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Drilling is widely used in groundwater monitoring and many other applications but has the inherent
problem of introducing some degree of external contamination into the natural systems being moni-
tored. Contamination from drilling fluid is particularly problematic for (i) wells with relatively low water
flow rates which are difficult to flush; and for (ii) hydrogeochemical research studies of groundwaters
hosted by incompletely consolidated shallow sediments, which are widely utilized as sources of drinking
water and irrigation water across many parts of Asia. Here, we develop and evaluate a method that can
be simply used to quantify the extent of drilling fluid contribution to a water sample either to optimize
sample collection for reduced contamination, or to allow a correction for contamination to be made. We
report the utility of lithium chloride tracers using both field and laboratory analytical techniques to
quantitatively evaluate and correct for drilling fluid contamination of casing waters through an inves-
tigation of 15 sites in Kandal Province, Cambodia. High analytical errors limit the practicality and res-
olution of field-based lithium ion selective electrode measurements for purposes other than broad
estimates of gross contamination. However, when laboratory analysis is integrated with the method (e.g.
via inductively coupled plasma atomic emission spectrometry analysis), lithium tracers can provide a
robust and accurate method for evaluating drilling-related contamination if appropriate samples are
collected. Casing water is susceptible to contamination from drilling fluid which was shown to be
significantly reduced within two to three well volumes of flushing but can still persist above background
for greater than seven well volumes of flushing. A waiting period after drilling and prior to water
sampling was shown to further decrease contamination due to dilution from the surrounding aquifer,
particularly in more permeable wells. Contamination values were generally <3% for 34 monitoring wells
across 15 sites after flushing a mean of 4.6 ± 3.8 well volumes, even when lithium-spiked water was
directly injected during flushing to remove settled mud/debris. Operational issues can be encountered
which can (i) lead to contamination being much higher than the mean if wells are highly unproductive
and clay-dominated or (ii) lead to higher flushing volumes than the mean particularly in sandy areas
where fine sand may enter the well screening. General correction factors have been provided for typical
monitoring wells in poorly consolidated shallow aquifers in Southeast Asia, and examples provided for
how to correct other groundwater data for contamination. For most analytes such as sodium or dissolved
organic carbon (DOC), specific corrections may not be necessary for the typical magnitude of contami-
nation encountered, particularly when the differences in concentrations between the drilling fluid and
groundwater are relatively small. In the particular circumstance where drilling fluid may have much
higher DOC than groundwaters, or vice versa with drilling fluid having much lower DOC than ground-
waters in organic-rich alluvial sediments, corrections may still be necessary and significant. Similarly, for
highly sensitive parameters such as 14C model age or other age-related parameters (such as tritium,
chlorofluorocarbons (CFCs) or sulfur hexafluoride (SF6)), corrections can be significant in typical field
scenarios particularly when contamination values are high and/or there is a large difference in age be-
tween groundwater and drilling fluid. The lithium method was verified with comparison to changes in
concentration of a suite of representative and naturally occurring groundwater constituents as a function
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of well flushing from relatively low and high permeability groundwater monitoring wells to further
illustrate the technique.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Drilling procedures have the inherent and unavoidable problem
of introducing some degree of external contamination into natural
groundwater systems. The quantification of contamination result-
ing from drilling proceduresmay therefore be essential information
required for the scientific interpretation of chemical data from
groundwaters obtained from drilled monitoring wells. Chemical
tracers can be used to track the distribution of drilling fluid during
well drilling (Bath, 2011) and which directly allow for monitoring
and quantification of drilling-related contamination in
groundwaters.

Drilling tracers have important applications in a number of
fields including groundwater investigations (Bottrell et al., 2010;
Edmunds and Bath, 1976; Riley et al., 2001; Smart and Laidlaw,
1977), oil and gas exploration (Kleven et al., 1996; Warner et al.,
2014), geothermal energy surveys (Adams et al., 1992;
Chrysikopoulos and Kruger, 1987) and other geoscientific
(McKinley and Colwell, 1996; Smith et al., 2000) and microbiolog-
ical (Kallmeyer et al., 2006) studies. This is also essential in the
context of research into the biogeochemistry of arsenic in shallow
reducing aquifers (Charlet and Polya, 2006; Lloyd and Oremland,
2006; Polya and Charlet, 2009), where the quantification of
possible introduction of surface water into sediments and
groundwaters is particularly important due to the often incom-
pletely consolidated sediments encountered during drilling and the
potentially serious implications of drilling contamination on
interpretation of inorganic water chemistry, organic water
composition and model groundwater dates (Aggarwal et al., 2003;
Darling et al., 2012; Gooddy et al., 2006; Harvey et al., 2003, 2002;
Lawson et al., 2013; McArthur et al., 2011; Neumann et al., 2010;
Rowland et al., 2007; Sengupta et al., 2008; van Geen et al., 2004;
van Geen et al., 2008; van Geen et al., 2003).

Various tracers have been used during drilling procedures in the
pursuit of different aims (Bath, 2011). The selection criteria for
drilling tracers includes background levels; chemical stability in the
relevant environment; the degree of conservative and non-sorbing
behavior; ease and technical capability of in-field monitoring;
analytical detection limits; cost of materials; and minimization of
adverse effects on the environment, health (human and/or animal)
and/or public perception and acceptability. Tracer selection is thus
application-dependent and reflects a balance of considerations.
Most tracers fall into two categories: (i) dye compounds and (ii)
inorganic compounds (Bath, 2011) and the relative merits of these
are discussed briefly below.

Dyes (fluorescent or non-fluorescent) are typically polycyclic
aromatic carboxylic organic compounds such as rhodamine WT,
rhodamine D, fluorescein, uranine, amino-G acid, fluorobenzoic
acid and blue dye (Di Fazio and Vurro, 1994; Penteleit et al., 2006;
Sabiani and Austin, 1991; Wandrey et al., 2010). Dyes are very
commonly used and have the advantage of easy and rapid on-site
analysis. However, organic dyes are much more chemically com-
plex than water, have complex sensitivities to light, pH, salinity,
temperature and water composition, and exhibit significant sorp-
tion, especially to clays that may be encountered during drilling
procedures. These disadvantages severely diminish their value for
drilling applications.
Alternatively, inorganic tracers, such as lithium, iodide, bromide,
potassium, chloride, nitrate and thiocyanate, exhibit the advan-
tages of simple hydrochemical behavior, simple composition, gen-
eral insensitivity to environmental conditions such as pH, and
improved persistence in drilling fluid as compared to organic dyes.
However, inorganic tracers are often avoided in field studies as they
generally require more complicated and off-site chemical analysis
which may be impractical in the field context. Another potential
disadvantage of cationic tracers, in particular, is that ion exchange
reactions can occur between a cationic tracer and charged func-
tional groups on the surface of clay materials if unbalanced elec-
trical charges are present. Because these ion exchange reactions are
reversible and highly dependent on the nature of the mineral
framework within the sediments, they can be variable and difficult
to quantify in a natural environment (Bath, 2011; Carroll, 1959; Gast
and Klobe, 1971). It is well established that the affinity of various
types of clays for cations decreases with increasing hydrated radii,
with the order of preference being Csþ > Rbþ > Kþ > Naþ > Liþ

(Carroll, 1959; Gast and Klobe, 1971).
Thus, of the possible cationic tracers, lithium exhibits the lowest

ion-exchange capacity with clay materials (Carroll, 1959; Gast and
Klobe, 1971), indicating its comparative potential as an excellent
tracer. Furthermore, background levels of lithium are generally low
(for example ranging from <1.0 to 34 mg/L in UK aquifers)
(Kinniburgh and Smedley, 2001; Shand et al., 2007) ensuring that
the majority of lithium observed is typically derived from tracer
spiking. Indeed, lithium has previously been used as a drilling
tracer for various applications such as site characterisation
(McCartney and de L.G. Solb�e, 1999), tracing in porous aquifers
(Ptak et al., 2004; Vereecken et al., 2000), hydraulic tracing in
wetlands (Dierberg and DeBusk, 2005), the evaluation of fluid-
sediment reactions in volcanoes using isotopes (Chan and
Kastner, 2000), fracking (Warner et al., 2014), and evaluating
interstitial waters of marine sediments in ocean drilling (You et al.,
1995; Zhang et al., 1998). Notwithstanding this, lithium is often
avoided partly due to difficulties in in-field detection and, in
particular, to our knowledge, lithium has not been used as a tracer
to specifically evaluate the drilling-induced contamination of
groundwater collected from shallow monitoring wells (<45 m in
depth) drilled in poorly consolidated sediments.

Such poorly consolidated sediments hosting heavily exploited
aquifers are widespread in many parts of the world but particularly
in densely populated lowland river basins of circum-Himalayan
Asia (Charlet and Polya, 2006). The use of these aquifers as a
source of drinking water has led to massive detrimental health
outcomes to those exposed to arsenic contained in the waters
(Charlet and Polya, 2006; Polya and Charlet, 2009). Although this
arsenic is largely held to be of geogenic origin, there is an ongoing
debate about the importance of irrigation-enhanced ingress of
surface-derived waters (Aggarwal et al., 2003; Harvey et al., 2002;
Polya and Charlet, 2009) and detailed hydrogeochemical studies
are critical to resolving this. Kandal Province, Cambodia is one of
several areas in southern and south-east Asia broadly typical of
such arsenic-impacted aquifers (Charlet and Polya, 2006) and is the
focus of significant research studies of arsenic biogeochemistry
(Buschmann and Berg, 2009; Charlet and Polya, 2006; Lawson et al.,
2013; Polizzotto et al., 2008; Polya et al., 2008; Polya and Charlet,
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2009; Rowland et al., 2007; Sovann and Polya, 2014); this, together
with logistical reasons, provided an ideal area in which to test the
utility of lithium tracers in shallow aquifers hosted by poorly
consolidated sediments.

The aim of this work is to evaluate the magnitude of contami-
nation of groundwaters resulting from some manual drilling
techniques in shallow soft sedimentary aquifers in Southeast Asia
using lithium tracers. This will allow the determination of site and
sample-specific correction factors for subsequent chemical analysis
of samples collected from these monitoring wells as well as
providing an improved understanding of potential contamination
arising from these drilling techniques. The primary objectives of
this study were to (i) determine the effectiveness of lithium tracers
to quantify drilling fluid contamination in shallow soft sedimentary
aquifers; (ii) determine the rates of diminution of drilling-induced
contamination in casing water during well development; and (iii)
consider appropriate mitigation or correctional strategies for the
contamination of wells used for scientific monitoring of aquifer
waters.

2. Methods and materials

2.1. Drilling methods

This study focuses on 34 monitoring wells drilled into poorly
consolidated shallow sediments across 15 sites in a 50 km2 area in
Kandal Province, Cambodia, located approximately 12 km south-
east of Phnom Penh. Study sites were coded for identification as
LRXX-YY where XX represents a specific site number and YY is the
well depth in meters. All sites had clusters of at least two wells of
different depths (typically 15 and 30 m) within several meters of
each other, and lithology varied at the different sites. Details of the
sedimentary characteristics (e.g. minerology, organic content and
composition, 14C age, geological context, hydraulic conductivity,
etc.) typical to this field area are published elsewhere (Benner et al.,
2008; Rowland et al., 2008; Tamura et al., 2007; van Dongen et al.,
2008).

The local drilling technique used was manual rotary drilling,
which is a method widely used both in Cambodia and other
countries in south-east and southern Asia. The specific drilling
procedure followed was based on local drilling practices and the
knowledge and experience of the local drilling team; some regional
variations in working practices may be expected. A steel pipe
(7.6 cm diameter, in 3 m segments) was attached to a cutting auger
(10.2 cm) and manually rotated until the desired well depth was
reached.

Drilling fluid was continuously pumped using a suction pump
(Honda WB30XT, Cambodia) through the steel pipe to remove
drilling cuttings and allow for manual rotation of the drilling
equipment. Locally available water (either surface or groundwater)
in relatively close proximity to the drilling site was used as the
drilling fluid. As drilling progressed, drilling fluid was recycled to
the drilling fluid reservoir and refilled periodically when required.
The mean quantity of net drilling fluid used was approximately
70 Lm�1 of drilling depth (equivalent to ~ 2m3 per 30mwell). Fig.1
shows a schematic of the various fluid reservoirs and the transfers
taking place during the drilling process. When the desired depth
was achieved, the drilling fluid was circulated in the borehole for
approximately five to 10min to initially displace settled debris from
the borehole prior to casing. Wells were then cased with PVC
(6.97 cm inner diameter, manufactured in Kandal Province,
Cambodia) with onemeter of capped screening at the bottom of the
casing. The dead volume between the bottom of the screen and the
base of the capped casing was approximately 0.2 L. The outside of
the casing was backfilled first with weathered, locally available
quartzite alluvial gravel as the gravel pack, then finished by back-
filling with the original sediments and sealed with clay and con-
crete at the surface. The PVC casing protruded approximately 50 cm
above the ground surface. All wells were capped and locked when
not in use.

Wells were developed in the first instance by pumping com-
pressed air (Yokohama GX-200, Japan) to the base of the casing via
a flexible plastic tube (approximately either 15 mm or 25 mm
diameter), which caused settled debris and water to be displaced
from the well and allowed for sample collection as a function of
flushing volume. When the airlift pumping method was used, the
tube was manually moved vertically within the casing to maximize
water and debris displacement. Where pumping compressed air
did not provide sufficient force for well development (e.g. in rela-
tively low productivity wells), a submersible pump (Grundfos MP1,
UK) or peristaltic pump (Geotech Easy Load II, UK) for shallowwells
(6 and 9 m) was alternatively used. In order to protect the sensitive
down-hole components of the MP1, this pump was placed at a
depth of approximately 50e70% down the well. The intake end of
the tubing for the peristaltic pump was placed near the bottom of
the shallow wells. The airlift pump air was the preferred pumping
method for well development when possible, as neither the MP1
nor peristaltic pump are suitable for moving high loading of sedi-
ment/mud. The volume of development water was measured by
collecting the displaced water and measuring the volume. The final
casing water sampling was done using the MP1 and peristaltic
pump, as depth appropriate, at the same pump positions used for
well development. The dead volume related to the intake of the
pump was approximately 14 L for the MP1 and 0.2 L for the peri-
staltic pump, which is related to the pump tubing length and
diameter. The dead volume was discarded prior to sampling or
taking other measurements to ensure that the casing water was
being pumped.

In this manuscript, the term “flushing” refers to the well
development process of pumping casing water from the well,
using one of the three pumping methods described in the pre-
vious paragraph. Where pumping occurred as already described,
this is the method noted as “Regular Flushing” in this manuscript.
However, in some cases, where a substantial amount of debris/
mud had settled or collected during drilling, a different well
development technique was required. In this case, direct injec-
tion of drilling fluid into the casing (using the primary drilling
suction pump Honda WB30XT) was required to displace the
debris/mud via circulation and throughflow. This direct injection
was immediately followed by pumping casing water from the
aquifer, allowing new casing water to enter the well as above.
This alternate method of development is noted as “Direct Injec-
tion” and was only used in wells with a substantial amount of
settled debris.

In this manuscript, the term “well volume” refers to the volume
of the water column within the well casing. The normalized num-
ber of well volumes (unitless) corresponds to an absolute water
volume (L), which varies with each well according to thewell depth
as well as the water level within the well (United States
Environmental Protection Agency Environmental Response Team,
2001). Because the depth and water level are well-specific, the
number of well volumes has been used in reference to flushing
rather than absolute water volume. For example, one well volume
corresponds to a water volume of approximately 107 L for a 30 m
well with awater level of 2 m; or 50 L for a 15 mwell with the same
water level (given a casing inner diameter of 6.97 cm). Two well
volumes would correspond to twice the above water volumes, and
so on. Water level was measured with a dip meter (Solinst Water
Level Dip TapeModel 101 P2/M3/30m), and typically ranged from2
to 5 m below ground surface.



Fig. 1. Flow schematic of fluid reservoirs and transfers involved in the manual drilling process with local techniques. S1 represents the water source stream into the drilling fluid
reservoir; S2 is the pressurized stream to assist with drilling; S3 is direct leakages from the drilling fluid reservoir into the borehole; S4 are losses of drilling fluid into the sur-
rounding groundwater at depth; S5 is ingression of surrounding groundwater into the borehole; S6 are surface losses due to overflows, evaporation, etc.; and R1 is the recycle of
drilling fluid back into the drilling fluid reservoir.
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2.2. Tracer methods

Lithium chloride (lithium chloride anhydrous, laboratory re-
agent grade, Fisher Scientific UK) was selected as the target tracer
and spiked into the drilling fluid reservoir or injection fluid reser-
voir as a concentrated solution of lithium chloride in deionized
water and well-mixed into the reservoir by manual stirring. The
targeted mean overall concentration in the drilling fluid was
approximately 50 mg L�1 as lithium. The concentration was
selected to be (i) sufficiently high to permit changes to be moni-
tored; (ii) substantially higher than expected background ground-
water concentration; (iii) low enough as to avoid significant
potential changes to groundwater chemistry, environment,
aesthetic and/or health parameters of water (for example, in un-
likely case of the unintended consumption of substantially drilling
fluid contaminated borehole waters by animals or people); and (iv)
cost. In order to maintain the concentration in the drilling fluid, as
drilling fluid was used and diluted, lithiumwas periodically topped
up as required (typically three times during the drilling of a 30 m
borehole).

Lithium concentrations in grab samples of the drilling fluidwere
measured (i) initially; (ii) after every 3 m of drilling; and (iii) before
Fig. 2. Concentration of lithium chloride (CLi, mg Le1) tracer based on ion selective
electrode measurements in drilling fluid shown against drilling depth for well LR06-
30. Lithium chloride was manually added to the drilling fluid prior to commencing
drilling and subsequently whenever measured lithium concentrations fell below the
targeted mean concentration of approximately 50 mg Le1. Grey boxes show points of
manual lithium chloride addition.
and after every new addition of lithium to the reservoir (Fig. 2). In
the drilling fluid, lithium concentrations accordingly spike due to
initial and periodic addition of lithium to drilling fluid reservoir,
and decrease due to drilling fluid being used, dilution of drilling
fluid from regular refilling of reservoir and surface losses. When
direct injection of water was required during flushing to displace
settledmud/debris (e.g. in very low permeability monitoring wells),
lithiumwasmixed into the injectionwater in a 500 L rainwater tank
used as the injection water reservoir in which the targeted lithium
feed concentration was also approximately 50 mg L�1. Field mea-
surements of lithium concentrations of casing water samples were
measured at the time of water flushing, which generally occurred
within several weeks after the completion of drilling. All field
lithium measurements were made as soon as possible after sample
collection (generally within 20 min of sample collection).
2.3. Chemical analysis and error estimation

Lithium concentrations in the field were measured using a
lithium ion selective electrode (ISE; custom-made single ion probe,
CleanGrow, Ireland). Direct field measurements were made as an
electrical signal (SLi, mV) and converted into concentration values
(CLi, mg L�1) by using a logit calibration curve (of generic form logit
x ¼ ln[x/(1�x)]) (Miller and Miller, 2010). The logit calibration
curve plots log(uþ CLi) against SLi where u ¼ 0.35 for standards of
known concentration. A modelled weighted ordinary least squares
linear regression (Miller and Miller, 2010) of the calibration gives a
slope log(uþ CLi, mg L�1) mV�1 and intercept, allowing the con-
version of measured SLi (mV) to CLi (mg L�1). A full calibration of the
ISE was conducted during equipment commissioning with lithium
concentrations, CLi, of 0, 0.01, 0.08, 0.25, 1.0, 5.0, 10, 100, 500 and
1000 mg L�1. Calibrations of three standards (CLi,Std ¼ 10, 100 and
1000mg L�1) were checked daily in the field tomonitor and correct
for changes in sensitivity arising from sensor status, temperature
and other field conditions. The supplier-provided detection limit
was 0.1 mg L�1.

Calibration parameters shifted in systematic segments during
the duration of multiple sampling periods (Fig. 3). The observed
shifts in the three-point field calibrations were: (i) a general in-
crease in signal over 175 days for a 10 mg L�1 standard solution,
followed by a marked decrease in signal after 175 days of field
usage; and (ii) a general increase in the slope of the calibration
curve. Because of the shifts in calibration parameters over the
sampling campaigns, three distinct calibrations have been used for
each of the “Blocks” indicated on Fig. 3 using calibration parameters



Fig. 3. Electrical signal, SLi,10mg/LStd (mV) of a 10 mg Le1 lithium calibration standard
and slope log(u þ CLi,mg L

e1) mVe1 of the three-point field calibration (10, 100, 1000 mg
Le1) as measured by the lithium ion selective electrode versus days of probe usage in
the field. Day 0 represents equipment commissioning done in the laboratory; all other
measurements are done in field conditions. Blocks indicate segments of where distinct
calibrations were used for representative days within the block. Block 1 is from Day 0 e

Day 54 (19 Nov 2013 e 12 Jan 2014) and represented by Day 28 (17 Dec 2013); Block 2
is from Day 55 e Day 175 (13 Jan 2014 e 13 May 2014) and represented by Day 59 (17
Jan 2013); and Block 3 is from Day 176 e Day 210 (14 May 2014 e 17 June 2014) and
represented by Day 195 (02 June 2014). Grey arrows indicate the direction of changes
for SLi,10mg/LStd. The decrease in signal during Block 3 is attributed to the low con-
centrations of lithium presented to the electrode during this time (see text for further
detail).

Fig. 4. Error approximations for ISE field measurements based on a modelled
weighted ordinary least squares regression of calibration data (Miller and Miller, 2010).
Errors for ISE field measurements were based on the difference between any measured
SLi (mV) relative to the SLi,10ppmStd (mV) of the as measured on the representative day of
the appropriate block (e.g. 17 Dec 2013 for Block 1; 17 Jan 2014 for Block 2; and 02 June
2014 for Block 3) according to the day of measurement (as shown on Fig. 3). The error
for a given CLi (mg L�1) was estimated based on a linear fit of the modelled lines shown
here.
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for a representative day within that block. It is expected that the
decrease in sensor signal in Block 3 of the sampling campaign is
attributed to the low concentrations of lithium presented to the
electrode during this time and hence longer time required for the
signal to stabilize. Longer soaking times are not ideally recom-
mended for sensor use as this could result in diffusion of the
reference solution from the reference electrode and hence reduc-
tion in electrode signal.

Particularly because of the shifts in calibration parameters
across the field campaign as shown on Fig. 3, a reasonably robust
estimation of the errors associated with lithium ISE measurements
is required. Errors for the calculated CLi (mg L�1) values were
approximated based on a modelled weighted ordinary least
squares regression of representative calibration data for each block
according to the date of measurement (Fig. 4). Errors were based on
the value of the measured signal relative to the signal of the
10 mg L�1 standard. This error analysis shows the error of a
particular measurement is highest for the latest part of the sam-
pling campaigns (e.g. Block 3) and for samples with the greatest
difference betweenmeasured SLi (mV) and SLi,10mg L�1

Std (e.g. very
low concentrations).

The lithium tracer field method was validated by the analysis of
a suite of representative groundwater constituents (sodium,
ammonium, calcium, alkalinity, chloride, nitrate, arsenic, iron and
lithium). Cationic components were measured in the laboratory of
the Manchester Analytical Geochemistry Unit (MAGU) at The Uni-
versity of Manchester on samples filtered (0.45 mm cellulose and
polypropylene syringe filters, Minisart RC, UK) and acidified to
pH < 2 (trace grade nitric acid, BDH Aristar, UK) using inductively
coupled plasma atomic emission spectrometry (ICP-AES, Perkin-
Elmer Optima 5300 dual view) for sodium, calcium, iron and
lithium, and using inductively coupled plasma mass spectrometry
(ICP-MS, Agilent 7500cx) for arsenic. Chloride was measured using
ion chromatography (IC, Dionex ICS5000 Dual Channel Ion Chro-
matograph) on 0.45 mm filtered, non-acidified samples. Ammonium
and nitrate were measured in-situ using a field spectrophotometer
(Spectroquant Nova 60A, Merck, Germany) and appropriate test
kits (ammonium cell test 114,739 for 0.01e2.00 mg L�1; ammo-
nium cell test 114,559 for 4.0e80.9 mg L�1; nitrate reagent test
109,713 for 0.10e25.0 mg L�1, all Merck, Germany). Alkalinity (as
acid neutralizing capacity (ANC)) was measured in-situ on unfil-
tered samples using a field visual titration kit (Aquamerck 111109,
Merck, Germany) and confirmed with Gran Titration generally
within 24 h. Analytical errors in these measurements are obviously
concentration-dependent but for calibration measurements were
around 3% for chloride and arsenic; 5% for lithium and sodium; 6%
for iron and calcium; and 10% for ammonium, alkalinity and nitrate.
This geochemical analysis was required to meet the objectives of
this specific study for the purposes of method development, quality
control and validation, but the same level of geochemical detail
may not be necessary for applications where only gross estimations
of contamination are required.

The mean baseline lithium concentration of groundwater sam-
ples collected from unspikedwells was 0.01mg L�1 (N¼ 15 sites), as
measured by ICP-AES (as this is below the detection of the ISE).
Baseline values for these groundwaters are roughly consistent with
other groundwaters in Bangladesh and elsewhere, where typical
groundwater lithium concentrations are <0.1 mg L�1 (Kinniburgh
and Smedley, 2001; Shand et al., 2007). Samples of the contami-
nated drilling fluid were not collected for ICP-AES, ICP-MS or IC
analysis.
2.4. Calculation of correction factors

The degree of drilling fluid contamination can be quantified in
order to verify the lithium tracer method, to optimize sample
collection for reduced contamination, or to allow a correction for
contamination to be made. The model volume fraction of the dril-
ling fluid end-member in the mixed contaminated sample, Xi[D], is

Xi½D� ¼
Ci � Ci½G�

Ci½D� � Ci½G�
; (1)

where Ci is the concentration of any analyte, Ci[D] is the concen-
tration in the drilling fluid end-member (e.g. Ci when Xi[D]¼ 1) and
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Ci[G] is the groundwater end-member (e.g. Ci when Xi[D] ¼ 0).
Equation (1) is valid given the assumptions of (i) conservative
mixing of lithium; (ii) equal density of drilling fluid and ground-
water; (iii) no density change upon mixing; and (iv) constant
concentration of Ci[G]. For the specific case where Ci[G] is very low,
as is the case with spiked lithium, a range of Xi[D] values can be
calculated for various degrees of well flushing by:

XLi½D�z
CLi

CLi½D�
: (2)

In this manuscript we have referred to XLi[D] as a “two-point”
parameter because two inputs are needed (e.g. CLi and CLi[D]).
Where XLi[D] is notated as XLi[D](ICP-AES), CLi is from ICP-AES
analysis; conversely where XLi[D] is notated as XLi[D](ISE), CLi is
from ISE analysis. Both notations of XLi[D] use ISE measurements
averaged over the drilling depth for CLi[D] (see Fig. 2), as drilling
fluid was not sampled for ICP-AES analysis.

If XLi[D] > 0, the concentration, Ci,meas, of any analyte, i, is
therefore a simple mixture of concentrations of that analyte in the
drilling fluid and in the groundwater, and given by:

Ci;meas ¼ XLi½D�$Ci½D� þ ðð1� XLi½D�Þ$Ci½G�Þ: (3)

Ci,meas can be corrected for drilling fluid contamination, as long
as XLi[D] and Ci[D] are known, to obtain a corrected concentration,
Ci,corr, by rearrangement of Equation (3):

Ci;corrzCi½G�z
Ci;meas � ðXLi½D�$Ci½D�Þ

1� XLi½D�
: (4)

A predicted concentration, Ci,pred, for different constituents in
the groundwater can be made if XLi[D] (requiring both CLi and
CLi[D]), Ci[D], and Ci[G] are known or estimated, as given by

Ci;pred ¼ XLi½D�$ðCi½D� � Ci½G�Þ þ Ci½G�: (5)

Ci,pred can be compared to Ci,meas of mixed drilling fluid/
groundwater samples as a function of flushing volume (and thus as
a function of XLi[D]), to verify how well the lithium spike method
works as a proxy for drilling fluid contamination. In this manu-
script, we refer to this method as a “four-point” method as four
inputs are required (CLi, CLi[D], Ci[D] and Ci[G]).

3. Results and discussion

3.1. Drilling fluid contamination of casing water

Fig. 5 shows lithium concentration, as a marker for drilling fluid
contamination, plotted as a function of number of well volumes
flushed. Two sites of differing lithology (LR02 and LR06) were
selected to compare the reduction of drilling fluid contamination as
a function flushing volumes at locations of differing permeability,
and well LR10 e 15 m was used as an example of flushing after
direct water injection. Site LR02 (Fig. 5A and B) is more permeable
and consists of a silty cap over sand increasing in grain size from
fine to very coarse with depth, whereas site LR06 (Fig. 5C) has a 6 m
silty/clay cap over fine/medium sand to 30 m depth. For both LR02-
30 (Fig. 5A) and LR06-30 (Fig. 5C), there is a substantial decrease in
lithium concentrations within the first two well volumes of flush-
ing, followed by an asymptotic decrease towards the expected
groundwater baseline (0.01 mg L�1). The near baseline lithium
concentrations in LR02e 15m (Fig. 5B) shows that there is no likely
connectivity between the LR02 e 15 m (not spiked during drilling)
and LR02e 30m (spiked during drilling) despite being located only
two to three meters apart. This is expected given the 15 m vertical
difference between the casing screens and the limited flushing
conducted.
Flushing which continued later after a time passage of >100

days (emphasized with grey circles in Fig. 5) indicated a further
decrease in lithium concentrations due to dilution from the greater
aquifer and natural groundwater movement. This confirms the
“rule of thumb” adage that waiting for a period of time after drilling
before groundwater sampling is advantageous and may substan-
tially reduce drilling-related contamination. Lithium concentra-
tions persist within discernible error above the baseline value for
generally three to four well volumes of flushing. This is roughly
consistent with previous work reporting that 16 to 21 well volumes
of flushing were required for the organic tracer fluorescein to
reduce to 0.05% of the original concentration (Wandrey et al., 2010),
noting that organic dyes are more conservative tracers than inor-
ganic tracers like lithium. This is particularly noteworthy for LR10e

15 m (Fig. 5D) because lithium-spiked water was directly injected
into the well due to operational issues encountered during flushing
in order to displace settled sediment and debris. Even in this case,
lithium concentrations decreased to baseline values within 4.5 well
volumes of flushing.

The rates of diminution of lithium can be compared to mass
balance calculations with an ideal mixing model (Fig. 5D) assuming
perfect mixing between the lithium-spiked injection fluid and
groundwater of baseline lithium concentration (0.01 mg L�1). The
shape of the observed curves for LR10 e 15 m is consistent with
mass balance calculations. However, the actual rate of diminution is
slower than predicted by ideal mixingmodels. This can be expected
since the mixing that occurs within the casing is not complete
mixing; any mixing results only from the entry of new water into
the bottom one meter of the casing where there is screening and
thus mixing will not be complete in practice, resulting in slower
reduction of lithium concentrations than predicted by ideal mixing.
Further, as discussed above, after waiting approximately 100 days,
the observed concentrations after flushing are near baseline as
predicted by ideal mixing models.

The typical method for reducing contamination induced by
drilling is extensive well flushing (most industrial standard sam-
pling procedures require three to 10well volumes be removed prior
to sampling (Ruda and Bosscher, 2005)), which does indeed reduce
lithium concentrations as shown on Fig. 5. However, there is an
inherent conflict between flushing volume and distance that water
has travelled which can lead to difficulties in scientific interpreta-
tion due to uncertainties in the location from which the water has
been derived. A suitable flushing volume needs to be determined
by balancing three issues: (i) reducing drilling fluid contamination
to a desired level (measured via tracer concentration); (ii) flushing
a sufficient volume of water to remove debris, prevent clogging and
to maintain usage of well (noting that if this has not been done
sufficiently the well becomes inoperable); and (iii) minimizing the
theoretical distance that water has travelled to enter the well. The
optimal point here will depend on the ultimate objectives and
hence vary on a case-to-case basis. For example, if the aim is to have
a low degree of contamination, the water that has been derived
may be from an unknown (or far) location; while if the aim is to
know the origin of water samples, some degree of contamination is
unavoidable. Alternatively, if the aim is supplying awater source for
irrigation or domestic use, flushing volume needs to be determined
by sufficient displacement of any settled debris in order to simply
achieve successful well operation.

Fig. 6 shows this inherent trade-off between flushing volume
(and hence reduction of drilling fluid contamination) and the
theoretical distance from the radial center of the well screen from
which water has been pulled in from an isotropic aquifer. This
theoretical distance assumes idealized cylindrical transport for the
height of the screen (one meter) and standard typical porosity



Fig. 5. Lithium (ISE) concentrations in casing water as a function of number of well volumes flushed in 15 m and 30 mwells for sites (A and B) LR02; (C) LR06-30 m; and (D) LR10-15
m where operational issues were encountered during flushing and lithium spiked water was directly injected into the well to remove settled debris during flushing. LR02 e 15 m,
LR02 e 30 m and LR06 e 30 m were all flushed using regular methods. The mean baseline concentration of lithium in groundwater was 0.01 mg.L-1. Lithium was spiked into the
drilling fluid during drilling for (A) LR02-30 m and LR06-30 m only. Grey boxes indicate a substantial passage of time between flushing activities; data points to the left of the boxes
were done within a few weeks of drilling and data points to the right were done approximately 100 days later. Grey circles highlight the lithium concentrations measured after the
passage of time. Ideal mixing calculations assumed the concentration was consistent for the entire depth profile of the well at a given time. In reality a concentration gradient exists
as “new” groundwater enters the casing only at the screening at the base of the well and there are no physical mixing mechanisms present within the casing. Note the scale for (D) is
different than the others to show the higher concentrations initially encountered at LR10 e 15 m after direct lithium-spiked water injection.

Fig. 6. Theoretical distance from the radial center of the well screen fromwhich water
is supplied plotted against number of well volumes flushed, assuming an absolute well
volume of 107 L (as typical for a 30 m well with a 2 m water level), a cylindrical
transport model, an idealized isotropic aquifer and default standard porosity values of
0.3, 0.4 and 0.5 for gravel, sand and sand/silt/mud, respectively (Domenico and
Schwartz, 1998) (left-hand axis). The lithium based drilling fluid volume fraction XLi[D]
is additionally plotted against number of well volumes flushed for an ideal mixing
scenario (right-hand axis).
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values of 0.3, 0.4 and 0.5 for gravel, sand and sand/silt/mud,
respectively (Domenico and Schwartz, 1998; Ruda and Bosscher,
2005). As flushing increases, the distance from the screen from
which the water originates increases, whereas XLi[D] decreases
towards zero (e.g. background level). It is important to note that
additional flushing does not linearly reduce drilling fluid
contamination but the origin of water is from continually farther
distances, particularly if water is pulled quickly over a short time
scale without time for the natural system to re-establish equilib-
rium. Fig. 6 is an idealized and simplified isotropic model, which
does not reflect the heterogeneity encountered in real aquifer
systems. This naturally occurring heterogeneity in real aquifer
systems can have a major impact on the entry and removal of
drilling fluid, groundwater and mixtures thereof.

XLi[D] can be calculated by two-point sampling if CLi[D] and CLi
are known (Table 1). Values for XLi[D] are given for wells of different
sites, depths, lithology, flushing volume and flushing method (e.g.
regular or direct water injection). In this table, XLi[D] has been
calculated using both CLi(ISE) and CLi(ICP-AES). The high error
associated with the ISE measurements (see Section 2.3) means that
XLi[D](ISE) is only valid for cases of gross contamination (e.g. on the
order of 100%). As can be seen on Table 3, XLi[D](ISE) is only greater
than zero when errors are considered for extreme cases where (i)
lithium-spiked water was directly injected into the well and (ii)
wells were unable to be flushed (e.g. WV < 0.5) due to low water
productivity usually resulting from heavily clay-dominated lithol-
ogy. Instead, XLi[D](ICP-AES) provides a much better resolved
approximation indicating contamination values ranging from 0.01
to 4.6%. In all cases XLi[D](ICP-AES) is greater than zero when errors
are considered, unlike for XLi[D](ISE). It is significant to note that all
XLi[D](ICP-AES) that are greater than 1% are in wells that were
directly injected with lithium-spiked water, but that even in those
scenarios all XLi[D](ICP-AES) were less than 5%. The values provided
here on Table 1 could be used as broad approximations of the de-
gree of contamination likely to occur from manual drilling tech-
niques in incompletely consolidated shallow sediments as are



Table 1
Drilling fluid volume fraction, XLi[D] and associated number of well volumes (WV) flushed at various wells across 15 sites of different lithologies in Kandal Province, Cambodia.
XLi[D](ISE) ¼ CLi(ISE)/CLi[D](ISE) and XLi[D](ICP-AES) ¼ CLi(ICP-AES)/CLi[D](ISE) as no drilling fluid samples were collected for ICP-AES analysis. *Indicates that XLi[D] is sta-
tistically greater than zero. Errors in ISE based on least squares regression modelling, ICP-AES errors were estimated at 5%, flushing volume errors are based on field estimates
and XLi[D] errors on standard propagation. Samples were not collected for ICP-AES analysis where field measurements indicated very high contamination or where flushing/
sampling was practically limited.

Site General lithology Well ID WV flushed Flushing type CLi (ISE) (mg L�1) CLi (ICP-AES)
(mg L�1)

CLi[D] (ISE)
(mg L�1)

XLi[D] (ISE)
(%)

XLi[D]
(ICP-AES) (%)

LR01 Sandy, thin clay cap LR01-6 4.0 ± 1.0 Direct injection �0.1 ± 0.5 0.603 ± 0.030 30 ± 5 �0.4 ± 2 2.08 ± 0.3*
LR01 Sandy, thin clay cap LR01-9 6.0 ± 0.5 Direct injection �0.3 ± 4.1 0.304 ± 0.015 36 ± 6 �0.9 ± 12 0.85 ± 0.1*
LR01 Sandy, thin clay cap LR01-21 6.0 ± 1.0 Regular �0.2 ± 0.9 0.006 ± 0.000 52 ± 34 �0.3 ± 2 0.01 ± 0.0*
LR01 Sandy, thin clay cap LR01-45 5.2 ± 1.0 Regular 0.0 ± 0.1 0.143 ± 0.007 23 ± 17 �0.1 ± 0 0.62 ± 0.5*
LR02 Sandy, thin clay cap LR02-30 5.1 ± 0.5 Regular �0.1 ± 0.7 0.007 ± 0.000 46 ± 45 �0.3 ± 2 0.01 ± 0.0*
LR03 Sandy, thin silteclay cap LR03-15 18.3 ± 0.5 Regular �0.3 ± 2.4 0.005 ± 0.000 31 ± 18 �1.0 ± 8 0.01 ± 0.0*
LR04 Sandy, thin silteclay cap LR04-30 4.5 ± 1.0 Regular �0.1 ± 0.4 0.003 ± 0.000 27 ± 22 �0.3 ± 2 0.01 ± 0.0*
LR05 Clay and sand LR05-6 4.0 ± 1.0 Direct injection 0.3 ± 0.8 0.747 ± 0.037 40 ± 22 0.7 ± 2 1.88 ± 1.0*
LR05 Clay and sand LR05-9 4.0 ± 1.0 Direct injection �0.1 ± 0.5 0.168 ± 0.008 40 ± 22 �0.3 ± 1 0.42 ± 0.2*
LR05 Clay and sand LR05-30 13.7 ± 0.5 Regular �0.1 ± 0.7 0.004 ± 0.000 55 ± 43 �0.2 ± 1 0.01 ± 0.0*
LR06 Sandy, silteclay cap LR06-30 6.3 ± 1.0 Regular 0.2 ± 0.6 n/a 36 ± 29 0.4 ± 2 e

LR07 Sandy, silteclay cap LR07-30 5.5 ± 0.5 Regular 0.1 ± 0.5 0.004 ± 0.000 29 ± 28 0.3 ± 1 0.01 ± 0.0*
LR08 Silteclay and sand LR08-15 0.1 ± 0.1 Direct injection 65 ± 30.6 n/a ± 61 ± 29 106 ± 71* e

LR08 Silteclay and sand LR08-30 6.8 ± 0.5 Regular �0.3 ± 3.1 0.005 ± 0.000 25 ± 29 �1.2 ± 13 0.02 ± 0.0*
LR09 Silteclay and sand LR09-9 4.0 ± 1.0 Direct injection �0.2 ± 1.4 0.076 ± 0.004 42 ± 23 �0.6 ± 3 0.18 ± 0.1*
LR09 Silteclay and sand LR09-15 0.0 ± 0.1 Direct injection 50 ± 25.5 n/a 27 ± 17 188 ± 150* e

LR09 Silteclay and sand LR09-30 4.3 ± 1.0 Regular �0.1 ± 0.3 0.003 ± 0.000 25 ± 22 �0.3 ± 1 0.01 ± 0.0*
LR09 Silteclay and sand LR09-45 3.0 ± 1.0 Direct injection �0.2 ± 0.8 0.525 ± 0.026 18 ± 13 �0.8 ± 4 2.90 ± 2.0*
LR10 Sandy, thin clayesilt cap LR10-9 3.0 ± 1.0 Direct injection 0.0 ± 0.2 0.032 ± 0.002 31 ± 18 �0.2 ± 1 0.10 ± 0.1*
LR10 Sandy, thin clayesilt cap LR10-15 4.5 ± 1.0 Direct injection �0.3 ± 1.9 0.007 ± 0.000 25 ± 16 �1.1 ± 8 0.03 ± 0.0*
LR10 Sandy, thin clayesilt cap LR10-21 3.7 ± 1.0 Direct injection �0.3 ± 1.6 0.087 ± 0.004 28 ± 17 �0.9 ± 6 0.31 ± 0.2*
LR10 Sandy, thin clayesilt cap LR10-30 8.0 ± 1.0 Direct injection 0.2 ± 0.8 1.215 ± 0.061 28 ± 25 0.8 ± 3 4.3 ± 3.7*
LR11 Clay LR11-15 0.0 ± 0.1 Direct injection 52 ± 26 n/a 24 ± 15 218 ± 177* e

LR11 Clay LR11-30 0.2 ± 0.1 Direct injection 48 ± 25 n/a 26 ± 16 182 ± 147* e

LR12 Sand, thick clay cap LR12-15 0.2 ± 0.1 Direct injection 3.0 ± 3 n/a 18 ± 13 15 ± 21 e

LR12 Sand, thick clay cap LR12-30 11.6 ± 0.5 Regular �0.3 ± 3 0.006 ± 0.000 31 ± 36 �1.0 ± 9 0.02 ± 0.0*
LR13 Clay LR13-15 0.0 ± 0.1 Direct injection 17 ± 12 n/a 14 ± 11 123 ± 127* e

LR13 Clay LR13-30 5.5 ± 0.5 Regular �0.1 ± 0.5 0.029 ± 0.001 31 ± 29 �0.3 ± 2 0.09 ± 0.1*
LR14 Clay LR14-6 3.0 ± 1.0 Direct injection �0.3 ± 1.6 0.136 ± 0.007 63 ± 30 �0.4 ± 3 0.22 ± 0.1*
LR14 Clay LR14-9 3.0 ± 1.0 Direct injection �0.1 ± 0.4 0.156 ± 0.008 70 ± 32 �0.1 ± 1 0.22 ± 0.1*
LR14 Clay LR14-15 2.5 ± 0.5 Direct injection �0.1 ± 0.6 0.295 ± 0.015 70 ± 32 �0.2 ± 1 0.42 ± 0.2*
LR14 Clay LR14-21 3.0 ± 1.0 Direct injection �0.1 ± 0.7 0.040 ± 0.002 60 ± 29 �0.2 ± 1 0.07 ± 0.0*
LR14 Clay LR14-30 5.0 ± 1.0 Regular 1.0 ± 3 0.077 ± 0.004 69 ± 30 1.4 ± 4 0.11 ± 0.0*
LR15 Sand LR15-21 4.0 ± 1.0 Regular 0.3 ± 1 0.046 ± 0.002 121 ± 46 0.2 ± 1 0.04 ± 0.0*
Mean e e 4.6 ± 3.8 e e e e e 0.6 ± 1.0

Table 2
Example usage of lithium tracer data to correct for various water quality parameters
in casing water for one model set of monitoring well data. The drilling fluid end-
member was assumed to be a modern surface water of 14C-DOC age 50 ± 35 years
and of composition 5 ± 0.3 mg L�1 sodium and 80 ± 4 mg L�1 dissolved organic
carbon (DOC), and the model measured contaminated groundwater was assumed to
be 500 ± 25 mg L�1 sodium, 10 ± 0.5 mg L�1 DOC and 14C-DOC age of 3000 ± 50
years. Grey highlighting indicates the magnitude of the corrections required for the
typical range of drilling fluid contamination observed in incompletely consolidated
sediments in Southeast Asia (see Table 1). Underlined data pairs indicate where the
correction outlies the associated error.

XLi[D] Sodium (mg L�1) DOC (mg L�1) Model 14C-DOC
age (years BP)

CNa,meas CNa,corr CDOC,meas CDOC,corr Ageapparent Agereal

10.0 ± 5% 500 ± 25 555 ± 25 10 ± 0.5 2.2 ± 0.9 3000 ± 50 3404 ± 50
5.0 ± 4% 500 ± 25 526 ± 25 10 ± 0.5 6.3 ± 1.0 3000 ± 50 3189 ± 50
3.0 ± 3% 500 ± 25 515 ± 25 10 ± 0.5 7.8 ± 1.1 3000 ± 50 3110 ± 50
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commonly encountered in Southeast Asia. If high accuracy esti-
mates of XLi[D] are required for a particular system, it is recom-
mended that specific measurements are made using ICP-AES for
lithium analysis, and that samples for ICP-AES analysis are collected
from the mixed drilling fluid-groundwater sample as well as the
drilling fluid itself.

The data provided on Table 1 can be compared to general site
lithology (Fig. 7). From here the general envelopes of expected
XLi[D] values can be observed. In most cases, XLi[D] is <3% for three
to seven well volumes flushed. Grey highlighting indicates where
operational issues were encountered. Where flushing volumes
were greater than 10, higher flushing volumes were required to
ensure the future functionality of the well because of problems
with excess fine sand and silt entering the screening during well
development (note that each of these points is for a sand-
dominated location). In the cases where the number of well vol-
umes flushed was less than 0.5, the screening zones of the wells
were in very low permeability, clay- or silt-clay-dominated strati-
graphic layers where flushing and/or sampling is very difficult.
Most points fell well within the range of XLi[D] < 3% for well
flushing volumes of <7. Within the range where most points fall,
there is no clear systematic difference according to lithology.
2.0 ± 2% 500 ± 25 510 ± 25 10 ± 0.5 8.6 ± 1.1 3000 ± 50 3073 ± 50
1.5 ± 1% 500 ± 25 508 ± 25 10 ± 0.5 8.9 ± 1.0 3000 ± 50 3054 ± 50
1.0 ± 1% 500 ± 25 505 ± 25 10 ± 0.5 9.3 ± 1.1 3000 ± 50 3036 ± 50
0.5 ± 0.5% 500 ± 25 503 ± 25 10 ± 0.5 9.6 ± 1.1 3000 ± 50 3018 ± 50
0.1 ± 0.1% 500 ± 25 501 ± 25 10 ± 0.5 9.9 ± 1.1 3000 ± 50 3004 ± 50
3.2. Strategies for the correction of monitoring well contamination

Measured groundwater parameters can be “corrected” for
drilling fluid contamination based directly on the concentration of
remaining lithium tracer in the well, if the drilling fluid composi-
tion is also known. Table 2 shows the range of lithium-based levels
of contamination or volume fraction of drilling fluid in the casing



Table 3
Example usage of lithium tracer based correction factors for the “two-point” volume fraction XLi[D](ICP-AES) of drilling fluid in a groundwater/drilling fluid mixture to predict concentrations (Ci,pred) of other water constituents
given approximated or known end member concentrations of a desired analyte in the drilling fluid Ci[D] and the groundwater Ci[G] for sites LR01-9 m (sand-dominated) and LR14 e 15 m (clay dominated), to compare to
measured concentrations (Ci,meas) of mixed samples. The following assumptions were required: (1) Ci[G]LR01�9m z Ci[XLi[D] ¼ 0.9 ± 0.1] for LR01 e 9 m; (2) Ci[G]LR14�15m z Ci[XLi[D] ¼ 0.4 ± 0.2] for LR14 e 15 m; (3) Ci[D]LR01�9m
prior to lithium spikingz Ci[G]LR01�30m as a nearbywell approximately 30m of depth was used as the drilling fluid; (4) Ci[D]LR14�15m prior to lithium spikingz Ci[D] sampled three months subsequently. Both wells were flushed
with direct injection of lithium-spiked water in February 2014. Estimated errors in predictions reflect these assumptions in addition to analytical errors; errors in XLi[D] are calculated using least squares regression modelling and
errors in observed concentrations are approximately 5%. Grey highlighting indicates where the difference between predicted and observed concentrations outlies the propagated error.

Type WV XLi[D] % Sodium Ammonium Calcium Alkalinity (HCO3
�)

e e e Cpred(mg L¡1) Cmeas(mg L¡1) D C(%) Cpred(mg L¡1) Cmeas(mg L¡1) D C(%) Cpred(mg L¡1) Cmeas(mg L¡1) D C(%) Cpred(mg L¡1) Cmeas(mg L¡1) D C(%)

Sand (LR01) 0 113 ± 19 21.0 ± 5.6 18.1 ± 0.9 �16 ± 41 0.5 ± 1.1 1.9 ± 0.1 72 ± 76 41 ± 16 58.4 ± 2.9 29 ± 144 311 ± 130 307 ± 15 �1.3 ± 26
1 8.5 ± 1.4 13.0 ± 3.8 12.3 ± 0.6 �5.3 ± 13 7.3 ± 2.9 7.5 ± 0.4 2 ± 9 73 ± 23 73.8 ± 3.7 1 ± 6.9 402 ± 154 427 ± 6 5.9 ± 128
2 1.4 ± 0.1 12.4 ± 3.7 12.0 ± 0.6 �3.4 ± 11 7.8 ± 3.0 7.7 ± 0.4 �1 ± 8 75 ± 24 73.9 ± 3.7 �2 ± 9.9 408 ± 156 434 ± 6 6.0 ± 132

Type WV XLi[D] % Chloride Nitrate Arsenic Iron
e e e Cpred(mg L�1) Cmeas(mg L�1) D C(%) Cpred(mg L�1) Cmeas(mg L�1) D C(%) Cpred(mg L�11) Cmeas(mg L�1) D C(%) Cpred(mg L�1) Cmeas(mg L�1) D C(%)

Sand (LR01) 0 113 ± 19 7.6 ± 2.1 232 ± 12 97 ± 1170 0.1 ± 0.2 0.5 ± 0.0 82 ± 33 534 ± 123 103 ± 5 �419 ± 5126 8.6 ± 2.8 0.2 ± 0.0 �4219 ± 7079
1 8.5 ± 1.4 9.7 ± 2.6 25.2 ± 1.3 61 ± 82 0.9 ± 0.4 1.0 ± 0.1 7 ± 16 217 ± 56 189 ± 10 �15 ± 145 9.9 ± 3.1 6.8 ± 0.3 �46 ± 48
2 1.4 ± 0.1 9.9 ± 2.6 11.0 ± 0.6 10 ± 17 1.0 ± 0.4 1.1 ± 0.1 10 ± 19 196 ± 51 201 ± 10 2 ± 25 10 ± 3.1 9.4 ± 0.5 �6 ± 15

Type WV XLi[D] % Sodium Ammonium Calcium Alkalinity (HCO3
�)

e e e Cpred(mg L�1) Cmeas(mg L�1) D C(%) Cpred(mg L�1) Cmeas(mg L�1) D C(%1) Cpred(mg L�1) Cmeas(mg L�1) D C(%) Cpred(mg L�1) Cmeas(mg L�1) D C(%)

Clay (LR14) 0 8.1 ± 3.7 86.6 ± 48 85.1 ± 4.3 �2 ± 15 32.5 ± 21 46.5 ± 2.3 30 ± 154 71.6 ± 41 83.5 ± 4.2 14 ± 109 619 ± 389 810 ± 41 24 ± 1060
1 2.7 ± 1.2 89.6 ± 50 92.6 ± 4.6 3 ± 20 34.4 ± 22 31.8 ± 1.6 �8 ± 27 74.2 ± 42 76.7 ± 3.8 3 ± 18 639 ± 399 700 ± 35 8.7 ± 304
2 0.6 ± 0.3 90.7 ± 50 91.8 ± 4.6 1 ± 10 35.1 ± 22 24.8 ± 1.2 �42 ±0 .80 75.2 ± 43 66.4 ± 3.3 �13 ± 53 647 ± 403 639 ± 32 �1.2 ± 40

Type WV XLi[D] % Chloride Nitrate Arsenic Iron
e e e Cpred(mg L�1) Cmeas(mg L�1) D C(%) Cpred(mg L�1) Cmeas(mg L�1) D C(%) Cpred(mg L�1) Cmeas(mg L�1) D C(%) Cpred(mg L�1) Cmeas(mg L�1) D C(%)

Clay (LR14) 0 8.1 ± 3.7 37.0 ± 20 69.4 ± 3.5 47 ± 264 0.8 ± 0.5 0.6 ± 0.0 �29 ± 21 14.3 ± 8 21.3 ± 1.1 33 ± 98 0.5 ± 0.3 5.9 ± 0.3 92 ± 65
1 2.7 ± 1.2 37.4 ± 20 48.9 ± 2.5 23 ± 65 0.8 ± 0.5 0.4 ± 0.2 �120 ± 130 14.7 ± 8 16.3 ± 0.8 10 ± 23 0.5 ± 0.3 6.2 ± 0.3 92 ± 38
2 0.6 ± 0.3 37.6 ± 20 41.1 ± 2.1 9 ± 27 0.8 ± 0.5 0.8 ± 0.4 4 ± 15 14.9 ± 8 9.3 ± 0.5 �60 ± 76 0.5 ± 0.3 1.4 ± 0.1 64 ± 37

L.A
.Richards

et
al./

A
pplied

G
eochem

istry
63

(2015)
190

e
202

198



Fig. 7. Drilling fluid volume fraction XLi[D], as a function of number of well volumes
(WV) flushed for different general lithologies. All XLi[D] are based on XLi[D] (ICP-AES)
except the dark grey region. The dark grey shaded region indicates wells with very low
permeability and XLi[D] are based here on (ISE) measurements due to high degrees of
contamination. The light grey shaded region indicates where operational issues such as
sand incursion were encountered which required exceptionally high WV flushed. Er-
rors are not included for clarity but are shown on Table 1.

Fig. 8. Delta 14C-DOC groundwater model age (real age minus apparent age) versus
groundwater real age for the ranges of volume fraction drilling fluid contamination,
XLi[D] typically encountered for aquifers hosting poorly consolidated sediments for a
drilling fluid (DF) real 14C-DOC age of (A) 50 years BP; (B) 5,000 years BP; and (C)
15,000 years BP.
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water, XLi[D], typically encountered (see Table 1) pairedwithmodel
data to show (i) how XLi[D] can be used to correct a measured
concentration Ci,meas if Ci[D] is known and (ii) how drilling fluid
contamination can affect the interpretation of casing water chem-
istry. The parameters sodium, dissolved organic carbon (DOC) and
14C-DOC age were selected due to general interest as well as
broadly representing parameters that range from being not very
sensitive to surface water contamination (sodium); somewhat
sensitive to surface water contamination (DOC); and critically
sensitive to surface water contamination (14C-DOC age). The cor-
rections shown on Table 2 indicate that corrections for parameters
such as sodium and DOC are likely unnecessary when XLi[D]
is < 2e3%, as was typically encountered in this study (see Table 1),
as the errors introduced by correction fall within the typical
analytical and sampling errors for these parameters. However, it is
important to note that in the particular circumstancewhere drilling
fluid may have much higher DOC than groundwaters, or vice versa
with drilling fluid having much lower DOC than groundwaters in
organic-rich alluvial sediments, corrections may still be necessary
and significant. Similarly, sensitive parameters such as 14C-DOC
model age are more susceptible to the influence of drilling
contamination even at lower levels of XLi[D].

As 14C-DOC model age is expected to be highly sensitive to
surface water contamination and because of the specific interest of
this parameter to current debates regarding the ingress of surface-
derived waters on arsenic release in groundwaters (Aggarwal et al.,
2003; Harvey et al., 2002; Polya and Charlet, 2009), additional
modelling was conducted to determine the effect of drilling fluid
contamination on groundwaters of differing 14C-DOC model ages
for the range of drilling fluid contamination typically encountered
(Fig. 8). Drilling fluid contamination has minimal effect on apparent
14C-DOC model age when the drilling fluid and groundwater are of
similar real age. But in the case where drilling fluid is very young
(e.g. 50 years, as in Fig. 8A), for example, even very low levels of
contamination can have drastic influence on the apparent 14C-DOC
age for older groundwaters. For older groundwaters (e.g. 30,000
years), drilling fluid contamination from a modern drilling fluid of
model age 50 years can result in the apparent age underestimating
the real age by greater than 4500 years for XLi[D] ¼ 2%, or around
9000 years for XLi[D] ¼ 5%. Conversely, if a relatively old ground-
water (e.g. 15,000 years, as in Fig. 8C) is used for drilling fluid, the
apparent age will be an overestimate of the real age by around 200
years for an otherwise modern water (e.g. 50 years) with
XLi[D] ¼ 5%, or an overestimate by around 5600 years for a
groundwater that is 30,000 years old with XLi[D] ¼ 5%. Under-
standably, the maximum effect is observed when there is the
largest difference in real ages between the groundwater and dril-
ling fluid, with the highest degrees of drilling fluid contamination.
In these cases, correction for drilling fluid contamination is essen-
tial and negligence can result in underestimates in 14C-DOC model
age on the order of thousands of years. A similar impact of drilling
fluid contamination could also be expected for other age related
parameters, such as apparent tritium determinations, where the
largest influence would occur with the highest degree of modern
drilling fluid contributions to an otherwise tritium-dead ground-
water. Similar mixing considerations can be made during chloro-
fluorocarbon (CFC) or sulfur hexafluoride (SF6) interpretations
(Darling et al., 2012).

3.3. Lithium tracer verification

The verification of the use of lithium tracers as drilling-based



Fig. 9. Concentrations of spiked lithium with naturally occurring groundwater major cations (A and B), major anions (C and D) and trace elements (E and F). Site LR01-9 m is a
shallow (9 m) well of relatively high hydraulic conductivity with which spiked groundwater was used to directly inject the well during flushing (A, C, E); site LR14-15 m is a mid-
depth (15 m) well in a clay dominated area with low hydraulic conductivity with which spiked surface water was used to directly inject the well during flushing to displace settled
mud/debris (A, D, F). Analytical errors are not shown for clarity but are estimated to be 3% for chloride and arsenic; 5% for lithium and sodium; 6% for iron and calcium; and 10% for
ammonium, alkalinity and nitrate.
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contamination proxies was tested by comparing the changing
concentrations of spiked lithium with a selected suite of natural
water constituents, namely sodium, ammonium, calcium, alkalinity
as HCO3

�, chloride, nitrate, arsenic and iron, with a contrasting
range of physical and chemical behaviors. Two sites of very
different lithologies (LR14 and LR01) were selected for method
verification. Site LR14 is heavily clay-dominated, has low hydraulic
conductivity and was drilled using surface water as the drilling
fluid, whereas LR01 has relatively high hydraulic conductivity and
was drilled using groundwater as the drilling fluid. The two sites
have distinctly different water composition of the groundwaters
themselves as well as the drilling fluid used.

Fig. 9 shows the concentration of natural water constituents as a
function of flushing volume at site LR01 (Fig. 9A, C, E) and at site
LR14 (Fig. 9B, D, F). Here, in each of the scenarios, as lithium con-
centration diminishes with flushing volume, trends are also
observed in the concentrations of other water constituents. For
example, at site LR01 (Fig. 9A, C, E), as lithium concentration di-
minishes, calcium, alkalinity and iron all clearly increase; whereas
both sodium and chloride diminish correspondingly. This suggests
that the drilling fluid has relatively high concentrations of lithium,
sodium, and chloride and relatively low concentrations of calcium,
alkalinity and iron as compared to the casing water. These differ-
ences in values can be used to deduce the end-member concen-
trations of both the drilling fluid itself and the casing water being
sampled.

Site LR14 is very different when compared to site LR01, as it is
heavily clay-dominated, has low hydraulic conductivity and has
distinctly different water composition, and was drilled/flushed
using surface water as the drilling fluid rather than groundwater.
Trends in the concentrations of a suite of natural constituents with
lithium concentration can also be observed here (Fig. 9B, D, F). Here,
the largest changes in concentration were observed with calcium,
ammonium, alkalinity, chloride and iron, all of which decreasewith
increased flushing. These are different trends than were observed
with LR01, which can be attributed to the natural differences in
water quality and the differences in the composition of the drilling
fluid used (e.g. surface water at LR14 rather than groundwater at
LR01). The trends in general at site LR14 were less drastic thanwith
LR01 which is consistent with the low hydraulic conductivity of the
well. Because site LR14 has very lowhydraulic conductivity and is of
low productivity, the maximum flushing volume practically
achievable was 2.5 well volumes. This flushing was achieved over a
period of several weeks at the start of the rainy season in Cambodia
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and it cannot be assumed that the groundwater composition was
necessarily constant during this period.

As previously observed on Fig. 5, the most significant changes
for all of the natural constituents for both sites occur within the first
two well volumes. As the lithium concentration becomes stable, so
do the concentrations of each of the other major and trace con-
stituents within the same volume of flushing. This is observed for
two different sites of very different hydrological and geochemical
characteristics. This provides evidence that the lithium spike is
qualitatively a robust, reliable and representative tracer of various
constituents in natural waters. The utility of the lithium tracer
method was further explored by using the measured XLi[D] as a
function of flushing volume at LR01 and LR14 to predict the con-
centrations of different constituents in the groundwater and
compare with observed concentrations, giving assumptions for
Ci[D] and Ci[G] at both sites (Table 3).

Predicted concentrations for drilling fluid e groundwater mix-
tures as a function of XLi[D] are shown in Table 3 for sodium,
ammonium, calcium, alkalinity, chloride, nitrate, arsenic and iron.
In most cases (43 of 48 scenarios), the differences in Ci,pred and Ci,obs
for a given analyte are not significant when errors in XLi[D], Ci[D]
and Ci[G] are considered (grey highlighting indicates where dif-
ferences outlie the propagated error). The general broad agreement
within error of predicted and observed concentrations despite
differences in lithology, type of analyte and XLi[D] does provide
verification of lithium tracers as a proxy for drilling based
contamination. However, if high accuracy predictions are required,
it is recommended that all samples from both Ci[D] and Ci[G] at the
time of flushing are collected and analyzed in order to reduce the
errors associated with the predictions.

4. Conclusions

Lithium chloride tracers have been used to quantitatively eval-
uate and correct for drilling fluid contamination of casing waters
through an investigation of 34 monitoring wells at 15 sites in
Kandal Province, Cambodia. A field technique using an ion selective
electrode for lithium measurements can provide estimates of gross
contamination which can be used to optimize sample collection.
For specific, higher resolution corrections for contamination to be
made, laboratory measurements of lithium using ICP-AES (of both
groundwater and drilling fluid samples) are recommended for
higher accuracy and lower detection at concentrations near base-
line, even though this obviously creates limitations for field prac-
ticality. Lithium concentrations in casing water arising from drilling
fluid contamination are significantly reduced with two to three
well volumes of flushing but nevertheless can still persist above
background values for at least seven well volumes of flushing. A
waiting period of the order of 100 days after drilling allows for
contamination levels to decrease further towards baseline due to
natural dilution with the surrounding aquifer, particularly for
permeable sites. The mean drilling fluid contamination value was
0.6 ± 1% for all 27 monitoring wells analyzed with ICP-AES, with 26
of those 27 wells <3% and a maximum of 4.3 ± 3.7% after a mean
flushing volume of 4.6 ± 3.8 well volumes (even for wells which
were directly injected with lithium spiked water during flushing to
remove settled mud/debris). Contamination was considered with
regard to dominant lithology as well as operational issues, with
decreased flushing noted at low permeability and clay-dominated
wells. The typical ranges of XLi[D] encountered were used to
demonstrate how to make Li-based corrections for other ground-
water parameters. This can be very important for parameters such
as 14C model age, where a contamination of even 1% can lead to a
mis-estimation of 14C age on the order of hundreds to thousands of
years if the differences in ages between the groundwater and
drilling fluid are large. If flushing volumes and/or waiting periods
prior to sampling are sufficiently high then corrections may not be
necessary, however these practicalities cannot always be ensured
in field situations. The lithium tracer method was verified by
evaluating the changes in concentration of a number of other
natural groundwater constituents as a function of flushing volume.
It was demonstrated that the lithium spike is broadly representa-
tive tracer of various constituents in natural waters as predictions
and observed concentrations were generally within modelled er-
rors. This study provides valuable information on the degree of
unavoidable contamination introduced by manual drilling tech-
niques and suggests potential methods of compensation and/or
correction.
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