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ABSTRACT  19 

The Late Paleocene–Early Eocene phosphorites of the Metlaoui Group in Tunisia are a 20 

world-class phosphate resource.  We review the characteristics of phosphorites deposited in 21 

three areas: the Northern Basins; Eastern Basins; and Gafsa-Metlaoui Basin.  Comprehensive 22 

new bulk rock elemental data are presented, together with complementary mineralogical and 23 

mineral chemical results.  Carbonate fluorapatite (francolite) constitutes the dominant mineral 24 

phase in the deposits.  Phosphorite samples are enriched in Cd, Sr, U, rare-earth elements and 25 

Y, together with environmentally diagnostic trace elements that provide detrital (Cr, Zr), 26 

productivity (Cu, Ni, Zn) and redox (Mo, V) proxies.  Suboxic bottom-water conditions 27 

predominated, with suboxic to anoxic porewaters accompanying francolite precipitation.  28 

Phosphorite deposition occurred under increasingly arid climate conditions, accompanying 29 

global Paleocene–Eocene warming.  The Northern Basins show the strongest Tethys Ocean 30 

influence, with surface seawater rare-earth element signatures consistently developed in the 31 

phosphorites.  Bed-scale compositional variation indicates relatively unstable environmental 32 

conditions and episodes of sediment redeposition, with varying detrital supply and a relatively 33 

wet local climate.  Glauconitic facies in the Northern Basins and the more isolated evaporite-34 

associated phosphorites in the dryer Eastern Basins display the greatest diagenetic influences.  35 

The phosphorite – organic-rich marl – diatom-bearing porcelanite facies association in the 36 

Gafsa-Metlaoui Basin represents the classic coastal upwelling trinity.  Modified Tethyan 37 

waters occurred within the Basin during phosphorite deposition, with decreasing marine 38 

productivity from NW to SE evidenced by systematically falling enrichment factors for Cu, 39 

Ni, Cd and Zn in the phosphorites.  Productivity declined in concert with increasing basin 40 

isolation during the deposition of the commercial phosphorite beds in the latest Paleocene to 41 

earliest Eocene.  This isolation trend was temporarily reversed during an episode of maximum 42 

flooding associated with the earliest Eocene Paleocene–Eocene Thermal Maximum (PETM). 43 

Keywords  Phosphorites; Francolite; Geochemistry; Trace elements; Rare-earth elements and 44 

yttrium; Multivariate analysis; Tunisia; Palaeogeography; Paleocene-Eocene climate change; 45 

PETM. 46 

47 
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1. Introduction 48 

Tunisia is one of the largest producers of rock phosphate in the world: annual production 49 

was about 8 million tons of marketable phosphate in 2010 placing Tunisia 5
th

 among the 50 

world producers of phosphate rock (Jasinski, 2011).  The Tunisian revolution, which began in 51 

December 2010, led to a major decline in phosphate production during the period 2011–2015.  52 

However, production reached 3.5 million tons during 2016 (Jasinski, 2017).  With political 53 

and social tensions easing, national and international private companies are investing in 54 

exploration and planning activities, with large reserves again under consideration for 55 

exploitation at the Sra Ouertane mine, Kef Governorate (Tunis-Afrique-Press, 2016), and 56 

elsewhere. 57 

Phosphorites occur in three main areas of Tunisia: the Northern Basins, the Eastern 58 

Basins (North–South Axis area), and the Gafsa-Metlaoui Basin (Fig. 1).  The phosphorites lie 59 

predominantly within the Paleocene–Eocene Chouabine Formation and its lateral equivalents 60 

within the Metlaoui Group; they form part of the Middle Eastern to North African Late 61 

Cretaceous–Paleogene phosphogenic province (Notholt, 1980; Sheldon, 1987; Notholt et al., 62 

1989; Glenn et al., 1994; Lucas and Prévôt-Lucas, 1996).  Economic phosphorite deposits 63 

occur principally in the Gafsa-Metlaoui Basin of central Tunisia.  Here, phosphorites are 64 

exploited by the Compagnie des Phosphate de Gafsa (CPG), and are widely used as raw 65 

materials for fertilizer production by the Groupe Chimique Tunisien (GCT).  In other 66 

Tunisian basins phosphorite beds are generally thinner and are of lower grade. 67 

Previous studies have examined the stratigraphy, mineralogical composition, sedimentary 68 

facies, depositional environment, and diagenetic history of Tunisian phosphorites (Thomas, 69 

1885; Cayeux, 1896, 1941; Pervinquière, 1903; Castany, 1951; Burollet, 1956; Sassi, 1974; 70 

Belayouni and Trichet, 1983; Chaabani, 1995; Béji-Sassi, 1999; Béji-Sassi and Sassi, 1999; 71 
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Zaïer, 1999; Felhi et al., 2008; Ben Hassen et al., 2009, 2010; Ferreira da Silva et al., 2010; 72 

Galfati et al., 2010; Ounis, 2011; Tlili et al., 2011; Garnit et al., 2012a, b; Kocsis et al., 2013, 73 

2014; Galai and Sliman, 2014; Ahmed et al., 2015; El Ayachi et al., 2016), but geochemical 74 

data remain limited, particularly regarding sediments in the Northern and Eastern Basins.  75 

Published data are predominantly from the Gafsa-Metlaoui deposits, and were commonly 76 

obtained using analytical methodologies that have been superseded or recently improved.  77 

Despite the common geological setting of these phosphorites, considerable geochemical 78 

variability arises due to differences in palaeoenvironmental setting (basin configuration and 79 

lithofacies) and depositional conditions (redox values, productivity, and detrital flux; e.g. 80 

Garnit et al., 2012a; Kocsis et al., 2014). 81 

Here, we present the first fully integrated geochemical study of Tunisia’s three major 82 

phosphorite basins, and highlight key similarities and differences between them.  This work 83 

addresses the abundances of major-, trace-, and rare-earth elements, their distribution patterns, 84 

and inter-element relationships.  To identify the processes controlling phosphorite 85 

geochemistry, we have applied two multivariate statistical methods: principal components 86 

analysis (PCA) and hierarchical cluster analysis (HCA).  Results are interpreted in a 87 

framework provided by a review of previous research in the area.  The geochemical data offer 88 

insights into the depositional environments and geological history of Tunisia during the 89 

Paleogene.  They further provide key parameters to inform the utilisation of phosphorites in 90 

applications that include agronomics, fertilizer technology, uranium and rare-earth element 91 

extraction, and provide constraints for environmental impact assessments (e.g. Ferreira da 92 

Silva et al., 2010). 93 
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2. Geological setting and study locations 94 

North Africa during the Paleocene–Eocene represented one of the largest phosphogenic 95 

provinces in the geological record (Notholt et al., 1989).  In Tunisia, commercial phosphorites 96 

occur principally in the Upper Paleocene–Lower Eocene Chouabine Formation of the Gafsa-97 

Metlaoui area (Burollet, 1956; Sassi, 1974; Fournié, 1980; Fig. 1).  Recent stable-isotope (C 98 

and O) and Sr-isotope stratigraphy, and palaeontological data, indicate that the main units of 99 

the phosphorite succession are of latest Paleocene, Thanetian age (Fig. 1C; Kocsis et al., 100 

2013, 2014).  101 

An important factor that contributed to the development of phosphorites in central 102 

Tunisia is the late Cretaceous tectonic framework, which generated a Late Paleocene – Early 103 

Eocene palaeogeography consisting of a shallow marine shelf bordering the open Tethys 104 

Ocean, punctuated by two gentle topographic highs (Fig. 1B): Kasserine Island in the centre; 105 

and Jeffara Island to the south (Sassi, 1974; Burollet and Oudin, 1980; Winnock, 1980; 106 

Chaabani, 1995; Zaïer et al., 1998).  This configuration, and the development of local 107 

structurally controlled basins and highs, resulted in semi-restricted marine circulation and 108 

contributed to the trapping of abundant organic-rich sediments in the Gafsa-Metlaoui area, 109 

and other marginal basins.   110 

Complex interactions between organic, inorganic, syngenetic and authigenic processes, 111 

and suitable redox conditions, led to the formation of apatite minerals (cf. Jarvis et al., 1994), 112 

and episodes of winnowing and reworking resulted in the concentration of pellets, coprolites 113 

and other mineralized grains to form beds of granular phosphorite (cf. Glenn et al., 1994; 114 

Föllmi, 1996).  The chemistry of basin waters and subsequent post-depositional processes 115 

played significant roles in generating different phosphorite lithofacies (Ben Hassen et al., 116 

2010; Galfati et al., 2010; Ounis, 2011).  117 
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Phosphorite deposits occur at a number of localities bordering Kasserine Island (Fig. 1B).  118 

The Northern Basins, situated to the north of the Island, representing a shallow open-marine 119 

platform setting (Garnit et al., 2012a).  The Eastern Basins (Meknassy-Mezzouna Basins) and 120 

the Gafsa-Metlaoui Basin, situated to the east and south of Kasserine Island, respectively, 121 

were characterized by more restricted basin configurations (Belayouni et al., 1990; Garnit et 122 

al., 2012a; Kocsis et al., 2014). 123 

Samples analyzed in the present study targeted phosphorites from each of the three basin 124 

areas (Figs. 1–5), sampled at eight locations: 2 in the Northern Basins; 1 in the Eastern 125 

Basins; and 5 in the Gafsa-Metlaoui Basin.  These localities offer sufficient variation in facies 126 

and palaeogeographic setting to enable representative sampling of all three basins. 127 

2.1 Northern Basins 128 

The Northern Basins lie between 35°30’ – 36°30’N and 8°30’ – 9°15’E.  The Basins are 129 

located in the central Atlas of Tunisia, to the south of the Diapirs Zone (Perthuisot, 1981) and 130 

extend westwards across the Algerian border.  This zone covers the Thala–Tajerouine–El Kef 131 

areas, and contains NE–SW oriented folds crossed by the NW–SE trending Miocene–132 

Quaternary Kalaat Khasba Graben in the west, and the Rohia Graben in the east (Haji et al., 133 

2014; Fig. 2).  During the Late Paleocene–Early Eocene phosphorites accumulated in the 134 

embayment between Kasserine Island and the Algerian Promontory (Fig. 1B), while farther to 135 

the north and northeast the successions pass into marls and shales with less phosphorite and 136 

more glauconite, indicative of less confined, deeper water and better-oxygenated 137 

environments (Sassi, 1974; Zaïer et al., 1998; Zaïer, 1999).  The phosphorites show 138 

considerable lateral variation in thickness and phosphate content, accumulating in a series of 139 

small fault-controlled basins.  Synsedimentary growth faults controlling sediment thickness 140 

are well expressed in both the Gafsa-Metlaoui and Northern Basins. 141 
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Phosphorites in the Northern Basins were studied at Sra Ouertane and Sekarna (Figs. 2, 142 

5).  The Sra Ouertane deposit is located approximately 40 km SE of El Kef, 50 km from the 143 

Algerian border.  A structural interpretation of the deposit was presented by Zaïer et al. (1998, 144 

fig. 9).  Following Zaïer (1999), the Chouabine Formation at Sra Ouertane may be subdivided 145 

into four units (Figs. 2B, 5; locality 1): Unit A, at the base, ranges from 0.3 to 75 m thick, and 146 

consists of alternating marls, carbonate and phosphorite beds.  This unit may be split into two 147 

subunits based on the abundance of carbonate layers: carbonate phosphorite (A1), below; and 148 

marly phosphorite (A2), above.  Unit B consists of a 1 m thick marl layer that separates 149 

phosphorite Units A and C.  The latter package is composed of interbedded phosphorites and 150 

carbonates, up to 15 m thick, grading upwards into a coprolite-rich layer below bioturbated 151 

carbonates with thin beds of phosphorite and marl (Unit D). A thick (~95 m) succession of 152 

nummulitic limestones constitutes the top of the Metlaoui Group in the area (El Garia 153 

Formation; Fournié, 1978; Zaïer et al., 1998), below marls of the Middle Eocene Souar 154 

Formation. 155 

The Sekarna deposit is located 20 km SW of Maktar (Fig. 2A).  The Sekarna 156 

phosphorites are more lithologically diverse than others in Tunisia.  They are green to brown-157 

grey coloured, lithified, glauconite-rich and locally silicified granular beds, and exhibit 158 

distinctive Zn–Pb mineralization in some levels (Garnit et al., 2012b).  The Chouabine 159 

equivalent in the undivided Metlaoui Group consists of a glauconitic-microconglomeratic 160 

phosphorite (5–7 m thick) resting on a thin bed of Paleocene El Haria Formation marl (Fig. 5; 161 

locality 2).  The phosphorites are overlain by a thick, well-bedded Lower Eocene carbonate 162 

succession containing abundant nummulites (Fig. 2C; El Garia Formation equivalent).  The 163 

Metlaoui Group is overlain by the Middle Eocene Souar Formation. 164 
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2.2 Eastern Basins 165 

These basins lie between 34°00’ – 36°50’N and 9°15’ – 10°10’E.  The Eastern Basins are 166 

located in the southern region of the North–South Axis (Nord–Sud Axis, Burollet, 1956) 167 

structural high, in the Sidi Bouzid–Meknassy–Mezzouna areas (Figs. 1, 3).  Here, a number of 168 

small basins, developed as couplets or en echelon, parallel the main structural lineament.  169 

From north to south, they include the three sub-basins of: (1) Es Souda; (2) Jebs; (3) Oued 170 

Abiod, Kef Nsour, Rouijel (Béji-Sassi, 1999).  The phosphorites deposited in these basins 171 

during the Late Paleocene–Early Eocene show significant lateral and vertical variation and are 172 

overlain by, and occur within, a dolostone–evaporite succession that here constitutes the bulk 173 

of the Metlaoui Group.  It is envisaged that deposition occurred in a series of small 174 

embayments bordering Kasserine Island (Fig. 1), that were separated from the open ocean by 175 

shallows and inlets (Zaïer et al., 1998).  The succession is similar to that developed on the 176 

eastern margin of the Gafsa-Metlaoui Basin.  To the north, along the eastern margin of 177 

Kasserine Island, more open-marine phosphorite and glauconitic facies are developed.  178 

Some levels within Upper Paleocene–Lower Eocene of both the Eastern Basins and the 179 

Chouabine Formation in the Gafsa-Metlaoui Basin include a mineral assemblage derived 180 

from a calc-alkaline volcanic source, consisting of quartz, clinoptilolite, and feldspar with 181 

local concentrations of euhedral ilmenite and zircon (Clocchiatti and Sassi, 1972; Sassi, 1980; 182 

Béji-Sassi et al., 1996; Béji-Sassi et al., 2001).  The source area of the volcanism is uncertain, 183 

but it is believed to have been located either in the eastern part of the Gafsa-Metlaoui Basin or 184 

in the Gulf of Gabes, offshore eastern Tunisia (Sassi, 1980; Winnock, 1980).  Hyaloclastites 185 

are a common feature of wells drilled in Upper Cretaceous sections offshore (Zaïer et al., 186 

1998).  187 

Phosphorites in the Eastern Basins were investigated in Jebel Jebs (Mount Jebs), situated 188 

8 km north of Meknassy, bounded by Oued Leben to the south, Jebel Gouleb to the north, and 189 
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Jebel Meloussi to the NW (Fig. 3A).  Jebel Jebs is a north–south trending, perched synform 190 

with an elliptical shape.  Outcrops generally consist of Upper Cretaceous to Eocene strata.  191 

Two packages of phosphorite characterise an undivided Metlaoui Group, one at the base, the 192 

second in the middle of the succession, sandwiched between thick beds of massive gypsum 193 

(Figs. 3, 5; locality 3).  The lower phosphorite beds contain three phosphorite levels (I, II, and 194 

III in Fig. 5).  These beds are separated by clay, gypsum, and dolostone interlayers.  The 195 

thicknesses of Beds I, II and III are 2.85–17.0, 0.50–2.75, and 3.15–6.0 m, respectively.  The 196 

upper phosphorite beds include two thick (6–10 m) phosphorites (Fig. 5).  The Metlaoui 197 

Group is overlain by thick, massive gypsum and/or dolostone beds of the middle to upper 198 

Eocene Jebs Formation. 199 

2.3 Gafsa-Metlaoui Basin 200 

The Gafsa-Metlaoui Basin is located in the southern Atlas of central Tunisia, covering an 201 

area of approximately 4500 km
2
 between 34°00’ – 34°45’N and 8°00 – 9°15’E (Figs. 1, 4). 202 

Structurally, it is a transitional area between a strongly faulted and folded area to the north, 203 

the central-northern Atlasic Domain, and the undeformed Saharan Platform to the south 204 

(Zargouni, 1985; Hlaiem et al., 1997; Saïd et al., 2011).  The Basin is bounded by the 205 

Metlaoui mountain range to the north, including Jebels Bouramli, Ben Younes and Orbata, 206 

and by the North Chotts Range to the south (Figs. 1, 4).  The sedimentary rocks at outcrop 207 

range in age from Cretaceous to Quaternary.   208 

Sedimentation in the Gafsa-Metlaoui Basin occurred in a relatively restricted setting, 209 

which fluctuated between littoral and lagoonal conditions, resulting in rhythmic or episodic 210 

sedimentation (Garnit et al., 2012a; El Ayachi et al., 2016).  As a consequence, there is 211 

significant variation in facies within the basin, including phosphorites, porcelanites, cherts, 212 

shales, marls, limestones, dolostones, and gypsum.  Marly interbeds within the phosphorite 213 

succession typically contain from 1–2% up to 7% total organic carbon (TOC).  The organic 214 
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matter is immature (Tmax < 430°C) and almost entirely of marine planktonic and bacterial 215 

origin (e.g. Belayouni and Trichet, 1983; Belayouni, 1984; Trichet et al., 1990; Felhi et al., 216 

2008; Ben Hassen et al., 2009; Tlili et al., 2011).  Palynofacies are characterised by abundant 217 

organic-walled dinoflagellate cysts and a general absence of terrestrial palynomorphs 218 

(Belayouni and Trichet, 1980; Fauconnier and Slansky, 1980; Trichet et al., 1990). 219 

Phosphorite deposits are generally exposed on the flanks of the east–west trending 220 

anticlinal structures of Jebels Bliji, Chouabine and Alima (Fig. 4A).  The main phosphorite 221 

succession constitutes the Chouabine Formation (Burollet, 1956; Fournié, 1978) of the 222 

Paleocene–Eocene Metlaoui Group (cf. Moody, 1987).  The Group lies above the 223 

Maastrichtian–Danian El Haria Formation (green shales interbedded with thin limestone 224 

beds), and is overlain by the middle to upper Eocene Jebs Formation (massive bedded 225 

gypsum deposits).   226 

The Chouabine Formation generally ranges from 25 to 100 m thick (Sassi, 1974; 227 

Chaabani, 1995; Ounis et al., 2008; Kocsis et al., 2013).  Ten main phosphorite units (from 228 

top to bottom: layers 0–IX) are developed within the Formation, separated by beds of marl, 229 

marly limestone and diatom-bearing porcelanite and chert.  In the eastern part of the basin the 230 

amount of phosphorite decreases and a higher proportion of carbonates and marl occurs 231 

(Chaabani, 1995), while to the west biosiliceous sediments (diatom-bearing porcelanite) 232 

become more important (Burollet, 1956; Sassi, 1974, 1980; Ahmed et al., 2015).  Diatom 233 

faunas indicate a warm climate, coastal shallow-marine environment within the central basin, 234 

with more brackish eutrophic conditions to the east (Ahmed et al., 2015).  Water depths 235 

increased for east to west (Ounis, 2011), attaining a maximum water depth of <100 m (cf. 236 

Adatte et al., 2002).  The phosphorite – organic-rich marl – diatom-bearing porcelanite facies, 237 

represents the classic coastal upwelling trinity (McKelvey et al., 1953).  The upper part of the 238 

Metlaoui Group is represented by oyster-rich limestones with phosphorite intercalations, 239 
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known by the miners as the ‘phosphate du toit’; these beds constitute the Kef Eddour 240 

Formation (Ben Haj Ali et al., 2002).  The limestones locally contain abundant nodular chert 241 

and are dolomitic towards the eastern and western basin margins.  242 

Phosphorites of the Gafsa-Metlaoui Basin were investigated at five locations (Figs. 4A, 243 

5; localities 4 – 8): Naguess, central Kef Eddour, Table Metlaoui 315, Mzinda, and Jellabia 244 

56.  The Mzinda and Jellabia deposits (localities 7, 8) lie to the SE of the other sections, in the 245 

NW section of Jebel Sehib.  Eight main economic phosphorite beds are exploited in the 246 

northern sections, labelled I – VIII in Figure 5, separated by marl intercalations, lumachellic 247 

and minor phosphatic layers, and concretionary limestones (Figs. 4B, 5).  248 

The Naguess deposit (locality 4) lies north of Jebel Alima (Figs. 4A, 5).  The average 249 

total thickness of the phosphorite layers is approximately 11.2 m, with an additional 12.2 m of 250 

intercalated units.  The central Kef Eddour deposit (locality 5) is located approximately 10 km 251 

NNW of Metlaoui (Figs. 4A, B, 5).  The average total thickness of the phosphorite beds is 252 

12.3 m, with approximately 12.8 m of intercalated beds.  The Table Metlaoui 315 deposit 253 

(locality 6) is located on the southern side of the line of hills ranging between Jebel Alima and 254 

Jebel Stah (Figs. 4A, 5).  The average total thickness of the phosphorite beds is 12.4 m, with 255 

11.3 m of intercalated layers.  The average total thickness of phosphorites in the main 256 

phosphatic unit in the Mzinda and Jellabia 56 deposits is 7.2 m (Figs. 4A, C, D, 5; localities 7, 257 

8).  Here, the uppermost part of the phosphatic sequence (beds 0 and I> in Fig. 5) is a 258 

reworked facies that is 8.5 m thick and comprises sandy, coarse-grained, well-sorted, and 259 

friable phosphorites. 260 

2.4 Age constraints on phosphorite deposition 261 

Accurate dating of the Chouabine and equivalent phosphorites has proved challenging.  262 

The paucity and poor preservation of calcareous fossils, a general absence of 263 

biostratigraphically significant taxa, and abundant evidence of sediment reworking and 264 
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hiatuses, limit the application of biostratigraphy.  Detailed biostratigraphic and 265 

chemostratigraphic studies have been undertaken almost exclusively on Gafsa-Metlaoui Basin 266 

deposits.  More generally, the onset of phosphorite deposition has been considered to 267 

represent a base Ypresian marker (Zaïer et al., 1998).   268 

Ben Abdessalem (1978) placed the Paleocene–Eocene boundary at the bottom of Bed II 269 

in the Gafsa-Metlaoui succession, based on the occurrence of an organic walled dinoflagellate 270 

cyst assemblage dominated by Apectodinium spp. in beds 0–I.  An Apectodinium acme 271 

provides a global marker around of the Palaeocene–Eocene boundary (Bujak and Brinkhuis, 272 

1998; Crouch et al., 2001).  Chaabani (1995) recorded the planktonic foraminifera 273 

Globorotalia wilcoxensis Cushman & Ponton in the lower Chouabine Formation, and placed 274 

the series boundary in the middle of the marly interval between beds VIII and IX.  Bolle et al. 275 

(1999) placed the base of the Eocene at the top of the Chouabine Formation in the Gafsa-276 

Metlaoui Basin, based on a tentative assignment of beds 0–II to calcareous nannofossil zone 277 

NP9 with records of Discoaster multiradiatus Bramlette & Riedel, and a sequence 278 

stratigraphic correlation to the Elles section in northern Tunisia.   279 

Most recently, El Ayachi et al. (2016) placed the Paleocene–Eocene boundary in the 280 

lower beds of the Chouabine Formation (below the interval studied here) in the Oued Thelja 281 

section, based on the two samples that yielded planktonic foraminifera.  The occurrence of 282 

Morozovella velascoensis Cushman in both samples and M. subbotinae Renz & Morozova in 283 

their higher sample support a latest Paleocene–earliest Eocene age (P5–E2 planktonic 284 

foraminifera zones) for the lower phosphorites, but in the absence of other productive 285 

samples, it is not possible to place the boundary more precisely. 286 

Ounis et al. (2008) documented a large negative carbon isotope excursion (CIE) of 3–4 287 

‰ VPDB δ
13

Cphos centred on beds IV–III of the Chouabine Formation.  The excursion was 288 

recorded in both coprolites and shark teeth from two sites (Jebels Alima and Bliji), with 289 
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minima of -16‰ and -12‰ δ
13

Cphos in the two different phosphate archives, respectively.  290 

Ounis et al. (2008) correlated the δ
13

C minimum to the global CIE accompanying the 291 

Palaeocene–Eocene transition – the PETM Event (Fig. 5; McInerney and Wing, 2011).  292 

However, no coincident negative shift in δ
18

O was observed in either the structural carbonate 293 

(CO3
2-

) or phosphate (PO4
3-

) of the apatite, as would be expected to result from the global 294 

warming associated with the PETM (Zachos et al., 2001, 2008; McInerney and Wing, 2011).  295 

The lack of a coincident δ
18

O minimum was attributed to the semi-closed nature of the basin, 296 

which prevented the preservation of the global signal.  However, a stratigraphically higher 297 

negative shift of δ
18

OPO4, of around 2‰ VSMOW in Bed 0 has been tentatively correlated to 298 

the “Early Eocene Climatic Optimum” (EECO, Fig. 5) by Kocsis et al. (2013).   299 

A recent Sr-isotope study (Kocsis et al., 2013) yielded ages consistent with the carbon 300 

isotope interpretation of Ounis et al. (2008): layer IX 61.8±2.2 Ma; layers VIII–V 57.2±1.8 301 

Ma; layers IV–0 54.6±1.6 Ma, with the base Eocene currently dated at 56.0 Ma 302 

(Vandenberghe et al., 2012).  However, the Sr-isotope age model is not unambiguous because 303 

some samples showed anomalous values that were attributed to sediment reworking, to 304 

variable input of local Sr sources into the restricted basin, or to diagenesis.  These samples 305 

were excluded from the age determinations. 306 

We follow Ounis et al. (2008) and Kocsis et al. (2013, 2014) in placing the base of the 307 

Eocene at the top of Chouabine Formation Bed III in the Gafsa-Metlaoui Basin (Fig. 5).   308 

3. Materials and methods 309 

We collected 58 phosphorite samples from the locations detailed above, and examined 310 

standard and polished thin-sections under a light microscope using transmitted and reflected 311 

light.  Sample positions are indicated in Fig. 5.  The bulk mineralogy and clay mineral 312 

assemblages were determined by semi-quantitative (±5%) X-ray diffraction.  Analyses were 313 
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performed using a PANalytical X'Pert PRO X-ray diffractometer, and the diffraction data 314 

were interpreted using X'Pert HighScore Plus software. 315 

Sample preparation and geochemical analyses were performed at Actlabs (Ontario, 316 

Canada) using the 4Litho, 4B1 and 4E-INAA analytical packages; further details of the 317 

analytical techniques may be found at: http://www.actlabs.com.  Samples were split and 318 

pulverised in mild steel.  Major-elements [SiO2, TiO2, Al2O3, Fe2O3(T), MnO, MgO, CaO, 319 

Na2O, K2O, P2O5] and selected trace-elements (TEs: Ba, Sr, V, Y, Zr) determinations were 320 

obtained by inductively coupled plasma – atomic emission spectrometry (ICP-AES) analysis, 321 

following fusion of 0.2 g subsamples in graphite crucibles with lithium metaborate and 322 

tetraborate flux, the melt being dissolved in 5 % nitric acid.  Other TEs (Hf, Mo, Nb, Rb, Th, 323 

U), together with the rare-earth elements (REEs: La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, 324 

Tm, Yb, Lu), were obtained by ICP-mass spectrometry (ICP-MS) analysis of the fusion 325 

solutions.  Data were supplemented by instrumental neutron activation analysis (INAA) of 30 326 

g subsamples for the determination of As, Br, Cr, Sb, Sc, and a mixed acid (HF, HClO4, 327 

HNO3) open-vessel digestion of 0.25 g subsamples and dissolution in HCl, with ICP-AES 328 

determination of Cd, Cu, Ni, S and Zn. 329 

Detection limits were 0.01% for all major elements except MnO and TiO2, for which the 330 

limits were 0.001%.  The detection limits (ppm) for TEs were: Sc, Th, U, 0.1; Hf, Sb, 0.2; As, 331 

Br, Cd, 0.5; Cu, Nb, Ni, Zn, 1; Mo, Rb, Sr, Y, 2; Ba, 3; Zr, 4; Cr, V, 5.  Detection limits 332 

(ppm) for REEs were: La, Ce, Nd, Sm, Gd, Tb, Dy, Ho, Er, Yb, 0.1 ; Pr, Eu, Tm, 0.05; Lu, 333 

0.04. 334 

Standard reference materials and internal control samples were analyzed with each 335 

sample batch to monitor analytical accuracy and precision.  Data quality was additionally 336 

assessed via replicate analyses performed on four samples.  Reference materials measured 337 

along with the unknowns of this study consisted of NIST 694 Western Phosphate Rock, NIST 338 

http://www.actlabs.com/
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1633b, USGS BIR-1a, DNC-1, W-2a and GBW 07113 for major elements and some trace 339 

elements, and GSJ JR-1, NCS DC-86312, DC-70014, DC-70009, OREAS-100a and 101a for 340 

TEs and REEs.  Analytical data for quality control samples were presented by Garnit (2013, 341 

Annexe 1).  For the major elements, the mean deviation of the unknowns from the standards 342 

was typically better than 5% relative; reproducibility of duplicate analyses was generally 343 

within 2% relative.  The TEs and REEs were generally accurate to within 10% relative; 344 

duplicate analyses show reproducibility within 3% relative. 345 

The trace-element contents of selected sphalerite and pyrite grains were determined by 346 

Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS) using an 347 

Elan DRCe (Perkin Elmer/SCIEX) instrument at the Department of Earth Sciences, 348 

Università della Calabria, following the method of Garnit et al. (2012a).  Analytical accuracy 349 

was assessed by the analysis of USGS BCR 2G glass.  Accuracy, calculated as the difference 350 

from reference values (Gao et al., 2002), was always better than 10%, with most elements 351 

having values in the order of 5%. 352 

For statistical investigation, we applied two multivariate methods using StatSoft Statistica 353 

7.1 software: principal component analysis (PCA) and hierarchical cluster analysis (HCA).  354 

Some individual data points are missing (e.g. SO3, Cd) or are below the detection limit (e.g. 355 

As, Mo, Nb, Sb) for some samples in our geochemistry dataset.  These missing data needed to 356 

be replaced for multivariate statistical analysis of the full element suite.  We replaced the 357 

missing data with the mean concentration of the element from all other locations, and we 358 

replaced the data below the detection limit with the detection limit itself.  This approach is 359 

consistent with several previous studies that performed statistical analyses on large 360 

geochemical datasets (Meglen, 1992; Yunker et al., 1995, 2005; Güler et al., 2002). 361 

Values of variables in our geochemical dataset commonly differ significantly in 362 

magnitude, and may be reported in different units (%, ppm).  To ensure that all terms are non-363 
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dimensional and differences in magnitude are minimal, the data must be standardized.  364 

Without standardization, more abundant variables are over-represented in the variance of the 365 

re-expressed dataset.  To accord the same weight to all measurements (as is generally 366 

appropriate in geochemical studies), each data point in the original dataset was auto-scaled by 367 

subtracting the mean of the variable and dividing by the standard deviation, as follows:  368 

 369 

Zi = (Xi – M)/S (Equation 1) 370 

 371 

where Xi is the ith data point for variable i in the raw data set X (Moreda-Pineiro et al., 2001; 372 

Davis, 2002).  The mean and standard deviation of i are M and S, respectively, and Zi is the ith 373 

data point for variable i in the newly generated data set A, which has a mean of zero and a 374 

standard deviation of one unit. 375 

We investigated correlations between the element concentrations using Pearson 376 

correlations without any assumptions regarding the distribution of values in the range.  For 377 

the HCA, we used the Euclidean distance as the distance measure (similarity measurement) 378 

between sampling sites, and Ward’s method as the linkage rule. 379 

4. Results 380 

4.1 Petrography and mineralogy 381 

The petrography and mineralogy of Tunisian phosphorites have been studied previously 382 

by a number of authors (e.g. Sassi, 1974; Chaabani, 1995; Béji-Sassi, 1999; Zaïer, 1999; Felhi 383 

et al., 2008; Ben Hassen et al., 2010; Galfati et al., 2010; Ounis, 2011; Garnit et al., 2012a; 384 

Galai and Sliman, 2014; Ahmed et al., 2015).  Sediments are generally grey-brown coloured, 385 

well-rounded, moderately sorted, fine–medium grained phosphate sands with a marly matrix.  386 
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Some beds are poorly sorted mixed sands and gravels, others display variable cementation by 387 

calcite, more rarely dolomite or silica.  Despite some well-defined bedding surfaces, the 388 

phosphorites generally display an absence of internal bed structures other than Thalassinoides 389 

burrows, and are commonly intensely bioturbated.   390 

Petrographic examination shows similarities in the phosphatic constituents (pellets, 391 

coprolites, bioclasts including bone and teeth, and phosphatized intraclasts) contained within 392 

the different deposits, but distinct variation in the non-phosphatic constituents (quartz, 393 

glauconite, lithoclasts, calcitic bioclasts and microcrystalline aggregates of carbonate 394 

minerals) was observed.  Non-phosphatic constituents in the Gafsa-Metlaoui phosphorites are 395 

dominated by calcite, dolomite and silicate minerals (quartz, opal-CT, clinoptilolite and clay 396 

minerals).  By contrast, the carbonate component in the Eastern Basins at Jebel Jebs is 397 

primarily dolomite (Table A1), which occurs mainly as cement.  Phosphorites rich in 398 

glauconite and quartz (detrital and/or authigenic) are specific to the Sekarna area.   399 

The Tunisian phosphorite ores are composed predominantly of the mineral francolite, a 400 

complex carbonate-substituted fluorapatite (McConnell, 1973; McArthur, 1985; Jarvis et al., 401 

1994), while the associated gangue minerals include calcite, dolomite, quartz, diagenetic 402 

zeolites (clinoptilolite-heulandite) commonly associated with opal-CT, gypsum 403 

(occasionally), and clay minerals (smectite, illite, palygorskite, sepiolite, kaolinite).  404 

Accessory minerals (as endogangue and/or exogangue) present in some beds include 405 

glauconite at various stages of evolution, sulphides (pyrite, sphalerite), heavy minerals 406 

(ilmenite, zircon, apatite, amorphous Ti-Fe oxides), and feldspar (Fig. 6).  The mineral 407 

association of the phosphorite samples is relatively uniform, although the proportion of 408 

mineral phases varies significantly, even within a single deposit. 409 

Clay minerals in the Gafsa-Metlaoui deposits are dominated by smectite (Table A1; 45–410 

100% of the clay mineral assemblage), with subordinate quantities of palygorskite (typically 411 
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10–20%), sepiolite (generally 5–20%), and kaolinite (≤10%, in the lowest beds only), as 412 

reported previously from the basin (Sassi, 1974; Bolle et al., 1999; Felhi et al., 2008; Tlili et 413 

al., 2010, 2011; Ahmed et al., 2015).  Neoformed sepiolite appears systematically in 414 

association with palygorskite, indicating a genetic link with the latter mineral.  Kaolinite is 415 

present only at the bottom of the phosphorite succession.  416 

The clay assemblages in the Eastern Basins at Jebel Jebs yield even higher proportions of 417 

smectite (100% in several upper phosphorite beds), with minor amounts of palygorskite and 418 

kaolinite (~15% each) present in the lowest phosphorite beds (Table A1); illite (up to 30%) is 419 

present in the uppermost phosphorites. In the Northern Basins at Sra Ouertane, smectite (60–420 

100%), kaolinite (0–20%) and illite (0–30 %) constitute the clay mineral assemblages, 421 

kaolinite giving way to illite as the subordinate clay mineral up section.  Kaolinite (64–85%), 422 

illite (0–36%), and minor amounts of smectite are found in the Sekarna deposit. 423 

Sulphides are mostly recognized in the heavy mineral fraction of fresh samples from the 424 

Gafsa-Metlaoui Basin.  The main sulphide minerals are pyrite and sphalerite.  Both minerals 425 

occur as dispersed free crystals, intergranular cement, micrometric inclusions in phosphatic 426 

particles, and/or as foraminifera test infillings.  The heavy minerals apatite, zircon and Fe-Ti 427 

oxides (ilmenite, rutile) occur as accessory phases in Tunisian phosphorites, and are most 428 

prominent in samples from the Northern and Eastern Basins.  Grain sizes are principally of 429 

silt to very fine sand grade, and do not exceed 100 µm.  Zircon crystals are almost always 430 

prismatic with elongated (100) faces; no signs of reworking or inclusions were observed.   431 

Ilmenite occurs as tabular crystals containing fine ~20 µm inclusions of apatite and 432 

shows chemical zonation.  Fe-Ti oxides generally show heterogeneous chemical compositions 433 

suggesting a complex intergrowth of Fe-Ti minerals.  However, apatite inclusions in ilmenite 434 

could result from early syn-crystallization in an alkaline magma.  Zircon, ilmenite, and rutile 435 

likely were derived from acid igneous rocks, and the occurrence of fresh magmatic minerals 436 
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in the phosphorites indicates that magmatic rocks played a role in the provenance of the 437 

siliciclastic fraction during the formation of the phosphate-bearing units.   438 

The presence of igneous minerals in the phosphorites has been linked to contemporary 439 

late Paleocene–Eocene calc-alkaline volcanism (Clocchiatti and Sassi, 1972; Béji-Sassi et al., 440 

1996, 2001).  441 

4.2 Geochemistry 442 

Phosphorites are recognised as being enriched in many trace elements (TE) and rare-earth 443 

elements and yttrium (REY) compared to shale and other sedimentary rocks (Gulbrandsen, 444 

1966; Altschuler, 1980; Prévôt, 1990; Jarvis et al., 1994).  Results of the major element, TE, 445 

and REY analyses obtained in the present study are presented in Table 1.  Samples are listed 446 

sequentially from stratigraphically highest (youngest) to lowest (oldest) in each deposit.  447 

4.2.1 Major elements 448 

Major oxides in the phosphorite samples are dominated by CaO, P2O5, and SiO2; Al2O3, 449 

MgO, Na2O, and SO3 are the next most abundant elements, while the concentration of all 450 

other oxides [Fe2O3(T), MnO, K2O, TiO2] is generally low (<1%).  The major-element 451 

composition reflects the dominance of francolite, a carbonate fluorapatite with >1% fluorine 452 

and appreciable amounts of CO2 (Sandell et al., 1939; McConnell, 1973), as the primary 453 

mineral in the phosphorites, together with subordinate calcite, dolomite, quartz, opal-CT, 454 

feldspar and clay minerals (Fig. 6).  455 

The highest P2O5 values (up to 30%) are recorded in samples from Gafsa-Metlaoui Basin 456 

(Table 1, Fig. 6A).  Taking an average P2O5 content of 34.7% for francolite in commercial 457 

Tunisian phosphate rock (McClellan, 1980), yields an average francolite content of 75% 458 

(maximum 87%) for the Gafsa-Metlaoui Basin sediments, 52% for the Eastern Basins 459 
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(maximum 85%), and 39% for the Northern Basins (maximum 75%).  Similar francolite 460 

values were obtained by semi-quantitative x-ray diffraction analysis (Table A1). 461 

MgO contents range from 0.23–12.6%, compared to a maximum Mg concentration in 462 

sedimentary francolite of 0.36 ± 0.03% (McArthur, 1985; Jarvis et al., 1994).  Samples from 463 

Sra Ouertane and Jebel Jebs are characterized by the highest CaO and MgO contents, 464 

respectively (Table 1, Fig. 6B), reflecting high proportions of calcite and dolomite in these 465 

deposits.   466 

SiO2 and Al2O3 concentrations show significant variation (2.64–35.6%, 0.43–3.67%, 467 

respectively), that reflects the changing proportions of quartz (detrital and from biogenic 468 

sources), opal-CT (a product of biogenic opal, principally diatoms, diagenesis), and mixed 469 

clay mineral assemblages in the deposits (Fig. 6D).  TiO2 values vary between 0.02–0.17%, 470 

and are considered to principally represent clay minerals, as this element shows a strong 471 

positive correlation with Al2O3 (r = 0.88).  However, the highest TiO2 values (0.16%, 0.17%) 472 

were recorded in two ilmenite-rich samples from Sra Ouertane, indicating heavy mineral 473 

enrichment associated with an enhanced siliciclastic fraction (potentially of volcanogenic 474 

origin).  This inference is supported by the strong correlation between TiO2 and Zr (r = 0.77). 475 

The alkali components Na2O and K2O show some variability (0.13–1.72% and 0.06–476 

1.47%, respectively). At these concentrations, they can be considered to reflect Na 477 

substitution in francolite (maximum 1.2 ± 0.2% Na; McArthur, 1985; Jarvis et al., 1994), 478 

combined with variable clinoptilolite, smectite and/or feldspar contents.  K2O content is 479 

primarily determined by the type and amount of smectite–illite, glauconite and K-feldspar in 480 

the assemblage (Fig. 6D).  Fe2O3 contents range from 0.16–2.17%, and show a high 481 

correlation with MnO (r = 0.85), indicating an association with ferromanganese-482 

oxyhydroxides.  Predictably, the glauconite-rich phosphorites of Sekarna have the highest 483 

average Fe2O3 and K2O contents (Fig. 6D). 484 
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The SO3 content ranges from 0.20–6.84%.  This wide range of SO3 contents in the 485 

samples is attributable to the occurrence of sulphate as a constituent element in the phosphate 486 

lattice (maximum 2.7 ± 0.3% SO4; McArthur, 1985; Jarvis et al., 1994), and the presence of 487 

sulphides (pyrite, sphalerite) and gypsum.  The lowest SO3 values are recorded in the samples 488 

from Sra Ouertane, Sekarna, and reworked phosphorite layer 0 at Mzinda and Jellabia (Fig. 489 

6C).  This is consistent with sediment reworking and weathering having led to sulphur 490 

depletion via sulphide oxidation and/or the loss of sulphate from the francolite structure 491 

(McArthur, 1978).  492 

4.2.2 Trace elements 493 

Across all samples, the mean abundance (ppm) of TEs (Table 1), in decreasing order is: 494 

Sr (1550), Cr (226), Zn (212), V (79), Ba (45), Zr (43), Cd (35), U (33), Ni (22), Br (13), Cu 495 

(12), Th (8.2), As (8.1), Mo (7.3), Rb (5.7), Sc (3.9), Nb (2.5), Sb (1.1), and Hf (0.65).  These 496 

concentrations highlight the high level of Sr (>1000 ppm), an element that readily substitutes 497 

for Ca in francolite (Jarvis et al., 1994), followed by three groups of elements that we have 498 

classified according to their concentrations.  The first group consists of Cr and Zn, with 499 

relatively high concentrations (~200 ppm).  The second group contains TEs with moderate 500 

concentrations (10–100 ppm): V, Ba, Zr, Cd, U, Ni, Br, and Cu.  The third group consists of 501 

TEs with relatively low concentrations (<10 ppm): Th, As, Mo, Rb, Sc, Nb, Sb and Hf. 502 

Normalised trace-element patterns 503 

Trace-element concentrations normalised to average shale are plotted in Fig. 7.  Patterns 504 

similar to that of average phosphorite (yellow stars in Fig. 7; Altschuler, 1980) are apparent 505 

for all samples, but with subtle regional differences.  Northern Basins samples, particularly 506 

those from Sra Ouertane (Fig. 7A), have values closest to average phosphorite, with clear 507 

enrichment in Cr, Sr, Y, U, Mo, Zn and Cd.  Notable depletion occurs in Rb, Ba, Ni and Cu 508 

relative to both average shale and average phosphorite.  The highest As and Sb concentrations 509 
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occur in phosphorites from Sekarna, attributable to the high glauconite content of the 510 

sediments (Dooley, 2001; Barringer et al., 2011) and local Zn-Pb mineralisation (Garnit et al., 511 

2012b).  High Th values characterise samples from the lower phosphorite beds of Jebel Jebs 512 

(Fig. 7B, C). 513 

Aside from the reworked phosphorites (level 0 in the Jellabia and Mzinda deposits; Figs. 514 

5, 7, Table 1), the Gafsa-Metlaoui samples have homogeneous TE levels.  Of particular note 515 

are Cr, Sr, Zn, Cd enrichment, and Sc, Y, Zr, Ba, U, Cu, As depletion, relative to average 516 

phosphorite (Altschuler, 1980).  In comparison, the reworked phosphorites have higher 517 

concentrations of Zr, Rb, Nb, V, Ba, Ni, Hf, and lower concentrations of U, Y, Cr, Sr, Zn, Cd 518 

than the primary beds.  Phosphorites from Sekarna and Sra Ouertane contain higher 519 

concentrations of Sc, V, Ba, Ni, Cu, U, and lower concentrations of Sr, Zn and Cd than those 520 

from Gafa-Metlaoui (Table 1).   521 

Cadmium concentrations in Tunisian phosphorites are variable, but particularly in some 522 

Gafsa-Metlaoui Basin samples, they are anomalously high (Table 1, Fig. 7; maximum 172 523 

ppm, >100x average shale), as documented previously by Lin and Schorr (1997) and Béji-524 

Sassi and Sassi (1999).  Cadmium exhibits the highest level of enrichment of any element in 525 

average phosphorite compared to average shale (18 ppm vs. 0.13 ppm, respectively; 526 

Altschuler, 1980; Wedepohl, 1991; see also Bech et al., 2010).  Cadmium commonly shows a 527 

close association with Zn in phosphorites with high Cd concentrations, where it is attributed 528 

to partitioning by sphalerite (Nathan et al., 1996, 1997).   Our Metlaoui samples show a 529 

highly significant near-linear correlation between Cd and Zn (r = 0.97), but no significant 530 

correlation between Cd or Zn and P (r = 0.32 and 0.40, respectively). 531 

Trace-element geochemistry of sulphides 532 

Sulphide minerals occur in fresh samples as discrete grains, foraminifera chamber infills 533 

and as micro-inclusions in phosphatic particles.  Sulphide formation occurred during early 534 
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diagenesis (Berner, 1984; Raiswell and Canfield, 1998; Schoonen, 2004); the source of H2S 535 

for pyrite and sphalerite formation is attributed to bacterial sulphate reduction of organic 536 

matter, with iron and zinc being supplied principally via iron oxyhydroxides and organic 537 

matter forming the gangue. 538 

Tables 2 and 3 show the trace-element contents of selected sphalerite and pyrite grains 539 

determined by LA-ICP-MS.  Trace elements detected in sphalerite were Ag, As, Cd, Cr, Cu, 540 

Fe, Mn, Mo, Ni, Pb, Sb, Sn, Ti and V (Table 2).  Their concentrations are extremely variable 541 

but cadmium is a major constituent, contents ranging from 0.8–6.5 %.  Béji-Sassi and Sassi 542 

(1999) have previously described Metlaoui-Gafsa Basin sphalerites containing 2.8–5.8 % Cd 543 

(up to 11.6 mol.% CdS).  Copper and Fe show large variation in sphalerite, from 5–232 ppm 544 

and from 93–1100 ppm, respectively, and are heterogeneously distributed.  Trace-element 545 

behaviour in sphalerite is mainly controlled by Zn structural substitutions (Zn
2+
↔ Cd

2+
, Co

2+
, 546 

Fe
2+

, Mn
2+

, or Zn
2+
↔ Cu

2+
+In

3+
; Johan, 1988; Kieft and Damman, 1990; Pattrick et al., 547 

1993), since sulphur does not show significant deviation from the stoichiometric value 548 

(32.9%).  549 

Iron and S contents in pyrite vary from 45 to 46% and from 54 to 55%, respectively.  550 

This composition is close to stoichiometric pyrite (Fe 46.55%, S 53.45%), indicating few 551 

substitutions in the pyrite structure.  Cadmium contents are low, averaging 5 ppm; arsenic is 552 

the highest abundance trace element (253–704 ppm), Cu and Mo contents vary from 0.1–5 553 

ppm and from 39–149 ppm, respectively (Table 3). 554 

4.2.3 Rare-earth elements and yttrium 555 

Rare-earth element and yttrium (REY) concentrations (ppm) and elemental ratios are 556 

presented in Table 1.  Total REE (REE) and Y contents show considerable variation, 557 

ranging from 110–1020 and 51–402 ppm, respectively.  Samples from Sekarna (REE range 558 

598–800 ppm, average 716 ppm) and Jebel Jebs (227–1020 ppm, average 577 ppm) have 559 
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higher REE contents than the Gafsa-Metlaoui (151–549 ppm, average 322 ppm) and Sra 560 

Ouertane phosphorites (111–690 ppm, average 306 ppm), despite comparable P2O5 contents 561 

in the Gafsa-Metlaoui samples (Fig. 8).  The lowest REE concentrations, recorded at Sra 562 

Ouertane, occur in phosphate-poor levels (P2O5 < 5%), but no consistent relationship between 563 

REE and P2O5 is evident: REE show a positive correlation with P2O5 for Jebel Jebs (r = 564 

0.97), Sra Ouertane (r = 0.79), and Sekarna (r = 0.59) samples, but no correlation was 565 

observed for the Gafsa-Metlaoui data (r = 0.05).  Phosphorites from the bases of the 566 

phosphorite successions in the Northern and Eastern Basins contain the highest REY contents 567 

(Fig. 8). 568 

Post-Archean Average Shale (PAAS; McLennan, 1989) normalized REY patterns of the 569 

Metlaoui phosphorites are plotted in Fig. 9.  The REY patterns of phosphorites in this study 570 

can be divided into three groups: Group I, characterized by slight enrichment of heavy REE 571 

(HREE; Ho–Lu) with moderate negative Ce anomalies (Gafsa-Metlaoui Basin samples); 572 

Group II (more shale-like), characterized by moderate enrichment of middle REE (MREE; 573 

Eu–Dy) and small to moderate negative Ce anomalies (Jebel Jebs, Sekarna); and Group III 574 

(seawater-like), characterized by slight enrichment of HREE and depletion in the light REE 575 

(LREE; La–Sm) with the largest negative Ce anomalies (Sra Ouertane).  Similar patterns are 576 

seen in the majority of Late Cretaceous to modern phosphorites (e.g. Jarvis et al., 1994; 577 

Emsbo et al., 2015). 578 

A significant negative Ce anomaly in the shale-normalised REY patterns is a feature in 579 

all Metlaoui Group phosphorite samples (Fig. 9, Table 1).  The anomaly [quantified as 580 

Ce/Ce* = 3CeN/(2LaN+NdN), where N are PAAS shale-normalised values] is most 581 

pronounced (i.e. lowest Ce/Ce* values) for the Sra Ouertane (0.45) and Sekarna (0.51) 582 

deposits (Fig. 9; see Section 5.3.2 Fig. 14A for a plot of anomaly values).  At Jebel Jebs, the 583 

average anomaly (0.70) is comparable to that for the Gafsa-Metlaoui sections (0.69).  584 
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Individual phosphorite beds in the Gafsa-Metlaoui Basin (Fig. 5) have distinct REY 585 

signatures (Fig. 9), and consistent stratigraphic trends are apparent in all 5 sections; from 586 

bottom to top each succession displays: (1) rising ∑REE contents; (2) progressively less 587 

negative Ce and falling Y anomalies [Y/Y* = 2YN/(DyN+HoN)]); (3) progressive flattening of 588 

the shale-normalised REY patterns, driven by proportionally greater increases in the lighter 589 

REEs.  These trends do not correspond to stratigraphic variation in P2O5, or other major 590 

constituents (Table 1).  591 

4.3 Element-mineral associations: Pearson correlation coefficients 592 

Although the element–mineral associations vary from phosphorite-rich to phosphorite-593 

poor levels, correlation analysis can demonstrate general trends.  We calculated Pearson 594 

correlation coefficients (r) for all possible pairs of variables to establish the existence of any 595 

correlations.  A summary of this analysis is presented in Table 4.  The terms “high”, 596 

“medium”, and “low” as applied to factor loadings refer to absolute loading values of >0.75, 597 

0.50–0.75, and 0.36–0.50, respectively.  Values lower than 0.36 were not considered to be 598 

significant.  A significant positive correlation coefficient suggests a similarity in the 599 

geochemical behaviour and/or a common source material for these elements; negative 600 

coefficients reflect antithetic behaviours and/or mineral associations. 601 

4.3.1 Major elements 602 

For major elements, high positive correlations were found between the following pairs of 603 

constituents: Al2O3–TiO2; Fe2O3–MnO; P2O5–Na2O; Na2O–SO3; K2O–TiO2.  Three groups of 604 

oxides are identifiable in the correlation matrix of Table 2.  The first, called the “siliciclastic” 605 

group, contains the oxides of Si, Ti, Al, Mg and K, which are major constituents of the 606 

aluminosilicate minerals that constitute the terrigenous clastic fraction.  The second, called the 607 

“authigenic” group, contains P, Ca, and Na.  Phosphorus correlates positively with Ca and Na 608 
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due to the presence of these elements in the apatite lattice (McConnell, 1973; McClellan, 609 

1980; Nathan, 1984; Jarvis et al., 1994), although these elements may also be linked to 610 

carbonate (calcite, dolomite) and silicate minerals (clinoptilolite, smectite), respectively.  611 

Phosphorus and Si are moderately negatively correlated, showing an antithetic relationship 612 

due to quartz, opal-CT and silicate mineral dilution of total phosphate contents (Fig. 6A).  613 

Our analytical protocol did not distinguish between sulphate, sulphide and organic 614 

sulphur; the sulphur content of the humic acids in the Metlaoui-Gafsa Basin phosphorites is 615 

up to 12% (Belayouni, 1984).  However, S and P show a weak correlation, consistent with 616 

SO4 substitution in francolite (maximum 2.7 ± 0.3%; McArthur, 1985; Jarvis et al., 1994) and 617 

their co-occurrence in organic matter, together with associated diagenetic pyrite and/or 618 

sphalerite.  Iron is strongly correlated only to Mn, representing a third “oxyhydroxide” group, 619 

although the presence of glauconite in the sediments points to an additional mineralogical 620 

control. 621 

4.3.2 Trace elements 622 

Among the TEs, there are both strong positive and negative correlations.  Strong positive 623 

correlations were found between the following pairs: Sc–Y, Zr–Nb, Zr–Hf, Nb–Hf, Ni–As, 624 

Zn–Cd, and As–Sb.  Scandium, Y and the REEs belong to the same group of the periodic 625 

table (IIIB), owing to similarities in their atomic structures; the closest similarity exists 626 

between Y and Ho (Bau and Dulski, 1999).  Consequently, members of the group behave in a 627 

very similar manner during geological processes.  They readily substitute in the francolite 628 

structure (Jarvis et al., 1994).  Despite this, they show no significant correlation with P2O5 629 

(Table 4, Fig. 8), indicating that other factors control elemental concentrations in this case.  630 

By contrast, Sr shows a highly significant positive linear correlation with P2O5 (r = 0.90), 631 

reflecting high levels of substitution in francolite (maximum 0.25 ± 0.02%; McArthur, 1985; 632 
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Jarvis et al., 1994) and low concentrations in other Sr-bearing minerals (e.g. carbonates, 633 

feldspar), and a clear association with the authigenic group.  634 

Zirconium, Nb, and Hf are attributed to the siliciclastic group, as indicated by strong 635 

positive correlations between Zr and TiO2 (r = 0.77), Hf and TiO2 (r = 0.81), and Nb and TiO2 636 

(r = 0.91).  These high field strength, incompatible elements are strongly enriched in common 637 

heavy minerals such as ilmenite, rutile, titanite, titanomagnetite and zircon.  In the Gafsa-638 

Metlaoui Basin, the increased abundance of TiO2, Al2O3, Hf, Nb and Zr in the reworked 639 

phosphorites is consistent with the inclusion of increased amounts of detrital minerals in these 640 

beds. 641 

Elevated Cd and Zn contents, a positive correlation between these chalcophile elements, 642 

and an absence of any significant correlation with P2O5, have been observed in many 643 

phosphorites (e.g. Nathan et al., 1996, 1997; Béji-Sassi and Sassi, 1999; Soudry and Nathan, 644 

2001).  Other sedimentary phosphorites contain low Zn concentrations and variable moderate 645 

enrichment in Cd relative to shales (Baturin, 2006).  Similarly, the high Cd and Zn values 646 

recorded here in the Metlaoui phosphorites, show a poor correlation with P2O5 (r = 0.32 and 647 

0.40, respectively).  Originally bound in organic matter complexes, bivalent Cd and Zn are 648 

concentrated in sulphides (principally sphalerite) during early diagenesis, and are associated 649 

with phosphorites deposited in poorly oxygenated environments (Nathan et al., 1997); 650 

Metlaoui Group sphalerites contain up to 6.5 wt% Cd (Table 2).   651 

The correlation coefficients for As, Ni and Sb are highest for Fe and Mn, indicating an 652 

association principally with the oxyhydroxide and glauconite group.  This is consistent with 653 

the high levels of enrichment in As, Ni and Sb that characterise Fe-Mn crusts more generally 654 

(Hein et al., 2003; Hein and Koschinsky, 2014), although these elements occur at elevated 655 

concentrations, along with Cr, Rb and V, in glauconite (e.g. Barringer et al., 2011; Smaill, 656 

2015). 657 
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4.4 Principal Component Analysis 658 

Principal Component Analysis (PCA) was employed to investigate TE and REY affinities 659 

and sources based on relationships among variables, and to explore similarities among 660 

geochemical samples and deposits.  From the standardized geochemical dataset, principal 661 

components were extracted from the symmetrical correlation matrix computed for the 45 662 

variables.  The number of components was based on the Kaiser criterion (Kaiser, 1960), for 663 

which only components with eigenvalues greater than 1 are retained. 664 

Table 5 presents the four principal components, as well as the variance that they each 665 

account for.  The first four components extracted have eigenvalues greater than 1, and account 666 

for 76.7% of the total variance in the dataset.  Each component is characterized by a few high 667 

loadings and many near-zero loadings.  The first two components explain 38.8% and 24.3% 668 

of the variance, respectively, and thus account for the majority of the variance in the original 669 

dataset.  Components 3 and 4 are less important; they account for approximately 8% and 5% 670 

of variance, respectively. 671 

Component 1 explains the greatest amount of the variance, and is characterized by very 672 

high negative loadings in the REE and Y (Table 5).  This component is considered to be a 673 

REY factor.  The very high loading values demonstrate how these elements are a major factor 674 

defining geochemical variation in phosphorites, which occurs as REY substitute for Ca in 675 

francolite.  Crystallographic parameters, the seawater source, depositional environment and 676 

diagenesis play important roles in controlling the abundance of these elements.  Moderate 677 

negative loadings for Fe2O3(T), MnO, and a broad range of trace metals (As, Cr, Cu, Mo. Ni, 678 

Sb, Sc, Th, U, V) demonstrate a link between REY contents, palaeoproductivity and redox 679 

(see Discussion, below).  680 

Component 2 is characterized by highly positive loadings in Al2O3, K2O, TiO2, Zr, Rb, 681 

Nb and Hf (Table 5) and high negative loadings for CaO, Na2O, P2O5 and Sr.  This 682 
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component is related to clays and heavy minerals; therefore, it is considered to be a detrital 683 

mineral factor.  It reflects how the proportion of siliciclastic minerals vs. phosphate (i.e. 684 

lithology) controls the bulk geochemistry of the phosphorites.  It will reflect detrital input and 685 

proximity to land, and changes in these in response to tectonics, climate and sea-level change. 686 

Figure 10 summarizes this information, showing the position of the loadings in the plane 687 

defined by the axes of components 1 and 2.  The negative PC1 – positive PC2 quadrant 688 

contains Fe2O3(T) and MnO, as well as TEs typically contained within Fe-Mn oxyhydroxides 689 

and glauconite, such as Cu, Sb, As, Ni, Mo, V and Cu (Fig. 10A).  A phosphate association of 690 

P2O5, CaO, Na2O, SO3 and Sr are located together on the negative PC2 axis, but are regarded 691 

as occurring within an extended array with other TEs and REY elements typically contained 692 

within francolite, such as Cr, U, Th, Sc (Fig. 10A).  This analysis reveals information about 693 

the relationship among other elements.  For example, the proximity of Cd and Zn to SO3 694 

reflects the geochemical link to sphalerite that has been shown to enhance the Cd content of 695 

the phosphorites.  On the positive PC2 axis, SiO2, TiO2, Al2O3 MgO, K2O are grouped with 696 

Ba, Hf, Nb, Rb and Zr, reflecting the silicate and heavy mineral detrital association.  697 

The REEs, Y and Sc exist as a distinct group within the negative PC1 axis and near zero 698 

on the PC2 axis (Fig. 10A).  These elements demonstrate variable modes and levels of 699 

incorporation, with relationships to both apatite and/or Fe-Mn oxyhydroxides.  This is 700 

consistent with models suggesting that Fe-oxyhydroxides provide the main scavenging and 701 

carrier phase for transfer of REEs, Y and Sc from seawater to sediment, with incorporation of 702 

those elements into francolite from porewater following iron reduction close to the 703 

sediment/water interface (Jarvis et al., 1994 fig. 3).  704 

Components 3 and 4 each account for <10% of the variance (Table 5).  Large positive 705 

scores for the two main productivity proxies Cu and Ni and negative scores for Ce and Th 706 

point to Component 3 being a productivity factor.  Component 4 has the highest positive 707 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Journal of African Earth Sciences *** (2017) ***–*** 

 30 

values for Fe2O3(T), MnO, As, Mo, Sb and V, indicating the further influence of Fe-Mn 708 

oxyhydroxides and glauconite on the bulk chemistry.  709 

Plotting individual samples within variable space (Fig. 10B) demonstrates strong 710 

associations between samples form individual localities.  The majority of Gafsa-Metlaoui 711 

Basin samples form a tight cluster with low positive values for PC1 and low negative values 712 

of PC2.  Jebel Jebs and Sra Ouertane samples define a scattered cluster along with reworked 713 

phosphorites from the Gafsa-Metlaoui Basin that has positive values for both factors, related 714 

to an increased proportion of detrital minerals effecting bulk chemistry.  A second small 715 

cluster of samples from these localities in the negative sector for both factors is ascribed to 716 

francolite-associated trace-element variation.  The three samples from Sekarna are the only 717 

ones to plot in the upper left quadrant, with highly negative values for PC1 and positive 718 

values for PC2 (Fig. 10B), related to the unique glauconite and Fe-Mn oxyhydroxide 719 

enrichment at this locality (Table 1). 720 

4.5 Hierarchical Cluster Analysis 721 

The sample groups identified by the PCA are consistent with results of the hierarchical 722 

cluster analysis (Fig. 11).  The HCA provides further evidence that the trace and REE 723 

concentrations offer a valid methodology for distinguishing facies associations of 724 

phosphorites.  The first cluster, representing approximately 14% of the assemblage, comprises 725 

basal phosphorite samples from the Northern and Eastern Basin samples that were previously 726 

differentiated by having low negative PCA Factor 1 scores (Fig. 10B), and is distinguished by 727 

high REE, Th, Sc, Sb, As, Ni, V, Mo, and Cu contents.  The second group includes the 728 

majority of samples, all from the Gafsa-Metlaoui Basin, and accounts for 59% of the 729 

assemblage.  It represents carbonate fluorapatite-rich phosphorites with notably high Sr, Cr, 730 

Zn and U contents.  The third cluster comprises the remaining Northern and Eastern Basins 731 

samples and reworked phosphorites from Gafsa-Metlaoui, incorporates 27% of samples in the 732 
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study, and is characterized by high Ba, Rb, Hf, Zr, and Nd contents, which relate to an 733 

increased abundance of detrital silicates and heavy minerals.  734 

5. Discussion 735 

5.1 Late Paleocene–Early Eocene climate  736 

An arid warm climate in the region of central and northern Tunisia during the Late 737 

Paleocene–Early Eocene is indicated by: (1) an association of Metlaoui phosphorites with 738 

sabkha-facies evaporites (e.g. Moody and Grant, 1989; Messadi et al., 2016); (2) an absence 739 

of significant detrital input despite close proximity to emergent landmasses (Kasserine and 740 

Djeffara islands; Fig. 1); (3) marine diatom assemblages (Ahmed et al., 2015); and (4) a very 741 

low proportion of terrestrial palynomorphs (pollen and spores) in the sediment organic 742 

fraction (Belayouni and Trichet, 1980; Fauconnier and Slansky, 1980; Trichet et al., 1990).   743 

5.1.1 Clay mineral assemblages as climate proxies 744 

The clay mineral assemblages in the Metlaoui phosphorites provide further evidence of 745 

the prevailing climate in Tunisia during the Paleocene–Eocene transition.  Clay mineral 746 

assemblages are generally dominated by smectite, but with high proportions of palygorskite 747 

and sepiolite in the Gafsa-Metaloui Basin (Table A1).  Excluding hydrothermal sources, 748 

palygorskite typically forms in warm arid coastal and peri-marine environments.  Here, 749 

continental alkaline waters are concentrated by evaporation, leading to porewaters enriched in 750 

Si and Mg that favour the formation of authigenic palygorskite and/or smectite (Bolle et al., 751 

1999; Bolle and Adatte, 2001).  Palygorskite and, to a lesser extent, sepiolite are also found in 752 

calcrete soils of arid to semi-arid climate zones (Millot, 1970; Robert and Chamley, 1991).   753 

The geography of the Gafsa-Metlaoui Basin, situated between two emerged land areas, 754 

would have been favourable to the neoformation of palygorskite and sepiolite under an arid to 755 
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semi-arid climate.  By contrast, older Paleocene sediments in the basin contain high 756 

kaolinite/smectite ratios, indicative of a warm and humid climate with high rainfall (Chamley, 757 

1989; Robert and Chamley, 1991).  The disappearance of kaolinite, coincident with a gradual 758 

increase in smectite, palygorskite and sepiolite, as well as illite and chlorite, suggests the 759 

progressive development of seasonal and then increasingly arid climate in the coastal 760 

environments of SE Tethys and on the Saharan Platform during the latest Paleocene (Bolle et 761 

al., 1999), and the onset of major phosphorite deposition.   762 

Palygorskite occurs only as an accessory phase on the oldest Eastern Basin phosphorites 763 

and is not observed in the Northern Basins (Table A1).  Here, the abundance of smectite and 764 

the generally low kaolinite content suggest wetter seasonal climate conditions in ocean-facing 765 

settings.  An exception to the general trends is observed at Sekarna where the phosphorites are 766 

kaolinite and illite dominated, confirming the results of Zaïer (1999) who reported kaolinite-767 

illite assemblages in several Northern Basins deposits close to Kasserine Island (Sekarna, 768 

Kalaat Khasba, Ain El Karma, El Guessaat).  769 

5.1.2 Oxygen isotopes 770 

A stable warm climate during Metlaoui phosphorite deposition is further indicated by the 771 

oxygen isotope composition of structural phosphate in coprolites and shark teeth (Ounis et al., 772 

2008; Kocsis et al., 2013).  However, calculated surface water temperatures of around 20°C 773 

based on these data are likely underestimates; climate models suggest values of >27°C for 774 

Tunisia during the Paleocene–Eocene (Dunkley Jones et al., 2013).  This underestimation 775 

may be ascribed to increased salinity and 
18

O enrichment of a restricted water mass in the 776 

evaporative Gafsa-Metlaoui Basin (Ounis et al., 2008; Kocsis et al., 2014).  If a higher 777 

isotopic value of 0 ‰ δ
18

O is assumed for the basin water, rather than the estimated -1‰ of 778 

average open-ocean greenhouse-climate water (Shackleton and Kennett, 1975), then more 779 

acceptable temperatures may be calculated (Kocsis et al., 2013). 780 
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5.1.3 Late Paleocene – Early Eocene climate change 781 

Earth surface temperatures increased by about 5°C from the late Paleocene through the 782 

early Eocene, culminating in the "Early Eocene Climatic Optimum" at around 52–50 Ma, the 783 

warmest episode of Cenozoic time (Zachos et al., 2001, 2008). Superimposed on this long-784 

term gradual warming, the PETM "hyperthermal" occurred during the earliest Eocene, a 785 

short-lived (<200 kyr) event characterized by rapid global warming, major changes in the 786 

environment, and massive isotopically light carbon addition (Zachos et al., 2008).  The 787 

current consensus is that the PETM immediately followed the Paleocene–Eocene boundary at 788 

56.0 Ma (e.g. Sluijs et al., 2008, 2014; Vandenberghe et al., 2012). 789 

An influx of kaolinite indicating a temporary episode of warming and increased humidity 790 

during the PETM has been documented widely in the Tethyan region, but is absent from 791 

restricted marginal areas, like the Gafsa-Metlaoui Basin, where aridity persisted (e.g. Dunkley 792 

Jones et al., 2013; Kiehl and Shields, 2013).  It is possible that the anomalous clay mineral 793 

assemblage of the Sekarna and other Northern Basins phosphorites represents this event, or 794 

the deposits may be of older Paleocene age.  Biostratigraphic control is currently inadequate 795 

to differentiate between these alternatives. 796 

5.2 Trace element geochemistry 797 

Interpretation of TE patterns in phosphorites is not straightforward.  Trace-element 798 

concentrations and ratios in shales have been shown to provide proxies for detrital input flux, 799 

palaeoproductivity, and both water column and sediment palaeoredox conditions (Brumsack, 800 

2006; Tribovillard et al., 2006; Little et al., 2015; Sweere et al., 2016).  However, in 801 

phosphorites, elemental concentrations result from a combination of the palaeoenvironmental 802 

conditions that control the concentration and availability of specific elements in seawater, 803 

sediment and porewater, and the kinetics, thermodynamics and distribution coefficients 804 
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controlling element uptake by phosphate minerals during phosphatisation, itself a complex 805 

multistage process likely involving a precursor mineral phase to francolite (Jarvis et al., 806 

1994).   807 

5.2.1 Substitutions in the apatite structure 808 

Numerous substitutions occur in all of the apatite sites (the two Ca sites, the PO4 sites and the 809 

F site), and not all of them have the same valency as the original ion (Jarvis et al., 1994).  810 

Francolite (a carbonate hydroxylfluorapatite B-type with Ca/P ratio >1.67 according to 811 

Kostova et al., 2013) is the common phosphate mineral in Tunisian phosphorites.  812 

Mineralogical and chemical studies of purified phosphatic particles have enabled empirical 813 

structural formulae to be established for the three basins (Ounis, 2011; Table 6).  Ounis 814 

(2011), using XRD and the equation of Schuffert et al. (1990), noted slight but significant 815 

differences in the CO3
2- 

substitution in apatite from the different basins: samples from the 816 

Gafsa-Metlaoui Basin have higher CO3
2-

 substitution (8%) compared to those from the 817 

Eastern Basins (7%) and Northern Basins (6%, Sra Ouertane).  The more highly substituted 818 

apatites from the Gafsa-Metlaoui deposits, in particular, have potential to accommodate many 819 

ionic substitutions (McConnell, 1973; Altschuler, 1980; Jarvis et al., 1994; Hughes and 820 

Rakovan, 2015). 821 

The comparative concentration of each element relative to average shale (Fig. 7) provides 822 

some insight into the selectivity of phosphorites as sinks for trace elements that commonly 823 

substitute in apatite.  However, the higher levels of trace elements are not necessarily located 824 

within the apatite lattice itself, but may be adsorbed onto crystal surfaces, may be associated 825 

with minerals such as silicates, oxyhydroxides and sulphides, or occur in organic matter 826 

(Jarvis et al., 1994; see discussion, below).  Trace-element contents are, therefore, a combined 827 

product of depositional environment, diagenetic processes, and mineralogical controls.  828 

5.2.2 Comparison of TE and REY distributions in phosphate grains and bulk sediments 829 
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The present study reports results obtained from bulk rock analyses.  Garnit et al. (2012a) 830 

previously published TE and REY data obtained from individual phosphate grains (pellets 831 

and coprolites) using LA-ICP-MS, collected from the Sra Ouertane, Jebel Jebs and Gafsa-832 

Metlaoui Basin sections. The elemental concentrations and distribution patterns obtained are 833 

essentially identical to those obtained for the same elements (As, Ba, Cd, Cr, Cu, Mo, Ni, Sr, 834 

U, V, Zn, REY) in the present study from the bulk sediments (Figs. 7, 9).  Ounis et al. (2008) 835 

reported similar REE patterns based on LA-ICP-MS spot analyses of coprolites and shark 836 

teeth from the Gafsa-Metlaoui Basin.  This demonstrates that the TE and REY bulk chemistry 837 

of the phosphorites is dominated by the composition of the phosphate grains, and is little 838 

affected by the enclosing siliciclastic and carbonate matrices.  However, this does not mean 839 

that the reported TE and REY contents in either phosphorite study reflect solely francolite 840 

compositions.  The LA-ICP-MS analyses employed a 50 μm spot size which sampled a 841 

complex nanostructure incorporating both apatite crystals and, particularly in the case of 842 

pellets, siliciclastic mud and secondary dolomite and sphalerite inclusions.  Nonetheless, it 843 

confirms the overwhelming influence of francolite on both grain and phosphorite bulk 844 

sediment chemistry. 845 

Individual phosphatic particles from the Sra Ouertane showed the highest contents of Ba, 846 

Cu, Ni and U, whereas phosphatic particles from the Jebel Jebs and Gafsa-Metlaoui contained 847 

the highest Cd, Mo, Sr and Zn contents (Garnit et al., 2012a).  Similar trends are seen in the 848 

bulk sediment data (Table 1), although in this case individual Sra Ouertane bulk sediment 849 

samples exhibit a very wide range of TE concentrations, ranging from the highest to the 850 

lowest values in the overall sample set (Fig. 7).  This reflects the more diverse lithofacies 851 

present in this section and the varying phosphate contents (4 – 26 % P2O5; Table 1).  852 

Elsewhere in the Northern Basins, the Sekarna section, which was not studied by Garnit et al. 853 

(2012a), displays the highest average values of Ba, Cu, Fe, Ni, Mo, U and V.  854 
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5.2.3 Palaeoenvironmental proxies 855 

Trace element and REY abundances in the phosphorites of the Metlaoui Group reveal the 856 

extent of mineralogical and geochemical variation between different beds, sections, and 857 

basins, despite the relatively consistent processes of mineral paragenesis.  Except for Cd, Cr, 858 

Mo, Sr, U, Zn and REY, the concentrations of most TEs in Metlaoui phosphorites are similar 859 

to or lower than those in average shale (Fig. 7).   860 

To compensate for the effects of varying proportions of major diluent phases (quartz, 861 

opal-CT, carbonates) on the bulk sediment TE contents, TE enrichment factors (EF) were 862 

calculated relative to average shale, where EF element x = (x/Al) sample / (x/Al) average shale.  863 

Selected EF data for all 8 sections are plotted in Fig. 12.  Amongst the palaeoenvironmentally 864 

sensitive trace metals (Brumsack, 2006; Tribovillard et al., 2006; Little et al., 2015; Sweere et 865 

al., 2016), Cd, Cr, Mo, U and Zn show the highest enrichment factors (Fig. 12). 866 

The fundamental physical chemistry and biogeochemical controls on TE behaviour in the 867 

environment will be the same in all sediments, but the resulting TE patterns in phosphorites 868 

may be different.  This is exemplified by Mo-U covariation, which provides a proxy for 869 

seawater oxygenation and the redox status of bottom sediments (Tribovillard et al., 2012).  870 

Enrichment factors for these two elements in the Metlaoui phosphorites, in the order of 20–50 871 

for Mo and 100–300 for U (Fig. 12), place these sediments outside the redox fields defined on 872 

shale-based bivariate discrimination diagrams (e.g. Tribovillard et al., 2012 fig. 1).  Bearing 873 

this in mind, emphasis should be placed on differences in TE contents in different 874 

phosphorites, rather than absolute values or element ratios.  875 

Detrital mineral proxies 876 

Chromium and Zr, elements that are typically associated with heavy minerals (e.g. 877 

chromite, zircon) and silicates in the detrital fraction, are significantly enriched in Metlaoui 878 

phosphorites relative to average shale (Fig. 12).  Zirconium shows a strong association with 879 
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other silicate and other heavy mineral associated elements (Fig. 10); no major differences are 880 

evident between basins, indicating similar siliciclastic fluxes.  Moderate enrichment in Zr, 881 

despite lower concentrations than average shale (Figs. 7, 12, Table 1), support evidence for 882 

the inclusion of a sediment component (zircon) derived from contemporaneous acidic 883 

volcanism in the Metlaoui phosphorites (Clocchiatti and Sassi, 1972; Béji-Sassi et al., 1996; 884 

Béji-Sassi et al., 2001).   885 

Interpretation of Cr enrichment (Fig. 12) is complicated by its ability to substitute for 886 

phosphorus in francolite (Jarvis et al., 1994), in addition to a common heavy mineral and 887 

glauconite association.  Results of the PCA (Fig. 10) argue for the former being the dominant 888 

factor in the Metlaoui phosphorites.  Chromium (VI) is soluble in oxic seawater, but is 889 

exported to the sediments as reduced Cr (III) via humic/fulvic acid complexes and/or 890 

adsorption to Fe- and Mn-oxyhydroxides (Little et al., 2015).  It is not readily trapped within 891 

the sediments in the form of a sulphide and is generally lost to the overlying water column by 892 

diffusive/advective transport during sediment compaction.  However, following liberation 893 

during organic matter decomposition and Fe-redox cycling it becomes available for 894 

incorporation by francolite, and therefore offers a potential productivity proxy in 895 

phosphorites.  However, in the present case, it does not show trends that are consistent with 896 

other productivity proxies (Fig. 12, see below). 897 

Productivity proxies 898 

Barium and phosphate are classically used as measures of productivity (Brumsack, 2006; 899 

Paytan, 2009), but Ba may be lost to bottom waters during early sulphate reduction, and P is a 900 

major element in the phosphorites and therefore subject to multiple sedimentological and 901 

mineralogical controls.  Barium generally shows no enrichment in Metlaoui phosphorites 902 

(Fig. 12), indicating likely post-depositional loss, although Northern Basins samples have 903 

higher enrichment factors.   904 
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Copper and Ni are moderately enriched in most Metlaoui phosphorites (Fig. 12), with the 905 

Northern Basins, and particularly Sekarna, displaying the highest enrichment factors.  Nickel 906 

enrichment in particular is likely associated with the presence of glauconite at Sekarna.  907 

Copper and Ni EFs display a clear geographical trend in the Metlaoui-Gafsa Basin data, with 908 

progressive NW to SE decline in enrichment factors (Fig. 12; i.e. approaching the shoreline of 909 

Jeffara Island), with no corresponding change in phosphate contents (Table 1).  Copper and 910 

Ni provide the best proxies for the organic carbon flux, itself a measure of surface water 911 

productivity (Tribovillard et al., 2006).  Copper and Ni EFs generally show good correlation 912 

with TOC in sediments irrespective of their redox state, being predominantly supplied with 913 

organic matter (as organometallic complexes) and trapped after organic matter decay within 914 

sulphides.  A Fe-Mn-oxyhydroxide association is indicated by the PCA analysis of the 915 

Metlaoui phosphorites (Fig. 10), although no TOC data are available for our samples.   916 

Cadmium and Zn, elements that are also transferred to sediments principally via organic 917 

matter (Tribovillard et al., 2006), show the same geographical trend of concentrations in the 918 

Metlaoui-Gafsa Basin as Cu and Ni, but have a clear sphalerite association, indicating fixation 919 

by sulphate reduction following organic matter decay.  Generally, Zn EFs show a 920 

straightforward relationship with TOC in modern organic-rich sediments (Little et al., 2015).  921 

Cadmium EFs in the Metlaoui phosphorites are extreme, exceeding 10,000 in several beds in 922 

the NW Metlaoui-Gafsa Basin sections.   High Cd EFs of up to 800 occur today off the Peru 923 

margin in an open ocean setting with oxygen depletion driven by high productivity (Little et 924 

al., 2015), and enrichment in Cd and P with depletion in Mn (see below), as displayed by the 925 

Metlaoui phosphorites, are characteristics of coastal upwelling environments (Brumsack, 926 

2006; Sweere et al., 2016). 927 
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Following the arguments made above, we interpret geographical variation in Cd, Cu, Ni 928 

and Zn EFs to reflect highest productivity in the deeper water areas of the NW Metlaoui-929 

Gafsa Basin, and also high but more variable productivity in the Northern and Eastern Basins. 930 

Redox proxies 931 

Iron and Mn display similar geochemical behaviour.  In oxic seawater both Fe (II) and 932 

Mn (II, IV) precipitate as Fe and Mn oxyhydroxides resulting in very low dissolved 933 

concentrations (<1 nM) in seawater (Little et al., 2015).  These oxyhydroxides form part of a 934 

particulate shuttle that scavenges PO4 and trace metals from the water column, but then 935 

dissolves in suboxic conditions accompanying organic matter decomposition in the sediment.  936 

This results in phosphate and Mn release, and a Fe-redox cycle that promotes francolite 937 

precipitation (e.g. Jarvis et al., 1994 fig. 3).   938 

Variable low Fe contents in the Metlaoui phosphorites (Table 1) reflect the presence of 939 

minor glauconite, pyrite and ferromagnesian minerals in the sediments.  Iron EF factors are 940 

close to 1 for all sections except Sekarna, where values of ~4 are a product of the more 941 

glauconitic facies.  Manganese contents are universally low in the phosphorites, generally < 942 

50 ppm in the Metlaoui-Gafsa and Eastern Basins, < 200 ppm in the Northern Basins (Table 943 

1), corresponding to EFs of < 10
-4

.  This indicates extreme loss of Mn from the sediment by 944 

reduction and release via diffusion into suboxic bottom waters.  Near complete loss of Mn 945 

from the sediment is a characteristic feature of modern coastal upwelling systems where the 946 

oxygen-minimum zone acts as a conveyor belt transporting Mn towards the open ocean 947 

(Brumsack, 2006).  948 

Molybdenum, U and V are characteristically enriched in oxygen-depleted sediments 949 

(Tribovillard et al., 2006; Little et al., 2015) and show minimal detrital influences.  For 950 

example, Mo is transferred to the sediment by absorption onto humic substances and Mn-951 

oxyhydroxides or by uptake in solution with authigenic Fe-sulphides; Mo burial fluxes peak 952 
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in weakly sulphidic facies owing to greater aqueous Mo availability and to enhanced 953 

scavenging associated with Fe-Mn cycling (Algeo and Lyons, 2006; Algeo and Tribovillard, 954 

2009), a process that also favours francolite precipitation (Jarvis et al., 1994).  Uranium and 955 

V, by contrast, have a predisposition to become enriched under less reducing conditions than 956 

Mo.  A strong coupling exists between the behaviour of Cd and U in suboxic porewaters 957 

(Rosenthal et al., 1995), and it is notable that these two elements display the highest EFs in 958 

the Metlaoui phosphorites (Fig. 12). 959 

Molybdenum, U and V enrichments potentially allow suboxic environments to be 960 

differentiated from anoxic–euxinic ones (Tribovillard et al., 2006).  All three elements have 961 

elevated enrichment factors in Metlaoui phosphorites, but U stands out as being present at 962 

significantly higher concentrations than in average shale (Fig. 7) and has very high EFs (Fig. 963 

12).  Low Mo/U ratios in shales characterise deposition in suboxic bottom and porewaters, 964 

while high ratios reflect euxinic conditions (Tribovillard et al., 2012).  For phosphorites, 965 

preferential uptake of U by francolite may play a role in controlling element/U ratios.  966 

However, many phosphorites display no U enrichment (see discussion in Jarvis et al., 1994), 967 

so element ratio variation may still be diagnostic.   968 

Metlaoui phosphorites display variable Mo, U and V contents, with the Sekarna deposit 969 

having the highest enrichment factors and concentrations in these elements (Figs. 7, 12).  On 970 

balance, the trace metal geochemistry points to dominantly suboxic bottom-water conditions, 971 

evidenced by Mn depletion, with suboxic to anoxic porewaters in all three phosphorite basins.  972 

There is no evidence of water column euxinia, an interpretation supported by the ubiquitous 973 

bioturbation, although complementary TOC data are required to test this conclusion further. 974 

5.3 Rare-earth elements and yttrium 975 

The REEs have long been recognised as being enriched in phosphorites compared to other 976 

sedimentary rocks (Cossa, 1878; McKelvey, 1950; Altschuler et al., 1967).   977 
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5.3.1 REEs and yttrium patterns 978 

There are strong positive inter-elemental correlations between all REY (Fig. 10, Tables 4, 979 

5), which attest to their strong coherence as a geochemical group, their common processes of 980 

enrichment, and their mineralogical association with francolite in phosphorites (McArthur and 981 

Walsh, 1984; Jarvis et al., 1994).  However, Pearson correlation analyses (Table 4) and PCA 982 

(Fig. 10A) indicate that Fe-Mn oxyhydroxides play a role in hosting the REY in the Metlaoui 983 

phosphorites.  REE contents reported here (Table 1; mean 370 ppm) are comparable to 984 

published data from the Metlaoui Group, with higher levels present in Northern and Eastern 985 

Basins localities than in the Gafsa-Metlaoui Basin (Béji-Sassi, 1984, 1999; Chaabani, 1995; 986 

Béji-Sassi et al., 2005; Ounis et al., 2008; Ferreira da Silva et al., 2010; Galfati et al., 2010; 987 

Garnit et al., 2012a, b). 988 

The REY are readily incorporated into the apatite structure directly from seawater during 989 

early diagenesis (McArthur and Walsh, 1984; Jarvis et al., 1994; Kocsis et al., 2016).  For 990 

example, fish debris apatite in slowly accumulating modern deep-sea muds may contain in 991 

excess of 3 wt% REY (Kon et al., 2014), despite concentration of <1 ppm in the original 992 

biogenic phosphate (Elderfield and Pagett, 1986).  Global secular variation in REE patterns in 993 

biogenic apatite and coeval phosphorites has been used to support the argument that francolite 994 

commonly preserves a largely unaltered seawater signal (Jarvis, 1984; Lécuyer et al., 1998; 995 

Martin and Scher, 2004; Emsbo et al., 2015).  However, early diagenetic uptake of REY from 996 

modified porewater, or their subsequent incorporation during later diagenesis and weathering, 997 

has been documented (McArthur and Walsh, 1984; Reynard et al., 1999; Shields and Stille, 998 

2001; Kocsis et al., 2010; Herwartz et al., 2011).  Additionally, for large constituents such as 999 

fossil bone, the REEs may be fractionated from one another during diffusive transport and 1000 

adsorption (Trueman et al., 2011), leading to different patterns in the same sample. 1001 
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Comparison between the shale-normalised REY patterns of Metlaoui Group phosphorites 1002 

(Fig. 9) and those of modern waters and marine particulates (Fig. 13) demonstrates close 1003 

similarity to surface-ocean and coastal waters and ‘authigenic’ marine particulates, with 1004 

depletion in the LREEs, and significant negative Ce (low Ce/Ce* values) and positive Y 1005 

[Y/Y* = 2YN/(DyN+HoN)] anomalies (e.g. DeBaar et al., 1985; Shimizu et al., 1994; Alibo 1006 

and Nozaki, 1999; Garcia-Solsona et al., 2014; Osborne et al., 2015).  Weakly concave-down 1007 

patterns caused by HREE depletion relative to the MREEs are apparent in the Sekarna and 1008 

Jebel Jebs phosphorites (Fig. 9).  These characteristics are also seen in modern organic matter 1009 

(Freslon et al., 2014), ‘lithogenic’ particles (Garcia-Solsona et al., 2014), and ‘anoxic’ marine 1010 

porewaters (Haley et al., 2004; Abbott et al., 2015; Fig. 13) although, in contrast to the 1011 

phosphorites, none of these display significant negative Ce anomalies.  1012 

A plot of Ce/Ce* against shale-normalised Pr anomaly [Pr/Pr* = 2PrN/(CeN+NdN)] 1013 

confirms that the negative Ce anomalies in the Metlaoui phosphorites are not artefacts of La 1014 

enrichment (Fig. 14A, cf. Bau and Dulski, 1996).  Low Ce/Ce* and high Pr/Pr* values typical 1015 

of modern open-ocean water characterise samples from the Northern Basins and older 1016 

phosphorites in the Gafsa-Metlaoui Basin.  Less negative Ce anomalies (higher Ce/Ce* 1017 

values), comparable to those in many modern coastal waters (Elderfield et al., 1990) are 1018 

displayed by the other phosphorites, with a clear stratigraphically-upwards trend of 1019 

progressively less negative anomalies  in the Gafsa-Metlaoui Basin sections (Figs. 10, 14A, 1020 

15). 1021 

Comparison of the general REE distribution, as expressed by a (La/Yb)N vs. (La/Sm)N 1022 

plot (cf. Reynard et al., 1999), demonstrates patterns that are consistently less depleted in the 1023 

LREEs compared to most modern open ocean seawater, but fall within the field of coastal and 1024 

estuarine waters (Fig. 14B).  This is consistent with the preservation of an original surface 1025 

seawater pattern (Fig. 13), perhaps modified by limited early diagenetic adsorption of REEs 1026 
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from porewaters.  There is no evidence of late diagenetic overprinting that would generate 1027 

lower La/YbN and La/SmN ratios (Reynard et al., 1999).  Similarly, a plot of Y (Y/Y*) vs. La 1028 

[(La/Nd)N] anomalies shows that samples lie within or close to the seawater field (Shields and 1029 

Stille, 2001), indicating minimal late diagenesis or weathering (Fig. 14C). 1030 

Ce/Ce* generally shows no general correlation with REE (Fig. 14D) except in the 1031 

Gafsa-Metlaoui Basin, where a stratigraphically-upwards trend towards less negative Ce 1032 

anomalies (increasing Ce/Ce* values) and flatter REY patterns [increasing (La/Yb)N values] 1033 

accompany consistently high P2O5 contents (Figs. 9, 14, 15, Table 1).  Similar trends are 1034 

apparent in the limited data set of Ounis et al. (2008).  The Eastern Basins samples from Jebel 1035 

Jebs show a strongly bimodal distribution with small negative Ce anomalies throughout, but 1036 

extreme REE enrichment in the lower phosphorite beds (~1000 ppm REE, Fig. 5), and 1037 

moderate values (~300 ppm) in the upper phosphorite beds.  Clearly, increasing REE contents 1038 

do not a priori result in less negative Ce anomalies or flatter patterns, despite the trends seen 1039 

in the Metlaoui-Gafsa Basin data set. 1040 

5.3.2 REEs and yttrium as palaeoenvironmental proxies 1041 

Metlaoui phosphorite REY patterns in the different basins are remarkably consistent (Fig. 1042 

9), despite the considerable differences in the location and age of the samples.  Bulk sediment 1043 

patterns are identical to grain analysis results from the same deposits (Garnit et al., 2012a).  1044 

The seawater-like patterns in the phosphorites strongly support a shallow marine origin for 1045 

the deposits.  Phosphorites in the Northern Basins display the most negative Ce anomalies 1046 

(lowest Ce/Ce* values); at Sra Ouertane, patterns are identical to modern surface open-ocean 1047 

water.  This indicates uptake of the REY by francolite either directly from seawater or via 1048 

their early diagenetic remobilisation from ‘authigenic’ particulates (Figs. 9, 13), in oxic to 1049 

suboxic surficial sediments with no significant element fractionation.  1050 
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The higher ∑REE contents at Sekarna are associated with flatter of REY patterns, less 1051 

negative Ce and lower Y anomalies, and HREE depletion.  These characteristics are 1052 

consistent with additional uptake of REEs from suboxic–anoxic porewaters and/or a higher 1053 

proportion of the elements derived from an organic matter carrier phase.  The presence of 1054 

significant glauconite in these sediments also likely plays a role since that mineral typically 1055 

displays REE enrichment, with no anomalies and HREE depletion (Jarvis and Jarvis, 1985; 1056 

Jarrar et al., 2000; Tóth et al., 2010).  Significantly, the high REE content of glauconite grains 1057 

has been attributed to the presence of REE-bearing phosphates [both apatite and an 1058 

unidentified (REE, Ca)-phosphate] as co-genetic impregnation or pore fillings within 1059 

glauconite clay aggregates (Tóth et al., 2010).  Similar overall REY patterns are displayed at 1060 

Jebel Jebs in the Eastern Basins, but here with less negative Ce and lower Y anomalies.  This 1061 

section displays the highest ∑REE contents, indicating greater diagenetic enrichment from 1062 

porewaters. 1063 

In the Gafsa-Metlaoui Basin, the lowest REE concentrations occur in our 1064 

stratigraphically lowest samples (generally Beds VIII and VII, and the laterally equivalent 1065 

Bed III in Jellabia and Mzinda; Figs. 5, 15).  These low REE contents and seawater-like 1066 

patterns accompany TE evidence of high productivity – i.e. high Ni and Cu EFs.  Upward 1067 

decreasing productivity (indicated by falling Ni and Cu EFs) accompanies less negative Ce 1068 

anomalies, flatter REE patterns and increasing REE (Fig. 15).  Tlili et al. (2011) have 1069 

previously documented a trend of systematically upwards-falling TOC in both the bulk rock 1070 

and in the fine fraction of marls (<2 μm; 4–1% TOC) through the Chouabine Formation at 1071 

Kef Eddour.  Low (<1) pristine/phytane ratios of 0.9–0.6 indicate preservation of organic 1072 

matter under reducing conditions.   1073 

The Gafsa-Metlaoui Basin is considered to have been a semi-restricted basin during the 1074 

Early Paleogene, with limited and likely intermittent exchange with Tethyan Ocean water 1075 
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from the east, via the Chamsi (Shemsi) Channel and Maknassy–Mezzouna shoal.  The basin 1076 

deepened to the west and NW, and it is envisaged that a more open connection to Tethyan 1077 

waters existed via the northern connections of the Saharan Gulf (Fig. 1B).  The arid climate, 1078 

and the small surface area and low relief of the adjacent Kasserine and Djeffara islands 1079 

(Belayouni, 1984; Felhi et al., 2008; Tlili et al., 2011), would have limited any input of 1080 

freshwater into the basin.  1081 

We interpret the stratigraphic trends in the Gafsa-Metlaoui Basin (Fig. 15) as reflecting 1082 

increasing isolation of the basin during Chouabine deposition, with reduced nutrient input 1083 

from upwelling leading to falling productivity and declining sedimentation rates.  An 1084 

increased residence time of organic matter in surficial suboxic–anoxic sediments led to 1085 

decreased organic matter preservation (lower TOC content) and increased redox cycling of 1086 

phosphate and REEs present in the organic fraction.  A decreasing supply of deep open-ocean 1087 

seawater combined with an increasing proportion of organic matter derived REEs, resulted in 1088 

the flatter patterns and less negative Ce anomalies observed through the sections.  1089 

A temporary reversal of the geochemical trend is seen in Bed II, interpreted to represent 1090 

the basal Eocene and equate to the PETM (Fig. 15, see above).  The marls immediately below 1091 

this also show a temporary reversal in trend, with a spike in TOC (Tlili et al., 2011).  The 1092 

PETM coincides with a short episode of maximum flooding (Sluijs et al., 2008), so it is 1093 

possible that isolation of the basin was temporarily reversed by a global flooding event, prior 1094 

to continued isolation during the subsequent relative sea-level fall accompanying a eustatic 1095 

late highstand (i.e. falling stage system tract; cf. Catuneanu et al., 2011). 1096 

5.4 Depositional environments in the Metlaoui phosphorite basins 1097 

Results of bulk geochemical and phosphate grain analyses consistently indicate that Sra 1098 

Ouertane, and to a lesser extent Sekarna, in the Northern Basins were characterised by the 1099 

most open marine settings with oxic–suboxic conditions despite relative high organic matter 1100 
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fluxes.  The high and variable Ba, Cu, Ni, Sc, V, U and REY content and pronounced 1101 

negative Ce anomaly in the phosphorites of the Northern Basins reflect a more direct 1102 

connection with the open ocean, and relatively higher but fluctuating productivity compared 1103 

to the Gafsa-Metlaoui Basin.  The higher Hf, Nb, Rb and Zr contents of the phosphorites from 1104 

the Northern and Eastern Basins, along with the positive correlations between these elements 1105 

and Al2O3 and TiO2 as a proxy for detrital inputs, confirm that these basins received more 1106 

terrigenous input during the deposition of the phosphorites compared to the Gafsa-Metlaoui 1107 

Basin, probably owing to their closer proximity to Kasserine Island and wetter local climate. 1108 

The Sekarna phosphorites display a distinctive element association related to the 1109 

glauconitic facies.  Unique Fe enrichment is associated with high general productivity proxies 1110 

(Ba, Cu, Ni), but low sphalerite contents (low Cd, Zn) and high Mo, U, V indicating suboxic 1111 

conditions and greater Fe input flux.  The kaolinite and illite dominated clay mineral 1112 

assemblage points to locally warm humid climate conditions.  In Egypt and elsewhere 1113 

Cretaceous glauconitic phosphorite facies have been tied to more nearshore areas where 1114 

elevated iron fluxes originate from regions of lateritic weathering (Glenn and Arthur, 1990; 1115 

Föllmi, 1996).  This may be the case here. 1116 

The Eastern Basins (Jebel Jebs) and Gafsa-Metlaoui Basin were characterized by semi-1117 

restricted settings associated with suboxic bottom waters but more reducing sediments.   1118 

5.5 Sea-level change 1119 

Increased water mass isolation of the Gafsa-Metlaoui Basin might be explained by a sea-1120 

level fall causing the progressive restriction of the basin during the Late Paleocene.  A long-1121 

term eustatic sea-level fall is recorded during the Paleocene–Early Eocene (Müller et al., 1122 

2008), which would have had greatest impact in shallow-water basins like Gafsa-Metlaoui.  1123 

However, a number of medium- and short-term cycles of eustatic sea-level rise and falls 1124 

occurred within this time interval (Haq et al., 1987; Miller et al., 2005; Kominz et al., 2008), 1125 
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and a review by Sluijs et al. (2008) revealed a global pattern of latest Paleocene transgression, 1126 

maximum flooding coincident with the Paleocene–Eocene Thermal Maximum (PETM), 1127 

immediately above the series boundary, followed by a highstand and sea-level fall.   1128 

The Chouabine Formation is generally considered to be a predominantly transgressive 1129 

unit (Sassi, 1974; Henchiri, 2007).  El Ayachi et al. (2016) distinguished five third-order 1130 

sequences within the Thelja section of the Gafsa-Metlaoui Basin, interpreted to represent low-1131 

amplitude (<25 m) eustatic sea-level cycles superimposed on a longer-term, rising sea-level 1132 

trend.  Replacement of the bioclastic limestones, dolostones, marls and evaporites of the 1133 

Thelja Formation in the Gafsa-Metlaoui Basin by organic-rich marls and phosphorites 1134 

yielding organic walled dinoflagellate cysts and planktonic foraminifera in the their lower part 1135 

confirms the trangressive nature of the lower Chouabine.  Subsequent basin isolation and 1136 

decreasing productivity, however, indicate relative sea-level fall and/or restriction of the open 1137 

ocean connection.  1138 

We have not characterised the basal phosphorite in the Gafsa-Metlaoui Basin (Bed IX), 1139 

but it is notable that the lowest phosphorites in the Northern and Eastern Basins display a 1140 

distinct geochemical signature (Figs. 10, 11) that includes the highest ∑REE values (Fig. 8), 1141 

despite differing REY patterns (Fig. 9).  These transgressive deposits likely represent a 1142 

condensed facies that was subject to greater amounts of sediment reworking in relatively 1143 

shallower water environments, which favoured greater TE and REY recycling and 1144 

incorporation by francolite (Jarvis, 1984, 1992).  1145 

5.6 Connections to the Tethys Ocean 1146 

Neodymium isotopes provide a water mass proxy in the oceans.  The Nd isotope ratio 1147 

[εNd] in seawater is heterogeneous because of the element’s low concentration and short 1148 

residence time of 360 yr (Arsouze et al., 2009), compared to a global ocean mixing time of ~ 1149 

1000 yr (Broecker and Peng, 1982).  Weathering of mafic volcanic and mantle-derived rocks 1150 
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produces water with high εNd values, while old crustal rocks yield low, unradiogenic, 1151 

signatures.  Modern surface (0–126 m) Pacific water is characterised by εNd = -2 to -5, as 1152 

compared to Atlantic surface water with εNd = -10 to -15 (Rempfer et al., 2011).   1153 

Additionally, significant geographic and depth-related variation results from changing source 1154 

compositions, water mass distributions, and water column scavenging process. 1155 

Neodymium isotope analyses of Gafsa-Metlaoui Basin biogenic phosphate have yielded 1156 

εNd(t) values of -8.5 ± 0.6 (Shaw and Wasserburg, 1985; Soudry et al., 2006; Kocsis et al., 1157 

2013).  Slightly more radiogenic values (εNd(t) = -5.3 ± 1.1; values recalculated after Kocsis 1158 

et al., 2016) have been reported from a range of southern Tethyan localities in the Middle East 1159 

(Israel, Egypt, Jordan and Syria; Soudry et al., 2006) and Morocco of (εNd(t) = -6.2 ± 0.4; 1160 

Kocsis et al., 2016).  This points to the influence of a local unradiogenic Nd source in the 1161 

semi-confined Gafsa-Metlaoui Basin, perhaps related to groundwater input (Johannesson and 1162 

Burdige, 2007).  Interaction with unradiogenic Atlantic Ocean water is considered to be 1163 

unlikely, since geological data and palaeoceanographic models point to a dominantly west-1164 

flowing current system along the south Tethyan margin (Fig. 1). 1165 

An open connection to the Tethys ocean at the onset (Bed IX) and termination (Bed 0 and 1166 

Kef Eddour Formation) of phosphorite deposition is indicated by consistent 
87

Sr/
86
Sr and δ

18
O 1167 

values in shark teeth (Ounis et al., 2008; Kocsis et al., 2013) that are similar to latest 1168 

Paleocene global values (Sluijs et al., 2006; Frieling et al., 2014).  An open marine linkage is 1169 

supported by records of diverse planktonic foraminifera assemblages within the lower 1170 

Chouabine Formation marls between beds IX and VIII (Bolle et al., 1999).  Large variation 1171 

and anomalously high or low 
87

Sr/
86
Sr ratios and high δ

18
O values in the main phosphorites 1172 

beds (VIII – I; Ounis et al., 2008; Kocsis et al., 2013, 2014) point to more restricted basin 1173 

conditions, confirming our interpretation of the TE and REY data. 1174 
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6. Conclusions 1175 

Major Paleocene–Eocene phosphorite deposits occur in three basinal areas of central and 1176 

northern Tunisia, the: Northern Basins, Eastern Basins and Gafsa-Metlaoui Basin.  Stable 1177 

warm arid climate conditions in the Gafsa-Metlaoui Basin and the surrounding epicontinental 1178 

area during the latest Paleocene are indicated by: (1) an association of the phosphorites with 1179 

sabkha evaporites; (2) evidence of minimal siliciclastic input, with clay mineral assemblages 1180 

dominated by smectite and high proportions of palygorskite and sepiolite.  Wetter more 1181 

seasonal climate is suggested for ocean-facing settings in the other basins.  1182 

Major-element, trace-element (TE) and rare-earth element and yttrium (REY) data from 1183 

the phosphorites demonstrate distinctive geochemical signatures for the three basins.  Pearson 1184 

correlation and principal component analysis differentiate specific element groups, ascribed 1185 

largely to mineralogical controls by: carbonate fluorapatite (francolite; P2O5, CaO, Na2O, 1186 

SO3, Cr, U, Sr, Th, REY); silicates and heavy minerals (quartz, feldspars, ferromagnesian 1187 

minerals, clays, zeolites, heavy minerals; SiO2, TiO2, Al2O3, MgO, K2O, Ba, Hf, Nb, Rb, Zr); 1188 

ferromanganese oxyhydroxides and glauconite (Fe2O3, MnO, As, Cu, Mo, Ni, Sb, Sc); 1189 

sulphides (sphalerite; Cd, Zn). 1190 

Geochemical signatures and trends are products of variation in mineralogy and mineral 1191 

chemistry that reflect water mass composition, nutrient availability, surface-water 1192 

productivity, siliciclastic supply, sedimentation rate, bottom- and pore-water redox 1193 

conditions, and authigenic mineralogy.  Bulk-sediment elemental data are consistent with 1194 

phosphate grain microanalyses, confirming the predominance of francolite in controlling 1195 

bulk-rock geochemistry.  Extreme Mn depletion, enrichment of Mo, U, V and other transition 1196 

metals but low Mo/U ratios, point to suboxic bottom waters and suboxic to anoxic porewaters 1197 

accompanying francolite precipitation.  1198 
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The Northern Basins show the strongest Tethys Ocean influence, with surface open-1199 

ocean seawater REY patterns consistently developed in the Sra Ouertane deposit.  1200 

Phosphorites in the Basins display considerable bed-scale compositional variation, with 1201 

varying proportions of detrital minerals and carbonates producing erratic phosphate contents.  1202 

Glauconitic phosphorites in the Sekarna succession have high Cu, Ni, Mo, U, and V 1203 

enrichment factors but the lowest Cd and Zn values.  These, together with the highest Fe and 1204 

Mn values and heavy rare-earth element depleted signatures, point to high productivity but 1205 

extensive organic-matter recycling in oxic to suboxic bottom water and suboxic to weakly 1206 

sulphidic porewaters. 1207 

Marine transgression in the Gafsa-Metlaoui Basin during the Late Paleocene renewed an 1208 

open connection to Tethyan waters following a phase of basin restriction during Thelja 1209 

Formation times.  Improved circulation of open ocean water initiated upwelling, high organic 1210 

and siliceous productivity, bottom-water oxygen depletion, enhanced organic matter 1211 

deposition, and phosphogenesis in the Basin sediments.  The phosphorite – organic-rich marl 1212 

– diatom-bearing porcelanite facies, represents the classic coastal upwelling trinity.  1213 

Enrichment in Cd and P with depletion in Mn is characteristics of high productivity coastal 1214 

upwelling environments, and a decrease in marine productivity from NW to SE in the Gafsa-1215 

Metlaoui Basin is indicated by systematically falling enrichment factors for Cu, Ni, Cd and 1216 

Zn in the more southeastern sections.  Phosphorite deposition occurred under increasing arid 1217 

climate conditions accompanying global Paleocene–Eocene warming.   1218 

The main package of commercial phosphorites (Beds VIII – I, Chouabine Formation) in 1219 

the Gafsa-Metlaoui Basin accumulated around Paleocene–Eocene boundary time.  Upwards 1220 

decreasing organic carbon contents and trace-element (Cu, Ni, Cd, Zn) enrichment factors, 1221 

together with progressively less negative Ce anomalies and flatter REY distribution patterns, 1222 

indicate declining productivity and increasing basin isolation during phosphorite deposition.  1223 
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This trend was temporarily reversed during an episode of flooding associated with the earliest 1224 

Eocene Paleocene–Eocene Thermal maximum (PETM), but continued thereafter.   1225 
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Table captions 1234 

Table 1 Concentration of major elements (%), trace elements (ppm), rare earth elements 1235 

(ppm), and elemental ratios in 58 phosphorite samples from the three phosphatic basins in 1236 

Tunisia.  Element concentrations for Sekarna samples are from Garnit et al. (2012b). 1237 

Table 2 Concentration (ppm) of trace elements determined by LA-ICP-MS for sphalerite 1238 

(nd: not detected). 1239 

Table 3 Concentration (ppm) of trace elements determined by LA-ICP-MS for pyrite (nd: 1240 

not detected). 1241 

Table 4 Inter-elemental correlations based on the Pearson correlation coefficient. 1242 

Table 5 Loadings of 45 geochemical variables in the Tunisian phosphorites on four 1243 

significant principal components. 1244 

Table 6 Structural formulas of francolite from the phosphorite deposits from different 1245 

basins (after Ounis, 2011). 1246 

Table A1 Mineralogy of 58 phosphorite samples from the three phosphorite basins of 1247 

Tunisia determined by semi-quantitative x-ray diffraction. 1248 

  1249 
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Figure captions 1250 

Fig. 1. Location and stratigraphy of the study area. (A) General location of the central 1251 

Tunisia study area in North Africa.  (B) Early Eocene palaeogeography of Tunisia (modified 1252 

from Zaïer et al., 1998) showing depositional settings of the three study basins.  (C) Summary 1253 

stratigraphy of the study interval in the Gafsa-Metlaoui Basin (compiled from Chaabani, 1254 

1995; Ounis, 2011; Kocsis et al., 2014).  Study samples from the Basin originate from the 1255 

Chouabine Formation, interval highlighted by the green box. 1256 

Fig. 2. Location and field characteristics of the Northern Basins study sections.  (A) 1257 

Geological map of Northern Basins showing the locations of the study sites (modified from 1258 

Ben Haj Ali et al., 1985). (B) Field view of the Chouabine Formation from Sra Ouertane 1259 

(Jebel Ayata).  (C) Field view from Sekarna showing the main outcrops (modified from 1260 

Garnit et al., 2012a).  1261 

Fig. 3. Location and field characteristics of the Eastern Basins study sections.  (A) 1262 

Geological map of Eastern Basins showing the location of the study sites (modified from Ben 1263 

Haj Ali et al., 1985).  (B) Field view of the southern flank of Jebel Jebs showing the general 1264 

stratigraphic succession, which is approximately 130 m thick.  (C) and (D) Successions 1265 

illustrating the lower and upper phosphorite beds of the Metlaoui Group on the southern edge 1266 

of the Jebel Jebs syncline; both phosphorite packages are around 20 m thick.  1267 

Fig. 4. Location and field characteristics of the Gafsa-Metlaoui Basin study sections.  (A) 1268 

Geological map of Gafsa-Metlaoui Basin showing the location of the study sites (modified 1269 

from Ben Haj Ali et al., 1985).  (B) Field view of the Chouabine Formation in Kef Eddour 1270 

open cast mine showing beds of economic phosphorite ore (I – VII; bed numbers after Ounis 1271 

et al., 2008) and sterile interbeds.  Face is approximately 30 m high.  (C) Field view of the 1272 

‘phosphate of the roof’ in the Kef Eddour Formation, Mzinda mine.  (D) Field view of a 1273 
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working face in Jellabia 56 mine showing Mio-Pliocene sediments discordantly overlying the 1274 

Upper Paleocene – Eocene Metlaoui Group.  1275 

Fig. 5. Location map and summary logs for representative sections of the Chouabine 1276 

Formation and its lateral equivalents from the Metlaoui Group in the Northern Basins (Sra 1277 

Ouertane, Sekarna; blue name labels), Eastern Basins (Jebel Jebs; red name labels), and 1278 

Gafsa-Metlaoui Basin (Naguess to Jellabia 56; green name labels).  Northern Basins 1279 

stratigraphy after Zaïer (1999); Eastern Basins stratigraphy after Béji-Sassi (1999); 1280 

phosphorite bed nomenclature in the Gafsa-Metlaoui Basin after Ounis et al. (2008).  Sample 1281 

locations are indicated by the black triangles.   PETM = Paleocene–Eocene Thermal 1282 

Maximum; EECO = Early Eocene Climatic Optimum (Zachos et al., 2001; McInerney and 1283 

Wing, 2011). 1284 

Fig. 6. Ternary diagrams illustrating selected major oxide variation in Metlaoui Group 1285 

phosphorites.  Numerical data are presented in Table 1.  Symbol colour conventions: Northern 1286 

Basins samples, blue; Eastern Basins samples, red; Gafsa-Metlaoui Basin samples, green. 1287 

Stoichiometric compositions of the main mineral phases identified by light microscopy and x-1288 

ray diffraction studies are shown for comparison. 1289 

Fig. 7. Trace-element variation diagrams for Metlaoui Group phosphorites normalised to 1290 

average shale. (A, B) Northern Basins sections. (C) Eastern Basins section. (D – H) Gafsa-1291 

Metaloui Basin sections. Consistent patterns relative to average shale (Wedepohl, 1971) that 1292 

generally follow average phosphorite (yellow stars; Altschuler, 1980), indicate that francolite 1293 

chemistry dominates the bulk sediment composition. Anomalously high concentations of Cr, 1294 

Sr, Zn and Cd, and depletion of siliciclastic associated elements Rb, Zr, Nb, Hf, Ni, plus Ba, 1295 

Cu and As, particularly in the Gafsa-Metlaoui Basin sections (D – H), are notable. 1296 
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Fig. 8. Bivariate plot of total rare-earth elements (∑REE, ppm) versus P2O5 (%) contents 1297 

in Metlaoui Group phosphorites.  Note the lack of correlation between the two parameters in 1298 

the Gafsa-Metaloui Basin deposits. 1299 

Fig. 9. Shale-normalized rare-earth element and Y (REY) patterns of Metlaoui Group 1300 

phosphorites. Post-Archean average shale (PAAS) values after McLennan (1989).  Sekarna 1301 

data from Garnit et al. (2012b).  Gafsa-Metaloui Basin sections show systematic increases in 1302 

∑REE, flatter shale-normalised patterns, and progressively less negative Ce anomalies 1303 

upwards through each section. 1304 

Fig. 10. Loading plots for the first two factors from the Principal Components Analysis 1305 

(PCA) of Metlaoui Group geochemical data.  (A) Geochemical constituent plot.  (B) Sample 1306 

plot.  PCA loading values are presented in Table 5. 1307 

Fig. 11. Dendrogram resulting from hierarchical cluster analysis (HCA) of the 45 1308 

geochemical variables determined in Metlaoui Group phosphorite samples. 1309 

Fig. 12. Trace-element enrichment factors in Metlaoui Group phosphorites compared to 1310 

average shale (Wedepohl, 1971).  EF element x = (x/Al) sample / (x/Al) average shale.  Box-and-1311 

whisker plots show minimum and maximum values linked by vertical lines, range of the 1312 

second and third quartiles (25 – 75%, rectangles), and median values (50%, horizontal lines 1313 

inside rectangles).  Section data are presented in numerical order and colour coded to indicate 1314 

their basins of origin: blue, Northern Basins; red, Eastern Basins; green Gafsa-Metlaoui 1315 

Basin. 1316 

Fig. 13. Characteristic shale-normalised REY patterns of particulate and dissolved 1317 

fractions in the modern oceans.  Patterns are schematic representations of multiple published 1318 

data, derived as follows: hydrogenous Fe-Mn crusts (Bau and Dulski, 1996; Bau et al., 2014); 1319 

organic matter (Freslon et al., 2014); Fe-Mn oxyhydroxides (Palmer and Elderfield, 1986; 1320 

Bayon et al., 2004; Charbonnier et al., 2012); ‘authigenic’ and ‘lithogenic’ particulates 1321 
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(Garcia-Solsona et al., 2014); biogenic carbonates and marine vertebrates (Elderfield and 1322 

Pagett, 1986; Sholkovitz and Shen, 1995; Webb and Kamber, 2000; Wyndham et al., 2004; 1323 

Labs-Hochstein and MacFadden, 2006; Liu et al., 2011; Charbonnier et al., 2012; Zaky et al., 1324 

2015); anoxic brine (Bau et al., 1997); marine porewaters (Haley et al., 2004; Abbott et al., 1325 

2015); ocean water (DeBaar et al., 1985; Shimizu et al., 1994; Alibo and Nozaki, 1999; 1326 

Garcia-Solsona et al., 2014; Osborne et al., 2015).  Post-Archean average shale (PAAS) 1327 

values after McLennan (1989). 1328 

Fig. 14. Rare-earth element and Y discrimination diagrams of Metlaoui Group 1329 

phosphorites.  (A) Plots of shale-normalised Ce anomaly [Ce/Ce* = 3CeN/(2LaN+NdN)] 1330 

against shale-normalised Pr anomaly [Pr/Pr* = 2PrN/(CeN+NdN)], after Bau and Dulski 1331 

(1996).  Note that Tunisian phosphorite samples define a linear array entirely within the 1332 

negative Ce anomaly field, with low Ce/Ce* values typical of modern open-ocean water 1333 

characterising samples from the Northern Basins.  (B) Compilation of shale-normalized 1334 

(La/Yb)N ratios plotted against (La/Sm)N ratios of Tunisian phosphorites (cf. Reynard et al., 1335 

1999).  Phosphorite patterns are tightly clustered within a field characteristic of unfractionated 1336 

REE uptake by phosphate from coastal water and/or incorporation of REEs from open ocean 1337 

water with adsorption processes causing mildly elevated (La/Yb)N values.  (C) Yttrium 1338 

anomaly [Y/Y* = 2YN/(DyN+HoN)]) plotted against La anomaly (La/Nd)N showing a positive 1339 

correlation (after Shields and Stille, 2001).  Most samples fall within the ‘seawater’ field.  (D) 1340 

Cerium anomaly plotted against total REE.  Note the large scatter in ∑REE values that show 1341 

no correlation with Ce anomaly in the Northern and Eastern Basins.  1342 

Fig. 15.  Stratigraphic variation in key REE and TE parameters through the Paleocene–1343 

Eocene boundary interval in the Gafsa-Metlaoui Basin.  Data from all 5 sections are compiled 1344 

and plotted against a composite log, following the correlations presented in Fig. 5.  Open 1345 

symbols are individual data point; colour-filled symbols are bed mean values; trend lines are 1346 
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schematic.  Note that vertical trends in the different parameters accompany no significant 1347 

change in the phosphate content of the main phosphorite beds (I – VIII; 26.8±0.9% P2O5). 1348 
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Table 1.  Concentrations of major elements (wt%), trace elements and rare-earth elements (ppm), and elemental ratios in 58 phosphorite samples from the three phosphorite basins of Tunisia.

Basin

Deposit

Samples SRO1 SRO2 SRO3 SRO4 SRO5 SRO6 SRO7 SRO8 SRO9 SEK1 SEK3 SEK4 JBS4 JBS5 JBS10 JBS7 JBS14 JBS18 JBS19 NAGI NAGIIa NAGIIb NAGIII NAGIV NAGV NAGVI
NAGVII 
and VIII

Major oxides (%)
SiO2 21.37 13.22 8.35 9.18 7.42 10.86 13.26 8.23 9.46 18.20 22.45 9.31 31.47 29.01 12.13 15.50 15.72 7.26 6.52 9.23 3.98 7.40 5.44 14.56 21.96 5.79 3.35
TiO2 0.170 0.129 0.062 0.081 0.089 0.078 0.159 0.039 0.035 0.041 0.050 0.036 0.145 0.064 0.098 0.128 0.037 0.064 0.082 0.065 0.032 0.046 0.040 0.029 0.021 0.033 0.030
Al2O3 3.41 1.70 1.36 1.63 1.90 1.90 2.63 0.68 0.48 1.22 1.21 0.88 2.11 1.09 0.98 1.72 0.70 1.33 1.81 1.62 0.74 1.09 0.91 0.70 0.43 0.76 0.67
Fe2O3(T) 1.06 0.44 0.70 0.66 0.82 0.68 0.86 0.46 0.42 2.17 1.99 1.69 0.69 0.45 0.41 0.46 0.53 0.67 0.87 0.59 0.29 0.45 0.40 0.16 0.21 0.34 0.31
MnO 0.011 0.009 0.008 0.011 0.007 0.005 0.005 0.002 0.008 0.025 0.015 0.023 0.006 0.005 0.006 0.007 0.003 0.003 0.004 0.003 0.004 0.004 0.004 0.003 0.002 0.003 0.002
MgO 0.64 0.57 1.38 2.07 0.89 1.09 0.75 0.24 0.23 3.88 2.43 5.12 7.88 5.47 12.08 12.63 0.45 0.77 1.05 0.50 0.47 0.65 0.60 0.48 0.39 0.60 0.63
CaO 38.93 44.25 46.57 45.56 48.23 45.74 44.55 48.60 48.33 38.76 38.18 42.35 24.79 30.80 32.72 30.10 42.70 44.84 44.91 44.53 48.49 45.56 46.95 43.59 39.04 47.31 49.22
Na2O 0.54 0.23 0.30 0.24 0.13 0.41 0.15 0.52 0.45 0.41 0.48 0.42 0.70 0.87 0.68 0.53 1.45 1.72 1.68 1.29 1.30 1.27 1.36 1.35 1.22 1.44 1.39
K2O 0.91 0.37 0.39 0.39 0.32 0.58 0.49 0.20 0.11 0.50 0.45 0.39 1.47 0.72 0.64 1.20 0.33 0.37 0.68 0.69 0.17 0.18 0.13 0.08 0.06 0.11 0.12
P2O5 7.74 10.50 10.44 4.66 5.81 8.81 3.78 26.12 21.94 19.73 23.77 19.14 8.83 14.32 9.17 6.70 27.86 29.44 28.80 26.76 27.72 26.10 28.05 26.76 23.93 28.90 28.99
SO3 0.69 0.89 2.37 0.64 0.23 0.36 0.20 0.89 0.97 0.92 1.35 3.00 nd 2.41 nd 1.75 3.55 4.74 4.47 3.00 3.10 4.09 3.75 2.65 2.13 3.50 4.42
LOI 25.09 27.11 27.69 34.04 33.90 29.03 33.73 13.13 17.69 13.74 9.06 19.02 19.64 16.17 28.87 29.48 9.97 10.80 11.19 11.41 11.74 13.28 12.11 11.60 11.07 11.69 11.44
Total 100.57 99.42 99.62 99.16 99.75 99.55 100.57 99.11 100.12 99.60 101.44 101.38 97.73 101.38 97.78 100.20 103.30 102.01 102.07 99.68 98.03 100.12 99.74 101.96 100.47 100.47 100.57

Francolite1 (%) 22 30 30 13 17 25 11 75 63 57 69 55 25 41 26 19 80 85 83 77 80 75 81 77 69 83 84
CaO/P2O5 5.03 4.21 4.46 9.78 8.30 5.19 11.79 1.86 2.20 1.96 1.61 2.21 2.81 2.15 3.57 4.49 1.53 1.52 1.56 1.66 1.75 1.75 1.67 1.63 1.63 1.64 1.70
SO3/P2O5 0.09 0.09 0.23 0.14 0.04 0.04 0.05 0.03 0.04 0.05 0.06 0.16 nd 0.17 nd 0.26 0.13 0.16 0.16 0.11 0.11 0.16 0.13 0.10 0.09 0.12 0.15

Trace elements (ppm)
As 7.5 < 0.5 7.4 5.1 3.0 3.4 8.3 8.4 7.4 18.7 37.2 37.6 10.8 5.6 < 0.5 < 0.5 9.6 6.7 11.8 5.1 < 0.5 3.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5
Ba 92 50 61 45 30 73 34 66 68 45 99 89 64 62 79 78 37 44 42 44 33 34 33 33 24 28 26
Br 6.2 10.3 5.3 4.1 < 0.5 6.1 4.3 14.0 12.0 6.8 4.8 4.1 20.3 7.6 25.8 9.5 14.8 15.5 16.5 8.5 6.7 7.7 8.2 9.1 9.5 10.8 10.0
Cd 11.7 4.8 23.3 10.2 13.4 24.2 28.2 15.9 19.1 5.6 2.9 0.8 nd 8.8 nd 9.3 54.8 46.7 13.1 48.7 37.3 168 97.6 3.3 172 28.0 32.5
Cr 214 242 159 126 104 173 211 194 246 297 305 287 149 140 110 101 209 266 239 253 202 246 251 287 230 277 218
Cu 11 38 24 6 4 23 27 27 36 15 16 13 10 6 10 2 12 15 11 9 8 14 10 7 7 6 11
Hf 1.5 1.2 0.5 0.6 0.6 0.9 1.4 1.0 0.6 0.7 0.8 1.2 1.6 0.8 0.9 1.6 0.6 0.7 0.7 0.8 0.4 0.4 0.4 0.4 0.3 0.4 0.3
Mo 5 4 9 7 5 7 < 2 < 2 2 11 31 25 9 6 4 3 5 11 15 8 6 8 5 5 3 3 25
Nb 8 5 3 4 3 4 6 2 1 1 2 1 7 3 5 7 1 2 3 2 1 2 1 < 1 < 1 1 1
Ni 26 37 18 16 12 13 49 37 53 64 85 58 20 16 20 6 15 19 19 16 11 29 17 6 13 16 22
Rb 15 8 9 8 9 10 12 4 2 12 11 9 10 5 5 7 3 5 7 7 3 5 4 3 < 2 3 3
Sb 1.0 0.9 1.1 0.8 0.6 0.8 1.4 1.6 1.2 2.8 4.9 5.4 1.5 1.4 < 0.2 0.7 2.1 1.0 2.9 0.8 0.8 0.5 0.4 0.5 < 0.2 < 0.2 0.5
Sc 4.4 5.5 3.1 2.7 2.9 3.6 4.1 8.6 6.6 6.3 4.6 4.7 3.4 2.3 3.0 2.1 4.2 5.5 5.3 5.0 4.1 4.0 4.5 3.3 2.3 3.0 2.3
Sr 743 801 836 722 717 776 533 1400 1250 539 573 693 753 1010 693 727 2160 2220 2220 1790 1850 1730 1930 1900 1710 2030 1970
Th 4.3 3.4 5.5 2.2 10.1 7.3 2.1 6.6 3.4 9.3 9.7 5.5 5.1 6.5 6.6 5.4 29.2 26.6 24.4 14.5 10.0 9.3 13.8 6.7 3.1 5.3 4.4
U 19.3 34.5 22.6 10.9 14.6 23.3 27.1 112.0 73.9 36.2 55.0 47.8 17.4 31.8 17.4 14.6 46.7 44.7 40.8 30.6 30.5 28.6 25.4 28.6 42.2 38.8 44.2
V 58 91 37 33 42 50 221 89 67 254 164 183 33 63 30 28 78 79 93 42 30 46 33 106 122 64 98
Y 91 148 108 51 90 118 55 402 251 299 316 251 77 121 80 63 249 235 215 139 122 139 152 107 89 91 97
Zn 99 87 116 62 43 61 153 125 122 84 33 13 210 66 30 24 399 381 118 260 120 854 429 54 903 163 197
Zr 74 56 34 32 29 41 66 48 35 34 41 28 76 48 52 84 43 43 43 50 44 37 36 32 25 37 27

Rare-earth elements (ppm)
La 59.2 76.6 69.0 31.4 71.4 82.0 31.8 213 128 184 186 155 57.2 87.5 65.8 51.3 221 213 203 111 86.6 93.6 110 75.9 55.1 60.6 52.5
Ce 57.8 48.7 75.8 31.2 106 93.5 23.5 114 68.5 195 213 152 76.7 116 96.7 76.6 354 335 331 180 120 122 168 108 59.3 82.3 65.5
Pr 11.3 13.2 14.1 6.1 17.0 17.3 5.5 34.1 19.3 38.9 41.9 30.5 11.8 18.2 14.6 11.4 52.4 49.3 47.7 24.9 18.0 19.2 24.4 15.7 9.8 12.0 10.0
Nd 46.8 56.1 59.1 25.5 70.8 71.8 23.0 147.0 82.0 167 182 130 49.2 75.9 60.0 47.4 215 204 198 103 74.1 79.3 101 64.3 39.2 49.4 41.6
Sm 9.4 11.5 12.1 5.1 14.5 14.8 4.7 29.8 16.1 34.7 37.6 26.2 9.8 14.8 11.6 9.3 43.0 40.2 38.7 20.3 14.8 16.0 20.5 12.6 7.5 9.8 8.4
Eu 2.45 2.95 2.92 1.33 3.39 3.58 1.21 7.67 4.13 8.26 9.00 6.41 2.37 3.49 2.73 2.23 9.77 9.16 8.82 4.55 3.37 3.70 4.66 2.85 1.73 2.24 1.96
Gd 10.3 14.0 12.7 5.6 13.9 15.1 5.5 37.7 20.7 37.0 40.1 29.0 9.8 14.7 11.0 8.9 39.2 36.9 34.6 19.2 14.7 16.2 19.8 12.3 8.2 9.9 9.0
Tb 1.6 2.2 2.0 0.9 2.1 2.3 0.9 5.9 3.2 5.6 6.0 4.4 1.5 2.2 1.7 1.4 5.9 5.6 5.2 2.9 2.3 2.5 3.1 1.9 1.3 1.5 1.4
Dy 9.7 13.8 11.4 5.2 11.8 13.6 5.4 36.8 20.6 32.5 34.5 25.5 8.6 12.9 9.4 7.7 32.6 31.1 28.6 16.6 13.3 14.9 17.6 11.2 7.9 9.2 8.9
Ho 2.2 3.3 2.5 1.2 2.5 3.0 1.3 8.8 5.0 7.1 7.5 5.7 1.9 2.8 2.0 1.6 6.8 6.4 5.9 3.6 3.0 3.4 3.8 2.5 1.9 2.1 2.1
Er 6.2 9.5 7.3 3.3 6.9 8.4 3.6 25.7 15.1 19.6 20.8 15.9 5.3 7.8 5.6 4.4 18.5 17.8 16.0 10.1 8.5 9.7 10.9 7.4 5.6 6.1 6.3
Tm 0.86 1.31 0.98 0.45 0.92 1.13 0.51 3.56 2.12 2.56 2.67 2.09 0.72 1.04 0.75 0.61 2.46 2.39 2.11 1.41 1.21 1.37 1.51 1.03 0.79 0.87 0.90
Yb 5.4 8.5 6.2 2.9 5.9 7.2 3.4 22.7 13.8 15.8 16.1 12.8 4.6 6.5 4.7 3.8 15.4 15.2 13.1 9.1 8.0 8.9 9.9 6.9 5.4 5.8 6.0
Lu 0.84 1.37 0.97 0.45 0.88 1.11 0.54 3.70 2.30 2.39 2.46 2.00 0.69 0.98 0.69 0.56 2.31 2.31 1.97 1.45 1.26 1.46 1.56 1.12 0.85 0.94 0.98

∑REE 224 263 277 121 328 335 111 690 401 750 800 598 240 365 287 227 1020 968 935 508 369 392 497 324 205 253 216
Ce/Ce* 0.49 0.32 0.53 0.49 0.69 0.55 0.38 0.28 0.28 0.50 0.53 0.48 0.65 0.64 0.70 0.71 0.74 0.74 0.76 0.77 0.67 0.64 0.72 0.69 0.55 0.67 0.62
Ce anomaly -0.31 -0.49 -0.27 -0.31 -0.16 -0.26 -0.42 -0.56 -0.55 -0.30 -0.27 -0.32 -0.19 -0.19 -0.16 -0.15 -0.13 -0.13 -0.12 -0.12 -0.17 -0.20 -0.14 -0.16 -0.26 -0.17 -0.21
Pr/Pr* 1.21 1.32 1.18 1.22 1.13 1.19 1.27 1.34 1.33 1.19 1.18 1.20 1.11 1.12 1.11 1.09 1.10 1.09 1.08 1.06 1.10 1.12 1.09 1.09 1.16 1.09 1.10

Naguess (locality 4)

Northern Basins

Jebel Jebs (locality 3)Sekarna (locality 2)Sra Ouertane (locality 1)

Gafsa-Metlaoui BasinEastern Basins
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Table 1.  Concentrations of major elements (wt%), trace elements and rare-earth elements (ppm), and elemental ratios in 58 phosphorite samples from the three phosphorite basins of Tunisia.
Eu/Eu* 1.15 1.21 1.22 0.85 1.33 1.36 0.79 1.94 1.41 2.03 2.12 1.79 1.12 1.34 1.20 1.09 2.25 2.18 2.15 1.51 1.29 1.36 1.53 1.19 0.91 1.05 0.98
Y/Y* 1.57 1.75 1.61 1.63 1.32 1.47 1.65 1.78 1.97 1.57 1.57 1.66 1.52 1.61 1.47 1.43 1.33 1.33 1.32 1.43 1.54 1.56 1.48 1.61 1.83 1.65 1.79
(La/Sm)N 0.92 0.97 0.83 0.89 0.72 0.80 0.98 1.04 1.16 0.77 0.72 0.86 0.85 0.86 0.82 0.80 0.75 0.77 0.76 0.79 0.85 0.85 0.78 0.88 1.07 0.90 0.91
(La/Yb)N 0.81 0.67 0.82 0.80 0.89 0.84 0.69 0.69 0.68 0.86 0.85 0.89 0.92 0.99 1.03 1.00 1.06 1.03 1.14 0.90 0.80 0.78 0.82 0.81 0.75 0.77 0.65
(Dy/Yb)N 1.08 0.98 1.11 1.08 1.21 1.14 0.96 0.98 0.90 1.24 1.29 1.20 1.13 1.20 1.21 1.22 1.28 1.23 1.32 1.10 1.00 1.01 1.07 0.98 0.88 0.96 0.89
La/Nd 1.26 1.37 1.17 1.23 1.01 1.14 1.38 1.45 1.56 1.10 1.02 1.19 1.16 1.15 1.10 1.08 1.03 1.04 1.03 1.08 1.17 1.18 1.09 1.18 1.41 1.23 1.26

1calculated assuming 34.7% P2O5 in Tunisian phosphate rock francolite (McClellan 1980); nd: not determined;  Post-Archean Average Shale values used for REE normalisation after McLennan (1989). 
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Table 1.  continued.

Basin

Deposit

Samples KECI KECII KECIII KECIV KECV KECVI KECVII KECVIII TMI TMII TMIII TMIV TMV TMVI TMVIIa TMVIII MZ0 MZI> MZI< MZH1 MZH2 MZII> MZII< MZIII JLA0 JLAI JLAH1 JLAH2 JLAII> JLII< JLAIII

Major oxides (%)
SiO2 6.97 6.11 12.60 14.01 12.02 7.65 6.20 6.70 7.91 8.02 13.30 14.51 6.23 10.13 8.15 5.90 29.98 18.30 5.20 11.64 9.53 7.86 4.27 4.41 35.60 4.17 6.88 10.21 4.44 2.64 5.32
TiO2 0.053 0.040 0.058 0.041 0.051 0.051 0.044 0.042 0.061 0.062 0.047 0.052 0.048 0.077 0.069 0.042 0.146 0.060 0.049 0.100 0.029 0.082 0.041 0.039 0.072 0.040 0.054 0.038 0.050 0.031 0.048
Al2O3 1.28 0.92 1.58 1.13 1.27 1.19 0.92 0.99 1.38 1.45 1.21 1.24 0.98 1.71 1.31 0.99 3.67 1.33 1.09 2.07 0.58 1.89 0.83 0.84 1.94 0.86 1.12 0.75 1.08 0.57 1.06
Fe2O3(T) 0.56 0.44 0.65 0.45 0.56 0.56 0.38 0.43 0.55 0.56 0.56 0.59 0.52 0.81 0.54 0.49 1.24 0.54 0.51 0.91 0.32 0.79 0.34 0.31 0.61 0.38 0.53 0.25 0.44 0.26 0.41
MnO 0.003 0.003 0.005 0.005 0.005 0.007 0.004 0.003 0.005 0.006 0.007 0.007 0.005 0.005 0.004 0.004 0.007 0.005 0.004 0.007 0.003 0.005 0.003 0.004 0.007 0.005 0.004 0.003 0.003 0.002 0.003
MgO 0.62 0.67 0.78 0.60 0.72 0.81 0.81 0.76 0.53 0.53 0.67 0.74 0.65 0.98 1.17 0.74 5.17 1.44 1.45 1.30 0.50 1.22 0.84 0.67 3.08 3.17 1.97 0.53 0.76 0.62 0.76
CaO 45.88 46.78 42.44 42.61 42.67 44.64 45.34 45.27 43.53 44.00 42.07 40.91 45.30 44.01 44.47 46.63 26.78 39.74 46.61 41.98 45.92 44.05 46.44 48.00 28.50 45.59 45.34 45.03 47.77 48.47 47.46
Na2O 1.42 1.47 1.38 1.35 1.42 1.37 1.30 1.39 1.46 1.47 1.39 1.36 1.50 1.48 1.33 1.49 1.11 1.24 1.48 1.37 1.39 1.54 1.55 1.50 0.88 1.25 1.37 1.46 1.51 1.53 1.26
K2O 0.32 0.15 0.20 0.15 0.16 0.14 0.14 0.18 0.45 0.45 0.15 0.14 0.13 0.19 0.17 0.21 0.74 0.29 0.13 0.24 0.10 0.19 0.11 0.16 0.59 0.11 0.12 0.10 0.14 0.08 0.32
P2O5 27.81 28.83 25.38 25.93 25.94 27.02 25.64 25.65 26.40 26.62 25.91 24.87 28.30 26.58 24.14 27.12 11.56 20.81 27.61 23.83 27.43 27.00 28.46 24.15 14.38 25.93 26.50 28.54 29.35 30.32 26.79
SO3 3.90 4.99 3.72 3.57 nd nd 6.72 5.22 nd 5.87 3.77 3.62 6.12 3.77 5.72 nd 1.46 2.67 6.84 3.70 4.49 4.14 2.37 5.22 1.54 3.22 2.65 2.95 4.52 3.95 2.70
LOI 11.90 12.03 13.01 12.60 12.56 13.45 12.98 13.39 12.01 12.24 12.36 12.75 11.64 12.20 15.06 12.12 17.98 14.10 12.64 14.85 12.64 13.70 12.05 14.80 12.71 14.48 13.29 11.71 10.38 9.98 12.86
Total 100.71 102.44 101.80 102.45 97.38 96.89 100.47 100.02 94.29 101.28 101.44 100.79 101.42 101.94 102.13 95.74 99.85 100.53 103.61 101.99 102.94 102.47 97.31 100.10 99.91 99.21 99.82 101.57 100.44 98.45 98.99

Francolite1 (%) 80 83 73 75 75 78 74 74 76 77 75 72 82 77 70 78 33 60 80 69 79 78 82 70 41 75 76 82 85 87 77
CaO/P2O5 1.65 1.62 1.67 1.64 1.64 1.65 1.77 1.76 1.65 1.65 1.62 1.64 1.60 1.66 1.84 1.72 2.32 1.91 1.69 1.76 1.67 1.63 1.63 1.99 1.98 1.76 1.71 1.58 1.63 1.60 1.77
SO3/P2O5 0.14 0.17 0.15 0.14 nd nd 0.26 0.20 nd 0.22 0.15 0.15 0.22 0.14 0.24 nd 0.13 0.13 0.25 0.16 0.16 0.15 0.08 0.22 0.11 0.12 0.10 0.10 0.15 0.13 0.10

Trace elements (ppm)
As 6.5 3.3 < 0.5 5.2 < 0.5 < 0.5 < 0.5 3.4 7.4 < 0.5 < 0.5 < 0.5 2.8 < 0.5 < 0.5 23.2 4.3 6.6 4.5 4.3 < 0.5 4.0 2.3 2.0 7.5 4.5 5.5 < 0.5 3.9 4.0 3.5
Ba 40 32 32 30 61 31 22 29 41 42 30 34 32 33 27 41 124 59 31 42 27 33 27 28 93 34 35 30 35 30 29
Br 10.8 8.6 9.8 17.1 46.1 36.3 8.0 10.1 14.6 15.7 12.5 12.5 9.7 11.7 11.8 12.3 11.2 9.3 12.1 8.8 11.4 7.9 8.8 12.6 5.2 6.7 9.0 9.0 8.0 8.0 9.3
Cd 60.8 86.9 49.2 22.0 nd nd 56.3 50.4 nd 35.1 69.8 21.0 36.0 25.1 66.4 nd 4.3 19.1 28.2 20.1 63.8 48.8 65.9 32.9 8.2 13.7 1.3 1.2 10.0 6.1 18.9
Cr 273 212 275 258 202 272 220 219 311 298 241 293 295 373 227 258 132 177 220 220 209 374 220 220 117 154 154 264 279 188 213
Cu 11 10 8 6 20 20 12 12 20 8 7 6 7 8 13 30 9 6 5 5 5 11 9 8 7 4 2 3 6 4 7
Hf 0.6 0.4 0.4 0.4 0.5 0.5 0.5 0.4 0.6 0.4 0.4 0.4 0.5 0.6 0.5 0.4 1.3 1.1 0.4 0.7 0.4 0.7 0.4 0.3 1.0 0.4 0.5 0.5 0.6 0.4 0.4
Mo 11 4 3 3 4 5 5 4 8 8 3 3 4 5 7 4 4 16 10 6 < 2 20 4 6 3 2 < 2 2 8 5 6
Nb 2 1 2 1 2 2 2 1 2 1 1 2 2 2 3 2 6 2 2 4 1 3 2 2 3 1 2 2 2 1 2
Ni 22 18 14 14 20 30 30 29 20 14 13 12 14 20 36 50 14 11 10 13 10 39 24 19 11 8 6 3 11 7 13
Rb 6 4 6 4 5 4 4 4 6 4 5 5 4 6 5 4 12 5 4 8 3 5 3 3 7 3 4 3 3 2 4
Sb 1.0 0.7 < 0.2 0.4 < 0.2 < 0.2 < 0.2 0.3 1.5 0.7 < 0.2 0.4 0.6 < 0.2 0.4 < 0.2 0.8 0.9 0.4 < 0.2 0.6 0.4 0.6 < 0.2 1.1 0.6 0.7 < 0.2 0.7 0.5 0.5
Sc 5.1 3.5 4.3 4.2 4.1 4.0 2.8 2.6 5.6 3.7 3.5 3.7 4.5 4.7 3.4 5.0 3.8 3.1 3.7 4.2 3.4 4.2 2.6 2.5 2.6 2.8 3.3 4.0 4.0 2.5 2.8
Sr 1820 1900 1810 1780 1800 1850 1650 1700 1840 1870 1850 1780 1930 1860 1630 1830 927 1580 1900 1820 1940 1940 1950 1720 1040 1730 2000 2040 2070 2150 1720
Th 14.1 10.5 9.3 6.1 6.6 8.1 3.1 3.0 16.8 9.5 8.4 5.6 7.0 10.3 2.6 3.0 7.3 9.4 8.7 7.3 5.5 8.8 4.9 2.7 9.9 10.5 6.2 8.6 10.8 6.0 3.2
U 34.2 26.7 26.1 23.9 31.9 37.7 41.0 33.7 33.4 26.1 23.0 20.7 32.0 36.2 34.8 33.1 17.4 26.7 27.3 15.9 16.8 51.5 41.9 29.1 19.9 29.5 20.5 23.8 53.7 47.9 33.6
V 52 44 59 71 91 80 66 73 129 61 59 83 77 73 97 65 66 39 44 57 28 187 79 55 184 43 40 139 97 64 61
Y 140 131 101 100 106 120 91 82 143 147 101 86 112 122 97 84 52 82 89 83 87 98 108 66 70 87 76 115 112 113 73
Zn 290 401 276 148 320 340 297 244 450 252 497 142 209 149 393 190 80 140 206 149 401 290 381 158 62 113 75 58 151 103 98
Zr 44 34 31 31 39 39 37 29 46 49 30 34 41 40 46 47 67 64 31 48 43 52 42 29 56 27 33 43 49 36 33

Rare-earth elements (ppm)
La 108 91.8 80.3 76.4 68.8 79.9 50.4 45.1 118 86.5 79.8 67.9 76.4 83.0 49.7 46.1 55.2 73.7 78.0 78.6 78.5 78.4 65.6 40.1 66.3 74.5 78.3 104 100 73.5 46.3
Ce 164 133 130 108 92.1 117 60.5 49.3 197 124 129 96.4 97.1 125 50.6 51.2 95.4 118 120 122 113 117 80.1 46.1 116 115 126 158 153 94.1 55.0
Pr 23.5 19.4 17.9 15.4 13.9 17.0 8.8 7.8 27.2 18.5 17.9 13.7 15.0 18.3 8.0 7.9 12.4 16.2 16.8 16.5 15.5 16.5 12.0 7.0 15.6 16.5 16.5 21.7 21.4 13.8 8.2
Nd 96.5 80.2 73.5 63.2 56.4 69.5 35.6 32.0 112 76.3 73.5 55.8 61.3 74.7 32.6 32.8 49.4 65.6 68.6 67.4 62.7 66.2 48.5 28.5 63.3 66.7 66.4 87.2 85.8 55.1 32.7
Sm 18.9 15.8 14.4 11.9 11.1 13.9 6.7 6.2 22.2 14.8 14.5 10.7 12.1 15.3 6.1 6.3 9.4 12.5 13.0 12.8 11.7 12.8 9.4 5.2 12.2 12.8 12.5 16.6 16.3 10.6 6.1
Eu 4.34 3.69 3.25 2.72 2.56 3.23 1.61 1.50 4.98 3.46 3.30 2.40 2.74 3.45 1.48 1.53 2.23 2.90 2.97 2.88 2.66 2.91 2.21 1.26 2.79 2.92 2.82 3.80 3.70 2.46 1.47
Gd 18.4 15.7 13.5 11.6 11.1 14.0 7.4 6.8 20.5 14.4 13.5 10.3 12.0 14.8 7.0 6.9 8.4 11.6 12.1 11.8 11.4 12.2 10.1 5.6 10.8 11.9 11.4 15.6 15.5 11.0 6.5
Tb 2.8 2.4 2.1 1.8 1.8 2.2 1.2 1.1 3.1 2.2 2.0 1.6 1.9 2.3 1.1 1.1 1.3 1.7 1.8 1.8 1.7 1.9 1.6 0.9 1.60 1.8 1.7 2.4 2.4 1.7 1.0
Dy 16.1 14.0 11.8 10.4 10.4 12.8 7.4 6.9 17.4 13.0 11.7 9.3 11.3 13.4 7.2 7.0 7.0 9.8 10.4 10.3 10.0 10.8 9.7 5.5 8.90 10.3 9.8 13.4 13.6 10.5 6.2
Ho 3.5 3.1 2.5 2.3 2.3 2.8 1.8 1.7 3.7 2.8 2.5 2.0 2.6 2.9 1.8 1.7 1.5 2.1 2.2 2.2 2.2 2.3 2.3 1.3 1.8 2.2 2.1 2.8 2.9 2.4 1.5
Er 10.1 8.9 7.3 6.7 6.9 8.2 5.7 5.3 10.3 8.2 7.1 5.9 7.6 8.3 5.7 5.3 4.1 5.8 6.3 6.3 6.4 6.7 6.9 4.1 5.10 6.3 5.8 8.2 8.4 7.3 4.5
Tm 1.38 1.26 1.01 0.96 0.98 1.16 0.82 0.76 1.43 1.13 0.99 0.83 1.08 1.16 0.83 0.77 0.56 0.80 0.87 0.87 0.90 0.94 0.99 0.59 0.69 0.86 0.81 1.15 1.16 1.05 0.66
Yb 9.2 8.3 6.7 6.4 6.7 7.8 5.7 5.2 9.3 7.5 6.6 5.6 7.3 7.8 5.6 5.2 3.6 5.1 5.8 5.7 5.9 6.2 6.6 3.9 4.4 5.7 5.4 7.4 7.8 7.0 4.3
Lu 1.46 1.32 1.04 1.03 1.08 1.22 0.96 0.86 1.45 1.22 1.03 0.88 1.19 1.22 0.94 0.87 0.54 0.78 0.90 0.89 0.92 0.97 1.06 0.65 0.66 0.90 0.81 1.14 1.21 1.12 0.71

∑REE 478 399 365 319 286 351 195 170 549 374 363 283 310 372 179 175 251 327 340 340 323 336 257 151 310 328 340 443 433 292 175
Ce/Ce* 0.73 0.70 0.77 0.69 0.66 0.71 0.62 0.56 0.78 0.69 0.77 0.70 0.63 0.72 0.54 0.57 0.83 0.77 0.74 0.75 0.71 0.73 0.62 0.59 0.82 0.74 0.78 0.74 0.74 0.65 0.61
Ce anomaly -0.14 -0.16 -0.11 -0.16 -0.18 -0.15 -0.21 -0.25 -0.11 -0.16 -0.12 -0.16 -0.20 -0.14 -0.27 -0.24 -0.08 -0.11 -0.13 -0.12 -0.15 -0.14 -0.21 -0.23 -0.09 -0.13 -0.11 -0.13 -0.13 -0.19 -0.21
Pr/Pr* 1.08 1.09 1.07 1.08 1.12 1.09 1.10 1.13 1.07 1.10 1.07 1.09 1.12 1.10 1.14 1.12 1.06 1.07 1.08 1.06 1.07 1.09 1.12 1.12 1.06 1.10 1.06 1.08 1.09 1.11 1.12
Eu/Eu* 1.48 1.37 1.28 1.17 1.13 1.27 0.89 0.87 1.59 1.34 1.30 1.09 1.16 1.31 0.85 0.88 1.10 1.23 1.24 1.21 1.15 1.21 1.04 0.80 1.22 1.23 1.20 1.40 1.37 1.10 0.86
Y/Y* 1.49 1.59 1.48 1.63 1.73 1.60 1.98 1.90 1.42 1.94 1.49 1.59 1.65 1.56 2.14 1.94 1.28 1.44 1.48 1.39 1.48 1.57 1.82 1.97 1.39 1.46 1.34 1.50 1.42 1.79 1.91
(La/Sm)N 0.83 0.84 0.81 0.93 0.90 0.84 1.09 1.06 0.77 0.85 0.80 0.92 0.92 0.79 1.18 1.06 0.85 0.86 0.87 0.89 0.97 0.89 1.01 1.12 0.79 0.85 0.91 0.91 0.89 1.01 1.10
(La/Yb)N 0.87 0.82 0.88 0.88 0.76 0.76 0.65 0.64 0.94 0.85 0.89 0.90 0.77 0.79 0.66 0.65 1.13 1.07 0.99 1.02 0.98 0.93 0.73 0.76 1.11 0.96 1.07 1.04 0.95 0.78 0.79
(Dy/Yb)N 1.05 1.02 1.06 0.98 0.94 0.99 0.78 0.80 1.13 1.04 1.07 1.00 0.93 1.04 0.77 0.81 1.17 1.16 1.08 1.09 1.02 1.05 0.89 0.85 1.22 1.09 1.09 1.09 1.05 0.90 0.87
La/Nd 1.12 1.14 1.09 1.21 1.22 1.15 1.42 1.41 1.05 1.13 1.09 1.22 1.25 1.11 1.52 1.41 1.12 1.12 1.14 1.17 1.25 1.18 1.35 1.41 1.05 1.12 1.18 1.19 1.17 1.33 1.42

Jellabia 56 (locality 8)

Gafsa-Metlaoui Basin 

Central Kef Eddour (locality 5) Mzinda (locality 7)Table Metlaoui 315 (locality 6)
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Garnit et al Table 2 LA-ICP-MS sphalerite data.xlsx

Table 2. Concentration (ppm) of trace elements in sphalerite determined by LA-ICP-MS.

Element Sample

04-SP-

01

05-SP-

02

06-SP-

03

07-SP-

04

08-SP-

05

12-SP-

G-01

13-SP-

G-02

14-SP-

G-03

15-SP-

G-04

16-SP-

G-05

17-SP-

G-06

Ag 159 99 21 51 29 60 42 52 54 58 46

As bd bd 590 bd 798 bd bd 69 72 bd bd

Cd 44200 57500 57200 62100 64400 65300 16000 8320 9320 24600 30200

Cr 124 bd 6.3 bd 7.1 bd bd bd bd bd 3.2

Cu 232 175 7.9 36 12 44 48 5.5 5.3 33 59

Fe 446 216 93 402 105 368 1100 221 192 753 586

Mn 11 0.5 19 bd 25 bd bd 79 82 bd bd

Mo 2.5 0.2 0.3 0.1 0.7 bd bd 0.1 0.1 0.1 bd

Ni 18 bd 0.3 0.4 0.6 bd 0.8 0.4 0.5 1.2 bd

Pb 7.6 3.9 5.2 3.3 6.8 3.4 15 6.4 6.4 2.6 3.2

Sb 18 8.4 52 8.9 100 12 4.3 5.1 5.4 1.4 4.5

Sn 48 20 69 20 106 26 2.6 bd bd 1.7 3.4

Ti 39 1.4 4.5 5.2 3.7 4.4 2.0 bd bd 1.9 5.1

V 21 0.2 0.5 0.2 0.8 0.3 0.6 0.2 bd bd 0.6

bd: below detection

Kingston University London Confidential 10/7/2016 Page 1
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Garnit et al Table 3 LA-ICP-MS pyrite data.xlsx

Table 3. Concentration (ppm) of trace elements in pyrite 

determined by LA-ICP-MS.

Element Sample

24-PYG-01 25-PYG-02 26-PYG-03 27-PYG-04

Ag 0.9 2.0 0.4 0.03

As 392 704 253 279

Cd 4.0 6.7 bd bd

Co 7.0 43.3 10.5 0.8

Cr 4.5 5.0 4.1 2.4

Cu 5.0 2.7 0.14 0.3

Mn 10.3 19.6 7.8 9.9

Mo 86 149 39 41

Ni 16.1 47.9 7.6 4.3

Pb 2.2 5.3 2.1 0.2

Sb 2.2 2.6 1.4 1.4

Sn 0.1 bd 0.07 bd

Ti 6.8 16.5 8.1 6.0

V 1.4 5.8 3.9 0.3

Zn 11.3 21.5 13.6 8.7

bd: below detection

Kingston University London Confidential 10/7/2016 Page 1
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Table 4 Inter-element correlations based on the Pearson correlation coefficient.

Positive inter-elemental correlations

High (>0.75) Medium (0.75 to 0.5) Low (0.5 to 0.36)

Major elements

SiO2 K2O, Ba, Rb, Nb, Hf Al2O3, MgO, TiO2, Zr

TiO2 Zr, Rb, Nb, Hf Ba

Al2O3 TiO2, Rb, Nb K2O, Ba, Zr, Hf Fe2O3

Fe2O3(T) MnO, As, Rb, Sb V, Ni, Ba, Mo Y, Hf, REE

MnO Ni, Sb, As, Rb V, Ba, Mo, Hf, Y

MgO K2O, Ba, Nb, Hf TiO2, Zr

CaO P2O5, Sr Cr

Na2O P2O5, SO3, Sr Cr, Zn

K2O Nb, Hf TiO2, Ba, Zr, Rb

P2O5 Sr SO3, Cr Zn, U

SO3 Sr Cr, Zn, Br

Trace elements

As Sb Mo REE

Ba Zr, As, Sb, Hf, Rb, Nb

Cu U, HREE

Mo Sb U, REE

Nb Hf

Ni As Cu, Mo, Sb Rb, U, HREE

Rb Nb, Hf Sb

REE REE

Sb REE

Sc Y, HREE Cu, U, LREE Cr, Sb, Ni

Sr Cr, Zn, Th

Th LREE HREE

U HREE LREE

V Ni, As, Sb Y, Cr, Mo

Y REE Ni, As, Sb, U Cu, Mo, Th

Zn Cd

Zr Nb, Hf Rb

Negative inter-elemental correlations

High (<-0.75) Medium (-0.75 to -0.5) Low (-0.5 to -0.36)

Major elements

SiO2 CaO P2O5, Sr Na2O, SO3, Cr

TiO2 P2O5 Sr SO3, U

Al2O3 P2O5 SO3, Sr, U

Fe2O3(T) Na2O, Sr

MnO Na2O, Sr P2O5, SO3, Zn

MgO CaO P2O5, Sr Na2O, Cr

CaO K2O TiO2, Ba, Nb, Hf Rb

Na2O Ba, Rb, Nb, Hf K2O, TiO2, Ni, Cu, Sb

K2O P2O5, Sr SO3, Cr

P2O5 Nb Ba, Rb, Hf Zr

SO3 Ba, Rb, Hf Cu, Nb

Trace elements

http://ees.elsevier.com/aes/download.aspx?id=307872&guid=d7fc01d5-1df1-43f0-80c4-6c6dc7fe2535&scheme=1
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Table 5. Loadings of 45 geochemical variables in Tunisian phosphorites 

on first four significant principal components.  

Constituent Principal component

PC1 (38.8%) PC2 (24.3%) PC3 (8.1%) PC4 (5.4%)

Major elements

SiO2 0.00 0.67 -0.23 0.09

TiO2 0.23 0.81 -0.22 -0.23

Al2O3 0.17 0.73 -0.23 -0.06

Fe2O3(T) -0.53 0.58 0.21 0.43

MnO -0.39 0.56 0.38 0.42

MgO 0.11 0.62 -0.26 0.13

CaO -0.10 -0.70 0.38 -0.15

Na2O 0.10 -0.76 -0.39 0.18

K2O -0.03 0.81 -0.38 -0.06

P2O5 -0.25 -0.87 -0.06 0.14

SO3 0.11 -0.64 -0.19 0.22

Trace elements

As -0.61 0.37 0.33 0.36

Ba -0.22 0.79 -0.05 -0.04

Br 0.07 -0.12 0.14 -0.20

Cd 0.10 -0.47 -0.04 -0.13

Cr -0.37 -0.42 0.25 0.19

Cu -0.32 0.17 0.52 -0.57

Hf -0.09 0.89 -0.14 -0.21

Mo -0.45 0.15 0.16 0.54

Nb 0.28 0.82 -0.20 -0.27

Ni -0.52 0.29 0.65 0.05

Rb -0.14 0.86 0.05 0.09

Sb -0.73 0.41 0.17 0.35

Sc -0.72 0.02 0.17 -0.43

Sr 0.02 -0.89 -0.30 0.02

Th -0.61 -0.20 -0.67 0.04

U -0.61 -0.26 0.35 -0.36

V -0.40 0.20 0.37 0.30

Y -0.95 -0.02 0.16 -0.16

Zn 0.02 -0.50 -0.13 -0.12

Zr 0.10 0.66 -0.35 -0.32

Rare-earth elements

La -0.97 -0.07 -0.20 -0.05

Ce -0.76 -0.17 -0.56 0.17

Pr -0.93 -0.06 -0.34 0.07

Nd -0.94 -0.04 -0.31 0.07

Sm -0.95 -0.02 -0.28 0.07

Eu -0.96 0.01 -0.24 0.04

Gd -0.99 0.01 -0.13 0.00

Tb -0.99 0.01 -0.12 -0.02

Dy -0.99 0.00 -0.06 -0.06

Ho -0.99 -0.01 0.02 -0.12

Er -0.98 -0.03 0.05 -0.14

Tm -0.97 -0.07 0.06 -0.18

Yb -0.96 -0.11 0.06 -0.21

Lu -0.94 -0.14 0.11 -0.25

Eigenvalue 17.5 10.9 3.7 2.4

Cumulative 

eigenvalue
17.5 28.4 32.1 34.5

http://ees.elsevier.com/aes/download.aspx?id=307885&guid=ec2526df-cade-431f-9de6-a1234977bcd3&scheme=1
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Garnit et al Table 6 Francolite formulae.xlsx

Table 6. Structural formulae of francolite in Tunisian phosphorites from different basins (after Ounis, 2011).

Basin Locality a c
CO3

2- 

(%)

CO2 

(%)
Empirical formula

Gafsa-Metlaoui Gafsa 9.347 6.903 8.31 6.11 (Ca9.78 Mg0.06 Na0.16) [(PO4)5.19 (CO3)0.81] (F2.32)

Eastern Basins Meknassy-Mezzouna 1 9.322 6.900 7.95 5.85 (Ca9.53 Mg0.13 Na0.34) [(PO4)3.96 (CO3)2.04] (F2.82)

Northern Basins Sra Ouertane (pure) 9.341 6.896 6.02 4.43 (Ca9.72 Mg0.08 Na0.20) [(PO4 )4.93 (CO3)1.81] (F2.32)

Kingston University London Confidential 10/7/2016 Page 1

http://ees.elsevier.com/aes/download.aspx?id=307873&guid=5ec05485-5d07-43e4-be1c-7d79a9c61a75&scheme=1
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Table A1. Mineralogy of 58 phosphorite samples from the three phosphorite basins of Tunisia determined by semi-quantitative x-ray diffraction. 

Sample Bulk coarse fraction mineralogy (wt %)

Francolite Calcite Dolomite Feldspar Quartz Smectite Illite Kaolinite Palygorskite Sepiolite

Northern Basins

Sra Ouertane (locality 1)

SRO1 28 50 8 6 8 100 0 0 0 0

SRO2 27 57 11 0 5 84 16 0 0 0

SRO3 29 46 7 8 10 78 22 0 0 0

SRO4 15 56 14 9 6 69 23 8 0 0

SRO5 22 64 8 2 4 70 30 0 0 0

SRO6 26 54 7 5 8 74 16 10 0 0

SRO7 37 39 10 7 7 60 20 20 0 0

SRO8 70 13 12 5 0 90 0 10 0 0

SRO9 60 19 9 7 5 100 0 0 0 0

Sekarna (locality 2)

SEK1 42 30 15 0 13 0 36 64 0 0

SEK3 43 24 10 0 23 0 18 82 0 0

SEK4 52 15 8 0 25 15 0 85 0 0

Eastern Basins

Jebel Jebs (locality 3)

JBS4 30 8 32 0 30 85 15 0 0 0

JBS5 30 8 39 0 23 70 30 0 0 0

JBS10 26 15 30 4 25 100 0 0 0 0

JBS7 28 20 27 5 20 100 0 0 0 0

JBS14 48 5 17 7 23 100 0 0 0 0

JBS18 60 7 17 5 11 100 0 0 0 0

JBS19 57 8 19 7 9 70 0 15 15 0

Gafsa-Metlaoui Basin

Naguess (locality 4)

NAGI 61 19 10 0 10 100 0 0 0 0

NAGIIA 78 10 8 0 4 70 0 0 10 20

NAGIIB 70 16 9 0 5 80 0 0 10 10

NAGIII 60 24 12 2 2 75 0 0 10 15

NAGIV 56 18 14 5 7 75 0 0 10 15

NAGV 50 10 22 7 11 50 0 0 30 20

NAGVI 58 15 13 0 14 65 0 0 20 15

NAGVII and VIII 71 11 9 7 2 75 0 10 5 10

Central Kef Eddour (locality 5)

KECI 72 13 6 0 9 100 0 0 0 0

KECII 74 14 8 0 4 90 0 0 5 5

KECIII 66 16 13 0 5 75 0 0 10 15

KECIV 67 16 10 4 3 72 0 0 10 18

KECV 59 19 11 5 6 70 0 0 15 15

KECVI 62 17 12 0 9 50 0 0 30 20

KECVII 67 11 12 0 10 60 0 5 20 15

KECVIII 68 9 10 4 9 70 0 10 10 10

Table Metlaoui 315 (locality 6)

TMI 68 10 8 5 9 100 0 0 0 0

TMII 69 10 8 0 13 80 0 0 10 10

TMIII 66 16 8 0 10 78 0 0 10 12

TMIV 65 17 10 0 8 78 0 0 10 12

TMV 72 12 10 0 6 75 0 0 20 15

TMVI 71 10 5 6 8 50 0 0 30 20

TMVIIA 65 13 9 4 9 65 0 0 20 15

TMVIII 75 12 5 3 5 90 0 0 5 5

Mzinda (locality 7)

MZ0 32 7 8 4 49 100 0 0 0 0

MZI> 48 10 16 5 21 100 0 0 0 0

MZI< 68 14 8 0 10 90 0 0 5 5

MZH1 70 9 12 0 9 75 0 0 15 10

MZH2 69 7 12 6 6 50 0 0 20 30

MZII> 56 12 16 0 16 90 0 0 5 5

MZII< 64 9 7 0 20 75 0 0 10 15

MZIII 58 8 10 0 24 55 0 5 20 20

Jellabia 56 (locality 8)

JLA0 31 11 10 8 40 100 0 0 0 0

JLAI 36 12 26 6 20 100 0 0 0 0

JLAH1 66 8 7 0 19 80 0 0 10 10

JLAH2 68 10 12 0 10 78 0 0 12 10

JLAII> 60 16 8 0 16 90 0 0 5 5

JLII< 58 12 16 0 14 87 0 0 8 5

JLAIII 60 11 12 7 10 45 0 0 25 30

Clay mineral assemblage (wt%) 
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Highlights 
 
 Tunisian Paleocene–Eocene phosphorites occur in three distinct basinal areas 
 Deposits in each area have distinct geochemical signatures 
 Commercial phosphorite deposits in the Gafsa-Metlaoui Basin are of 

Paleocene–Eocene boundary age 
 The phosphorites accumulated in high productivity coastal upwelling 

environments 
 Phosphorite deposition accompanied Paleocene-Eocene climate warming 




