
Learning to Assemble Objects with a Robot Swarm

(Extended Abstract)
Gregor H.W. Gebhardt
Computational Learning for

Autonomous Systems,
Technische Universität Darmstadt

Kevin Daun
Computational Learning for

Autonomous Systems,
Technische Universität Darmstadt

Marius Schnaubelt
Computational Learning for

Autonomous Systems,
Technische Universität Darmstadt

Alexander Hendrich
Computational Learning for

Autonomous Systems,
Technische Universität Darmstadt

Daniel Kauth
Computational Learning for

Autonomous Systems,
Technische Universität Darmstadt

Gerhard Neumann
Lincoln Centre for Autonomous
Systems, School of Computer
Science, University of Lincoln

1. INTRODUCTION
Nature provides us with a multitude of examples that

show how swarms of simple agents are much richer in their
abilities than a single individual. This insight is a main prin-
ciple that swarm robotics tries to exploit. In the last years,
large swarms of low-cost robots such as the Kilobots [6] have
become available. This allows to bring algorithms developed
for swarm robotics from simulations to the real world. Re-
cently, the Kilobots have been used for an assembly task
with multiple objects [7]: a human operator controlled a
light source to guide the swarm of light-sensitive robots such
that they successfully assembled an object of multiple parts.
However, hand-coding the control of the light source for au-
tonomous assembly is not straight forward as the interac-
tions of the swarm with the object or the reaction to the
light source are hard to model.

In this paper, we investigate how to learn a policy that
controls the light source such that the Kilobots solve the as-
sembly task autonomously. We subdivide the assembly pro-
cess in two sub-tasks: the high-level assembly plan is given
by waypoints for each object while the learned low-level ob-
ject movement policy controls the trajectory execution by
guiding the Kilobots with the light source.

Learning to move objects is a complex task as we have to
coordinate a large number of agents, which results in many
state variables. Eventough we need information about the
configuration of the swarm (i.e. the positions of the agents)
in our state representation, it is not important which individ-
ual of the swarm is at which position and, furthermore, our
policy should be as well invariant to the number of agents in
the swarm. Hence, we represent the state of the swarm as a
distribution over the agent locations embedded into a repro-
ducing kernel Hilbert space [8]. Our reinforcement learning
algorithm is based on the recently introduced actor-critic
relative entropy policy search (AC-REPS) algorithm [9] and
learns a nonparametric Gaussian process (GP) policy for
controlling the light source. We evaluate our approach in
simulation on assembly tasks with different object shapes.

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: We propose a new reinforcement learning approach
to enable a robot swarm (grey circles) to assemble objects
(top: squares, bottom: T- and C-shape). The swarm is
guided by a light cone (yellow circle) which follows a learned
control policy.

2. SOLVING AN ASSEMBLY TASK
Our solution to the assembly task consists of three com-

ponents: (1) a path planning strategy to guide the swarm
around the objects and to arrange them for the next push-
ing task, (2) an assembly policy that describes how the parts
should move such that they in the end form a whole unit, and
(3) an object movement policy that realizes basic movements
of an object part indirectly by controlling a light source that
guides the robots.

Learning the Object Movement Policy.
We use AC-REPS [9] to learn the continuous, nonpara-

metric object movement policies from samples. This model-
free reinforcement learning approach based on relative en-
tropy policy search (REPS) [5] consists of the following three
steps: (1) Estimate the Q-function using the observed state
transitions with least-squares temporal difference learning
(LSTD). (2) Improve the policy by maximizing the expected
Q-value for the sampled data using REPS. (3) Obtain a con-
tinuous policy by matching a weighted Gaussian process.

We learn multiple policies to control the light source which
differ in their objective: one policy for pure translation in
positive x-direction, one for pure counterclockwise (ccw) ro-
tation of the object, and arbitrary many policies for dif-
ferent ratios w of combined translation and rotation. The
reward function reflects the setting of the control parameter
w ∈ [0, 1] which sets the ratio of translation and rotation.
The function rewards a ccw rotation for w = 1 and a trans-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/84587512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


lation in x direction for w = 0. For values w ∈ ]0, 1[ the
terms are weighted accordingly. Later, we will apply the
object movement policies to arbitrary target directions and
orientations by rotating and flipping the state of the world.

We represent the state relative to the center of mass of the
object part that we want to push. Given a swarm configura-
tion with n agents and their relative positions bi = (xi, yi)
as well as the relative light position l = (xl, yl), we define
the state vector as s := [l, b1, . . . , bn]. The action vector
a = (ax, ay) contains the desired shift of the center of the
light cone.

To learn the object movement policy independently from
the number of individuals in the swarm, we represent the
swarm as distribution embedded into a reproducing ker-
nel Hilbert space (RKHS). Let H be an RKHS of func-
tions, uniquely defined by a positive definite kernel func-
tion k(x, x′) := 〈φ(x), φ(x′)〉H [2]. Here, the feature map-
pings φ(x) are in general intrinsic to the kernel functions and
might map into an infinite dimensional feature space. We
can embed now a marginal distribution p(X) as the expected
feature mapping of its random variable [8] µX := EX [φ(X)].
In practice we need to estimate the embedding from samples
as µ̂X = 1

m

∑m
i=1 k(xi, ·).

Thus, the state of the swarm relative to the center of
mass of the part we want to push is represented as µ(k) =
1
n

∑n
i=1 k(bi, ·), where k is a kernel function (e.g., the Gaus-

sian kernel) and the bi are the locations of the individual
agents. With this representation, we can compute the dif-
ference between two swarm distributions by computing the
squared difference of their embeddings

1

n2

n,n∑
i=1
j=1

k(bi, bj)−
2

nm

n,m∑
i=1
j=1

k(bi, b
′
j) +

1

m2

m,m∑
i=1
j=1

k(b′i, b
′
j),

with the two swarm configurations b and b′ with n and m
individuals, respectively. Based on this distance metric, we
define a feature vector using radial basis functions (RBF)
centered around our samples. The remaining state-action
variables (position and desired shift of the light) are com-
pared by a squared distance. We can now combine these two
distance measures into an exponential product kernel based
on which we define the feature functions for approximating
the Q-function and for matching the weighted GP as the
new policy.

Assembly Policy and Path Planning.
The assembly policy contains the construction informa-

tion stored as a list of oriented way points with required
accuracies for each object. These way points are processed
consecutively by applying either the object movement pol-
icy or the path planning strategy. The desired translation-
rotation ratio wdes = erot/(etrans + erot) obtained from the
rotational and translational error determines which of the
learned object movement policies is executed.

After reaching a way point, the swarm has to be arranged
at the next object. We use a path planning strategy to
guide the swarm around objects and arrange them for the
next pushing task. This strategy is a combination of A*
with potential fields.

A* is a heuristic search algorithm commonly applied for
graph search problems [3]. The algorithm selects which node
ns to expand by minimizing the sum of the cost we have to
spend for reaching node ns from the start and a heuristic

Figure 2: The value function plots around the object depict
how our approach successfully adapts to different settings of
translation-rotation-ratio w.

20 40 60 80
0

2

4

6

8
·10− 3

#Kilobots

R
e
w
a
rd
/
S
te
p

w = 0

w = 1

(a) Up to 50 agents, the perfor-
mance benefits from the larger
swarm size.

(b) If the swarm gets too big, it
spreads around the object and
disturbs the movement.

Figure 3: Performance of a policy learned with 15 individu-
als applied to different swarm sizes.

lower bound to the cheapest costs from ns to the goal state.
Potential fields [4] are a fast planning method for mobile

robots. The robots move along a hypothetical force field,
being attracted towards the goal position and repulsed away
from the obstacles. In our approach, we use the repulsive
potential in the cost term for the path segments c(ns1 , ns2)
of A*.

3. EXPERIMENTAL RESULTS
To conduct our experiments, we developed a 2D Kilobot

simulator based on Box2D [1]. By applying a heuristic sam-
pling strategy for the initial state of the kilobots, we assure
a stable learning process. We learned the object movement
policy with 15 Kilobots for a square object over 20 iterations.
Figure 2 shows the value functions for three different settings
of the translation-rotation ratio w after 15 iterations.

To evaluate how well the learned policy generalizes to dif-
ferent swarm sizes, we applied policies learned with 15 in-
dividuals to different numbers of Kilobots. Figure 3a shows
how the average reward per step benefits from a growing
swarm size up to about 50 individuals. As shown in Fig-
ure 3b, the reward drops with a bigger swarm size since the
individuals start to disperse around the object and disturb
or block the movement.

In combination with hand-coded assembly policies and the
path planning strategies described above, we applied the
learned object movement policies to different assembly tasks.
The top row in Figure 1 depicts the assembly process of com-
posing a larger square out of four small squares. In a second
task, the kilobots had to assemble a C-shaped object and
a T-shaped object. This process is depicted in the bottom
row of Figure 1. This second task also demonstrates that the
learned object movement policies—to a certain extend—can
be transferred to different object shapes.



REFERENCES
[1] Box2d, a 2d physics engine for games.

http://box2d.org/.

[2] N. Aronszajn. Theory of reproducing kernels.
Transactions of the American mathematical society,
pages 337–404, 1950.

[3] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal
basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[4] O. Khatib. Real-time obstacle avoidance for
manipulators and mobile robots. The international
journal of robotics research, 5(1):90–98, 1986.

[5] J. Peters, K. Mülling, and Y. Altun. Relative entropy
policy search. In AAAI. Atlanta, 2010.

[6] M. Rubenstein, C. Ahler, N. Hoff, A. Cabrera, and

R. Nagpal. Kilobot: A low cost robot with scalable
operations designed for collective behaviors. Robotics
and Autonomous Systems, 62(7):966–975, 2014.

[7] M. Rubenstein, A. Cabrera, J. Werfel, G. Habibi,
J. McLurkin, and R. Nagpal. Collective transport of
complex objects by simple robots: Theory and
experiments. In Proceedings of the 2013 International
Conference on Autonomous Agents and Multi-agent
Systems, AAMAS ’13, 2013.

[8] A. Smola, A. Gretton, L. Song, and B. Schölkopf. A
hilbert space embedding for distributions. In In
Algorithmic Learning Theory: 18th International
Conference, pages 13–31. Springer-Verlag, 2007.

[9] C. Wirth, J. Fürnkranz, and G. Neumann. Model-free
preference-based reinforcement learning. In Thirtieth
AAAI Conference on Artificial Intelligence, 2016.


