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Abstract described by their use (e.g., a car is for driving). According

to this view, the naming dissociation does not reflect a

Category-specific semantic deficits refer to the inability to taxonomic ordering of semantic memory, but rather, the

name objects from a particular category while the naming of differing proportion of the type of semantic features
words outside that category remains relatively unimpaired. (perceptual vs. functional) associated with a word.

We suggest that such semantic deficits arise from the = ;.00 and McClelland (1991) explored this hypothesis

random lesioning of a unified semantic network in which . A .
internal category representations reflect the variability of by constructing a connectionist model of semantic memory

the categories themselves. This is demonstrated by lesioning @1d 1€sioning it. In this model, both animate and inanimate
networks that have learned to categorize butterflies and Words were associated with functional as well as perceptual
chairs. The model shows category-specific semantic deficits features. However, the proportion of functional and
of the narrower category (butterfly) with the occasional perceptual features differed for animate and inanimate
reverse semantic deficits of the relatively broader category words respectively. They found that by lesioning either the
(chair) . perceptuabr functional components of semantic memory,
animate or inanimate words were impaired respectively.
Introduction This was used to corrobp_rate Warri_ngton_ and Shallice’s
» i . ... account of category-specific semantic deficits. Category-
Category-specific semantic deficits refer to the inabilitygpecific semantic deficits arose even though words were
to name objects from a particular category as a result ¢fot stored with respect to semantic category.
_neur(_)logical dama_ge. Th_e naming of objects outside the \while this is a plausible account of the source of
impaired category is relatively well preserved. Perhaps thgategory-specific semantic deficits that does not appeal to
most striking category-specific semantic deficit is theihe prior taxonomic organization of semantic memory, it
dissociation found between animate vs. inanimate objectgsj|| implies that there exists an intrinsic dissociation in the
In general, naming of inanimate objects is found to bgyay that functional and perceptual features are stored in

better preserved than nam!ng_ of animate Objec_'[%emantic memory. The Farah and McClelland model only
(Warrington and Shallice, 1984; Silveri & Gainotti, 1989; \yorks because there are identifiable regions that encode

Gainotti & Silveri, 1996; Sartori & job, 1988; Funnell & gne or the other type of semantic information, and that can
Sheridan, 1992; Farah, Meyer, & McMullen, 1996).pe |esioned selectively. This account still relies onaan
However, for a small number of patients, the naming Ofyiori structuring of semantic memory to explain the
animate objects is better preserved (Warrington &spserved semantic dissociation. The only difference is that
McCarthy, 1987; Hillis & Caramazza, 1991, Sacchett &ather than positing an explicit taxonomic order, the
Humphreys, 1992). taxonomic ordering is mediated by a high correlation

Warrington and Shallice (1984) have tried to explainpetween perceptual features with animate objects, and
these findings by suggesting that words for animate anfnctional features with inanimate objects.

inanimate objects are learned in different ways. Words for The greatest shortcoming of the model is that it fails to
animate objects are learned primarily though associatiogyplain why damage should occur either (a) selectively to
with perceptual cues because animate objects tend 10 Bgs perceptual features (thereby preserving knowledge of
described by their surface features (e.g., color, size)nanimate words) or (b) selectively to the functional

However, words for inanimate objects are leamneGeatyres (thereby preserving knowledge of animate
primarily through association with the object’s_function gpjects).

because inanimate (man-made) objects tend to be

! Now at the Department of Psychology, Birkbeck College, University of London, Malet St., London, WC1E 7HX, UK.


https://core.ac.uk/display/84586883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Some evidence for separate perceptual or functionalf information between the hippocampus and the neocortex
memory damage comes from the neuropathologiemvolved in the laying down of memories. The shunting of
associated with category-specific semantic deficitsinformation between two memory systems is believed to
Localized damage (e.g., from herpes encephalitis) to theave evolved as a natural way of overcoming the problem
temporolimbic system (resulting in a loss of perceptuabf catastrophic interference in a distributed system such as
features), or to the frontoparietal regions (resulting in a losthe brain.
of functional features have been associated with the loss of The network consists of a feedforward BP network that is
one semantic category or the other (Saffran & Schwartajivided into two parts, one used to help train the other
1988). However, category specific impairments have als@Figure 1). We will call the left-hand side of the network
been found in patients with Alzheimer's disease, ahe “early-processing memory” and the right-hand side the
widespread pathology, causing damage to both th#inal-storage memory.” It is perhaps easiest to explain
temporolimbic system and the frontoparietal regionshow the network works in terms of a specific example.
(Gonnerman, Andersen, Devlin, Kempler, & Seidenberg,
in press; McKrae, De Sa, & Seidenberg, 1997; Silveri &
Gainotti, 1988). This sort pathology cannot be modelled by
selectively leasioning neurons in separate memories. One ,
would expect that the diffuse neural damage found in /
Alzheimer’'s patients with category-specific semantic
deficits would result in equal damage to perceptual and
functional features. Hence, even if inanimate words have
more functional features and animate words have more /
perceptual features both categories would be equally
impaired by the random damage. Y

In this paper we present a connectionist model of
category-specific semantic deficits that does not assume an
initial partitioning of semantic memory along either a
taxonomic or a perceptual/functional divide. The model
posits a unified semantic memory in which all features are ‘
treated equally (e.g., Caramazza, Hills, Rapp, & Romani,
1990). Category-specific semantic deficits arises from mmg%
random lesioning of the network. The model we propose NEW PATTERNy
suggests that category-specific semantic deficits reflect NEWPATTERTS
differences in thevariability of features encoding both _ : )
animate and inanimate objects. Figure 1. The pseudo-recurrent network architecture

The rest of this paper proceeds as follows. First, we ., _
briefly present the pseudo-recurrent network architecturUPPOSe that the *final-storage” area contains what the
developed by French (1997a) and used for modeling’le“"’ork has learned up to the present time. The network is
semantic memory (French, 1997b). An explanation fotnen asked to sequentially learn 20 new patterps,P...
category-specific semantic deficits is then presented. Thgo Each‘ of thes:a patterns, Bonsists of an input and an
next section illustrates this process by lesioning network8UtPut (‘teéacher’) association: ,(IT). By sequentially

that have been trained with two real world categories®amMing these patterns we mean that each individual
Finally, the likelihood of recovery from damage is pattern must be learned to criterion before the system can

discussed. begin to learn the subsequent pattern. To learn pattern P
its input | is presented to the network. Activation flows
_ P through both parts of the network, but the output from the
Tﬁese;ggti?uﬁgrrg'igéugger;n?ftlgl?ftpzlg:’vcxg: fir final-storage part is prevented from reaching the teacher
developed by French (1997a) to overcome catastrophsﬁOdeS by the “real” teacher.TIn other words, the teacher
. . . attern T fills the teacher nodes. The early-processing
interference in _ba_ckpropagatlon (BP) networks. It suggesgetwork then adjusts its weights with the standard
that ca_\tastrophlc interference in memory can be overco ckpropagation algorithm using as the error signal the
by mixing in approximations of previously learned difference between ,Tand the output Qof the early-
patterns (“pseudopatterns” of Robins, 1995) with ne rocessing network1 Crucially, however, the early-
information during learning. Learning proceeds in two rocessing network.does not oﬁly learn tﬁe pattetn P
stages. '_I'he first stage (Wh'Ch involves mixing new and ol ternally creategpseudopatterngeflecting the contents of
information) takes place in an early-processing area of t al-storage, are also generated by the final-storage
network. The second stage (which involves laying dow'?nemory ana will be learned by the early-processing
the new knowledge) takes place in the final-storage area. emory along with P
This method is analogous to that used by McClelland, )

e Pseudopatterns are generated by final-storage and learned
McNaughton, and O'Reilly (1995) to model the exchangeby the egrly-processigg memoryyas follows.g A random
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input pattern,i,, is presented to the input nodes of thestorage. This is illustrated for a particular example in
system. This input produces an output, a the output Figures 2 and 3, and discussed in more detail below.
layer of the early-processing memory and also produces &@ompression has numerous advantages. In particular, there
output, t, on the teacher nodes of the final-storagds a decrease in the number of resources required to
memory. This input-output pairi( t) defines a activate any given word, and a decrease in the amount of
pseudopatterny,, that reflects the contents of the final- overlap in final storage. Compact representations may,
storage memory. The difference betweenand q  presumably, allow for more efficient processing of
determines the error signal for changing the weights in thimcoming stimuli because of their reduced demand on
early-processing memory. Similarly, the other randonsystem resources (i.e., less activation is required to fully
inputs, i, i., . . .i,, produce pseudopatterng, ¢, . ..y, activate a compact representation. However, highly
that are also be learned by the early-processing memorgompact representations are more vulnerable to selective
Once the weight changes have been made for the fir§@mage than highly distributed representations.
epoch for the set of patterns {RU,, 4, . . .}, the early- It is worth repeating that the pseudorecurrent architecture
processing memory cycles through this set of pattern§ meant to capture the natural process by which the brain
again and again until it has learned them all to criterionay be overcoming catastrophic interference (McClelland,
By learning the pattern,Rhe early-processing memory is McNaughton, and O'Reilly; 1995). The compression of
learning the new information presented to it; by learningategorical representations is a processing by-product that
the pseudopatterng, i, the early-processing memory alls naturally out of the pseudo-recurrent mechanism.
is, in addition, learning an approximation of the . .
information previously stored in final storage. Obviously, A Mechanism for Category-Specific Loss
the more pseudopatterns that are generated, the mordn contrast to explanations of category-specific semantic
accurately they will reflect the contents of final storagedeficits that rely on the perception/function distinction
Once learning in the early-processing network hagWarrington & Shallice, 1984; Durrant-Paetfield, Tyler,
converged for P ¢, ¢, . . ., the early-processing Moss, & Levy, 1997; Farah & McClelland, 1991), we
weights then replace the final-storage weights. In othe$uggest that this selective memory loss is due, at least in
words, the early-processing memobgecomesthe final ~ part, to the considerable difference in the average
storage memory and the network is ready to learn the neX@riability within most biological and artificial kinds. This
pattern, B (Note that this weight-copying strategy is difference, is combined with the phenomenon of gradual
certainly not biologically plausible. However, it has beencompression of representations as they are consolidated in
shown (French, 1997a) that information transfer can alsinal-storage — making them increasingly susceptible to
be effectively done from early-processing to final-storage&damage.
by means of the above type of pseudo-pattern transfer. When two real-world categories that have very different
The essence of this technique is to interleave newariance are stored in a network — connectionist or human
information to be learned with pseudopatterns that reflect— the difference in variance will be reflected in a
the contents of final-storage. Thus, rather than interleavingifference in the variance of the internal representations of
the real, originally learned patterns with the new inputhe two categories. The greater the variance in the real-
coming to the early-processing memory, we do the nextvorld category, the greater the variance in the internal
best thing — namely, we interleave pseudopatterns that afgpresentation of that category, where the variance of an
approximationsof the previously stored patterns. Once theinternal representation is determined by the “spread” of the
new pattern and the pseudopatterns are learned in tgéstribution of the hidden-unit activation pattern
early-processing area, the weights from the earlycorresponding to a representation when it is activated.
processing network are copied to the corresponding The more compact the distribution (i.e., the lower the
weights in the final-storage network (or, more plausiblyvariance) the more vulnerable the category is to
the early-processing area trains the final-storage area usifigtastrophic damage. This is because the loss of one or two
its own set of pseudopatterns). nodes in a narrowly defined category corresponds to a
The model is called “pseudo-recurrent” not only becauséreater proportional loss of information. This is true in any
of the recurrent nature of the training of the early-distributed connectionist network. The pseudo-recurrent
processing memory by the final-storage memory —network enhances this effect by effectively reducing the
approximations of previously learned information isnumber of nodes participating in the representations. We
continually fed back into the early-processing area frongXplore this account further by training a pseudorecurrent
final-storage —, but also as a means of acknowledging theetwork with two categories: one artificial (CHAIR) and
all-important mechanism of information transfer from the other natural (BUTTERFLY).

final-storage to early-processing storage — namely, _ _ )
pseudopatterns. During sequential learning, information is Animate vs. Inanimate Semantic
continually passed back and forth between the two memory Dissociations

areas by means of pseudopatterns. Twenty standard Backpropagation (BP) and 20 pseudo-

One unanticipated result of this use of pseudo patterns jgcurrent networks with 13 input units, 13 output units, and
the compression of the representations that develop in fingb hidden units each were trained to autoassociate 20



examples of both butterflies and tables (for a total of 4@ctivation on 28 out of 32 hidden units while presentation
tokens). The parameter training values were as followssf a chair produces activation on all 32 units.
initial weight range: [-2, 2], learning rate: 0.1, momentum: Figure 3 shows the same internal representations for the
0.9, and Fahlman offset: 0.1. The pseudo-recurreniseudo-recurrent networks trained with 15 pseudo-patterns.
networks used 15 pseudo-patterns in learning. These hidden unit representations are much more compact.
The categories of CHAIR and BUTTERFLY were chosenThe BUTTERFLY category is only coded across 3 hidden
because they were familiar categories with extremely highnits while the CHAIR category is coded across 22 units.
naming reliability (100% for both) and very similar image As compared with the standard BP networks, there is a net
agreements (chair: 3.22 and butterfly: 3.92) according tdecrease in the variance of the internal representations of
the Snodgrass and Vanderwart (1980) picture naming datgoth categories as measured by the number of units
Subjects recognize these categories easily and havequired to encode them. It is worth noting that a loss in
similarly well-defined mental images for both categoriesinformation also accompanies this representational
The 40 exemplars were coded along the following 1Zompression. Although the pseudo-recurrent networks can
dimensions: head-length, head width, eye separatioautoassociate as well as the standard BP networks, the finer
antenna length, dominant colour, leg length, number dfetails of the exemplars are lost during the compression
legs, vertical extent, horizontal extent, number of anglegrocess.
material, surface incline, deformability. Measurements
were taken from randomly selected actual examples of 2

butterflies and chairs as detailed in Howarth (1973) and
Humphreys (1970) respectively. T
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Figure 2. Hidden unit activation profile for Butterflies and
Chairs in a standard BP network. Figure 3. Hidden unit activation profile for Butterflies and

Chairs in a network trained with 15 pseudopatterns.
Exemplars were selected randomly and were learned
sequentially: each exemplar was learned to criterion before To explore the robustness of these representations, the 40
the next was presented. Training (autoassociation) wasetworks were systematically lesioned by removing each of
stopped when all outputs were within 0.2 of their target othe hidden units one at a time. There were 32 possible
after 1000 epochs of training. Figure 2 shows an examplesions for each network for a total of 640 lesioning
of the internal representation developed across the hiddémstances. The systematic lesioning approach guarantees
units for the BUTTERFLY and CHAIR categories for the that the whole space of possible damage is explored. Table
standard BP network. 1 shows the proportion of networks having completely lost
Both categories are encoded over the whole band die BUTTERFLY or CHAIR categories (but having
hidden units. Presentation of a butterfly exemplar producgseserved the other category) for both standard BP and
pseudo-recurrent networks.



Table 1. Percentage of lesions resulting Discussion

in total category loss (n=640) In this paper we have presented a simple model of

category-specific semantic deficits. The model uses the

Standard BP Pseudorecurrent pseudorecurrent architecture devised by French (1997a).

CHAIR 0% 0.3% Learning occurs by mixing in information already present
BUTTERFLY 0% 3% within a network with the new information before laying it

down in a network by using backpropagation. One result of

With standard BP none of the lesions resulted in totdhis process is that categorical representations become
category loss. The distributed representations are immumaore compact, less distributed, and more susceptible to
to this type of lesioning. However category loss did appeatatastrophic damage. We suggest that such a mechanism
in a small but significant number of pseudo-recurrentould account for a range of category-specific semantic
networks. Three percent of lesions resulted in the complegficits.
loss of BUTTERFLY (while preserving CHAIR) and 0.3 % The pseudorecurrent architecture was used to model the
resulted in the loss of CHAIR (while preserving category-specific semantic deficits observed between
BUTTERFLY). The natural kind category was more likelyanimate and inanimate objects. This was illustrated by
to be selectively lost than the artificial kind. However, it istraining the network on one animate category
important to note that about 1/10th as many lesions resultéBUTTERFLY) and one inanimate category (CHAIR).
in the opposite effect: the selective loss of the artificialAfter consolidation with pseudopatterns the networks were
category. This is compatible with the finding that for aexposed to random diffuse lesioning. There was a
small number of patients, the naming of animate objects gredominant loss of the animate category (Butterfly) with a
better preserved (Warrington & McCarthy, 1987; Hillis & small minority of networks showing the reverse effect of
Caramazza, 1991, Sacchett & Humphreys, 1992). Botl@sing the inanimate category. This closely matches what is
phenomena can be explained by appealing to the sarfund with human patients. The present model does not
random damage and the different distributionhave to appeal to a structured semantic memory (for
characteristics of the categories. example by positing taxonomic or percept/function

One implication of this approach is that relative categorgtructures in memory) and is therefore more parsimonious
loss can only be meaningfully evaluated betweeithan previous models of semantic dissociation.
categories that are at a similar taxonomic level. Basic Minimal systematic lesioning was used to explore the
individual categories such as BUTTERFLY and CHAIRrobustness of the category representations. Clearly,
would both be lost before superordinate categories such #sreasing the amount of lesioning would increase the
ANIMAL and FURNITURE because both the latter amount of loss in both categories. An important
categories have much more variation than either of thinplication of the model is that category-specific semantic

basic level categories. deficits can occur even with minimal lesioning. However,
the large majority of individuals experiencing this type of
Recovery From Damage damage would not report any loss. This suggests that the

Early in learning few pseudopatterns have been mixed iRUmber of people having suffered damage may be far
with the categorical information. Each category remaindréater than the number who are actually diagnosed with
relatively broadly defined across the hidden units. AN Ssemantic deficits. _ .
learning progresses (as the network gets older and moreWVe do not wish to claim that there are no differences
pseudo-patterns are mixed in) the categories become mdpgtween perceptual or functional object information. There
compact and more tightly defined. One implication is tha@f®¢ many reasons to believe differences exist (at the very
random damage early in learning (at a young age) Wi|!|east in terms of e_n_codlng) ar_1d that t_hese dlffe_renc_e may
produce general damage to all categories but is unlikely t'Pact on the ability to retrieve animate or inanimate
catastrophically damage any one category. Because Ayprds. The model we present is very simple and explores a
category is eradicated, there is a much better chance thaf'89/€, simple mechanism that can produce category-
small amount of subsequent exposure to examples of tha@_ecm_c deficits asa results of random damage. The basic
category will produce a complete recovery of the categoryP0iNt it makes is that one does not need to appeal to a

In_contrast, older networks have narrowly defined Siructured, or separate semantic memories to account for
relatively sparse category representations. As a resuftdt€gory-specific dissociations. McRae, De Sa and
random damage is less likely to effect any of themSeldenberg (1997)_ make a _related_ point. They suggest that
However, if a category is damaged, it is more likely to be"owledge of animate objects is more susceptible to
catastrophically damaged and unable to recover witdiffluse damage in a unified memory because that
subsequent exposure to examples of that category. knowledge is encoded across a smaller set of more highly

In short, young networks are more susceptible to minoforrelated features units than knowledge of inanimate
damage but can recover from the damage whereas old@pI€Cts.

networks are more resilient to damage but more brittle and Finally, the model suggests that more attention should be
less able to recover from damage. paid to the input statistics of the categories used for testing



semantic deficits. A strong prediction of the model is thatillis, A. & Caramazza, A. (1991). Category-specific
— within a given subject — the variability of categories naming and comprehension impairment: A double
should be a strong predictor of whether they are preserveddissociationBrain, 114,2081-2094.

or not. Thus, within a subject showing semantic deficitsHollis, R. (1970). Modern chairs London, UK:Lund
the categories with broader definitions should be preserved Humphries.

independently of whether they are animate, inanimateiiowarth, T. G. (1973)Butterflies of the British isles

concrete, or abstract. London, UK: Viking.
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