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TRACE IDEAL CRITERIA FOR EMBEDDINGS AND

COMPOSITION OPERATORS ON MODEL SPACES

ALEXANDRU ALEMAN, YURII LYUBARSKII, EUGENIA MALINNIKOVA,
KARL-MIKAEL PERFEKT

Abstract. Let Kϑ be a model space generated by an inner function
ϑ. We study the Schatten class membership of embeddings I : Kϑ →֒

L2(µ), µ a positive measure, and of composition operators Cϕ : Kϑ →

H2(D) with a holomorphic function ϕ : D → D. In the case of one-
component inner functions ϑ we show that the problem can be reduced
to the study of natural extensions of I and Cϕ to the Hardy-Smirnov
space E2(D) in some domain D ⊃ D. In particular, we obtain a charac-
terization of Schatten membership of Cϕ in terms of Nevanlinna count-
ing function. By example this characterization does not hold true for
general ϑ.

1. Introduction

Let D = {z : |z| < 1} be the unit disk and T = {z : |z| = 1} be the
unit circle. A bounded analytic function ϑ in D is said to be inner if its
non-tangential boundary values satisfy |ϑ| = 1 almost everywhere on T. We
denote by H2(D) the Hardy space on D and by Kϑ = H2(D)⊖ ϑH2(D) the
corresponding model space.

In this article two classes of operators are considered: embeddings Iµ :

Kϑ → L2(µ), where µ is a finite positive measure supported on D, and
composition operators Cϕ : f 7→ f ◦ ϕ acting from Kϑ into H2(D), where
ϕ : D → D is a holomorphic function. In fact, it is well-known that the
latter type of operator may be considered as a special case of the former for
a certain pullback measure µϕ. We mention that embeddings of model spaces
have been studied by a number of authors [4–7, 28]; composition operators
on Hardy (and more general) spaces is by now a classical subject – we refer
the reader to [24] for a description of the current state of the art and a
history survey. In this article we study the composition operator acting
from the model space Kϑ into H2(D) thus emphasis interaction between
the boundary behavior of ϕ and the spectrum of the inner function ϑ. In
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such setting the problem has been considered in [20]. Our main goal is to
understand when such embedding and composition operators belong to the
Schatten trace ideal Sp, 0 < p <∞.

The embedding operators on Kϑ have proved easier to analyze when ϑ
is a one-component inner function, see [2, 4, 5, 28]. In particular, the Schat-
ten ideal membership of Iµ has been characterized by Baranov [4] for one-
component ϑ. In Section 3 we suggest a different approach to the problem.
We return to the the original ideas of Cohn [6] and extend embedding op-
erators on Kϑ to operators acting on the Hardy-Smirnov space E2(D) of a
certain domain D ⊃ D. This allows us to obtain a geometrical criterion for
the inclusion of Iµ in Sp. In particular we recover the aforementioned result
in [4].

For composition operators Cϕ we further refine our result to give trace
ideal criteria in terms of the Nevanlinna counting function Nϕ,

Nϕ(z) =
∑

ϕ(ζ)=z

log
1

|ζ|
.

We combine the geometric approach with recent results [16, 17] that clar-
ify the connection between the Nevanlinna counting function Nϕ and the
measure µϕ, in order to obtain the following characterization.

Theorem 4.2. Let ϑ be a one-component inner function. The operator
Cϕ : Kϑ → H2 is in Sp, 0 < p <∞, if and only if

∫

D

(

Nϕ(z)(1 − |ϑ(z)|)2

1− |z|2

)p/2(
1− |ϑ(z)|2

1− |z|2

)2

dA <∞.

The article is organized as follows. The next section contains preliminary
information about one-component inner functions and the corresponding
model spaces. In Section 3 we reduce the trace ideal problem of embedding
operators on Kϑ to a corresponding problem in the Hardy-Smirnov space in
a larger domain, leading to a geometric characterization. In Section 4 we use
these results in order to describe when Cϕ ∈ Sp in terms of the Nevanlinna
counting function of ϕ. We also give some geometric examples, illustrating
the Schatten class behavior of composition operators on the Paley-Wiener
space. General model spaces are treated in Section 5, giving an example
that the one-component requirement of Theorem 4.2 can not be dropped,
and providing sufficient conditions for Cϕ to belong to Sp, p ≥ 2.

2. Preliminaries

2.1. One-component inner functions. We recall that the class of one-
component inner functions, introduced in [6], consists of those inner functions
ϑ such that, for some q0 ∈ (0, 1), the set

Dǫ = {z ∈ D : |ϑ(z)| < ǫ}
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is connected for all ǫ ∈ (q0, 1). We refer the reader to [6] and [7] for the
basic facts about one-component inner functions. For the remainder of this
section we fix a one-component function ϑ and a corresponding number q0.

Consider the canonical factorization of ϑ,

ϑ(z) = BΛ(z) exp

(

−

∫

T

ξ + z

ξ − z
dω(ξ)

)

,

where Λ is the zero set of ϑ, BΛ is the corresponding Blaschke product, and
ω is a singular measure on T. Functions in Kϑ admit analytic continuation
through T \ Σ(ϑ), where

Σ(ϑ) = (T ∩ Clos(Λ)) ∪ supp(ω)

is the spectrum of ϑ (see [22], Lecture 3). The function ϑ itself can be
reflected over T\Σ(ϑ) and thus definition of the domain Dǫ makes sense for
any ǫ ∈ (q0, q

−1
0 ).

Our construction is based on the following results from [6].

Proposition 2.1. Let δ ∈ (1, q−1
0 ). Then

• The set Dδ is simply connected, its boundary ∂Dδ is a rectifiable
Jordan curve, and the linear measure on ∂Dδ is a Carleson measure
with respect to D

− = {z : |z| > 1}.
• Any function f ∈ Kϑ extends analytically to a function in E2(Dδ)
and

‖f‖Kϑ ≃ ‖f‖E2(Dδ), f ∈ Kϑ.

Here and in what follows E2(Dδ) and E
2
−(Dδ) denote the Hardy-Smirnov

spaces in the interior and exterior of Dδ (see e.g. [10]). We mention that
functions g ∈ E2

−(Dδ) are required to assume the value 0 at ∞.
Recall that a rectifiable curve Γ is called Ahlfors regular if for each z ∈ C

and r > 0 we have H1(Γ ∩ B(z, r)) < Cr, where H1(·) denotes arc length,
B(z, r) = {ζ : |ζ − z| < r}, and C = C(Γ) > 0 is some constant.

Lemma 1. Let δ ∈ (1, q−1
0 ). Then the boundary of Dδ satisfies the Ahlfors

regularity condition.

Proof. Denote q = δ−1. The boundary of Dδ is a rectifiable Jordan curve
that is the reflection of the curve ∂Dq = ϑ−1(|z| = q) ∪ Σ(ϑ) with respect
to the unit circle, see [6].

First, if B(z, r) is a ball centered at a point z ∈ Σ(ϑ), r > 0 sufficiently
small, there exists a constant C > 0 such that the Carleson box S (z̃) cen-
tered at z̃ = (1−Cr)z contains B(z, r)∩ ∂Dq. Since the arc length on ∂Dq

is a Carleson measure, we obtain

H1(B(z, r) ∩ ∂Dq) ≤ H1(S(z̃) ∩ ∂Dq) . 1− |z̃| ≤ Cr,

which is precisely the Ahlfors regularity estimate for points z ∈ Σ(ϑ).
For points in the level set Γq = ϑ−1(|z| = q), we again want to show the

existence of constant C, independent of z, such that H1(Γq ∩B(z, r)) ≤ Cr,
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for all z ∈ Γq. By the same argument as in the previous paragraph, for a
fixed a > 0 we have desired estimate for all balls with radius r > a(1− |z|).
For comparatively smaller balls, we note that Theorem 1.1 and Lemma
2.1 of [6] imply that there exists γ = γ(q) such that for any z ∈ Γq the
restriction ϑ|B(z, γ(1−|z|)) is univalent. The proof is then completed by the
Hayman-Wu theorem [14], since it implies that H1(ϑ−1(|z| = q)∩B(z, r)) .
r whenever r < γ(1 − |z|). �

Corollary 2.2. The space L2(∂Dδ) admits the direct sum decomposition

L2(∂Dδ) = E2(Dδ)∔ E2
−(Dδ).

The corresponding projectors P± are bounded and have the form

(1) P±f(z) = ±
1

2
f(z) +

1

2iπ

∫

∂Dδ

f(ζ)

ζ − z
dζ, z ∈ ∂Dδ .

The proof is straightforward; it suffices to mention that the Ahlfors reg-
ularity yields the boundedness of P± in L2(∂Dδ) by David’s theorem [9].

2.2. Model spaces. Each function f ∈ Kϑ = H2(D) ∩ ϑH2
−(D) admits an

extension to a function in E2(Dδ). Denote by J the operator of analytic
prolongation from D to Dδ, and let Kϑ = E2(Dδ) ∩ ϑE

2
−(Dδ).

Proposition 2.3. J(Kϑ) = Kϑ.

Proof. The inclusion J(Kϑ) ⊂ Kϑ follows from Cohn’s extension construc-
tion [6] which shows that J(Kϑ) ⊂ E2(Dδ), and the observation that if
f ∈ Kϑ then ϑ−1f has an analytic continuation in C \ D.

In order to prove the opposite inclusion we first observe that the linear
measure ds = |dz| on T is a Carleson measure for E2(Dδ). In other words

∫

T

|f(z)|2ds . ‖f‖2E2(Dδ)
, f ∈ E2(Dδ).

Indeed, let f ∈ E2(Dδ). It is sufficient to bound
∫

T
fh ds for h ∈ L2(T)

that are compactly supported in T \Σ(ϑ). For such h we have, by Cauchy’s
formula

∫

T

f(z)h(z) ds =

∫

∂Dδ

f(ζ)

∫

T

h(z)

ζ − z
ds(z) dζ.

The function H(ζ) =
∫

T

h(z)
ζ−z ds(z) belongs to H2

−(D). Since the arc length

measure on ∂Dδ is a Carleson measure for H2
−(D) we have

‖H‖L2(∂Dδ) . ‖H‖H2
−
(D) . ‖h‖L2(T)

and therefore
∣

∣

∣

∣

∫

T

f(z)h(z) ds

∣

∣

∣

∣

. ‖f‖E2(∂Dδ)‖h‖L2(T),

which is the required estimate.
The proposition now follows readily. Indeed, let f ∈ Kϑ = E2(Dδ) ∩

ϑE2
−(Dδ), so that f |D ∈ H2(D) and f = ϑg, where g ∈ E2

−(Dδ). Since f
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and ϑ are holomorphic and 1 ≤ |ϑ(z)| ≤ δ in Dδ \ D, we see that g admits
prolongation to a function in H2

−(D). Hence f |D ∈ H2(D) ∩ ϑH2
−(D) =

Kϑ. �

3. Operator extension

3.1. Embeddings of E2(Dδ). We have seen that Kϑ can be considered as
a subspace of E2(Dδ). The following theorem reduces trace ideal problems
for embeddings of Kϑ to trace ideal problems for embeddings of the whole
space E2(Dδ). For a positive measure µ, we denote by Iµ the embedding
operator (inclusion map) from a space into L2(µ).

Theorem 3.1. Let ϑ be a one-component inner function, µ be a positive
measure on D\Σ(ϑ), and 0 < p <∞. Then the embedding Iµ : Kϑ → L2(µ)
is bounded, compact, or belongs to Sp if and only if Iµ : E2(Dδ) → L2(µ) is
bounded, compact, or belongs to Sp, respectively.

Proof. We focus on showing that Iµ : Kϑ → L2(µ) belongs to Sp if and only
if Iµ : E2(Dδ) → L2(µ) does. The statements concerning boundedness and
compactness have very similar, but slightly easier proofs. We may further
assume that dist(Σ(ϑ), suppµ) > 0, as one can easily see that all estimates
are uniform with respect to this quantity.

By Proposition 2.3, Iµ : Kϑ → L2(µ) belongs to Sp if and only if Iµ :
Kϑ → L2(µ) does. From Corollary 2.2 follows the decomposition

E2(Dδ) = Kϑ ∔ ϑE2(Dδ),

with bounded projectors P1 = MϑP−Mϑ−1 and Q1 = MϑP+Mϑ−1 onto
Kϑ and ϑE2(Dδ), respectively. Here P± are defined in (1), and Mh is the
multiplication operator with symbol h. We identify the functions in E2(Dδ)
with their boundary values and consider by extension P1 and Q1 as operators
on L2(∂Dδ). Let C = max(‖P+‖, ‖P−‖). Since |ϑ| = δ a.e. on ∂Dδ , we have
‖P1‖, ‖Q1‖ ≤ C and also ‖P+Mϑ−1‖ ≤ a := Cδ−1. We estimate the singular
value of the second summand in the decomposition

(2) Iµ = IµP1 + IµQ1

Introducing ϑ̃(z) = ϑ(z)1|supp µ, we have IµQ1 = Mϑ̃IµP+Mϑ−1 . We
obtain the following estimate of the j’th singular value of IµQ1:

sj(IµQ1) ≤ ‖Mϑ̃‖sj(Iµ)‖P+Mϑ−1‖ ≤ asj(Iµ).

Here we used the fact that |ϑ̃(z)| ≤ 1, z ∈ suppµ.
Combining (2) with known (see e.g. [12]) inequalities for singular numbers

we obtain
n
∑

1

sj(Iµ) ≤
n
∑

1

sj(IµP1) +

n
∑

1

sj(IµQ1) ≤
n
∑

1

sj(IµP1) + a

n
∑

1

sj(Iµ).

If a < 1 and p ≥ 1 this yields that

‖Iµ : E2(Dδ) → L2(µ)‖Sp ∼ ‖Iµ : Kϑ → L2(µ)‖Sp .
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More generally, such an equivalence of ideal norms holds for any sym-
metrically normed ideal of compact operators [12]. For p < 1 note that
s2j−1(Iµ) ≤ sj(IµP1)+asj(Iµ). If a < a0 is small enough, where 2p+1ap0 = 1,
we see that

∑

j

sj(IµP1)
p ∼

∑

j

sj(Iµ)
p,

finishing the proof also in this case.
To deal with general values of a, we note that Iµ : Kϑ → L2(µ) is in Sp

if and only if Iµ : Kϑ2 → L2(µ) is in Sp, since Kϑ ⊂ Kϑ2 = Kϑ ⊕ ϑKϑ.
Replacing ϑ by a sufficiently large power ϑn we will obtain a new value
a1 = Cδ−n such that ‖P+Mϑ−n‖ ≤ a1 < a0 < 1; note that in moving from
the study of Kϑ to that of Kϑn we do not change the domain Dδ, so that
the projections P± stay the same for all values of n. �

3.2. Whitney decomposition. To pass from the domain Dδ to the unit
disk, let σ be a conformal mapping of D onto Dδ , and ψ be its inverse. For
f ∈ E2(Dδ), let hf (w) = f(σ(w))(σ′(w))1/2, w ∈ D. Let further ν denote
the measure on D given by

ν(E) =

∫

σ(E)
|ψ′|dµ, E ⊂ D.

Then for f, g ∈ E2(Dδ) we have

(I∗µIµf, g) =

∫

D\Σ(ϑ)
f(z)g(z)dµ(z) =

∫

D

hf (w)hg(w)dν(w).

Therefore, by Theorem 3.1, the embedding Iµ : Kϑ → L2(µ) is in Sp if and
only if the embedding Iν : H2(D) → L2(ν) is in Sp. We can now apply
the results from Luecking [18] to conclude that Iµ : Kϑ → L2(µ) is in the
Schatten ideal Sp, 0 < p <∞, if and only if

(3)
∑

j

(

ν(Rj)

d(Rj)

)p/2

<∞,

where {Rj} is the standard dyadic decomposition of the unit disk, and
d(Rj) = diam(Rj).

For a domain Ω in the plane, we say that a family of Borel sets {Gi}i
is a Whitney-type decomposition of Ω if Ω = ∪iGi, the covering is of finite
multiplicity, and there exist constants a, b, c such that: (i) if z1, z2 ∈ Gi then
dist(z1, ∂Ω) ≤ cdist(z2, ∂Ω), (ii) for each i there exists z ∈ Gi such that
B(z, ad) ⊂ Gi ⊂ B(z, bd), where d = dist(z, ∂Ω).

We need the following simple observation:
Given two Whitney-type decompositions {Gi}i and {Fj}j of a domain Ω,

let J(i) = {j,Gi ∩ Fj 6= ∅}. Then M := supi |J(i)| <∞.
Indeed, just note that all Fj that intersect Gi have diameter proportional

to di = dist(Gi, ∂Ω) and the area of each such Fj is proportional to d
2
i .
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Furthermore, if φ : Ω → C is univalent, then {φ(Gi)}i is a Whitney-type
decomposition of φ(Ω). This follows from standard estimates for univalent
functions, see e.g. [23]. Together with Luecking’s condition (3) this yields
the following corollary.

Corollary 3.2. Let ϑ be a one-component inner function, Dδ be a corre-
sponding level set and µ be a positive measure on D\Σ(ϑ). Further, let {Gi}
be any Whitney-type decomposition of Dδ. Then the embedding Kϑ → L2(µ)
belongs to the Schatten ideal Sp, 0 < p <∞, if and only if

(4)
∑

i

(

µ(Gi)

d(Gi)

)p/2

<∞,

where d(Gi) = diam(Gi).

Proof. First let Qj = σ(Rj), where σ : D → Dδ is a conformal mapping,
as above. Then {Qj}j is a Whitney-type decomposition of Dδ and since
|σ′| ∼ dist(Qj , ∂Dδ)/dist(Rj , ∂D) ∼ diam(Qj)/diamRj (see [23]), (3) is
equivalent to

∑

i

(

µ(Qj)

d(Qj)

)p/2

<∞.

But for any α > 0 we have

∑

i

(

µ(Gi)

d(Gi)

)α

∼
∑

i,j

µ(Gi ∩Qj)
α

d(Gi)α
∼
∑

i,j

µ(Gi ∩Qj)
α

d(Qj)α
∼
∑

i

(

µ(Qj)

d(Qj)

)α

,

proving the corollary. �

We remark that Corollary 3.2, which will be the main ingredient in the
proof of Theorem 4.2 below, can be deduced from a result of Baranov [4]. We
think however that Theorem 3.1 may be of independent interest and it has
some applications which do not appear to us to be immediate consequences
of Corollary 3.2, see Section 4.3.

The proof of Corollary 3.2 also gives a simple and natural criterion for
the Schatten class memberships of embeddings of the Hardy-Smirnov space
E2(D) into L2(µ) for measures µ in D; one has to check the Luecking con-
dition for an arbitrary Whitney-type decomposition of D.

4. Composition operators

4.1. Preliminaries. For a holomorphic function ϕ : D → D, we denote by
Cϕ : f 7→ f ◦ ϕ the composition operator acting on holomorphic functions
f in D. This operator is bounded on the Hardy space H2(D) (see e.g. [26]).
We study the operator Cϕ : Kϑ → H2(D), where ϑ is an inner function in
D. The compactness of Cϕ in terms of the Nevanlinna counting function

Nϕ(z) =
∑

ϕ(ζ)=z

log
1

|ζ|
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was characterized in [20]; Cϕ : Kϑ → H2 is compact if and only if

(5) lim sup
|z|→1

Nϕ(z)(1 − |ϑ(z)|2)

1− |z|2
= 0.

The basic tools in the argument are the Stanton formula

(6) ‖Cϕf‖
2 = 2

∫

D

|f ′(z)|2Nϕ(z)dA(z) + |f(ϕ(0))|2,

where A is the normalized area measure, and also the norm inequality due
to Axler, Chang and Sarason [3]

(7)

∫

D

|f ′(z)|2
1− |z|2

(1− |ϑ(z)|2)b
≤ C‖f‖22, f ∈ Kϑ, b ∈ (0, 1/2).

In this section we discuss when Cϕ belongs to the Schatten ideals Sp
in the one-component case, aiming to capture the interaction between the
symbol ϕ and the inner function ϑ that defines the model space. We recall
the known description of the Schatten ideals for composition operators on
the whole of H2, due to Luecking and Zhu [19]. The operator Cϕ belongs
to Sp(H

2) if and only if

(8)

∫

D

(

Nϕ(z)

1− |z|2

)p/2 dA(z)

(1− |z|2)2
<∞.

It is well understood that the composition operators can be considered
as a special case of the embedding operators, see e.g. [8]. We shall now
clarify this connection in our context, so that we may apply Theorem 3.1
and Corollary 3.2. We associate ϕ : D → D with its pullback measure µϕ on

D;
µϕ(E) = s(ϕ−1(E) ∩ T), E ⊂ D,

where s denotes the Lebesgue measure on T.
It is clear that Cϕ : Kϑ → H2 is unitarily equivalent to the embedding

operator Iµϕ : Kϑ → L2(µϕ), and similarly that Cϕ : E2(Dδ) → H2 is

equivalent to Iµϕ : E2(Dδ) → L2(µϕ). Before applying Theorem 3.1 we
need to verify that µϕ(Σ(ϑ)) = 0. This is true in view of the following
lemma and the fact that Σ(ϑ) has zero linear Lebesgue measure when ϑ is
one-component, see [2].

Lemma 2. µϕ|T is absolutely continuous.

Proof. It is sufficient to verify that µϕ(E) = 0 for every closed measure zero
set E ⊂ T. We follow the approach of the original proof of the F. and
M. Riesz theorem. Namely, there exists a continuous function G : D → D,
holomorphic in D, such that G(z) = 1 for z ∈ E and |G(z)| < 1 for z ∈ D\E.
Then limk

∫

D
Gkdµϕ = µϕ(E). On the other hand, the sequence Gk ◦ ϕ

converges pointwise to zero in D and is uniformly bounded. Therefore,

µϕ(E) = lim
k

∫

D

Gk dµϕ = lim
k

∫

T

Gk ◦ ϕds = lim
k

(G(ϕ(0)))k = 0.
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�

Theorem 3.1 now yields

Corollary 4.1. Let ϑ be a one-component inner function and ϕ : D → D

be a holomorphic function. Given any Whitney-type decomposition {Gj} of
Dδ, the operator Cϕ : Kϑ → H2 belongs to Sp, 0 < p <∞, if and only if

(9)
∑

i

(

µϕ(Gi)

d(Gi)

)p/2

<∞.

4.2. Nevanlinna counting function. In this subsection we implement the
approach of [16, 17] in our more general setting, with the goal of showing
that (9) is equivalent to

∫

Dδ

(

Nϕ(z)

dist(z, ∂Dδ)

)p/2 dA(z)

dist(z, ∂Dδ)2
<∞.

Theorem 4.2 then immediately follows from the relation

(10) dist(z, ∂Dδ) ∼
1− |z|2

1− |ϑ(z)|2
, z ∈ D \ Σ(ϑ),

which holds for one-component inner functions, by Theorems 1.1 and 1.2 in
Aleksandrov [2].

We begin by fixing a convenient Whitney-type decomposition of Dδ.
Clearly we are interested only in domains that intersect D. We construct
a decomposition of A = {1/2 < |z| ≤ 1} \ Σ(ϑ) as follows. First we di-
vide A into four equal parts, one for each quadrant. Each part is roughly
a Carleson square. Fix some γ > 0. We say that a Carleson square S is
good if dist(S, ∂Dδ) > γd(S). If a square is good we include it in our fam-
ily of sets {Gi}. Otherwise we include its upper half into the family {Gi}
and divide the lower half into two new Carleson squares. We repeat the
procedure inductively, obtaining a countable family of sets {Gi} that covers
A. In particular, every point z ∈ T \ Σ(ϑ) is included in a good square,
since Σ(ϑ) is a closed set. We claim that dist(Gi, ∂Dδ) ≃ d(Gi) for each
Gi. For if Gi is the upper half of a bad square S, it automatically satisfies
d(Gi) . dist(Gi, ∂Dδ). Since S was bad we obtain the reverse inequality,

dist(Gi, ∂Dδ) . d(Gi) + dist(S, ∂Dδ) ≤ d(Gi) + γd(S) . d(Gi).

A similar argument works for the good squares Gi. Further, {Gi} can be
extended to a Whitney-type decomposition of the whole Dδ, since suppµ ⊂
D. We omit the corresponding terms.

For each Gi we let Wi be the corresponding Carleson square (i.e. either
Wi = Gi or Gi is the upper half of Wi). Given a Carleson square W
supported by the arc I ⊂ T and a > 0 we denote by aW the Carleson
square supported by the arc aI ⊂ T. aI has the same center as I and
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|aI| = a|I|. According to [16] and [17] there exists a > 1 such that for some
constant c > 0 the following estimates hold,

(11) µ(Wi)
p/2 ≤

c

A(Wi)

∫

W̃i

Np/2
ϕ dA,

(12) sup
Wi

Nϕ ≤ cµ(W̃i),

where W̃i = aWi.
To obtain the integral condition, we follow the argument of [15, Proposi-

tion 3.3] and prove that (9) for the above decomposition {Gi}i is equivalent
to

(13)
∑

i

(

µϕ(W̃i)

d(Wi)

)p/2

<∞.

Clearly (13) implies (9). Now we prove the converse statement.

For each j and n let I(j) = {i : W̃i ∩Gj 6= ∅} and

Sn,j = {i ∈ I(j) : 2nd(Gj) ≤ d(Wi) < 2n+1d(Gj)}.

We note that d(Gj) ∼ dist(Gj , ∂Dδ) . d(Wi) for any i ∈ I(j), yielding
that Sn,j = ∅ when n < n0 for some fixed (negative) n0. We also have
dist(Gj ,Wi) . d(Wi) which yields C := supj,n |Sn,j| <∞.

For α := p/2 ≤ 1 we now obtain

∑

i

(

µϕ(W̃i)

d(Wi)

)α

≤
∑

i

∑

j:i∈I(j)

µϕ(Gj)
α

d(Wi)α
=

∑

j

µϕ(Gj)
α
∑

i∈I(j)

d(Wi)
−α .

∑

j

(

µϕ(Gj)

d(Gj)

)α

,

as desired.
For α > 1 we also follow the argument of [15]: for each index i, consider

the sets

sn,i = {j : i ∈ I(j), 2−n−1d(Wi) ≤ d(Gj) < 2−nd(Wi)}.

We have |sn,i| ≤ C2n for some constant C. Let β be the conjugate exponent
of α and choose γ ∈ (1 − 1/α, 1) such that 1 − γβ < 0. By the Hölder
inequality

µϕ(W̃i) ≤





∑

j:i∈I(j)

d(Gj)
γβ





1/β



∑

j:i∈I(j)

d(Gj)
−γαµϕ(Gj)

α





1/α

.

d(Wi)
γ





∑

j:i∈I(j)

d(Gj)
−γαµϕ(Gj)

α





1/α

,
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so that finally,

∑

i

(

µϕ(W̃i)

d(Wi)

)α

≤
∑

j

µϕ(Gj)
αd(Gj)

−γα
∑

i∈I(j)

d(Wi)
γα−α .

∑

j

(

µϕ(Gj)

d(Gj)

)α

.

The sought after criterion in terms of the Nevanlinna counting function
now follows readily.

Theorem 4.2. Let ϑ be a one-component inner function. The operator
Cϕ : Kϑ → H2 is in Sp, 0 < p <∞, if and only if

∫

D

(

Nϕ(z)(1 − |ϑ(z)|)2

1− |z|2

)p/2(
1− |ϑ(z)|2

1− |z|2

)2

dA <∞.

Proof. We follow the proof for the Hardy space given in [17, Theorem 6.1].
Inequality (12) for the Nevanlinna counting function implies

∫

D

(

Nϕ(z)

dist(z, ∂Dδ)

)p/2 dA(z)

dist(z, ∂Dδ)2
.

∑

i

d(Gi)
−2−p/2

∫

Gi

Nϕ(z)
p/2dA(z) .

∑

i

d(Gi)
−p/2µϕ(W̃i)

p/2.

The converse follows from inequality (11). Specifically,
∑

i

d(Gi)
−p/2µϕ(Gi)

p/2 ≤
∑

i

d(Gi)
−p/2−2

∫

W̃i

Nϕ(z)
p/2dA(z)

.
∑

j

∑

i∈I(j)

d(Gi)
−p/2−2

∫

Gj

Nϕ(z)
p/2dA(z)

.

∫

D

(

Nϕ(z)

dist(z, ∂Dδ)

)p/2 dA(z)

dist(z, ∂Dδ)2
,

where the last inequality follows as in the discussion preceding the statement
of the theorem. �

4.3. Weighted composition operators on H2. We complete the study of
composition operators on model spaces generated by one-component inner
functions, by establishing the connection given by Theorem 3.1 between
composition operators onKϑ and weighted composition operators onH2(D).
As previously noted, Cϕ : Kϑ → H2 is of Sp-class if and only if Cϕ :
E2(Dδ) → H2 has the same property. That is, if and only if the weighted
composition operator C : H2 → H2 is of Sp-class, where

Ch = (ψ′ ◦ ϕ)1/2h ◦ ψ ◦ ϕ, h ∈ H2.

We mention [11,21], where composition operators on Hardy-Smirnov spaces
E2(D) have been studied as weighted composition operators onH2(D). Note

that Ch = h(Mψ◦ϕ)(ψ
′◦ϕ)1/2, at least for polynomials h. HereMψ◦ϕ denotes

a multiplication operator on H2, and we hence understand Ch as the action



12 A. ALEMAN, YU. LYUBARSKII, E. MALINNIKOVA, K.-M. PERFEKT

of the operator h(Mψ◦ϕ) on (ψ′ ◦ ϕ)1/2 ∈ H2. For p ≥ 1, Harper and
Smith [13] have utilized the theory of contractive semigroups to characterize
the Schatten membership of such operators in terms of Berezin transform-
type conditions. Note that in their notation, C = ΛMψ◦ϕ,(ψ′◦ϕ)1/2 .

Theorem 4.3. Denote by Gz(w) = (1−|z|2)1/2

1−z̄w the normalized reproducing

kernel of H2 at z and by Hz(w) =
(1−|z|2)3/2w

(1−z̄w)2 the normalized derivative of

the reproducing kernel at z. Let ϑ be a one-component inner function and
let C be defined as above.

(1) If 1 ≤ p ≤ 2, then Cϕ : Kϑ → H2 belongs to Sp if and only if
∫

D

‖CHz‖
p
H2

dA(z)

(1− |z|2)2
<∞.

(2) If 2 < p <∞, then Cϕ : Kϑ → H2 belongs to Sp if and only if
∫

D

‖CGz‖
p
H2

dA(z)

(1− |z|2)2
<∞.

Remark. For ϑ = 0, p ≥ 2, we obtain the characterization of the Schatten
classes in terms of the Berezin transforms found in [29]. For p = 2, note
that
∫

D

‖CHz‖
2
H2

dA(z)

(1− |z|2)2
=

∫

D

|ψ′(w)||ψ(w)|2
∫

D

1− |z|2

|1− z̄ψ(w)|4
dA(z) dµϕ(w)

∼

∫

D

|ψ′(w)||ψ(w)|2

1− |ψ(w)|2
dµϕ(w).

Note that 1−|ψ(w)|2 ∼ dist(w, ∂Dδ)|ψ
′(w)| by standard estimates [23], and

that we may reexpress (10) as

dist(w, ∂Dδ) ∼
1− |w|2

1− |ϑ(w)|2
= ‖kw‖

−2, w ∈ D \ Σ(ϑ),

where kw is the reproducing kernel of Kϑ at w. In summary,
∫

D

‖CHz‖
2
H2

dA(z)

(1− |z|2)2
∼

∫

D

‖kw‖
2 dµϕ(w).

Theorem 4.3 could hence be viewed as a generalization of the simple fact
that Cϕ : Kϑ → H2 is Hilbert-Schmidt if and only if

∫

D
‖kw‖

2 dµϕ <∞.

4.4. Examples on the Paley–Wiener space. In this section we consider

the special case ϑ(z) = exp
(

−1+z
1−z

)

. The space Kϑ can then be naturally

identified with the classical Paley–Wiener space of entire functions.
For 0 < α < 1 we construct domains Uα ⊂ D satisfying the following

proposition. The domain Uα will be chosen so that the boundary ∂Uα in-
tersects T only at 1 and has a corner of angle πα there.

Proposition 4.4. For each α, 0 < α < 1, there exists a domain Uα such
that any corresponding Riemann map ϕα : D → Uα satisfies
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(1) Cϕα : H2 → H2 is compact but not in any Schatten class Sp,
(2) Cϕα : Kϑ → H2 is in Sp for p > 2α/(α − 1).

Note that Cϕα : Kϑ → H2 is in Sp for one Riemann map ϕα : D → Uα
if and only if it is in Sp for all such Riemann maps. The same statement is
obviously true for Cϕα : H2 → H2.

Let Vα ⊂ D be the simply connected domain whose boundary consists
of the upper half-circle {z : |z| = 1, ℑz ≥ 0} and the circular arc with
terminal points −1 and 1, intersecting the upper half-circle at an interior
angle πα at those points. Note that Vα = κ(Aα), where

Aα = {reiθ : 0 < r <∞, 0 < θ < πα},

and κ is the Möbius map

κ(w) =
1 + iw

1− iw
.

Let ψα : D → Vα be a Riemann map. The next lemma says that Cψα :
Kϑ → H2 is in Sp if and only if p > 2α/(α−1). This will immediately imply
item (2) of Proposition 4.4, as we will choose Uα as a subset of Vα, so that
Cϕα = CτCψα for a composition operator Cτ : H

2 → H2 with τ a Riemann
map from D to ψ−1

α (Uα).

Lemma 3. Cψα : Kϑ → H2 is p-Schatten if and only if p > 2α/(α − 1).

Proof. Y. Zhu [30] obtains the corresponding result on H2, for domains
similar to Vα, rescaled and translated to only touch (tangentially from one
side) the unit circle at z = 1. In view of the fact that Cψα : Kϑ → H2

belongs to Sp if and only if Cψα : E2(Dδ) → H2 belongs to Sp and the
observation that ∂Dδ in this case is a circle such that T is internally tangent
to ∂Dδ at 1, the lemma follows. A direct computational proof based on our
integral criterion can be also given. �

We now define Uα. Let γα be the circular arc of ∂Vα which is not the
upper half-circle, γα = {z ∈ ∂Vα : |z| 6= 1} ∪ {−1, 1}. Close to 1, we choose
∂Uα to coincide with the union of γα and

τ = {reiθ : 0 < θ ≤ π/2, r = 1− e−1/θ}.

That is, let Uα be a simply connected domain contained in Vα, such that
∂Uα ∩ T = {1} and for sufficiently small ǫ > 0 we have

∂Uα ∩Bǫ(1) = (γα ∪ τ) ∩Bǫ(1),

where Bǫ(1) is a ball centered at 1 of radius ǫ.

Proof of Proposition 4.4. We have already proven the validity of item (2).
It remains to prove that Cϕα : H2 → H2 is compact but fails to lie in
any Schatten class Sp. For simplicity in presentation we will assume that
α < 1/2. The proof for α ≥ 1/2 is very similar and follows exactly the same
ideas. Without loss of generality we further assume that ϕα(1) = 1.
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Let ηα = ϕ−1
α . For z ∈ Uα close to 1 we have that Nϕα(z) ∼ 1− |ηα(z)|.

We will again make use of the inequality

1− |ηα(z)| ∼ dist(z, ∂Uα)|η
′
α(z)|.

Since ηα maps Uα, a domain with a corner of angle πα at 1, conformally
onto the unit disc, it follows that |η′α(z)| ∼ |z − 1|1/α−1 for z close to 1 (see
e.g. [23]). Therefore, for z ∈ Uα close to 1 we have

Nϕα(z) ∼ dist(z, ∂Uα)|z − 1|1/α−1.

This estimate obviously implies that lim|z|→1
Nϕα (z)
1−|z| = 0 so that Cϕα is

compact on H2 [26], and we will now use it to show that

∫

Uα∩Bǫ(1)

Nψα(z)
p/2

(1− |z|2)p/2+2
dA(z) = ∞

for every p > 0, proving in view of (8) the desired statement.
We will restrict ourselves to considering points in the set

U ′
α = {z = reiθ ∈ Bǫ(1) : r < 1− 2e−1/θ , θ > k(1− r)},

for a fixed large constant k. k should be chosen so large and then ǫ so small
that there exists a constant C > 1/ tan(πα) such that every point reiθ ∈ U ′

α

satisfies r sin θ > C(1− r cos θ). In other words, U ′
α should lie above the line

ℑz = C(1− ℜz), which intersects the unit circle in the point 1 at an angle
smaller than πα. If necessary, we decrease ǫ further, attaining that U ′

α ⊂ Uα
and

dist(z, ∂Uα) ∼ 1− e−1/θ − r ∼ 1− |z|, z ∈ U ′
α.

The proof is now finished by the following chain of inequalities.

∫

U ′

α

Nψα(z)
p/2

(1− |z|2)p/2+2
dA(z) ∼

∫

U ′

α

|1− z|
p(1−α)

2α

(1− |z|2)2
dA(z)

&

∫ 1

1−ǫ′

∫ 1

log 2
1−r

k(1−r)

(1− 2r cos θ + r2)
p(1−α)

4α

(1− r)2
dθ dr

&

∫ 1

1−ǫ′

∫ 1

log 2
1−r

k(1−r)

θ
p(1−α)

2α

(1− r)2
dθ dr &

∫ 1

1−ǫ′

(

1
log 2

1−r

)
p(1−α)

2α
+1

(1− r)2
dθ dr = ∞,

where 0 < ǫ′ < ǫ is sufficiently small. �

5. Remarks on composition operators on general model spaces

In this section we do not assume that the inner function ϑ is one-component.
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5.1. The Hilbert-Schmidt norm. Denote the reproducing kernel of Kϑ

at w by k(w, · ),

k(w, z) =
1− ϑ(w)ϑ(z)

1− w̄z
, z ∈ D.

Proposition 5.1. The Hilbert-Schmidt norm of the composition operator
Cϕ : Kϑ → H2 is given by the expression

‖Cϕ‖
2
HS = 1− |ϑ(0)|2 +

1

2

∫

D

∆k(z, z)Nϕ(z)dA(z).

Proof. Let {ej(z)} be any orthonormal basis inKϑ. Then k(z, z) =
∑

j |ej(z)|
2

and the Stanton formula (6) yields

‖Cϕ‖
2
HS =

∑

j

(Cϕej , Cϕej) =
∑

j

(

|ej(0)|
2 + 2

∫

D

|e′j |
2NϕdA

)

.

Since
∑

j |e
′
j(z)|

2 = 1
4∆
∑

j |ej(z)|
2, we obtain

‖Cϕ‖
2
HS = k(0, 0) +

1

2

∫

D

∆k(z, z)Nϕ(z)dA(z).

�

Corollary 5.2. (i) If

∫

D

1− |ϑ(z)|2

(1− |z|2)3
Nϕ(z) dA(z) <∞

then Cϕ : Kϑ → H2 is a Hilbert-Schmidt operator;
(ii) If Cϕ : Kϑ → H2 is a Hilbert-Schmidt operator then

∫

D

(1− |ϑ(z)|2)3

(1− |z|2)3
Nϕ(z) dA(z) <∞.

Proof. A direct calculation shows that

1

4
∆k(z, z) =

(1 + |z|2)(1− |ϑ(z)|2)

(1− |z|2)3
− 2

ℜ(zϑ(z)ϑ′(z))

(1− |z|2)2
−

|ϑ′(z)|2

1− |z|2
.

Applying the standard inequality |ϑ′(z)| ≤ (1− |ϑ(z)|2)(1− |z|2)−1,

(14) 4
(|z| − |ϑ(z)|)2(1− |ϑ(z)|2)

(1− |z|2)3
≤ ∆k(z, z) ≤ 4

(1 + |z|)2(1− |ϑ(z)|2)

(1− |z|2)3
.

Statement (i) is an immediate consequence of the right hand side inequal-
ity in (14).

In order to prove statement (ii) we first observe that if Cϕ : Kϑ → H2 is a
Hilbert-Schmidt operator then so is Cϕ : Kzϑ → H2, since Kzϑ = Kz ⊕ zKϑ
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and dimKz = 1. Denote by k̃(w, z) the reproducing kernel of Kzϑ at w. We
then have
∫

D\ 1
2
D

(1− |ϑ(z)|2)3

(1− |z|2)3
Nϕ(z) ≤

4

∫

D

(1− |zϑ(z)|2)(|z| − |zϑ(z)|)2

(1− |z|2)3
Nϕ(z)dA(z) ≤

∫

D

∆k̃(z, z)Nϕ(z)dA(z) ≤ 2‖Cϕ : Kzϑ → H2‖2HS .

�

Remark. In the previous section we proved that the inequality

(15)

∫

D

(1− |ϑ(z)|2)3

(1− |z|2)3
Nϕ(z) dA(z) <∞

gives a complete description of the Hilbert-Schmidt composition operators
Cϕ : Kϑ → H2 in the case of one-component ϑ. This condition is not
sufficient in general, see Section 5.3 below.

5.2. A sufficient condition for larger Schatten ideals. The Hilbert-
Schmidt norm characterization, discussed for composition operators so far,
remains true for the differentiation operator acting betweenKϑ and L

2(D, µ),
where µ is a positive, finite measure on D. Using complex interpolation we
can obtain a sufficient condition for a composition operator to be in the
Schatten ideal Sp when 2 ≤ p <∞.

First we assume that Φ(z) is a positive function on D such that the dif-
ferentiation D : Kϑ → L2(Φ(z) dA) is a bounded operator. It follows from
(7) that we can take

Φ(z) =
1− |z|2

(1− |ϑ(z)|2)b
,

with b ∈ (0, 1/2). For the special case when ϑ is a one-component inner
function we may choose

Φ(z) =
1− |z|2

1− |ϑ(z)|2
,

see [7, Theorem 1].

Proposition 5.3. Let Φ(z) be as above and p ≥ 2. If
∫

D

(

Nϕ(z)

Φ(z)

)p/2

∆k(z, z)Φ(z) dA(z) <∞

then Cϕ : Kϑ → H2 belongs to Sp.

Proof. The proof follows an idea of Luecking [18]; see also [4]. By the Stanton
formula (6), we want to prove that the differentiation operator D : Kϑ →
L2(Nϕ dA) belongs to the Schatten ideal Sp. It is enough to prove the
corresponding statement where Nϕ has been replaced by N = χrNϕ, χr
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being the characteristic function of the disk rD, as long as the corresponding
Schatten norm is independent of r.

Consider the following holomorphic family of compact operators

(Tζf)(z) = N(z)p(1−ζ)/4Φ(z)1/2−p(1−ζ)/4f ′(z),

where ζ ∈ C , 0 ≤ ℜζ ≤ 1. We note that T1+iy : Kϑ → L2(dA) is bounded
by a constant C1 that depends on Φ only. Further, Tiy : Kϑ → L2(dA) is a
Hilbert-Schmidt operator with norm (see the proof of Proposition 5.1)

‖Tiy‖HS ≤ 1 +

∫

D

∆K(z, z)N(z)p/2Φ(z)1−p/2dA(z) ≤ C2

by the assumption of the theorem. Then T1−2/p ∈ Sp and ‖T1−2/p‖Sp ≤

C
2/p
1 C

1−2/p
2 by Theorem 13.1 in [12]. But T1−2/pf(z) = N(z)1/2f ′(z). �

Note that for ϑ = 0, Proposition 5.3 gives us the known condition of
Luecking and Zhu [19].

5.3. Integral condition insufficient when ϑ is not one-component.

Let

αn = 2−n, rn = 1−
1

n
2−2n, zn = rne

iαn , n = 1, 2, . . . ,

and let ϑ be the Blaschke product

ϑ(z) =
∞
∏

n=1

−zn
|zn|

z − zn
1− znz

, z ∈ D.

The sequence {zn} is interpolating (for H∞), since it is hyperbolically sep-
arated in D and

∑

n(1 − |zn|)δzn is a Carleson measure for H2. Therefore
the sequence of normalized reproducing kernels

{(1 − |zn|)
1/2kzn}n, kzn =

1

1− z̄nz
,

is a Riesz basis for Kϑ. In particular any Hilbert-Schmidt operator C :
Kϑ → H2 satisfies

(16)
∑

n

(1− |zn|)〈Ckzn , Ckzn〉 <∞.

Let ∆ = {z : |z− 1
2 | <

1
2} and let ϕ(z) = (1+ z)/2, a conformal mapping

of D onto ∆. We will show that (16) with C = Cϕ fails, while

(17)

∫

D

(

1− |ϑ(z)|2

1− |z|2

)3

Nϕ(z) dA(z) <∞.

Indeed, since Nϕ(z) = − log |2z − 1| & dist(z,∆) for z ∈ ∆, we have

(1− |zn|)〈Cϕkzn , Cϕkzn〉H2 & (1− |zn|)

∫

∆

∣

∣

∣

∣

z −
1

zn

∣

∣

∣

∣

−4

Nϕ(z) dA(z)

&
1− |zn|

dist(zn,∆)
∼

1

n
.
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This yields divergence of the series on the right hand side of (16). Therefore
Cϕ is not a Hilbert-Schmidt operator.

To prove (17) we need an auxiliary statement.

Lemma 4. For any a > 0, the sum
∞
∑

n=1

(

1− |zn|

|1− znz|

)a

is uniformly convergent in D. In particular, it is uniformly bounded.

Proof. For z ∈ D and 0 < t < 1, let M(t, z) = {n ≥ 1 : 1−|zn|
|1−znz|

> t} and let

N(t, z) = |M(t, z)| be the number of points in M(t, z). Pick n and k such
that n > k ≥ N(t, z)− 1 and zn, zk ∈M(t, z). Then

2−k|z| . |(zn − zk)z| .
1− |zk|

t
≤

2−2k

t
,

from which |z|t . 2−k . 2−N(t,z). That is, there exists a constant C > 0
such that

N(t, z) ≤ log
C

|z|t
.

In combination with the identity

∞
∑

n=1

(

1− |zn|

|1− znz|

)α

= α

∫ 1

0
tα−1N(t, z) dt,

the statement of the lemma clearly follows. �

In order to prove (17) we first observe that for 0 < ǫ < 1

1− |ϑ(z)|2

1− |z|2
≤
∑

n

1− |zn|
2

|1− znzn|2

≤

(

∑

n

(

1− |zn|
2

|1− znz|

)1−ǫ
)2/3(

∑

n

(1− |zn|
2)1+2ǫ

|1− znz|4+2ǫ

)1/3

.

Let ∆′ = {z : |z − 1/2| < 1/4}. Using Lemma 4 and the fact that Nϕ(z) ∼
dist(z,∆) for z ∈ ∆ \∆′ , we obtain

∫

D\∆′

(

1− |ϑ(z)|2

1− |z|2

)3

Nϕ(z) dA(z) .

∑

n

(1− |zn|
2)1+2ǫ

∫

∆

∣

∣

∣

∣

z −
1

zn

∣

∣

∣

∣

−4−2ǫ

dist(z,∆) dA(z) ∼

∑

n

(

1− |zn|

dist(zn,∆)

)1+2ǫ

∼
∑

n

1

n1+2ǫ
<∞,

which of course implies (17).
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