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Summary. The computational and data handling challenges in big data are im-
mense yet a market is steadily growing traditionally supported by technologies such
as Hadoop for management and processing of huge and unstructured datasets. With
this ever increasing deluge of data we now need the algorithms, tools and com-
puting infrastructure to handle the extremely computationally intense data analyt-
ics, looking for patterns and information pertinent to creating a market edge for
a range of applications. Cloud computing has provided opportunities for scalable
high-performance solutions without the initial outlay of developing and creating
the core infrastructure. One vendor in particular, Amazon Web Services, has been
leading this field. However, other solutions exist to take on the computational load
of big data analytics. This chapter provides an overview of the extent of applica-
tions in which big data analytics is used. Then an overview is given of some of
the high-performance computing options that are available, ranging from multiple
Central Processing Unit (CPU) setups, Graphical Processing Units (GPUs), Field
Programmable Gate Arrays (FPGAs) and cloud solutions. The chapter concludes
by looking at some of the state of the art solutions for deep learning platforms in
which custom hardware such as FPGAs and Application Specific Integrated Circuits
(ASICs) are used within a cloud platform for key computational bottlenecks.

Keywords: big data analytics, computational challenges, applications, high-perfor-
mance computing.

1.1 Introduction

The exponential growth in technology has fuelled the rise of complex comput-
ing applications churning out reams of data and information which in turn
needs to be processed using high-performance computing solutions, stored
using mammoth data centers and managed through the support of refined
data governance. Such applications span a broad range of areas and disciplines
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and this spread is accelerating at a phenomenal rate. The world around us
offers endless possibilities of monitoring and gathering data. Our cities, homes
and even ourselves are amassed with technology for monitoring, collating
and analyzing data. From a vision of smart cities [Townsend, 2014] in which
the very control of home heating is managed through analytical decisions
[O’Dwyer et al., 2016] through to effective control of power generation [British
Gas], it is clear to see how such analysis opens up the potential for affecting
power consumption and ultimately impacts the global fuel crisis.

Through the development of powerful technology such as smart phones,
wearable tech and sensors, we are now generating huge amounts of personal
data on our daily lives, behavior, health and well-being. We are currently
amidst a self-quantification era in which we wear sensors to report back on
activity, behavior and well-being3. From a non-clinical aspect this enables
a tracking of fitness and personal goals with the added dimension of social
support through disseminating our personal metric data through social media
communities. The direction this is going, is to a more biological level in that we
are prepared to share biosignal metrics and signal such as Electroencephalog-
raphy (EEG) [Terrell, 2015] and even our own DNA [AncestryDNATM,
23andMe] in the concerted goal to furthering ourselves and medical science4.

Continuing the discussion in the medical domain, a further source of high
volume heterogeneous data is with digital records. Such an encompassing
term spans far beyond text-based information to mammoth digital files of
x-ray images, Magnetic Resonance Imaging (MRI) scans, recordings of EEG
and possible Exome or Genome sequences. The image processing required for
digital capture again needs to be of a significant quality as not to lose vital
information from the record. Furthermore, methods to analyze and quantify
what the images are showing indicate a necessity for high-performance com-
puting solutions [Wang et al., 2010].

The result of such generation of huge volumes of data is referred to as big
data. However, it is not only the sheer quantity of data created that defines
big data, but there are also the four “V’s” [Hashem et al., 2015] that are
recognized characteristics:

1. Volume: refers to the sheer amount of data coming from multiple resources.
2. Variety: refers to the heterogeneous nature of the data. That is data of

the different types coming from the different collection mechanisms, such
as sensors, physiological recordings, speech, video, text, social networks,
to name just a few. In addition to the sheer amount of data, a major
hurdle is in handling the diversity in data format and whether the data is
structured or unstructured.

3. Velocity: refers to the speed at which the data is created and transferred.

3 http://quantifiedself.com/. Accessed: 2017-02-03.
4 European Bioinformatics Institute. 1000 Genomes / A Deep Catalog of Hu-
man Genetic Variation. http://www.internationalgenome.org/home. Ac-
cessed: 2017-02-03.
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4. Value: The benefit of meeting such a challenge is the potential that by
gathering such a diverse and large set of data then previously hidden
trends and patterns can emerge through analysis.

Big data opens up a range of challenges along every stage of data handling,
processing and analysis [Chen et al., 2014]. The computational challenges
are extreme and as such a range of solutions exists, where each platform is
heralding scalability and performance advantages. In this chapter a high-level
review is given of the range of common applications in which big data
now features. The overview provides some insight into different solutions
or examples of how the computational challenges have been met in these
applications. A summary is provided of high-performance platforms, ranging
from multiple CPU setups, GPUs, FPGAs and cloud solutions. The chapter
concludes with a discussion around custom hardware solutions versus scalable
on-demand cloud computing solutions, asking the question whether cloud
computing holds all the cards? A peek into current technology trends is given
suggesting that custom devices may be the support engine for computational
enhancements for the cloud, while providing customers with the scalable and
on-demand service that they require.

1.2 Applications

The range of applications involving big data is comprehensive and diverse,
playing a role in personalized medicine, genomics, self-quantification through
to monitoring financial markets or transactions. Smart cities and the Internet
of Things (IOT) creates a wealth of recordable data from the devices in each
home through to cities. This section provides a high-level overview of some of
the current big data challenges.

1.2.1 Genomics and proteomics

In the last decade there has been a seismic shift in the technological advances
for sequencing DNA. Edward Sanger developed the Sanger approach in 1975
using capillary electrophoresis and for decades this approach has been the
technique employed. It is expensive and slow, limiting the opportunities for
use. However, recent technological advances in sequencing has led to it being
possible to sequence a whole human genome using a single instrument in 26
hours [Miller et al., 2015]. The enabler for this has been the development
of High-Throughput Sequencing (HTS) which provides massively parallel
sequencing power at an accelerated rate yet with significant cost reductions
[Baker, 2010, O’Driscoll et al., 2013].

The reduction in costs has made HTS technologies much more accessible
to labs and has facilitated their use in a broad range of applications and
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experimentation, including diagnostic testing for hereditary disorders, high-
throughput polymorphism detections, comparative genomics, transcriptome
analysis and therapeutic decision-making for somatic cancers [van Dijk et al.,
2014]. A review and comparison of sequencing technologies can be found in
Metzker [2009] and Loman et al. [2012].

However, HTS generates enormous datasets, with the possibility of pro-
ducing > 100 gigabases (Gb) of reads in a day [Naccache et al., 2014].
For these reasons, coupled with the challenges of integrating heterogeneous
datasets, HTS sequencing data can be characterised as big data, and as such
there lies a significant computational challenge. High-performance, cloud and
grid computing are aspects of computing that have become ubiquitous with
processing and analysis of HTS data [Lightbody et al., 2016], generated at ever
increasing momentum. As the technologies are ever developing, sequencing
could become a routine facet of personalized medicine [Erlich, 2015].

1.2.2 Digital pathology

Traditional microscopy involves the analysis of a sample, for example, a biop-
sy on a glass slide using a microscope. The domain of virtual microscopy
has moved from viewing of glass slides to viewing of diagnostic quality
digital images using specialised software. These slides can be viewed on-line
through a browser or as a recent paper demonstrated via a mobile device
whereby the computational power of mobile devices provide a cost-effective
mobile-phone-based multimodal microscopy tool which combines molecular
assays and portable optical imaging enabling on-site diagnostics [Kühnemund
et al., 2017]. Where more extensive computational power is required, some
service providers have opted for cloud based virtual microscopy solutions
which offer the promise of in-depth image processing of the tissue samples
[Wang et al., 2010].

The drive towards personalized medicine has led to a deluge of personal
data from heterogeneous sources. This big data challenge is discussed by
Li et al. [2016], in which they highlight that “integrative analysis of this
rich clinical, pathological, molecular and imaging data represents one of the
greatest bottlenecks in biomarker discovery research in cancer and other
diseases”. They have developed a framework, Pathology Integromics in Cancer
(PICan), to accelerate and support data collation and analysis. This frame-
work connects the tissue analysis to other genomic information, enabling a
full and comprehensive understanding to be attained.

1.2.3 Self-quantification

We are in an era in which society is “comfortable” with every aspect of their
behavior and person being monitored and analyzed. Part of this, has been the
birth of a Quantified Self (QS) movement in which the person collates data
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on their daily life and physiology. It is reported as “self-knowledge through
numbers”3.

The goal of such monitoring is often for self-improvement, whether it is to
encourage more physical activity or to improve on lifestyle choices [Almalki
et al., 2013]. Alternately, it could come from the belief that by gathering
enough data from enough people, then trends in the data can be found. This
offers the opportunity to impact society’s health and well-being, and not just
benefit the individual.

The advances in personal devices such as smart phones and sensor tech-
nology have promoted the gathering of such vast resources of personal data,
which can fall into the category of big data, due to the sheer amount of data,
the heterogeneous nature of the data and the speed at which it needs to be
processed and managed.

An emerging addition to the QS movement is in collecting and analyzing
electrical activity of the brain. Measured using the EEG, evaluation and
classification of brain function such as sensory, motor and cognitive processes
can be made. With the advancements in electronics5, wearable sensors,
algorithms and software development kits there has been a shift towards
exploring other possible applications in which EEG can play its part. One
organization6 has developed a neuroscience platform to encourage users to
perform “routine brain health monitoring”. By many users sharing their EEG,
it is envisaged that it may be possible to derive critical insight into brain health
and disease.

As QS applications evolve, it is expected that advanced machine learning
and pattern recognition techniques will be involved in the analysis of data
coming from multiple heterogeneous sources such as wearable electronics,
biosensors, mobile phones, genomic data, and cloud-based services [Swan,
2013].

1.2.4 Surveillance

Surveillance, specifically videos, are becoming ubiquitous in a number of
situations for the monitoring of activity. With threats of terrorism, crime
events, traffic incidents and governance, we have seen a rise of surveillance
across global cites. Alongside this increase, we have seen progress on research
in the area of computer vision, whereby processing and understanding surveil-
lance videos can be performed automatically and key tasks such as people
segmentation, tracking moving entities, as well as classification of human
activities have been undertaken. Big data and the four “V’s” are relevant to
the surveillance domain due to the scope and volume of video data captured
[Xu et al., 2016]. It has been estimated by the British Security Industry
Association that there are between 4–5.9 million cameras in the UK. A

5 https://www.emotiv.com/. Accessed: 2017-02-03.
6 https://www.brainwavebank.com/. Accessed: 2017-02-03.
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single camera can capture up to 48GB of high-definition video a day. This
results in issues with local storage through to the fusion of data from multiple
video streams which may differ in terms of format. These issues lead to the
processing of video analytics which has an impact upon terrorist prediction
and governance. To address such needs, research has been performed in the
area. This includes the study by Xu et al. [2015] whereby a semantic based
model called Video Structural Description was proposed to represent and
organize video resources [Najafabadi et al., 2015].

Another application in the area has been work performed by Krizhevsky
et al. [2012] where deep convolutional neural networks were applied to classify
1.2 million images in the ImageNet dataset, achieving top-1 and top-5 and
error rates of 37.5% and 17.0%, outperforming state-of-the-art classifiers. To
speed up the process and improve efficiency, GPU convolution operations were
implemented.

1.2.5 Internet-of-Things

IOT has been defined by the radio frequency identification group as “the
worldwide network of interconnected objects uniquely addressable based on
standard communications protocols” [Gubbi et al., 2013]. These objects,
such as sensors can be embedded in various devices across diverse domains
such as healthcare, environment and astrology and are continually collecting
and communicating data. These data are often semi-structured and require
processing and analysis to provide useful information [Riggins and Wamba,
2015].

An example of IOT and big data analytics is urban planning and smart
cities [Kitchin, 2014]. A smart city can consist of devices built into the
urban environment such as utility, communication and transport systems.
These devices can be used in real-time to monitor and regulate city flows
and processes. The integration and analysis of the data produced from these
devices could provide an improved understanding of the city that enhances
efficiency and sustainability [Hancke et al., 2013] and further models and
predicts urban processes for future urban development [Batty et al., 2012].
Examples of such platforms to support the IOT within a smart city include
ThingSpeak7 which provides a cloud-based platform where sensor data can
be uploaded and analyzed using MatLab and iOBridge8, which provides
a hardware solution to connect to the cloud with developed Application
Programming Interfaces (APIs) to allow integration with other web services.
Multi-nationals such as HP and IBM are also investing in projects such as
CeNSE9 and Smarter Planet10 respectively. CeNSE is deploying a vast number

7 https://thingspeak.com/pages/learn_more. Accessed: 2017-02-03.
8 http://connect.iobridge.com/. Accessed: 2017-02-03.
9 http://www8.hp.com/us/en/hp-information/environment/cense.

html#.WJCsHbaLR0K. Accessed: 2017-02-03.
10 http://www.ibm.com/smarterplanet/us/en/. Accessed: 2017-02-03.
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of sensors used to track for a range of applications from monitoring use and
location of hospital equipment to tracking traffic flow. It then gathers and
transmits such data to computing engines for analysis in real-time.

1.2.6 Finance

Financial institutions are adopting a data-driven approach with the aim of
improving their performance and service and as seen with the financial crash
in 2008, their risks [Fan et al., 2014]. Financial data can be in a structured
or semi-structured form; such data includes stock prices, derivative trades,
transaction records and high-frequency trades (HFT). A study by Seddon and
Currie [2017] proposed a model for applying big data analytics in HFT. HFT
uses algorithmic software to perform trades built upon advanced technological
infrastructure with a focus on speed to process and leverage vast amounts of
financial data [Aldridge, 2009]. This study analyzed Big Data and its impact
upon financial markets. An important discussion, applicable to all application
areas is data security and privacy. With high volumes of data used in analysis,
questions need to be addressed around data security protection, intellectual
property protection, personal privacy protection, commercial secrets and
financial information protection [Chen and Zhang, 2014].

1.3 Computational challenges

At the heart of many of the computationally intense applications lies pattern
matching and machine learning:

• Machine learning
• Deep learning
• Pattern matching
• Image/video/audio processing
• Sentiment analysis
• Natural language processing

Recent advances in high-performance computing has encouraged the field
of deep learning to move out from research laboratories and become a
commercial opportunity. Deep learning, driven by research centers and initia-
tives such as the Google Brain project11, has projected to become a multi-
billion pound industry by 2024 [Tractica, PR Newswire], finding potential
enterprise applications in areas of finance, advertisement, automotive, medical
and other end-user applications. An enabler for this projected growth is in
research and development of infrastructures, software and hardware technolo-
gies optimized for deep learning solutions.

11 https://research.google.com/teams/brain/. Accessed: 2017-02-03.
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1.4 High-performance computing solutions

A background into different approaches is provided in this section. It should
be noted that different application domains will have varied computational
demands [Singh and Reddy, 2014]. The sections below discuss high-perfor-
mance computing solutions ranging in computational performance.

1.4.1 Graphics processing units (GPU) computing

Graphics processing units as the name suggests, are custom devices consisting
of many processing cores or co-processors that have been tailored for processing
the vast computational and memory requirements for graphics rendering and
image processing. They enable highly mathematical and computationally
intense functions to be performed at an accelerated rate due to the parallel
computational units at the heart of their structure. The ability to offload
computation most suited to parallel operations, while maintaining a great level
of flexibility and scalability is a leading benefit of GPU-based computing over
sequential operation CPU-based computing [Blayney et al., 2015, Melanakos,
2008, Fan et al., 2004]. However, the scale of the benefits depends strongly on
the nature of the computations.

The application and use of GPUs has gone far beyond computer graphics
and gaming, although expansion these markets have certainly reduced the
cost of GPUs [Fan et al., 2004], making them a more affordable and thus
widespread technology. The terms General-Purpose computation on Graphics
Processing Units (GPGPU) and GPU Computing have arisen which signifies
that the processors have a broad range of potential applications.

NVIDIA, is a market leader GPU producer12, providing a range of GPU
processors, boards and platforms. The power of their GPUs can be harnessed
through NVIDIA’s own Compute Unified Device Architecture (CUDA) par-
allel computing platform. This technology has been used in a range of
applications ranging from gaming, mobile, personal computers through to
high-performance computing, and deep learning. For example, in bioinfor-
matics there have been a large number of CUDA-based tools developed
for accelerating sequence processing and analysis ([Klus et al., 2012, Liu
et al., 2012, 2013]. Although GPU computing is a promising direction for
bioinformatics, memory handling and slow data exchange between CPU and
GPU processors can still cause challenges [Starostenkov, 2013].

In the area of deep learning, NVIDIA sees a market extending its capabil-
ities in the area of accelerating Artificial Intelligence (AI) algorithms [Azoff,
2015] in industries such as automotive, internet, healthcare, government,
finance and others13. They are clearly positioning themselves for the expected
growth in the big data market.

12 http://www.nvidia.co.uk/page/home.html. Accessed: 2017-02-03.
13 http://www.nvidia.co.uk/object/deep-learning-uk.html Accessed:

2017-02-03.
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1.4.2 Field programmable gate arrays (FPGA)

Field programmable gate arrays are integrated circuits which enable a level of
programmability. Their structure consists of an array of programmable logic
blocks containing computational units, memory and interconnections that can
be fully preconfigured. They sit between highly programmable digital signal
processing chips and custom design ASICs, providing a balance of flexibility
with parallel custom designed operations. They offer an experimentation
and development platform to design and refine solutions. Yet they also
provide enterprise solutions for applications in which a certain degree of
reconfiguration may be required. However, unlike CPUs and GPUs this
reconfiguration cannot be done totally on the fly and takes a level of repro-
gramming the device. Where there are advantages is when there is a large
number of repetitive operations that are suited to parallel implementation,
such examples are in image processing, pattern matching, or routing algo-
rithms. In such cases FPGAs can be orders of magnitude faster compared to
other platforms. The content below provides an overview of some examples of
FPGAs in use.

FPGAs can offer possible solutions to computational challenges in bioin-
formatics and molecular biology [Ramdas and Egan, 2005]. A major compu-
tational challenge in genomics is in sequence alignment. The Smith–Waterman
algorithm is a database search algorithm suited for protein sequence alignment.
However, it is computationally intensive and the complexity increases quadrat-
ically as the dataset increases. Dydel and Ba la [2004], present an implementa-
tion of it on FPGA. Tan et al. [2016] also present a FPGA-based co-processor
to speed up short read mapping in HTS, reporting a throughput of 947Gbp
per a day, while providing better power efficiency.

Another aspect that can benefit from computational enhancement is in
the image processing component in Genomic Microarrays. In these examples,
sequencing is not being performed, however, genetic markers are being looked
for that respond to known chemical interactions leading to a change in colour
in the array, depending on the level of expression. Rodellar et al. [2007] present
such a device, tailored to be portable so to make it applicable in regions remote
from core healthcare provision. An implementation of the CAST algorithm
used for detecting low-complexity regions in protein sequences is described by
[Papadopoulos et al., 2012]. Significant speed-up in computations in the region
of 100x where observed. These examples are not in themselves related to big
data, however, they have relevance in the context of personalized medicine in
which such data can routinely form part of a heterogeneous patient dataset.

1.4.3 Cloud computing platforms

The National Institute for Standards and Technology (NIST) defines Cloud
computing as “a pay-per-use model for enabling convenient, on-demand
network access to a shared pool of configurable computing resources (e.g.,
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networks, servers, storage, applications and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction”.

Foster et al. [2001] pioneered an idea of Grid computing which constitutes
a large-scale distributed resource sharing under specified rules among the users
and/or organizations. This idea was based on other known technologies of the
time such as distributed computing. Grid computing proved to be useful in
many scenarios, especially, for large-scale scientific computations [Di et al.,
2012].

The concept of “Clouds” as a similar but yet different way of distributed
computing has been popularized by Amazon14 in 2006. Armbrust et al. [2010]
compare Cloud computing to other similar computing concepts in their work.
Hence, they claim that although Grid computing offers protocols to share
distributed resources, Cloud computing has advanced forward by offering
“a software environment that grew beyond its community” (referring to the
high-performance community).

Cloud computing has become a strong industry enabling a range of
different services to be deployed typically by a pay-per-use cost model pro-
viding scalability in computing performance, storage and applications. Their
expandability and sheer flexibility of services can provide a cost effective
option for organizations in which the cost for development and maintenance
for in-house solutions does not make business sense. Furthermore, cloud
services can provide tools such as project and data management tools to aid in
collaborations, provision of security and regulations in accessing shared data
and analytical resources for the visualisation and understanding of datasets.

Cloud services fall under three different categories depending on the extent
of the service provided:

• Infrastructure as a Service (IaaS) – Providing access to the core computing
and storage infrastructure.

• Platform as a Service (PaaS) – Users can develop or build upon libraries
and existing core platforms, and these solutions run on the cloud infras-
tructure.

• Software as a Service (SaaS) – Users access applications that form part of
the cloud infrastructure.

Some of the first adopters of big data in cloud computing are users that
deployed NoSQL and Hadoop clusters in highly scalable and elastic computing
environments provided by vendors, such as Google, Microsoft, and Amazon.
An overview of the key market players is summarised as follows.

Amazon web services

Amazon Web Services (AWS) are the strongest competitors in cloud services
[Leong et al., 2016], entering the market in 2006 and offering a range of

14 https://aws.amazon.com/about-aws/. Accessed: 2017-02-03.
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relatively cost effective solutions. Their Amazon Elastic Compute Cloud
(EC2) provides a scalable IaaS cloud service15, offering users a simplistic
interface to their computing infrastructure. PaaS services are also supported.
AWS have added Amazon EC2 Elastic GPUs to their provision allowing
performance enhancements.

Microsoft Azure

Microsoft Azure provides both PaaS and more recently IaaS services16. The
Azure platform offers functionality to integrate models, analyze data and
visualization tools to scale data analysis. The Microsoft Azure model has
been described in Gannon et al. [2014] as “layers of services for building large
scale web-based applications”. These layers communicate across various levels
including the hardware level, utilizing data centers worldwide for computation
and content delivery. The “fabric controller” acts as the kernel of the Azure
operating system. It performs tasks such as monitoring and managing the
virtual machines and hardware resources that make up the Azure system.

1.4.4 Deep learning libraries

Machine learning and, in particular, deep learning have become of immediate
interest for companies and researchers alike. Such technology is finding its way
into a range of products from speech recognition, image processing, search
optimization, through to any application where there is a need or interest to
understand behavior, images, speech and sentiment analysis. TensorFlowTM

and other such systems can be a great enabler to develop such features17.
TensorFlowTM is an open source machine learning infrastructure originat-

ing from Google as part of their Google Brain project started in 2011. It
formed part of the Google’s Machine Intelligence research organization with
its focus on machine learning and in particular deep neural networks. A key
feature of TensorFlowTM is its sheer scalability and flexibility. It facilitates
distribution of computations over a range of devices and platforms, from
mobile devices and desktops, through to large scale infrastructures consisting
of hundreds of machines or thousands of GPU devices [Abadi et al., 2015].
More recently it has been incorporated within AWS Elastic Cloud (Amazon
EC2) provision. It is part of their Deep Learning Amazon Machine Image
(AMI) and is just one of a suite of deep learning libraries included (see
Table 1.1).

15 https://aws.amazon.com/ec2/. Accessed: 2017-02-03.
16 https://azure.microsoft.com/. Accessed: 2017-02-03.
17 https://www.tensorflow.org/. Accessed: 2017-02-03.



20 Gaye Lightbody, Fiona Browne, and Valeriia Haberland

Table 1.1: Deep learning libraries.

Library Detail

TensorFlowTM Open source machine learning infrastructure originating from
Google as part of their Google Brain project started in 2011
(https://www.tensorflow.org/).

MXNet Flexible library (http://mxnet.io/) which supports multiple lan-
guages (C++, Python, R, Scala, Julia, Matlab and Javascript),
can operate on personal CPU/GPU setups through to distributed
and cloud platforms (including AWS, Google Compute Engine
(https://cloud.google.com/compute/), Microsoft Azure).

Caffe A deep learning framework developed by the Berkeley Vision
and Learning Center (http://caffe.berkeleyvision.org/) [Jia et al.,
2014]. Offers a competitive high-performance convolutional neural
networks solution.

Theano A Python-based library with a focus on enhancing
mathematical computation of multi-dimensional arrays
(http://deeplearning.net/software/theano/).

Torch A scientific framework for machine learning (http://torch.ch/).

1.5 The role for custom hardware

Do we need to look at big data at the micro level or at the macro level?
For example, genetic sequencing, particularly as part of next generation
sequencing, requires a substantial computational overhead in the alignment of
the small, reads coming from the initial sample analysis. From this alignment
the DNA sequence of smaller exome components can then be used to determine
conditions and states of disease. Opposite to this are huge datasets of genomic
data across thousands of people ranging in phenotype and genomic marker
such as exome sequences. Gathering such huge expanses of genetic data and
combining this with other associated information offers huge opportunities in
disease stratification, biomarker discovery and drug development [Raghupathi
and Raghupathi, 2014]. This is clearly big data at the macro level. So
the question lies – would the same high-performance computing suit both
applications? This particular example is further complicated by the size of
even a single DNA sequence. Uploading such a file-size to a cloud-based
system in itself presents challenges. Techniques have been developed to look
at easing storage of such genetic information. One particular approach is with
compression algorithms to find an efficient method to represent the data [Qiao
et al., 2012]. Such a method needs to be loss-less, fast, and effective.

Another consideration could be the need for secure solutions which keep
data local, although cloud services such as AWS take great measure to
keep their services secure. Establishing a custom system incurs a significant
investment and maintenance overhead, and would be difficult to scale up.
However, big data computations pose an ever increasing challenge in meeting
performance needs. In particular, deep learning is an area of machine learning
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showing great commercial prospect. The next sections look at some of the
deep learning solutions available.

1.5.1 Deep learning

TensorFlowTM and other deep learning libraries (Table 1.1) combined with
cloud services provide a platform to develop and create deep learning solutions,
leading on to commercial opportunities. However, despite the great flexibility
and scalability advantages of such a system, is there a possibility that a
hardware-based solution might provide the better solution? This of course
depends strongly on the application at hand and the limitations and challenges
associated. Nevertheless, deep learning is a component of machine learning
with great commercial interest. fpgaConvNet [Venieris and Bouganis, 2016]
is a framework for mapping convolutional neural networks, a form of deep
learning, onto FPGAs. The authors relate to the computational issues pre-
sented in convolutional networks, in particular, the classification computation
overhead and the rapid scaling in complexity. CNNLab [Zhu et al., 2016], is
another parallel framework for deep learning neural networks that distributes
computation to both GPUs and FPGAs. Microsoft Azure has also incorpo-
rated FPGAs within their cloud platform [Feldman, 2016]. Woods and Alonso
[2011] have developed an FPGA based framework for analytics on high-rate
data streams. The next section looks further at enhancing cloud performance
through incorporating custom hardware provision.

1.5.2 ASIC enhanced cloud platforms

Nervana18 has developed a platform for deep learning that is powered using a
custom ASIC engine accessed through a cloud platform. They state that their
cloud solution enables industry commercialized deep learning solutions. The
platform they provide is described by them as a full stack solution for “AI on
demand”, optimized at each level.

Nervana Neon is an open source Python-based scalable deep learning
library. The Nervana Engine is custom ASIC hardware optimized for machine
learning and in particular deep learning. They promote high-speed data
access with high bandwidth memory, reaching speeds of 8 Terabits per
second for memory access. Additionally, on-chip memory is large (32GB)
to meet the excessive storage requirements for machine learning. The core
computational power is achieved through a sea of multipliers supported
with local memory, without a reliance on cache memory. Nevana have paid
great attention to data transfer across the chip including communication
pipelines tailored for machine learning operations. One key aspect of this
is the design allowing ASICs to be interconnected directly without reliance on
Peripheral Component Interconnect Express (PCIE) buses which cause data

18 https://www.nervanasys.com/intel-nervana/. Accessed: 2017-02-03.
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flow bottlenecks. Nervana Engine is set to be released in 2017 and hopes to
establish a place in the top deep learning technologies [Schneider, 2017].

1.5.3 ASIC deep learning processors

However, Nervana are not the only ones interested in this market with others
are providing custom machine learning processing engines.

One of the most interesting areas in developing on-chip processing is based
on the operation of the human brain, termed Neuromorphic chips. In this
field, Spiking Neural Networks (SNN) are used to form the computations.
The SpiNNaker Project is one example [Sugiarto et al., 2016] and forms part
of the Human Brain Project19. The Darwin Neural Processing Unit is another
exciting example of an ASIC co-processer based on SNN [Shen et al., 2016].
Through the very nature of how SNN operate they may lend themselves more
closely to machine learning and therefore show great promise in this area
[Elton, 2016].

1.6 Discussion

Big data and its analysis have the potential to provide insight into many
diverse domains. The wealth of data collected at such a vast scale has led
to the need for computationally intensive solutions to find useful information
hidden in the chaos. The applications for such analysis are far reaching, from
surveillance, finance, IOT, and smart cities through to personalized health.
Potential of such applications include clinical decision support systems, per-
sonalized medicine for healthcare, distribution and logistics optimization for
retail and supply chain planning for manufacturing [Sagiroglu and Sinanc,
2013]. However, even within each example, applications will have different
needs in terms of data growth, infrastructure and governance along with
integration, velocity, variety, compliance and data visualization [Intel]. A
number of challenges still need to be addressed such as handling structured
and unstructured data in real/near-time at a volume whereby traditional data
storage and analysis approaches are not applicable [Zikopoulos and Eaton,
2011]. Furthermore, as big data analytics becomes mainstream, important
issues such as data governance, guaranteeing privacy, safeguarding security,
increased network bottlenecks, training of skilled data science professionals,
development of compression technologies and establishing standards will
require urgent attention [Intel].

Big data analytics and applications are still in the early stages, however,
the continuation of technology and platform improvement such as Hadoop,
Spark, NoSQL coupled with the development of new analytical algorithms and
infrastructure will contribute towards the maturing of the field. Companies

19 https://www.humanbrainproject.eu/en_GB. Accessed: 2017-02-03.
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Table 1.2: Deep learning ASIC processors.

Product Detail

Qualcomm Snapdragon
Neural Processing En-
gine

Deep learning toolkit for mobile and
edge devices from Qualcomm Technologies
(https://www.qualcomm.com/invention/cognitive-
technologies/machine-learning).

Qualcomm Zeroth SDK On-device machine learning platform [Vicent, 2016].
Google’s Tensor Process-
ing Unit

Part of Google’s drive for deep learning solutions [Os-
borne, 2016]. Accelerator ASIC developed to be accom-
panied by their TensorFlowTM library.

Intel Xeon Phi prod-
uct family – Knights
Mill / Knight Landing /
Knights Crest

Family of high-performance custom ASICs for machine
learning [Hruska, 2016]. Their product development in-
cludes bringing together Nervana’s chip technology (Intel
acquired Nervana in 2016) together with Xeon processors
to produce their Knights Crest chip.

such as Nervana are developing custom hardware to work in tandem with
their cloud platform to accelerate deep learning. This is one field in which
hardware developers can create impact for cloud computing infrastructure
and big data analytics. Recently, Microsoft [Feldman, 2016] announced the
inclusion of Altera FPGAs within their Azure cloud service with the promise
of creating an AI supercomputer. Microsoft does not currently plan to use the
FPGAs for training neural networks, using GPUs instead for offline training.
At present, they see FPGAs providing effective acceleration for evaluating
already trained neural networks.

Qualcomm, recognize that their consumers require on-device solutions
that do not rely fully on cloud services. Their machine learning platform
is implemented on their Snapdragon Neural Processing Engine. The example
here highlights that data analytics is a challenge that may not always be
resolved through scalable cloud services, but as applications require more
computationally intensive data analytics, some of this workload may need to
be shared between on-device and cloud-based services. Other companies are
also active in this area (Table 1.2) and seemingly there is a strong market
for this level of on-device processing. Furthermore, there have been exciting
advances happening in the area of Neuromorphic chips for machine learning.
It will be interesting to see how this technology impacts the deep learning
market.

Clearly, each computational solution offers unique opportunities for over-
coming the challenges of big data. FPGA and ASIC solutions can provide
computational benefits under certain conditions and as demonstrated through
companies such as Microsoft and Nervana they can form a key part of a
high-performance cloud platform. Conversely, they play an important role
for on-device big data analytics with companies such as Qualcomm and
Intel investing largely in developing the next generation of AI chips. In each
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example the solutions have been tailored for the ever growing market of
big data and deep learning. Meeting these challenges will have great impact
to applications in the future, advances in healthcare, smart cities, security,
automotive industry among other examples forming part of our daily lives.
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