≥ 0 ∀ i, j, k .

Note that we omit the t = d − 1 constraint since it is redundant. Let us

denote the optimal solution to this linear program by α∗ and note that

αG(λ) ≤ α∗ for all d-regular graphs G. We expect the q(i, j, k) distribution
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arising from Kd,d (or a disjoint union of Kd,d’s) to be optimal. The follow-

ing observation will be useful in guiding us toward a solution of our linear

program.

Claim 5.5. Suppose that the distribution q(i, j, k) is supported only on

triples with i = j and k = 0. Then G must be a disjoint union of Kd,d’s.

Proof. First note that G must be triangle free, else we could pick an edge in

k > 0 triangles and the empty matching so that q(d−1−k, d−1−k, k) > 0.

Let C be a connected component of G and let e = {u, v} be an edge of

C (where we suppose u is the ‘left’ vertex of e). Suppose that there exists

an edge f in G that is incident to a vertex in N(u) and not incident to

any vertex in N(v) (note that since C is triangle free, N(u) and N(v) are

disjoint). Picking the edge e and the matching consisting only of the edge

f would then show that q(i, d− 1, 0) > 0 where i = d− 2 or d− 3. It follows

that all edges that are incident to a vertex in N(u) must also be incident

to a vertex in N(v). Since C is d-regular it must be the case that all edges

between N(u) \ {v} and N(v) \ {u} are present and so C is isomorphic to

Kd,d. 2

The dual linear program is

min Λ

s.t. Λ− α(i, j, k) +

d−2∑
t=0

Λt
1

2

[
γfi,j,k(t) + γfj,i,k(t)− γ

e
i,j,k(t)− γej,i,k(t)

]
≥ 0 ∀ i, j, k

where Λ,Λ0, . . . ,Λd−2 are the dual variables. To show that Kd,d is optimal,

we find values for the dual variables so that the dual constraints hold with

Λ = αMKd,d . To find such Λt’s, we solve the system of equations generated by

setting equality in the constraints corresponding to i = j and k = 0.

With this choice of Λt’s, we start by simplifying the form of the dual con-

straints with a substitution coming from equality in the (i, j, k) = (0, 0, 0)

constraint. The (0, 0, 0) dual constraint has the simple form

Λ0 − Λ1 = αMKd,d .
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Moreover, observe that from the 1t=0 and 1t=1 terms in γei,j,k(t) and γfi,j,k(t),

every dual constraint contains the term[
α(i, j, k)− λ

(λ+Mi,j,k)

]
(Λ0 − Λ1) =

[
α(i, j, k)− λ

(λ+Mi,j,k)

]
αMKd,d .

With this simplification, we multiply through by 2(d − 1)(λ + Mi,j,k) and

expand α(i, j, k) terms to obtain the following form of the dual constraints

(recall that we use βt to denote 1 + tλ).

αMKd,d
[
λM ′i,j,k + 2(d− 1)Mi,j,k

]
− λM ′i,j,k (5.6)

+ Λi+k−2 · (i+ k − 1)kλ

+ Λi+k−1 · [(d− i− k)kλ+ (i+ k)jλ− (d− 1)kλ]

+ Λi+k · [(d− 1− i− k)jλ+ i+ k − (d− 1)βj ]

+ Λi+k+1 · (d− 1− i− k)

+ Λj+k−2 · (j + k − 1)kλ

+ Λj+k−1 · [(d− j − k)kλ+ (j + k)iλ− (d− 1)kλ]

+ Λj+k · [(d− 1− j − k)iλ+ j + k − (d− 1)βi]

+ Λj+k+1 · (d− 1− j − k) ≥ 0 .

The (i, i, 0) equality constraints now read

αMKd,dβi
(
βi + iλ

d−1

)
− iλβi

d−1 + Λi−1
i2λ
d−1 − Λi

d−1−i+i2λ
d−1 + Λi+1

d−1−i
d−1 = 0 . (5.7)

With this we can write Λi+k+1 in terms of Λi+k and Λi+k−1, and similarly

for Λj+k+1. Substituting this into (5.6) and dividing by λ we derive the

simplified form of the dual constraints:

λ
[
(i− j)2 + 2k

]
(1− dαMKd,d) (5.8)

+ Λi+k−2(i+ k − 1)k + Λi+k−1[k + (i+ k)(j − i− 2k)]

+ Λi+k(i+ k)(i+ k − j)

+ Λj+k−2(j + k − 1)k + Λj+k−1[k + (j + k)(i− j − 2k)]

+ Λj+k(j + k)(j + k − i) ≥ 0 .

Write L(i, j, k) for the LHS of this inequality.
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The constraint for t = d − 1 was omitted, but we nonetheless introduce

Λd−1 := 0 in order to simplify the presentation of the argument. The (d −
1, d− 1, 0) equality constraint gives Λd−2 directly:

Λd−2 =
1

(d− 1)λ

[
λ+ (d− 1)λ2 − αMKd,dβd−1βd

]
.

With Λd−1, Λd−2, and the recurrence relation (5.7) the dual variables are

fully determined.

We now reduce the problem of showing that the dual constraints (5.8) cor-

responding to triples (i, j, k) with k > 0 or i 6= j hold with strict inequality

to showing that a particular function is increasing. We go on to prove this

fact in Claims 5.6 and 5.7.

Putting k = 0 into (5.8) gives:

L(i, j, 0)

(j − i)
= λ(j − i)(1− dαMKd,d) + iΛi−1 − iΛi − jΛj−1 + jΛj

= Fd(j)− Fd(i)

where

Fd(t) := t
[
λ(1− dαMKd,d) + Λt − Λt−1

]
. (5.9)

From (5.8) we obtain

L(i− 1, j − 1, k + 1)− L(i, j, k) =Fd(i+ k)− Fd(i+ k − 1)

+ Fd(j + k)− Fd(j + k − 1).

Therefore, if Fd(t) is strictly increasing, we have L(i, j, 0) > 0 for i 6= j, and

L(i− 1, j − 1, k + 1) > L(i, j, k) > · · · > L(i+ k, j + k, 0) ≥ 0.

We first find an explicit expression for Fd(t). Recall that we write MKt,t for

the matching polynomial of the graph Kt,t, that is MKt,t(λ) =
∑t

i=0

(
t
i

)2
i!λt.

Claim 5.6. For all d ≥ 2 and 1 ≤ t ≤ d− 1,

Fd(t) =
t(d− 1)

MKd,d

d−2∑
`=t−1

(d− 1− t)!
(`+ 1− t)!

λd−`MK`,` . (5.10)

Proof. We will use the following two facts:

MKd,d − β2d−1MKd−1,d−1
+ (d− 1)2λ2MKd−2,d−2

= 0 (5.11)

αMKd,d =
λMKd−1,d−1

MKd,d

. (5.12)

123



Chapter 5. Matchings and the Monomer-Dimer Model

The first is a Laguerre polynomial identity, verifiable by hand; the second is

also a short calculation. The equality dual constraint (5.7) implies:

(d− 1− t)Fd(t+ 1) = (t+ 1)[tλFd(t) + (d− 1)λ− (d− 1)αMKd,dβd+t] .

We first show that the right hand side of (5.10) satisfies the above recurrence

relation. Using (5.12) this amounts to showing that the following expression

is equal to zero for all d ≥ 2 and 1 ≤ t ≤ d− 1:

Φd(t) :=(d− 1− t)!

(
d−2∑
`=t

λd−`MK`,`

(`− t)!
− t2

d−2∑
`=t−1

λd+1−`MK`,`

(`+ 1− t)!

)
− λ(MKd,d − βd+tMKd−1,d−1

) .

We proceed by induction on d. Note that when d = 2, Φ2(1) is easily verified

to be zero. Note that

Φd+1(t) = λ
(

(d− t)Φd(t)−MKd+1,d+1
+ β2d+1MKd,d − d

2λ2MKd−1,d−1

)
.

By the induction hypothesis and (5.11) the result follows. To complete the

proof of the claim it suffices to show that (5.10) holds for t = d−1. Recalling

that

Λd−1 = 0

Λd−2 =
1

d− 1
+ λ−

αMKd,d
(d− 1)λ

βdβd−1 ,

substituting into (5.9), and using (5.11) and (5.12) we have

Fd(d− 1) = (d− 1)

[
λ(1− dαMKd,d)−

1

d− 1
− λ+

αMKd,d
(d− 1)λ

βdβd−1

]

=
αMKd,d
λ

β2d−1 − 1

=
1

MKd,d

[
β2d−1MKd−1,d−1

−MKd,d

]
=

(d− 1)2λ2MKd−2,d−2

MKd,d

,

verifying (5.10) for t = d− 1.

Using Claim 5.6 we prove the following.
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Claim 5.7. Fd(t) is strictly increasing as a function of t.

Proof. To prove that Fd(t) is increasing, we show that

Rd(t) :=
MKd,d

(d− 1)
· Fd(t+ 1)− Fd(t)

(d− 2− t)!

= (t+ 1)

d−2∑
`=t

λd−`

(`− t)!
MK`,` − t(d− 1− t)

d−2∑
`=t−1

λd−`

(`+ 1− t)!
MK`,`

is positive for each t with 1 ≤ t ≤ d−2. We do this by fixing t and inducting

on d from t + 2 upwards. A useful inequality will be MKt,t > tλMKt−1,t−1

which comes from only counting matchings of Kt,t that use a specific vertex.

Iterating this inequality we obtain

MKt,t >
t!

`!
λt−`MK`,` for 0 ≤ ` ≤ t− 1 . (5.13)

For the base case of our induction, d = t + 2, we have Rd(d − 2) =

λ2
[
MKd−2,d−2

− (d− 2)λMKd−3,d−3

]
which by (5.13) is positive.

For the inductive step we have

Rd+1(t) = λ

[
Rd(t) +

λ

(d− 1− t)!
MKd−1,d−1

−
d−2∑
`=t−1

tλd−`

(`− t+ 1)!
MK`,`

]
and so it is sufficient to show

d−2∑
`=t−1

tλd−`

(`+ 1− t)!
MK`,` <

λ

(d− 1− t)!
MKd−1,d−1

. (5.14)

We use the inequality (5.13) in each term of the sum to see that the LHS of

(5.14) is less than

d−2∑
`=t−1

t`!λ

(`+ 1− t)!(d− 1)!
MKd−1,d−1
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and so

d−2∑
`=t−1

tλd−`

(`+ 1− t)!
MK`,` <

d−2∑
`=t−1

t`!λ

(`+ 1− t)!(d− 1)!
MKd−1,d−1

=
λMKd−1,d−1

(d− 1− t)!
·
d−2∑
`=t−1

t`!(d− 1− t)!
(`+ 1− t)!(d− 1)!

=
λMKd−1,d−1

(d− 1− t)!
·
(
d− 1

t

)−1

·
d−2∑
`=t−1

(
`

t− 1

)
=
λMKd−1,d−1

(d− 1− t)!
,

therefore (5.14) holds as required.

This completes the proof of dual feasibility and hence

α∗ ≤ αMKd,d(λ)

by weak duality (Theorem 1.3). Strict inequality in the dual constraints

outside of the (i, i, 0) constraints implies, by complementary slackness (The-

orem 1.4), that the support of any optimal solution in the primal is con-

tained in the set of (i, i, 0) configurations. Theorem 5.1 follows since the

distribution arising from Kd,d is optimal and disjoint unions of Kd,d’s are

the only graphs which induce a distribution supported on the set of (i, i, 0)

configurations (Claim 5.5).

5.3 Matchings of a Given Size

In this section we prove Theorem 5.2 and show how the Asymptotic Up-

per Matching Conjecture of Friedland, Krop, Lundow, and Markström [43]

follows as a corollary.

Recall that if H is a random matching drawn from the monomer-dimer

model on G at fugacity λ then we have

E|H| =
λM ′G(λ)

MG(λ)
. (5.15)
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By a calculation identical to the one given in the proof of Theorem 4.11 from

the previous chapter we also have the following expression for the variance:

var|H| = λ · d
dλ

E|H| . (5.16)

We will make use of the celebrated Heilman-Lieb Theorem [52] which asserts

that for any graph G, the roots of the matching polynomial MG are all real.

In particular, if ν = ν(G) is the maximum number of edges in a matching

in G, then we can write

MG(λ) =

ν∏
i=1

(1 + λri), (5.17)

where all the ri’s are real.

Moreover, if a probability distribution has a generating function with the

form (5.17) (properly normalised), then it must be the distribution of ν in-

dependent Bernoulli random variables with parameters λri
1+λri

, i = 1, . . . ν.

This gives a tremendous amount of structure to the distribution of |H|, the

size of a random matching drawn from the monomer-dimer model on G: it

has the distribution of the sum of independent Bernoulli random variables

(or in other words, the sequence m0(G), . . .mν(G) is a Polya frequency se-

quence [71]). In particular we have that the sequence m0(G), . . . ,mν(G) is

log-concave, that is

mk(G)2 ≥ mk−1(G)mk+1(G) for k = 1, . . . , ν − 1 .

This structure will allow us to make use of the following probabilistic result

of Darroch.

Lemma 5.8 ([22] Theorem 4). Let Z be the sum of n independent (but not

necessarily identically distributed) Bernoulli random variables with EZ = µ.

Let m be the mode of Z, then

|µ−m| < 1.

We start with a bound on the variance of the size of a random matching in

a graph G.
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Lemma 5.9. Let G be a graph and let H be a random matching drawn from

the monomer-dimer model on G at fugacity λ > 0, then

var|H| ≤ E|H| .

Proof. Let ν := ν(G). Recall that by the Heilman-Lieb Theorem we may

write

MG(λ) =
ν∏
i=1

(1 + λri) ,

where the ri are real. Moreover since the coefficients of MG are positive,

all roots of MG must be negative and so the ri are positive. By (5.15) and

(5.16) we then have

E|H| =
ν∑
i=1

λri
1 + λri

and var|H| =
ν∑
i=1

λri
(1 + λri)2

.

Since each of the denominators is greater than 1 the result is clear.

Lemma 5.10. Let G be a graph. Then for all 1 ≤ k ≤ ν(G), there exists a

λ so that
mk(G)λk

MG(λ)
= PG,λ[|H| = k] >

1

7
√
k
.

Proof. Let ν = ν(G). Choose λ so that P[|H| = k − 1] = P[|H| = k]. Since

the probability distribution of |H| is log-concave, it follows that P[|H| = k]

is maximal (i.e. both k − 1 and k are modal values of |H|). Darroch’s rule

(Lemma 5.8) then implies that k − 1 < E|H| < k. It then follows from

Lemma 5.9 that var|H| ≤ k. By Chebyshev’s inequality, with probability at

least 2/3 the size of H is one of at most
⌈
2
√

3
√

var|H|
⌉
≤
⌈
2
√

3k
⌉

values.

It follows that

P[|H| = k] ≥ 2

3
⌈
2
√

3k
⌉ ≥ 1

7
√
k
.

Proof of Theorem 5.2. Choosing λ according to Lemma 5.10 we have:

mk(G)λk ≤MG(λ) ≤MHd,n(λ) ≤ 7
√
k ·mk(Hd,n)λk ,

where for the second inequality we used Theorem 5.1.
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As a consequence, we prove the Asymptotic Upper Matching Conjecture [43].

To state the conjecture precisely we must first introduce some notation.

Fix d and consider an infinite sequence of d-regular graphs Gd = G1, G2, . . .

where v(Gn)→∞. For any ρ ∈ [0, 1], the ρ-monomer entropy is

hGd(ρ) = sup
{kn}

lim sup
n→∞

logmkn(Gn)

v(Gn)
,

where the supremum is taken over all integer sequences {kn} with 2kn
v(Gn) → ρ.

Let Hd denote the sequence Hd,2d, Hd,4d, Hd,6d, . . .. The following theorem is

conjectured in [43] (Conjecture 7.2) where it is referred to as the Asymptotic

Upper Matching Conjecture.

Theorem 5.11. Gd = G1, G2, . . . be a sequence of d-regular graphs where

v(Gn)→∞. Then for any ρ ∈ [0, 1] we have

hGd(ρ) ≤ hHd(ρ).

In fact the conjecture is made for sequences of bipartite regular graphs

and the authors remark that it is plausible the bipartite restriction is not

necessary. We show that this is indeed the case.

Proof. Assume ρ > 0 since for ρ = 0 the result is trivially true. Let {kn}
be a sequence of integers with 2kn

v(Gn) → ρ. Assume for the sake of con-

tradiction that lim sup
logmkn (Gn)

v(Gn) > hHd(ρ) + ε for some ε > 0. Take

N large enough that for all n1 ≥ N , divisible by 2d,
logmbρn1/2c(Hd,n1 )

n1
<

hHd(ρ)+ε/2. Now take some n with v(Gn) ≥ N and
logmkn (Gn)

v(Gn) > hHd(ρ)+ε,

and let n1 = 2d · dv(Gn)/(2d)e. By Lemma 5.10, we choose λ so that

mbρn1/2c(Hd,n1)λbρn1/2c > 1

7
√
ρn1/2

MHd,n1
(λ). Note that since ρ > 0, such λ

is bounded away from 0 as n1 →∞. Then we have

logMGn(λ)

v(Gn)
≥ log(mkn(Gn)λkn)

v(Gn)
>

kn
v(Gn)

log λ+ hHd(ρ) + ε

=
ρ

2
log λ+ hHd(ρ) + ε+ o(1) as n→∞,
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and

logMKd,d(λ)

2d
=

logMHd,n1
(λ)

n1

<
log
(

7
√
ρn1/2 ·mbρn1/2c(Hd,n1)λbρn1/2c

)
n1

<
log(7

√
ρn1/2)

n1
+
bρn1/2c
n1

log λ+ hHd(ρ) + ε/2

=
ρ

2
log λ+ hHd(ρ) + ε/2 + o(1) .

However, this contradicts Theorem 5.1.

Although the Upper Matching Conjecture remains open, we venture to make

the following even stronger conjecture.

Conjecture 5.12. Let G be a d-regular, n-vertex graph where 2d divides n.

Then for all k, the ratio mk(G)
mk−1(G) is maximised by Hd,n.

This conjecture is in fact strong enough to imply Theorem 5.1. The re-

lation to the work here is that Conjecture 5.12 can be stated as follows:

the expected number of edges incident to a uniformly random matching of

size k is minimised by Hd,n. Theorem 5.1 shows that such a statement is

true when the random matching is chosen according to the monomer-dimer

model instead of uniformly over those of a given size.
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J. Combin. Theory Ser. A, 29(3):354–360, 1980.

[2] P. Allen, G. Brightwell, and J. Skokan. Ramsey-goodness—and other-

wise. Combinatorica, 33(2):125–160, 2013.

[3] N. Alon. Independent sets in regular graphs and sum-free subsets of

finite groups. Israel J. Math., 73(2):247–256, 1991.

[4] F. S. Benevides, T.  Luczak, A. Scott, J. Skokan, and M. White.

Monochromatic cycles in 2-coloured graphs. Combin. Probab. Comput.,

21(1-2):57–87, 2012.

[5] F. S. Benevides and J. Skokan. The 3-colored Ramsey number of even

cycles. J. Combin. Theory Ser. B, 99(4):690–708, 2009.

[6] T. Bohman. The triangle-free process. Adv. Math., 221(5):1653–1677,

2009.

[7] T. Bohman and P. Keevash. Dynamic concentration of the triangle-free

process. In The Seventh European Conference on Combinatorics, Graph

Theory and Applications, volume 16 of CRM Series, pages 489–495. Ed.

Norm., Pisa, 2013.

[8] B. Bollobás. Three-graphs without two triples whose symmetric differ-

ence is contained in a third. Discrete Math., 8:21–24, 1974.

[9] J. A. Bondy. Pancyclic graphs. I. J. Combinatorial Theory Ser. B,

11:80–84, 1971.

131



Bibliography
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[31] P. Erdős and G. Szekeres. A combinatorial problem in geometry. Com-

positio Math., 2:463–470, 1935.
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et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay,

1976), volume 260 of Colloq. Internat. CNRS, pages 399–401. CNRS,

Paris, 1978.

[84] P. Turán. On an extremal problem in graph theory. Mat. Fiz. Lapok,

48(436-452):137, 1941.

[85] B. L. Van der Waerden. Beweis einer baudetschen vermutung. Nieuw

Arch. Wisk, 15(2):212–216, 1927.

[86] Y. Zhao. The bipartite swapping trick on graph homomorphisms. SIAM

J. Discrete Math., 25(2):660–680, 2011.

138



Appendices

A Completing the Proof of Theorem 2.1

Here we verify the assertion made at the end of the proof of Theorem 2.1

from Chapter 2 which amounts to a simple yet tedious calculation. Recall

that for fixed integer r ≥ 4 we defined the following function on the interval

(0, 1]:

fr(t) = 24t3(bµc+ (µ− bµc)3)
r−4∏
i=1

(1− it).

where µ = (1− (r − 3)t)/4t.

Lemma A. The function fr(t) is maximised on the interval (0, 1] at t =

1/(r + 1) for r = 4, 5, 6 and 7.

Proof. Let

gr(t) := 24t3µ
r−4∏
i=1

(1− it) = 6t2
r−3∏
i=1

(1− it) .

Since bµc + (µ − bµc)3 ≤ µ we have that fr(t) ≤ gr(t) for t ∈ (0, 1]. For

r = 4, 5 and 6 we show that gr(t) is increasing on the interval (0, 1/(r+ 1)],

that gr(1/(r+1)) = fr(1/(r+1)) and that fr(t) is decreasing on the interval

[1/(r + 1), 1]. This proves the proposition in the cases r = 4, 5 and 6. The

case r = 7 is slightly more delicate and we leave this case until last.

Let us show that the derivative of gr(t) is positive on (0, 1/(r + 1)]:

d

dt
gr(t) = 6

[
2t− t2

(
1

1− t
+

2

1− 2t
+ . . .+

r − 3

1− (r − 3)t

)] r−3∏
i=1

(1− it)
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which is positive if and only if

hr(t) := 2− t
(

1

1− t
+

2

1− 2t
+ . . .+

r − 3

1− (r − 3)t

)
> 0

since 6t
∏r−3
i=1 (1 − it) > 0 on (0, 1/(r + 1)]. Clearly hr(t) is decreasing on

(0, 1/(r + 1)] and so it suffices to show that hr(1/(r + 1)) > 0. A simple

calculation reveals that this is indeed the case for r = 4, 5 and 6. Showing

that gr(1/(r + 1)) = fr(1/(r + 1)) is simply the observation that µ = 1, an

integer, when t = 1/(r + 1). Finally, if t > 1/(r + 1) then bµc = 0 and so

fr(t) = 3
8(1− (r − 3)t)3

∏r−4
i=1 (1− it), a decreasing function of t. This deals

with the cases r = 4, 5 and 6.

For the case r = 7 we follow a similar procedure however it is not the case

that g7(t) is increasing on (0, 1/8). Instead we show that g7(t) is increasing

on (0, 1/12], that g7(1/12) = f7(1/12), that f7(t) is convex on (1/12, 1/8)

with f7(1/8) > f7(1/12) and finally that f7(t) is decreasing on (1/8, 1].

These observations are enough to deal with the case r = 7.

To show that g7(t) is increasing on (0, 1/12] it suffices to observe, by the

above, that h7(1/12) > 0. Showing that g7(1/12) = f7(1/12) is simply the

observation that µ = 2, an integer, when r = 7, t = 1/12. To show that

f7(t) is convex on (1/12,1/8) we show that f ′′7 (t) > 0 on this interval. Note

that for r = 7, t ∈ (1/12, 1/8) we have that bµc = 1 so that f7(t) is a degree

six polynomial so that by Taylor’s theorem:

f ′′7 (t) =

4∑
k=0

1

k!
f

(k+2)
7 (1/8)(t− 1/8)k.

Elementary, yet tedious, calculation shows that (−1)kf
(k+2)
7 (1/8) > 0 for

k = 0, 1, 2, 3 and 4. It follows therefore that f ′′7 (t) > 0 for t ∈ (1/12, 1/8). A

final calculation shows that f7(1/8) > f7(1/12) and above we showed that

fr(t) is decreasing on (1/(r + 1), 1] for r ≥ 4.

B Proof of Lemmas 3.46 and 3.47

In this section we present the proofs of Lemmas 3.46 and 3.47 from Chap-

ter 3. We use the following simple property of regular pairs which appears

as Lemma 5 in [39].
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Lemma B. Let 1/m� δ � d and let G = (V1, V2) be a (δ, d)-super-regular

pair with |V1| = |V2| = m. Then for each pair u ∈ V1, w ∈ V2, G contains a

uw-path of length ` for each odd 3 ≤ ` ≤ 2(1− 5δ)m.

Lemma 3.46. Let q ≥ 4 and suppose that 1
m � δ � d. Let F be a connected

matching of order q such that every vertex of F is incident to a matching

edge and let H be a (δ, d,m)-super-regular blow-up of F . Then the following

holds:

If i, j ∈ V (F ) and there is an ij-path of length r in F , then for every pair

of vertices u ∈ Ui, w ∈ Uj, there exists a uw-path of length ` in H for each

3q ≤ ` ≤ (1− 6δ)qm such that ` ≡ r (mod 2).

Proof. Take i, j ∈ V (F ) and let u ∈ Ui, w ∈ Uj . Let T be a spanning

tree of F which includes every matching edge of F . Note that T contains a

closed walk W = y0 . . . yp, where y1 = yp = i and W covers each edge of T

exactly twice, in particular p = 2(q − 1) (note that q = v(F )). Using basic

properties of regular pairs we can find a path W̃ = w0 . . . wp in H where

u = w0 and wt ∈ Uyt for all t. Let P = x0 . . . xr be a path of length r in

F where x0 = i, xr = j. Again, using basic properties of regular pairs we

can find a path P̃ = v0 . . . vr in H where v0 = wp, vr = w, vt ∈ Uxt for all t

and P̃ intersects W̃ only in the vertex wp. Letting Q = W̃ P̃ , it follows that

Q is a uw-path in H of length r + p = r + 2(q − 1) ≡ r (mod 2). Suppose

that {a, b} is a matching edge of F so that (Ua, Ub) is (δ, d)-super-regular in

H. Note that Q visits each set Ui in H at most 3 times and so there exist

U ′a ⊆ Ua\Q, U ′b ⊆ Ub\Q such that |U ′a| = |U ′b| = m−3. Note that (U ′a, U
′
b) is

certainly (2δ, d/2)-super-regular by Fact 3.49. By construction, we may pick

consecutive vertices wt, wt+1 of W̃ (and hence Q) such that wt ∈ Ua, wt+1 ∈
Ub. By super-regularity we may then pick vertices ua ∈ N(wt+1) ∩ U ′a,
ub ∈ N(wt) ∩ U ′b such that {ua, ub} is an edge of H. Applying Lemma B to

(U ′a, U
′
b) and vertices ua, ub, it follows that we can find a qtqt+1-path in H

which intersects Q only at its endpoints and we can choose this path to have

any odd length 1 ≤ ` ≤ 2(1− 5δ)(m− 3) + 2. Note that letting such a path

replace the edge {qt, qt+1} in Q does not change the parity of the length of

Q. Applying the same argument to each matching edge of F we see that H
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contains uw-paths of each length r+2(q−1) ≤ ` ≤ r+2(q−1)+ q
2 ·2(1−6δ)m

for which ` ≡ r (mod 2). The result follows.

Lemma 3.47. Let q ≥ 4 and let 1
m � δ � d. Let F be an odd connected

matching of order q and suppose that H is a (δ,m)-regular blow-up of F

with minimum density d. Then H contains a cycle of length ` for each odd

3q ≤ ` ≤ (1− 6δ)qm

Proof. Since F is non-bipartite it contains an odd cycle C. Since the largest

matching in F has q/2 edges it follows that |C| ≤ q + 1. Let T ⊆ F be a

minimal tree that contains every matching edge of F . It is easy to show that

T must have < 2q vertices. Let W be a closed walk in T which traverses

each edge of T precisely twice (so in particular W has even length). Since

W and C must intersect, we can augment the walk W by C to obtain a

closed walk W ′ = x1 . . . xpx1 in F where p is odd and p ≤ 3q by the above.

Note that by Facts 3.49 and 3.50, we can find H ′ ⊆ H such that H ′ is a

(2δ, d/2, (1−δ)m)-super-regular blowup of F . Let Uj denote the vertex class

of H ′ corresponding to the vertex j in F for each j ∈ V (F ). Using basic

properties of regular pairs, we can find an odd cycle D = v1 . . . vpv1 in H ′

where vj ∈ Uxj for all j.

Suppose that {a, b} is a matching edge of F so that (Ua, Ub) is (2δ, d/2)-

super-regular. By construction, we may pick consecutive vertices vt, vt+1 of

D such that vt ∈ Ua, vt+1 ∈ Ub. Note that D visits each set Ui in H at

most 3 times. We may therefore apply Lemma B as we did in the proof

of Lemma 3.46 to find a vtvt+1-path Q in H ′ such that Q intersects D

only at its endpoints and we can choose Q to have any odd length 1 ≤
` ≤ 2(1 − 5δ)[(1 − δ)m − 3] + 2. Applying the same argument to each

matching edge of F we see that H contains an odd cycle of each odd length

p ≤ ` ≤ p+ q
2 · 2(1− 6δ)m. The result follows.
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