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Abstract 8 

In recent years there has been a significant change in the distribution of wind farms in Great Britain, 9 

with a trend towards very large offshore farms clustered together in zones. However, there are 10 

concerns these clusters could produce large ramping events on time scales of less than 6 hours as local 11 

meteorological phenomena simultaneously impact the production of several farms. This paper 12 

presents generation data from the wind farms in the Thames Estuary (the largest cluster in the world) 13 

for 2014 and quantifies the high frequency power ramps. Based on a case study of a ramping event 14 

which occurred on 3rd November 2014, we show that due to the large capacity of the cluster, a 15 

localised ramp can have a significant impact on the cost of balancing the power system on a national 16 

level if it is not captured by the forecast of the system operator. The planned construction of larger 17 

offshore wind zones will exacerbate this problem. Consequently, there is a need for accurate regional 18 

wind power forecasts to minimise the costs of managing the system. This study shows that state-of-19 

the-art high resolution forecast models have capacity to provide valuable information to mitigate this 20 

impact. 21 

 22 
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1.0 Introduction 24 

In recent years there has been a significant growth in wind power in the UK. Between 2008 and 2014, 25 

the installed capacity of wind turbines increased from 2.9 GW to 12.4 GW and the proportion of 26 

electricity provided by wind power increased from 1.5% to 9.3% [1]. Much of this growth is the result 27 

of the development of offshore wind. Following the construction of the offshore wind farms in the 28 

second round of developments (started by the Crown Estate in 2003); the offshore capacity has risen 29 

to approximately 5 GW (40 % of total wind capacity). Much of this new capacity has been installed in  30 

a small number of very large wind farms which are located in clusters. For example, in the Thames 31 

Estuary alone there is approximately 1.7 GW of capacity [2]. This trend looks set to continue as the 32 

third round of offshore wind development in the UK, launched in 2009, identified 9 zones within 33 

which a number of individual wind farms could be located. Consequently, following the construction 34 

of the round 3 wind farms the majority of GB wind capacity would be located offshore in clusters of 35 

very large wind farms [3, 4]. 36 

Concentrating large amounts of capacity in a small number of wind farms in close proximity can lead 37 

to large regional ramps in generation on time scales of minutes to hours as the impact of local 38 

meteorological phenomena could simultaneously impact production in several sites. Drew et al [5] 39 

showed that on time scales of less than 6 hours, the ramps in generation of the cluster of wind farms in 40 

the Thames Estuary were larger than those of the more spatially dispersed onshore wind farms. Large 41 

fluctuations in power on short time scales have also been observed at the Horns Rev wind farm [6, 7]. 42 
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Given the large capacity of the offshore wind farms, these fluctuations could present a challenge to 43 

National Grid, the system operator responsible for ensuring a balance between supply and demand of 44 

electricity, particularly if they are not accurately forecasted. 45 

Making reliable forecasts of exactly where and when local ramping events will occur is a significant 46 

challenge. Potter et al. [8] identified three types of errors; phase error, magnitude error and location 47 

error. A phase error is defined as a ramping event which has the magnitude accurately predicted but 48 

occurs at the wrong time. A magnitude error is defined as a ramping event that is forecasted to occur 49 

at the correct time but with the wrong magnitude. A location error is defined as an error in the 50 

geographical location of the meteorological feature which produces the ramping event. 51 

The predictability of ramping events has been investigated using a range of methods. At relatively 52 

short lead times (minutes to hours), forecasts can be made using simple statistical methods such as 53 

ARMA (auto-regressive moving average) [9] or more complicated data-driven methods such as 54 

artificial neural networks (ANN) [10, 11]. Forecasts for the next few hours up to several days ahead 55 

rely on numerical weather prediction (NWP) models [12, 13, 14]. NWP model forecasts are initialised 56 

from analyses, which represent the observed state of the atmosphere on a three-dimensional grid by 57 

blending observational data with an earlier forecast. A forecast of the future state of the atmosphere is 58 

then made by mathematically modelling the dynamics and other physical processes.  59 

Due to its chaotic nature, the state of the atmosphere at a future time is sensitive to small errors at the 60 

start of the forecast. Consequently, there is uncertainty in NWP model forecasts, which grows with 61 

increasing lead time. To determine this uncertainty the NWP model can be run a number of different 62 

times from slightly different starting conditions (designed to represent the uncertainty in the initial 63 

state of the atmosphere) and the complete set of forecasts is known as an ensemble. By using this 64 

approach the individual ensemble members can be analysed to get a better idea of which possible 65 

weather events may occur. Cannon et al [15] showed that using an ensemble of NWP forecasts of GB-66 

aggregated wind power does have an improved skill of ramp forecasting relative to climatology up to 67 

a lead time of 7 days. On smaller spatial scales, Bossavy et al [13] showed that conditioning 68 

probability forecasts by the number of NWP ensemble members forecasting a ramp can improve the 69 

reliability of the forecast for a multi megawatt wind farm in the South of France. 70 

Here we present a case study to investigate the impact of the high frequency ramping of a cluster of 71 

offshore wind farms on the national level power system (in terms of balancing costs), if it is not 72 

forecasted by the system operator. We then explore the effectiveness of state-of-the-art high 73 

resolution NWP models of forecasting events of this nature. 74 

To achieve the aims of this study a wide range of data have been used. The first section presents the 75 

generation characteristics of the cluster of wind farms in the Thames Estuary (currently the largest 76 

cluster of offshore wind farms in the world) for 2014 and quantifies the power ramps on time scales of 77 

less than 6 hours. The second section investigates the ramping event which occurred on 3rd November 78 

2014 in more detail, highlighting the impact on the national level power system using data on volume 79 

of imbalance and balancing prices. The final section investigates whether state-of-the-art high 80 

resolution forecast models are able to capture ramping events of this nature, and if so, at what forecast 81 

lead time. 82 

2.0 Method 83 

This study focuses on the wind farms located in the Thames Estuary, approximately 100-200 km east 84 

of London, UK. This is the largest of the offshore clusters consisting of 5 individual farms (full details 85 

of the wind farms are given in Table 1 and Figure 1) with a total capacity of 1.7 GW, which equates 86 

to approximately 14% of the installed wind capacity in the UK. The aggregated power output from all 87 

wind farms in the cluster at 5 min resolution for the whole of 2014 has been obtained (data coverage 88 

>99%).  89 
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 90 
Figure 1 Location of the wind farms in the Thames estuary 91 

The generation data were analysed to assess the high frequency ramping events during 2014. The 92 

definition of a wind power ramp typically refers to the change in power output over a defined time 93 

scale, usually seconds to minutes [16, 17] or hours [18, 19]. In this study a ramp, R, is defined as the 94 

change in output of the cluster (expressed in the form of capacity factor, CF) over a given time 95 

interval, Δt (as shown in equation 1). 96 

R=CF(t+∆t)-CF(t) 97 

Figure 2 shows the magnitude of the ramps for a range of different time intervals. As shown in Drew 98 

et al [5], the distribution of the ramps for all time windows is approximately Gaussian with median 99 

values close to zero and similar frequencies of positive and negative fluctuations. As expected, the 100 

magnitude of the ramps increases with the time interval. For example, when the time window is 5 101 

minutes (Δt=5 mins), the largest fluctuation was 26.5% in comparison to 88% when the time window 102 

is 180 minutes (Δt=180 mins). In general, the majority of the ramping events are relatively small, for 103 

the longest time window considered (Δt=360 mins), 90% of the ramps lie within the range -37% to 104 

35%. However, a small number of very large ramping events also occurred. For example, the 105 

maximum ramp over a time window of 60 mins was 66%, this equates to a change in power output of 106 

1.1 GW, which could make balancing the power network problematic if not well forecast.  107 

One of the largest ramp-up events occurred on 3rd November 2014 (67% in a period of 2 hours and 108 

45 minutes). This was immediately followed by one of the largest ramp-down events (73% in a period 109 

of 1 hour and 50 minutes). This day is therefore used as a case study to consider the potential impact 110 

of high frequency local ramping events on the power system and to investigate whether high 111 

resolution meteorological forecast models can capture events of this nature. 112 

 113 
Figure 2 The magnitude of the ramps of the Thames Estuary wind farms in 2014 (expressed in the form of a change 114 

in capacity factor) for a range of time intervals. The red circles show the median, the black stars give the 115 
interquartile range, the whiskers represent the range between the 5th and 95th percentile and the blue stars indicate 116 

the minimum and maximum values. 117 

 Farm Size 

(MW) 

Turbines 

1 Kentish Flats 90 Vesta V90-3MW 

2 Gunfleet Sands 172 Siemens SWT-3.6-107 

3 London Array 630 Siemens SWT-3.6-120 

4 Thanet 300 Vesta V90-3MW 

5 Greater Gabbard 504 Siemens SWT-3.6-107 
Table 1 Details of the wind farms in the Thames estuary 
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Two different high resolution models developed by the UK Met Office have been considered; (1) the 118 

deterministic UK model (UKV) which has a high resolution inner domain of 1.5 km (2) Met Office 119 

Global and Regional Ensemble Prediction System (MOGREPS) which produces a forecast on a 120 

resolution of approximately 2.2.km using 11 ensemble members and a control forecast (see Table 2 121 

for further details). This study also considers the GB-aggregated hourly wind power forecast produced 122 

by National Grid, which is updated 4 times per day and published via the Elexon Portal [20]. This 123 

forecast was not produced using data from either of the UK Met Office models considered in this 124 

study. 125 

 126 

 UKV MOGREPS UK ensemble 

Resolution 1.5 km 2.2 km 

Forecast length 36 hours 36 hours 

Run times 0300, 0900, 1500, 2100 0300, 0900, 1500, 2100 

Members Deterministic 12 
Table 2 Details of the Met Office forecast models used in this study 127 

3.0 Ramping case study: 3rd November 2014 128 

On the morning of 3rd November 2014 an occluded weather front moved across the South East of 129 

England which led to high wind speeds and heavy rainfall in the Thames Estuary (see figure 3). After 130 

the front moved eastwards away from the cluster of farms, their wind generation reduced 131 

dramatically, falling from 93.2% of capacity at 09:25 to only 8.6% at 13:00 (see Figure 4a). 132 

Following this, a trough moved across the region which corresponds with an increase in wind power 133 

generation and by 15:45 the output was back up to 76% at 15:45, however this ramp had a short 134 

duration and by 17:35 the output had reduced to only 3% (see Figure 4). The ramping event between 135 

13:00 and 17:35 equates to an increase in power output of 1.1 GW within 2 hours and 45 minutes, 136 

followed almost immediately by a 1.24 GW reduction in power output within 1 hour and 50 minutes.  137 

 138 
Figure 3 Met Office analysis charts for 12:00UTC (left) and 18:00UTC (right) on 3rd November 2014  139 

Due to large proportion of the national wind capacity located in the Thames Estuary, the ramping 140 

event is clearly observed in the GB-aggregated wind generation (Figure 4a). Between 13:40 and 15:55 141 

wind generation increased from 1.7 GW (capacity factor of 20%) to 2.9 GW (capacity factor of 35%) 142 

before reducing down to 0.8 GW (capacity factor of 10%) at 17:45. This indicates that the ramping 143 

event was highly localised to the Thames Estuary and therefore related to a meteorological feature 144 

with a relatively small spatial extent. Figure 4(b) shows the National Grid forecast for 3/11/2014 for a 145 

range of lead times. In general, the forecast accurately captures the overall trend of the generation for 146 

all lead times, but the ramping event is not predicted in any of the forecasts. We speculate that this 147 

may be due to a smoothing effect caused by ensemble averaging; however full details of the forecast 148 

are not available. 149 

(a) 1200 UTC (b) 1800 UTC 
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 150 
Figure 4 Wind power generation on the 3rd November 2014.  (a) 5 minute mean generation of the Thames Estuary 151 
wind farms (black) and GB-aggregated (blue) (b) The hourly GB-aggregated generation and the National Grid wind 152 
power forecasts. 153 

3.1 Impact on power system 154 

In the UK, the electricity market is based on 30 minute settlement periods. For each settlement period, 155 

suppliers and generators can contract volumes of electricity up to 1 hour prior to the delivery time 156 

(this cut-off is known as gate closure). At this point, large generating units, such as offshore wind 157 

farms must submit their expected generation, known as the final physical notification, (FPN). 158 

However, for each settlement period, a supplier might have incorrectly forecasted their demand or a 159 

supplier might not be able to generate the contracted amount and therefore there can be an imbalance 160 

between supply and demand. It is then the responsibility of the system operator (National Grid) to 161 

make the necessary actions to balance the system. This is achieved by using bids and offers in the 162 

balancing market. A bid is a proposal by a supplier to increase demand or a generator to reduce 163 

generation. An offer is a proposal by a generator to increase generation or a supplier to reduce 164 

demand. 165 

For this case study, the final physical notifications of the wind farms in the Thames Estuary did not 166 

show the ramping event. Furthermore, it was not captured by the system operator’s wind power 167 

forecast and therefore led to a large imbalance of the electricity network. As a result, National Grid 168 

was required to perform a number of actions in the balancing mechanism. The net imbalance volume 169 

(NIV) is the net of the buying and selling actions taken in the balancing mechanism. When NIV is 170 

positive it means that the system is short and therefore the system operator is accepting offers to 171 

increase generation. Conversely, when NIV is negative, the system is long and the system operator is 172 

accepting bids to reduce generation.  173 

Figure 5 shows that in mid-afternoon (14:30 to 16:00) on 3/11/2014, the market was long, peaking at -174 

570 MWh at 15:30. This is a result of the unexpected pick-up in the generation in the Thames 175 

Estuary. By 17:00, the generation had drastically reduced and the market was short by 820 MWh (the 176 

3rd largest negative imbalance for this time of day in 2014). This large imbalance coincided with 177 

winter darkness peak and therefore the electricity demand for this settlement period was very high, 178 

47.6 GW (in the top 2.5 percentile of half hourly demand in 2014). Consequently, there were fewer 179 

options, in terms of generation units, available to National Grid to balance the system. As a result, 180 

short term operating reserve (STOR) was deployed, which is expensive and therefore had implications 181 

on the system prices. 182 
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 183 
Figure 5 The net imbalance volume (NIV) of the power system for each settlement period on the 3rd November 2014 184 

(red). Also shown is NIV for every other day in 2014 (grey lines). 185 

In November 2014, the costs associated with balancing mechanism bids and offers were given by the 186 

system buy price (SBP) and system sell price (SSP). The SBP is the rate paid by a party with a net 187 

deficit of imbalance energy and the SSP is the rate paid to parties with a net surplus of imbalance 188 

energy. Figure 6 shows the ramping event had a significant impact on both the SSP and SBP. At 189 

17:00, when the system had a large deficit, the SBP increased to £183 per MWh which was the third 190 

highest price in this settlement period during the year and 16th highest price for any settlement period 191 

in the year. SSP also increased to £105 per MWh, the 5th highest price for that period in 2014 and 19th 192 

highest for any settlement period during the year. 193 

 194 

 195 
Figure 6 The system sell price (SSP) and system buy price (SBP) for each settlement period on the 3rd November 196 
2014 (red). Also shown is the SSP and SBP for every other day in 2014 (grey lines). 197 

4.0  High Resolution Forecasts 198 

The analysis in section 3 has shown that the recent trend for clustering large amounts of capacity in a 199 

relatively small area (e.g. Thames Estuary) can lead to large local power swings, which unless 200 

accurately forecast can have a significant impact on the cost of balancing the power system. This 201 

effect is likely to be exacerbated following the construction of the wind farms proposed as part of the 202 

next phase of offshore wind development in the UK. The aim of this section is to investigate whether 203 

state-of-the-art high resolution meteorological forecast models capture local ramping events, using the 204 

ramp on 3/11/2016 as a case study. 205 
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4.1 Meteorological conditions 206 

The output from the high resolution models has been assessed to determine the meteorological 207 

conditions on 3rd November 2014. Figure 7 shows the rainfall and wind from 12:00 and 15:00 UTC 208 

derived by a single ensemble member of the MOGREPS forecast initialised at 09:00 UTC. The 209 

figures clearly show the elevated wind speeds and heavy rainfall in the English Channel associated 210 

with the main front which passed over the region earlier in the day. There is also a feature behind the 211 

front with large amounts of rainfall which propagates from south west to north east along the front. 212 

This is related to the trough marked on the analysis chart at 12 and 18 UTC (see Figure 3). The winds 213 

associated with this feature are relatively low over land but pick up as it passes over the Thames 214 

Estuary at 14:00 UTC. 215 

Complete analysis of the dynamics of this feature is beyond the scope of this paper; however there are 216 

several things of importance to consider. Firstly, the acceleration of the winds as the rainfall feature 217 

passes from the land into the Thames estuary, which is possibly due to change in the surface 218 

roughness. The most important thing to note is the way that the frontal region is comprised of small 219 

scale banded structures with can lead to large local fluctuations in wind speed. The magnitude of the 220 

uncertainty in the location and detailed structure of such banded features is larger than their spatial 221 

scale meaning that ensemble mean forecasts will fail to capture them (this is explored detail in section 222 

4.3). 223 
 224 

  225 

  226 
Figure 7 Instantaneous wind and Rainfall rate (mm hr-1) from 12:00-16:00 UTC on 3rd November 2014 derived by 227 

MOGREPS (ensemble member 4 from forecast initialised at 09:00 on 3rd November 2014).The white stippling shows 228 
wind speeds at 10 m in excess of 10 ms-1. 229 

4.2 Deterministic Model (UKV) Results 230 

The model forecasts have been obtained for a range of initialisation times (6 hourly intervals from 231 

03:00 on 02/11/2014 to 09:00 on 03/11/2014). The generation of the cluster has been estimated by 232 

applying the power curve produced by the turbine manufacturer to the model derived wind data 233 

defined in two ways: (1) turbine location method: the wind speed from the model at the exact location 234 
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of each of the turbines (2) area maximum wind speed method: the maximum wind speed within a 10 235 

km radius of each of the turbines. 236 

Figure 8a shows that using the wind speed at the exact location of the turbines (‘point’) produces an 237 

underestimate of the ramp in generation. Between 15:00 and 16:00 the capacity factor of the region 238 

increases by 19%, before reducing by 17% by 18:00 this equates to a magnitude error of 30%. 239 

However, using the maximum wind speed within a 10 km area of each of the turbines produces a 240 

clear, large mid-afternoon ramp up of 44% between 15:00 and 17:00 followed by a ramp down of 241 

40%. This reduces the magnitude error to only 8%, but there is still a 2 hour phase error in the 242 

forecast. This indicates that while the model was able to produce the band of post-frontal high wind 243 

speeds, it did not have the timing and position of the feature exactly correct. 244 

By using the area maximum wind speed method to determine wind farm power output, there is an 245 

indication of a large ramp present in the forecast from the UKV 1.5 model out to a lead time of 24 246 

hours. Figure 8b shows that the forecast initialised at 15:00 on 02/11/2014 produces a ramp of 41% 247 

(magnitude error of 8%), however the ramp peaks at 1300UTC therefore there is a 2 hour phase error. 248 

As the forecast lead time decreases the representation of the ramp improves and by 03:00 on 3/11/14, 249 

the magnitude error is reduced to 5% but the phase error remains at 2 hours. 250 
 251 

 252 
Figure 8 The hourly generation of the wind farms in the Thames Estuary compared to power forecast derived from 253 
the Met Office UKV1.5 model. (a) Comparison with power derived from the UKV wind speed (forecast initialised at 254 

03/11/2014 at 09:00) at the precise location of each turbine (point) and with the maximum wind speed within 10 km of 255 
each turbine (area). (b) Comparison with the wind power forecast for a range of lead times. 256 

4.3 Ensemble Model (MOGREPS) Results 257 

For all forecast lead times, there is a large spread in the capacity factor across the 12 different 258 

ensemble members on the afternoon of 3/11/2014 (see Figure 9). It is clear from the figures that the 259 

ensemble mean grossly underestimates the variability in generation. This is due to the smoothing that 260 

occurs when averaging over the ensemble members and highlights the importance of considering the 261 

trajectory of individual ensemble members when estimating ramp events.  262 

An assessment of the forecast of the different ensemble members has been made focussing on the 263 

period from 12:00 to 18:00 on 3/11/2014. To prevent large differences between successive forecasts, 264 

the forecasts from consecutive initialisation times are typically combined to produce a 24 member 265 

ensemble. For the forecast initialised at 09:00 and 15:00 on 02/11/2014 (27-21 hours prior to the 266 

ramp), the majority of the members have relatively high generation during the period; however 21% 267 

of members show a ramp with a magnitude of at least 20%. As the forecast lead time decreases the 268 

number of members predicting a ramp (R>20%) increases (see Table 3). For the forecast based on 269 

initialisation times of 03:00 and 09:00 UTC on 3/11/2014, there is a 75% probability of a ramp 270 

occurring (18 members forecast a ramp).  Table 3 also shows that some ensemble members do predict 271 

a very large ramping event (R>40%) during the 3 hours either side of when the event occurred. For 272 

example, for the forecast at 12:00 on 02/11/2014 there is a 16.7% probability of a large ramp 273 
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(R>40%) occurring in this period. This increases to 33.3% for the forecast at 06:00 on 03/11/2014. 274 

However, the probabilities are significantly reduced when the time window is restricted to 1 hour 275 

either side of the event- indicating a phase error in the forecast. 276 

For each ensemble member with a predicted ramp in the time window 12:00-18:00, the magnitude 277 

and phase error has been determined. In general, the magnitude of the ramps predicted by the 278 

individual ensemble members becomes more accurate as the lead time decreases. Figure 10 shows 279 

that the latest forecast (initialised at 09:00 on 3/11/2014) has 7 out of 12 members predicting a 280 

ramping event, with a range of magnitudes from 17-70%, but for two members the magnitude error is 281 

less than 5%. Figure 10 also shows that the magnitude error of the ramps predicted by the UKV1.5 282 

model is relatively low (less than 8%) for all lead times, this is lower than all but one ensemble 283 

member for the corresponding MOGREPS forecast. However, there is a consistent 2 hour phase error 284 

for all of the UKV forecasts. 285 

 286 

 287 

 288 

Forecast P(R>20%, t±3) P(R>20%, t±1) P(R>40%, t±3) P(R>40%, t±1) 

02/11/2014 12:00 20.8 20.8 4.2 4.2 

02/11/2014 18:00 25.0 16.7 12.5 4.2 

03/11/2014 00:00 45.8 20.8 20.8 4.2 

03/11/2014 06:00 62.5 29.2 33.3 12.5 

Table 3 Probability of a ramping event (defined by the size R>20% and R>40%) occurring within t±1 and t±3 hours 289 
of the observed ramping event based on the MOGREPS forecast.  290 

4.4 Discussion 291 

Analysis of the meteorological conditions on 3rd November 2014 has shown that the ramping event 292 

was caused by a trough which formed behind a large weather front. The trough was a relatively small 293 

feature (spatial extent of approximately 100-150 km) and therefore the ramping was localised to the 294 

wind farms in the Thames Estuary. The size of the feature presents a series of challenges to 295 

forecasting ramping events of this nature. Firstly, uncertainty in its location can have a significant 296 

impact on the predicted wind generation. For example, the high resolution deterministic forecast 297 

predicted the presence of the trough at a lead time of 24 hours, however as the feature is not predicted 298 

in exactly the right location there is a large error in the predicted wind power of the cluster. This error 299 

can be reduced by estimating the power output using the maximum wind speed within a given area of 300 

the turbines rather than the wind speed at the exact location of each turbine. Secondly, the size of the 301 

feature also means that it is unlikely to be captured in a wind power forecast which uses the ensemble 302 

mean. As shown in section 4.3, individual ensemble members capture the feature but in slightly 303 

different locations, so the mean smears out the increased generation.  304 

Despite the relatively small size of the feature, the high resolution deterministic model was able to 305 

forecast the ramping event at a lead time of 24 hours but with a phase error of -2 hours and a 306 

magnitude error of -8%. When the lead time reduced to 12 hours, the magnitude of the ramp was 307 

accurately forecast to within 5% but the phase error remained at 2 hours (but opposite sign). In 308 

addition, a number of ensemble members also predicted a ramp up to 36 hours in advance. For lead 309 

times from 36 down to 6 hours there was a large spread in the ensemble members for the period 310 

during which the ramping occurred, indicating large uncertainty in the predicted wind generation. 311 

Access to such forecasts would have allowed National Grid to have prepared for the ramping event in 312 

advance, reducing the number of transactions required in the balancing mechanism and ultimately the 313 

cost of electricity. 314 
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While the NWP models were shown to be of benefit for this particular, high-impact case study, 315 

further work is required to place the performance of the models in to context. The skill of the models 316 

at predicting local ramping events could be determined over a long time period (large number of 317 

ramping events) and compared to that of a low resolution global NWP model. This would quantify the 318 

benefit of high resolution models and determine the bounds of predictability of local ramping events. 319 

 320 

 321 
Figure 9 The wind power forecast for the Thames Estuary wind farms derived from the MOGREPS model output for 322 
a range of forecast lead times. The figure shows the forecast derived from each ensemble member (grey lines) as well 323 
as the ensemble mean (red lines) and is compared to the measured hourly output (black). 324 
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 325 
Figure 10 The magnitude error (expressed in the form of capacity factor) and phase error of the ramps predicted by 326 
the individual MOGREPS ensemble members (circles) and the UKV1.5 forecast (stars). Data is shown for the range 327 

of lead times. 02/11 at 09:00Z (light blue), 02/11 at 15:00Z (dark blue), 02/11 at 21:00Z (green), 03/11 at 03:00Z 328 
(yellow) and 03/11 at 09:00Z (red). 329 

5.0 Conclusions 330 

In recent years there has been a significant change in the distribution of wind farms in Great Britain, 331 

with a trend towards very large offshore wind farms clustered together in several zones. This study 332 

has shown these clusters can experience large ramping events on time scales of less than 6 hours as 333 

the impact of local meteorological phenomena on the power production is strong. For example, for the 334 

wind farms in the Thames Estuary, 10% of the ramps over a 6 hour time window were in excess of 335 

30% of the total capacity. Due to the large capacity of the farms, these wind power fluctuations can 336 

present challenges for the system operator in maintaining the balance between supply and demand on 337 

a national scale.  338 

A case study of the wind farms in the Thames Estuary has shown the implications of an unpredicted 339 

local ramping event on the cost of balancing the power system. On 3rd November 2014, there was an 340 

increase in power output of 1.1 GW within 2 hours and 45 minutes, followed almost immediately by a 341 

1.2 GW reduction in output within 1 hour and 50 minutes. As this event was not captured by the 342 

forecast used by the system operator the market was long by 570 MWh at 15:30 (due to the 343 

unexpected pick-up in the generation in the Thames Estuary) and then short by 820 MWh at 17:00 as 344 

the generation had drastically reduced. The large imbalance coincided with a period of very high 345 

demand and therefore there were fewer generation units available to help the system operator to 346 

balance the system. Consequently, expensive short term operating reserve was deployed which led to 347 

a spike in the system buy price of 183 per MWh which was the 16th highest price during the year. 348 

The construction of even larger offshore wind zones, outlined in Round 3 of the UK’s offshore wind 349 

development would exacerbate this problem. Furthermore, a number of other nations are seeking to 350 

dramatically increase their own offshore wind capacity. Consequently, there is a need for accurate 351 

regional wind power forecasts to minimise the costs of managing the system. In recent years a number 352 

of state-of-the-art high resolution forecast models have been developed. For this case study, these 353 

models were able to capture the meteorological feature which caused the localised ramping at a lead 354 

time of up to 24 hours and therefore the use of these forecasts would have been of benefit to the 355 

system operator. As system operators continue to seek to improve their forecasting of weather 356 

dependent renewable generation, the new forecast models should be considered. However, further 357 
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work is required to determine how well the model captures the high frequency ramping for a larger 358 

number of events. 359 

 360 

This study has also shown that careful interpretation of the forecast is required. For example, due to 361 

possible errors in the position of small scale meteorological features in the models, a wind power 362 

forecast derived from the predicted wind speeds at the exact location of each turbine can contain large 363 

errors. It is therefore recommended that wind power estimates are based on the maximum wind speed 364 

within a given area of the turbines. In addition, the ensemble mean power forecast is not suitable 365 

when considering ramping events due to the smoothing that occurs when averaging over the ensemble 366 

members. This highlights the importance of considering the trajectory of individual ensemble 367 

members when estimating ramp events as well as the information about forecast uncertainty that they 368 

provide. 369 
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