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Abstract
An unusual asymmetry has been observed in natural
category formation in infants (Quinn, Eimas, and
Rosenkrantz, 1993).  Infants who are initially exposed to a
series of pictures of cats and then are shown a dog and a
novel cat, show significantly more interest in the dog than
in the cat. However, when the order of presentation is
reversed — dogs are seen first, then a cat and a novel dog
— the cat attracts no more attention than the dog.  We
show that a simple connectionist network can model this
unexpected learning asymmetry and propose that this
asymmetry arises naturally from the asymmetric overlaps
of the feature distributions of the two categories. The
values of the cat features are subsumed by those of dog
features, but not vice-versa. The autoencoder used for the
experiments presented in this paper also reproduces
exclusivity effects in the two categories as well the
reported effect of catastrophic interference of dogs on
previously learned cats, but not vice-versa. The results of
the modeling suggest connectionist methods are ideal for
exploring early infant knowledge acquisition.

Introduction
Memory and categorisation lie so deeply at the heart of

human cognition that they are to be found in even very
young infants. Newborns can remember visually
presented information over long retention intervals
(Slater, 1995) Very young infants can also be shown to
separate complex visually presented stimuli into distinct
categories (Quinn & Eimas, 1996). Categorisation is a
means of reducing the load on memory (Rosch, 1975). It
remains intimately related to memory at all ages.
Although a number of connectionist models of adult
memory and categorisation have been published (e.g.,
Shanks, 1991; Knapp & Anderson, 1984) no attempts
have been made to extend these models (or to devise new
models) in order to account for the particularities of both
infant memory and categorisation. The one partial
exception is Quinn & Johnson (1996) who model
hierarchy effects in the acquisition of concepts during
infancy.

In this paper, we present a simple connectionist model
of memory and categorisation in early infancy that targets
behaviors specific to that age range. In particular, we
focus on:(a) the ability to categorize complex visual
stimuli, (b) the asymmetry effect in early categorisation,
and (c) interference effects in early memory. By using a
mechanism that provides a good account of adult
performance, this model underscores the continuity that

exists between early (pre-linguistic) memory and
categorisation abilities and that of mature adults.

Quinn and Eimas have shown an unexpected
asymmetry in category learning in young infants. (e.g.,
Quinn, Eimas, & Rosenkrantz, 1993; Eimas, Quinn, &
Cown, 1994). When 3- to 4-month-old infants are shown
different photographs of either cats or dogs they can form
perceptual categories of either groups of pictures. Infants
who are first shown a number of different photographs of
cats and are then shown a picture of a dog along with a
novel picture of a cat will be much more attentive to the
dog than the novel cat. This is interpreted as showing that
the infants have formed a category of Cat that excludes
dogs. In sharp contrast, infants who are first shown
different photographs of dogs and are then shown a
picture of a cat along with a novel dog will not be
preferentially attentive to either picture. This is
interpreted as showing that infants have formed a
category of Dog that includes cats. Hence infants show an
exclusivity asymmetry in the development of some
perceptual categories. Here, the Dog category does not
exclude cats whereas the Cat category excludes dogs.

Another unexpected finding has to do with infant
memory. Although infants clearly show long-term
retention of visual stimuli, under some conditions the
presentation of intervening material during the retention
interval leads to catastrophic interference with the
original material completely eradicated (e.g., Cohen &
Gelber, 1975; Deloache, 1976; McCall, Kennedy, &
Dodds, 1978). Interference effects decrease with age but
continue well into later infancy (Rovee-Collier & Boller,
1995). This corresponds to the period during which
infants are improving their categorisation abilities (Quinn
& Eimas, 1996). As a result of improved categorisation
abilities one would expect the load on memory to
decrease and, hence, the developmental profiles of these
two skills would appear coupled. The model in this paper
constitutes an explicit proposal of how memory and
categorization are linked in this domain.

The rest of this paper unfolds as follows. We begin with
a brief discussion of how infant preferential looking
behaviors can be mapped onto the performance of a
connectionist network. This argument is based on
Solokov’s (1963) classic model of habituation of the
orienting reflex in which an internal representation of an
external stimulus is constructed and embellished each
time the organism encounters the same stimulus in the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/84586889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


same context. Next, we discuss the properties of the input
stimuli. This is a critical step since both infants (Younger,
1985) and connectionist networks (e.g., Rumelhart &
McClelland, 1986) are known to categorize based on the
correlational structure of the input features. Then, the
model’s performance is presented with respect to the
asymmetric categorisation and memory interference
effects. We also describe a novel prediction of the model:
an asymmetric interference effect. Finally, these results
are discussed with respect to both infant cognition and
connectionist modeling.

The Model
Infant categorisation tasks rely on preferential looking

techniques based on the finding that infants direct
attention more to unfamiliar or unexpected stimuli. The
standard interpretation of this behavior is that the infants
are comparing the input stimuli to an internal
representation of that stimulus (e.g., Solokov, 1963;
Charlseworth, 1969; Cohen, 1973). As long as there is a
discrepancy between the information stored in the internal
representation and the visual input the infant continues to
attend to the stimulus. While attending to the stimulus the
infant updates its internal representation. When the
information in the internal representation is no longer
discrepant with the visual input, attention is switched
elsewhere. When a familiar object is presented there is
little or no attending because the infant already has a
reliable internal representation of that object. In contrast,
when an unfamiliar or unexpected object is presented,
there is a lot of attending because an internal
representation has to be constructed or adjusted. The
degree that the novel object differs from existing internal
representations determines the amount of adjusting that

has to be done, and hence the duration of attention.2

We used an autoencoder to model this process.
Learning in an autoencoder consists of developing an
internal representation of the input (at the hidden unit
level) that is sufficiently reliable to reproduce all the
information in the original input (Cottrell, Munro, &
Zipser, 1988). Information is first compressed into an
internal representation and then expanded to reproduce
the original input. The successive cycles of training in the
autoencoder are an iterative process by which a reliable
internal representation of the input is developed. The
reliability of the representation is tested by expanding it
and comparing the resulting predictions to the actual
stimulus being encoded.

We suggest that during the period of captured attention
infants are actively involved in an iterative process of
encoding the visual input into an internal representation
and then assessing that representation against the
continuing perceptual input. This is accomplished by using
the internal representation to predict what the properties of
the stimulus are. As long as the representation fails to

                                                       
2  This process can be interrupted at any point by the

intervention of a more salient event. See Hood (1995) for
thorough review of what determines infant selective attention.

predict the stimulus properties, the infant continues to
fixate the stimulus and to update the internal
representations. Similar interpretations have been
suggested elsewhere (Mareschal, Plunkett, & Harris, 1995;
Munakata, McClelland, Johnson, & Siegler, 1994).

There are several implications to this modeling
approach. Looking time is monotonically related to the
network error. The greater the error, the longer the looking
time. Stimuli presented for a very short time will be
encoded less well than those presented for a longer period.
However, prolonged exposure after error (attention) has
fallen off will not improve memory of the stimulus. The
degree to which error (looking time) increases on
presentation of a novel object  depends on the similarity
between the novel object and the familiar object.
Presenting a series of similar objects leads to a progressive
error drop on future similar objects. A prototype of the set
of objects leads to lower error than individual objects. All
of this is true of both autoassociators (where output error is
the measurable quantity) and infants (where looking time is
the measurable quantity).

The results reported below are based on the performance
of a standard 10-8-10 feedforward backpropagation
network. The learning rate was set to 0.9 and momentum to
0.9. A Fahlman offset of 0.1 was also used. Networks were
trained for a maximum of 250 epochs or until all output
bits were within 0.2 of their targets. This was meant to
reflect the fact that in the Quinn and Eimas studies infants
were shown pictures for a fixed duration of time rather
than using a proportional looking time criterion. Results
are averaged over 50 replications.

Twelve items from one category were presented
sequentially to the network in groups of two (i.e., weights
were updated in batches of two). This was meant to capture
the fact that pairs of pictures were presented to the infants
during the habituation phase. After exposure to the twelve
patterns, the networks were tested on an item of the same
category and an item of the other (unseen) category.

The Data
The data were obtained from measurements of the

original Cat and Dog pictures used by Eimas and Quinn.
There were 18 dogs and 18 cats classified according to the
following ten traits: head length, head width, eye
separation, ear separation, ear length, nose length, nose
width, leg length vertical extent, and horizontal extent.
Although it is difficult to say for certain which features the
infants are using during categorisation, it is well known
that infants segregate items into categories on the basis of
clusters of correlated attributes of different values
(Younger, 1985; see Quinn and Johnson, 1996 for a
detailed justification these input features). The feature
values were normalized to be within 0 and 1.
Each feature is assumed to be normally distributed. Figure

1 shows the probability distributions of the 10 traits for
both cats and dogs. Some of the traits are very similar in
terms of their means and distribution of both cats and dogs
(e.g. head length and head width).  Others, especially
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Figure 1. The frequency distributions of values of the ten defining traits for both
populations of 18 dogs and 18 cats. The dark line indicates the distribution for the
“dog” category.

nose length and nose width, are very different and will
provide the crucial explanation of the unexpected
attentional asymmetries reported by Quinn, Eimas, &
Rosenkrantz (1993) and Eimas, Quinn, & Cown (1994).

Consider a single trait, for example, “nose width.”
Figure 2 shows the probability distributions for this trait
for both dogs and cats. The (normalized) mean nose width
for the dog population is 0.53 with a standard deviation
(σ) of 0.2, whereas the mean for the cat population is 0.24
with a much smaller standard deviation of 0.07.
Consequently, the nose width of virtually all cats in the
population will fall within two standard deviations of the
nose-width mean for dogs. On the other hand, the nose
width of the majority of dogs does not fall within 2σ of
the nose-width mean for cats.  The result, in short, is that
at least for this trait, all cats could be exemplars of dogs,
whereas most dogs could not be cats.

0.2 0.4 0.6 0.8 1

cats

dogs

Figure 2.  The distributions of the “nose-width” trait for
the population of cats and dogs shown to infants by
Quinn, Eimas & Rosenkrantz, 1993.

Referring again to Figure 1, it is clear that in almost all
cases the distribution for each Dog trait (represented by
the dark line) subsumes the distribution for corresponding
trait for cats. The narrower distributions for most Cat
traits, on the other hand, do not subsume the range of
values for the corresponding Dog traits. In other words,
cats are possible dogs but the reverse is not the case: most
dogs are not possible cats.

Specifically, when we examine all of the members of
the two populations, we see that the values of all ten traits
for 9 (i.e., 50%) of the members of the Cat category fall
within a 2σ cut-off for those traits for the Dog category.
Fully half of the cats in the population could be
reasonably classified as dogs. In contrast, the smaller
means and lower variances of a number of traits
(especially, nose length and nose width) for cats
compared to dogs means that only 2 of the 18 dogs could
conceivably be classified as being members of the Cat
category.

Results

The Development of Cat and Dog Categories
Like infants, these networks form a category of

both Cat and Dog. Figure 3 shows the initial error score,
the error score after twelve presentations of either cats or
dogs, and the average error score (after training) for the 6
remaining exemplars in either  the  Cat  or  Dog
category.
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Figure 3. Mean network error when (a) presented with
exemplars before learning, (b) presented with exemplars
after learning, and (c) presented with novel exemplars
after learning.

After learning, error is lower suggesting that the network
has developed a reliable internal representation of cats or
dogs. The generalization error rises slightly, showing that



the networks recognize these exemplars as novel. Infants
are also able to distinguish individual exemplars within
the category (Quinn, Eimas, & Rosenkrantz, 1993).
However, the generalization error remains below the
initial error suggesting that the new exemplars are indeed
assimilated to the category formed by the networks.

The Exclusivity of the Cat and Dog Categories
Eimas and Quinn found that there was an asymmetry in

the exclusivity of the Cat and Dog categories developed
by infants. To summarize the discussion at the beginning
of this paper, when infants are shown a series of
photographs of cats, the subsequent presentation of a dog
produces a large increase in attention (compared to the
presentation of yet another cat). The opposite is not true.
In other words, when an infant is shown a series of
photographs of dogs, the subsequent presentation of a cat
is essentially of no greater interest than the presentation of
another dog. The modeling assumption that we have made
is that network error and infant attention levels correlate:
the higher the network error, the longer the looking time
of the infant (Mareschal, Plunkett, & Harris, 1995;
Munakata, McClelland, Johnson, & Siegler, 1994).

Figure 4 shows what happens when networks trained on
cats are presented with a novel cat and a dog, and when
networks trained on dogs are tested with a novel dog and
a cat. When the networks are initially trained on cats, the
presentation of a dog results in a large error score
(corresponding to the results observed with infants in
terms of a longer looking time). Dogs are not included
within the categorical representation of cats. In contrast,
when the networks are initially trained on dogs, the
presentation of a cat result only in small increase in error
suggesting that the cats have been included in the dog
category.
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Figure 4. Asymmetric exclusivity of the Cat and Dog
categories. When trained first on cats, a novel dog
results in a large increase in error (as compared to a
novel cat) but when trained first on dogs, a novel cat
only produces a small increase in error (as compared
to a novel dog).

The Asymmetric Interference Effect
This section examines the effect of learning a second

category during the retention interval. The network was
sequentially trained on twelve exemplars (6 pairs) of
either cats or dogs.  It was then tested a first time (T1)
with a novel exemplar of the same category. (i.e., when
trained with cats it was tested with a novel cat; when
trained on dogs the network was tested with a novel dog).
Following this, the network was trained on 4 exemplars (2
pairs) of the complementary category. If the network had
initially been trained on cats it was presented with four
dogs.  If it had originally learned dogs, the network was
presented with 4 cats. Finally, the network was tested a
second time (T2) with the same novel exemplar as in the
first test session. The difference in the network’s
performance in T2 as compared to T1 is a measure of the
amount of interference (or forgetting) that has occurred as
a consequence of learning the intervening exemplars.

Figure 5 shows the difference between the network’s
performance at T2 and T1, when (a) the original category
is Cat and the intervening category is Dog, and (b) when
the original category is Dog and the intervening category
Cat. Learning dogs during the intervening period has a
large detrimental effect on the prior learning of cats. In
stark contrast to this, learning cats during the intervening
period has little or no detrimental effect on the prior
learning of dogs. This finding echoes the category
exclusivity dissociation of the previous section and
reflects the distribution of means and variances of the
input attributes.  Although these experiments have yet to
be done on children, the model makes the clear prediction
that in infants learning dogs after having first learned cats
will cause far more forgetting of the originally learned
cats than vice-versa.
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Figure 5. Network performance with novel exemplars
before and after learning an interference category.

The Effect of Learning Closely Related Animals
One possible explanation for the asymmetry effect is

that the Cat category is particularly susceptible to
interference in the presence of any new category. To test
this we first had the network sequentially learn 6 pairs of
cats and then trained the network on 4 examples (2 pairs)
of lions. Although lions are more similar to cats than are



dogs, they nonetheless form a distinguishable category
and, as such, could interfere with the prior learning of the
cat category, assuming this latter category did indeed turn
out to be exceptionally susceptible to interference.

This, however, did not turn out to be the case. As
Figure 6 shows, there is only a very slight increase in the
error for novel cats after the lions have been learned. This
is due to the fact that, in the lion and cat data used for the
experiment, all of the lions fall within the Cat category
(i.e., the value of each trait is within 2σ of the mean value
of the same trait for the “lion” category) and vice-versa.
This permits the prediction of very little interference in
the model. As can be seen in Figure 6, this is indeed the
case.
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 Figure 6. After learning an initial set of cats, being
exposed to a set of lions interferes only very slightly
with the ability of the network to recognize novel
cats.

Discussion
In this paper we have presented a simple connectionist

model of early infant memory and categorisation. An
autoencoder was presented with data measured directly
from photographs of cats and dogs that had been
presented to infants. Like the infants, the networks
categorized the pictures appropriately into Cat or Dog
categories. The categories showed the same asymmetric
exclusivity effect found in infants. When trained on dogs,
the category formed included cats, whereas when trained
on cats, the category formed excluded dogs. Learning
sequential categories showed asymmetric interference.
Learning cats after having learned dogs did not interfere
with the prior knowledge of dogs. In contrast, learning
dogs after having learned cats resulted in catastrophic
interference with the knowledge of cats.

The asymmetry in both categorisation and interference
in the networks was found to arise from the distribution of
features describing the stimuli. Although the means of the
traits for the cats and the dogs were different, the variance
of the dog features was much larger. Most, Cat features
fell within 2 standard deviations of the Dog features. In
this sense, the cats are subsumed by the Dog category.
Learning about cats does not disrupt the knowledge of
dogs. However, learning about dogs exposes the network
to feature values that are outside the range experienced by

the network as it learned about cats. These new feature
values lead to a change in internal representation in order
to accommodate the new information. Hence, learning
about dogs disrupts the representation of cats.

The model provides a more precise mechanistic account
of the categorisation asymmetry than that suggested by
Quinn, Eimas, and Rosenkrantz (1993). They suggested
that the failure to learn a Dog category that excluded cats
was due to the greater variability of the Dog category. We
suggest that this asymmetry arises from the asymmetrical
overlap of the trait distributions and not just the variance
of the distribution itself. It is not just the fact the there is
greater variability in the Dog category, but also that the
values of the Cat features are subsumed by those of the
Dog features whereas the reverse is not true.

The work reported in this paper goes beyond simply
capturing a quirk of infant performance. It suggests a link
between performance in infant categorisation and memory
tasks. The same asymmetry observed in categorisation
also appears in interference tasks. This is a strong
prediction of novel infant behavior. Note that some
indirect evidence already exists. Cats have been found to
interfere with lions, but lions do not interfere with cats in
categorization tasks (Quinn, Eimas, & Cowan, 1994).

No mechanistic accounts of the interference effects in
infant visual memory have been proposed (Rovee-Collier
& Bollet, 1995). The only suggestion is that interference
will occur when the intervening stimulus is similar to the
original material and is encoded by the infant. The
modeling work we present suggests that the interference
effects arise from the mechanisms involved in
categorising multiple stimuli in an associative system
with distributed representations. This proposal is
corroborated by the fact that techniques such as
interleaving reminder examples during the second
(interference) learning phase reduces interference both in
connectionist networks (Robins, 1995) and in infants
(Quinn, Eimas, & Cowan, 1994; Rovee-Collier & Bollet,
1995).

Future modeling work needs to account for the
development of an immature system that is susceptible to
interference (such as infant memory) to one that is not
susceptible to interference (such as adult memory). We
are currently pursuing this avenue.

Finally, this model is an attempt to synthesize a range
of idiosyncratic infant behaviors under one mechanism. It
is a simple model but the principles accounting for the
observed phenomena are true of most distributed
associative systems. A more sophisticated model would
produce the same interference and asymmetry results.

In terms of connectionist modeling, this work suggests
that catastrophic interference is an integral part of early
cognition. Rather than brandishing it as a failure of
connectionist systems, it should be viewed as a necessary
feature of any system wishing to model human memory
and categorisation across the whole range of ages.

In summary, we present a simple connectionist model
of memory and categorisation in early infancy. The model
underscores the continuity that underlies the development



of memory and categorisation by using mechanisms
known to model adult performance. The model makes a
strong prediction concerning asymmetric interference
effects in infancy, and suggests that catastrophic
interference is a necessary part of any model that intends
to capture the whole range of human memory and
categorisation abilities
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