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Abstract—A recent and fascinating interest in computational
symmetry for computer vision and computer graphics appli-
cations has led to a remarkable realization of new symmetry
detection algorithms. Such a concern is culminated in a symmetry
detection competition as a workshop affiliated with the 2011 and
2013 CVPR Conferences. In this paper, we propose a method
based on the computation of the symmetry level associated to
each pixel. Such a value is determined through the energy balance
of the even/odd decomposition of a patch with respect to a
central axis (which is equivalent to estimate the middle point of a
row-wise convolution). Peaks localization along the perpendicular
direction of each angle allows to identify possible symmetry axes.
The evaluation of a feature based on gradient information allows
to establish a classification confidence for each detected axis. By
adopting the aforementioned rigorous validation framework, the
proposed method indicates significant performance increase.

Index Terms—Symmetry detection, even-odd decomposition,
gradient image analysis, object detection.

I. INTRODUCTION

Local and global symmetries in the digital world represent an
important characteristic in computer vision and machine intel-
ligence, since they can simplify tasks such as object detection
and visual search [1]. They could also represent an unexplored
relevant feature for image compression, where most recent
interest has been devoted to manage increased resolution and
dynamic range [2] [3]. Indeed, symmetry characteristics has
already been suggested to minimize information redundancy
[4], or to improve source modeling [5].

Symmetry detection has been mostly focused on bilateral
reflection [4]. Early methods were simple but sensitive to
noise [6], [7]. In 2011 and 2013 the IEEE CVPR conference
proposed a symmetry detection competition on two scenarios:
single and multiple symmetry axes. In the most recent instance
[8], two methods stood out. In [9], which obtained the best
overall performance, SIFT-like descriptors on constellations
of interest points were used, while [10] employed SIFT
descriptors with gradient-based weighting and a principled
statistical procedure, achieving marginally better performance
for high recall. In [11], however, it is argued that those results
are still not yet satisfactory. In [12] a robust and efficient
method has been proposed, but it requires to know the number
of symmetry axes.
This paper describes a new algorithm for the detection of
symmetric objects in natural images. When symmetric objects
detected by an algorithm are compared to the answers given
by a human being, it is imperative to consider how the

human brain works. The performance of the aforementioned
algorithms can be hampered by not taking into account human
perception, since it is impossible to neglect those perception
mechanisms employed by the human brain when engaging
in object recognition tasks [13] [14]. In particular, symmetry
detection is just one of the many tool employed during object
recognition by humans [15] [16], although it is still unclear
how and when symmetry comes into play [17]. Of course,
symmetry is a very simple stimulus and it appears that a
subconscious process is able to directly detect symmetric
patterns in retinal frontoparallel images using some kind of 2D
correlation [18]. In addition, 2D symmetric planar views help
the human brain to learn 3D shapes [19] and conversely 3D
contextual information allows to compensate for the viewing
angle before actually detecting 2D frontoparallel symmetry
[16]. Also, there is evidence that the brain may also perform
residual symmetry detection in oblique views as well [20].
Furthermore, color seems to slow down symmetry detection
because color channels are likely analyzed separately even
when symmetry is present [13] [20]. In the end, there is the
distinct need to complement a mathematic tool dealing with
symmetry detection in the raw data with processing akin to
what the brain cortex or frontoparallel retinal images do to
bridge the semantic gap between mathematical symmetry and
perceived symmetry.

As argued above, using just raw symmetry can be tricky
to identify symmetric objects, either because a perceived
symmetric object may not possess a real symmetry in the data
(due to illumination changes, partial occlusions, and noise of
other types) or because very symmetric data may correspond
to almost uniform background patterns. Trying to mimic basic
processing happening in the human brain, spatial correlation
and relevant gradient information are thus exploited to help
raw data-driven symmetry detection. Gradient information is
surely processed by the brain to detect object edges [21] and
as such has been largely proposed in the past for appearance-
based methods for image segmentation [22]. Here, the gradient
image is used to complement raw data symmetry detection,
greatly boosting its performance.

The rest of the paper is organized as follows. In Section II
the problem of detecting reflection symmetries in a 1D digital
sequence is described by decomposing it using the even/odd
decomposition and then by comparing the energies of the
output sequences. This is partly inspired by [23] that con-
cerned the search for hierarchies of symmetries in 1D raw
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data. The method is then expanded to take into account the
2D, natural images domain. In Section III, the details of the
symmetry detection algorithm, which also incorporates the
gradient information, are given. In Section IV the algorithm is
benchmarked using the 2013 CVPR competition dataset, and
it is shown that it outperforms all of those reported in [8]. The
paper concludes with Section V.

II. REFLECTION SYMMETRY DETECTION IN NATURAL
IMAGES

The even/odd decomposition of a real, 1D discrete sequence
x[n] around a candidate symmetry point m is given by:

xe[n;m] =
x[n] + x[2m− n]

2
(1)

xo[n;m] =
x[n]− x[2m− n]

2
(2)

x[n] = xe[n;m] + xo[n;m] (3)

As detailed in [23], the energy Ee of the even part w.r.t. the
energy E of x[n] can be computed as:

Ee(m) =
1

2
E + (x ∗ x)[2m] (4)

where (x ∗ x) represents the convolution of the discrete se-
quence with itself, i.e. the auto-convolution of x[n]. When x[n]
is prevalently reflection symmetric w.r.t. m (namely, even),
Ee(m) is more than half of E. Therefore, local maxima of the
auto-convolution, which are also maxima for Ee discounting
for the factor 2, correspond to the best candidate reflection
symmetry points m w.r.t. neighboring positions.

However, consider the case where x[n] possesses a clear
local symmetry of modest energy whereas outside the sym-
metry support the signal is non-symmetric and of somewhat
higher energy. In this scenario, the non-symmetric part affects
the position of the (globally) optimal symmetry point, whose
desired position is in the center of the local symmetry. This
happens because the computation of the energy of the even
part, namely the auto-convolution, also takes into account the
non-symmetric signal with non negligible energy and the local
symmetry becomes thus non detectable.

The proposed solution comprises two refinements to the
strategy above. The first is to confine the convolution com-
putation on a window W of size 2np+1 centered around the
candidate symmetry point. The windowed auto-convolution is
no more dependent on the parts of the signal outside the
window support and hence this allows to precisely locate
the position of the local symmetry if the window support
is (at least approximately) correct. On the other hand, non-
symmetric portions of the signal may still attain a high auto-
convolution value due to the sheer energy of the windowed
signal. Therefore, the second refinement is to normalize the
computed auto-convolution by the energy of the windowed
sequence. This way, it is possible to compare found symme-
tries in windowed signals with different energy.

In the end, the best local symmetries in the 1D sequence
is found by sliding the window W at every position and then

compute a measure of symmetry S associated to the center of
the window, as follows:

S(W ) =

∑np

n=−np
x[n] · x[−n]∑np

n=−np
|x[n]|2

(5)

The measure in Eq. (5) is the normalized, windowed auto-
convolution computed on the window W centered around a
candidate symmetry point, which is in effect equivalent to the
normalized inner product between the windowed sequence and
its flipped version.

Moving on to the problem of detecting symmetric object
in 2D images, some additional care is needed to apply the
insights given by the measure S(W ). For now, let us consider
the case of an horizontally symmetric object such that the
sought symmetry axis is vertical. If S(W ) is applied row-
wise, the noisy image data can delete or misplace the 1D
local symmetry in some rows and therefore it can happen
that in such rows there is no local maximum correspondent
to the vertical symmetry axis, making it impossible to simply
connect the peaks in the vertical direction to reveal the axis.
The human brain, though, still extends the symmetry axis
along the perceived symmetry independently of the absence
of the 1D symmetry in some rows because it uses the global
symmetry information.

Consequently, instead of computing S(W ) separately for
each row, it is better to compute the row-wise, windowed and
normalized auto-convolution over a 2D square patch P all at
once, as follows:

S2(P ) =

∑mp

m=−mp

∑np

n=−np
x[m,n] · x[m,−n]∑np

m=−np

∑np

n=−np
|x[m,n]|2

(6)

Using Eq. (6), the 2D spatial correlation information is prop-
erly used to smooth displaced symmetries in individual rows.
Computing the symmetry on the position at the center of P
allows to extend the symmetry axis all the way even in the
presence of noisy data, such as possible variations in the object
texture. As detailed in Section III, by connecting local maxima
in Eq. (6), candidate symmetry axes will be derived.

The human brain capabilities for detecting symmetries go
beyond the use of a 2D context, as introduced in Section I.
To at least partially mimic the mechanisms underlying ob-
ject recognition, the proposed algorithm also incorporate the
information provided by the gradient image to segment the
symmetric object out of the background and distinguish it
from non-symmetric objects. In particular, in Section III it is
proposed to compare the evenness of the gradient magnitude
in the same 2D patch P used above to detect the presence of
a symmetric object. Even if the image segmentation process
performed by the brain is much more complex, the proposed
simple approximation still leads to a significant performance
increase and create correspondences between detected and
perceived symmetry.

III. PROPOSED ALGORITHM DETAILS

This Section describes the algorithm proposed for the sym-
metric object detection, including only those details that we



deem essential to properly understand the argument that we
have put forward in previous Sections to improve the correct
localization and verification of detected symmetry segments.

The objective of the first part of the algorithm, as described
in the previous Section, is to attribute a symmetry matrix
whose values are associated to the pixels of the image I ,
for any given angle. We store that information in a 3-D
stack. As shown in Fig. 1, such a process is composed of
three main tasks. In the first one, we rotate I by n different
angles αi that are referred to as Iαi . The symmetry value
is calculated separately for each angle, so that all possible
symmetries can be captured independently of their tilt. Iαi

will return symmetries in the αi direction (0 ≤ αi < 180,
with αi = 180◦i/n).

As described in Section II, the auto-convolution operation
applied to a sequence allows to locate the position of the
optimal symmetry axis. To improve the location up to half
pixel accuracy, a columns interpolation by a factor of 2 is
performed on Iαi . So, at the end of the first block of Fig. 1, n
images are formed, that we refer to as Ĩαi

, representing rotated
and interpolated versions of the original image I .

In the map computation process, the level of symmetry of
each pixel p of Ĩαi

is computed. First, a 2-D patch P of
fixed size (2np + 1) and centered in p is extracted. Then, the
symmetry measure S2(P ) is computed according to Eq. (6),
that takes values in the [−1, 1] interval. This is strictly related
to the ratio between the energy of the signal in the patch and
its even-odd decomposition around its middle vertical axis. In
particular:

S2(P ) = 2 · Ee
E
− 1 = 1− 2 · Eo

E
(7)

where E is the energy of the signal on the patch, Ee is the
energy of the even part of the patch and Eo is the energy of
the odd part of the patch.

The map computation is performed for all images Ĩαi
, so

that n maps Mαi
are generated. Fig. 2b shows the computed

map for α = 0◦ (vertical symmetry axis) superimposed on the
test image shown in Fig. 2a (we scaled down the map to match
the horizontal sizes). The borders in Fig. 2a are discarded in
Fig. 2b since the patches fall outside of the image boundaries.
Observe how, in addition to two clear vertical axes where the
objects are, the uniform background also exhibits a significant
symmetry response. Last, a 3-D stack of n maps, in which the
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Fig. 1: Main processing stages involved in the symmetry stack
computation.

i-th slice is the map Mαi , is constructed. We refer to such a
stack as “symmetry stack” since it represents the local (pixel)
information about the level of symmetry.

At this point all symmetry axes present in the image I can
be identified by processing the symmetry stack. In the end, all
candidate symmetry axes are extracted and mapped back to
the original image domain. The process is constituted by four
distinct operations (see Fig. 3). First, a straightforward (half-
wave) rectification is performed, by setting to 0 all negative
values of the stack (we did that in Fig. 2 too). Following
the discussion we have carried so far, one could assume that
symmetry measures close to 1 identify stronger symmetries
and should be thus sufficient to identify symmetric objects.
On the contrary, we observed experimentally that this is not
necessarily true. For example, large values can be associated
to uniform background regions that correspond to highly
symmetric structures. Moreover, objects that are perceived by
humans as clearly symmetric could have lower values due to
shadows, illumination changes, low resolution, etc. The use of
2-D patches may only alleviate the problem.

Instead of just taking the symmetry measure, a key ob-
servation is that searching for the peaks (local maxima) of
the symmetry map is more relevant. So, the absolute value
of the coefficient is not as important as its relationship with
respect to its neighbors. All local maxima along the rows of
every symmetry map can be associated to a specific direction
αi. A connectivity analysis between such maxima can be
performed by means of a flood-fill algorithm. Consequently,
all possible reflection symmetries define a series of segments
linking connected local maxima existing in each row.

In order to project back the symmetry information onto
the original image coordinate system, each map Mαi is first
horizontally scaled down by a factor 2 to be consistent with
the size of the input image I and then rotated by −αi.

Even with the expedients described so far to improve the
detection accuracy of data symmetries, such as the search for

(a) The test image, with two
clearly symmetric objects.

(b) The map M0◦ , associated to
vertical symmetry axes.

Fig. 2: The symmetry computation stage for a test image for
α = 0◦.
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Fig. 3: Main blocks of the candidate axes identification pro-
cess, starting from the symmetry stack.



peaks in the orthogonal direction, the candidate symmetry axes
still may correspond to a lot of false positives, in the sense
that the detected symmetries are not necessarily associated to
symmetric objects. In an effort to correct this, we employ a
kind of processing similar to what our brain does when it
performs object recognition.

The idea is to favor those axis whose edge information
around them is as specular as possible, hinting at the fact that
the axis is running through the center of a symmetric object.
Fig. 4 shows a simple example with just two of the candidate
symmetry axes. As it turns out, these are the first two answers
in terms of S2(P ), both axes pertaining to highly symmetric
data, but of course the red one is perceived as corresponding to
a symmetric object, while the blue one is detected because of
the particular texture in that image area. To favor the former,
first we compute the gradient image using a standard Sobel
operator and take the gradient magnitude. Then, we use a
threshold M on the percentage of most significant gradient
magnitude values applied on the whole image that we retain
whereas the least significant are set to 0. By setting M we
obtain the desired gradient magnitude image G[m,n].

For each axis, a patch PA is extracted that is as wide as
the patches P used for the symmetry measure computation
(namely np) but in this case it is extended vertically to cover all
the axis locations (recall that for each axis the image is rotated
so as to have the considered axis in the vertical direction).
On PA, we again perform the even-odd decomposition and
evaluate:

G2(PA) =

∑m2

m=m1

∑np

n=−np
G[m,n1 + n] ·G[m,n1 − n]∑m2

m=m1

∑np

n=−np
|G[m,n1 + n]|2

(8)
where the axis is detected in the n1-th column and in the
[m1,m2] rows interval. If the gradient magnitude is approxi-
mately specular around the axis, G2(P ) takes on values close
to 1, whereas if no gradient is significant its value is around
0. So, the candidate axes are finally sorted according to their
G2 values.

(a) The original exam-
ple image, with two can-
didate symmetry axes
shown as well.

(b) The gradient mag-
nitude of the image in
Fig. 4a. The threshold in
this case is M = 0.3.

Fig. 4: A visual example of the gradient image processing that
we employed in this work.

IV. EXPERIMENTAL RESULTS

In this Section, we report the results of the algorithm we
presented using the dataset of the 2013 CVPR competition on
symmetry detection [8]. To obtain these results, we proceeded
as follows. First, we computed a set of candidate symmetry
axes using the symmetry measure S2(P ), averaged on all
the positions belonging to the axis, as the discriminant. In
particular, we kept as candidate symmetry axes only those
whose mean symmetry measure S2(P ) is above a threshold
T = 0.2 (remember that the symmetry measure is in the
[−1, 1] interval, with value 1 identifying perfectly symmetric
data). Then, these candidate axes are sorted according to their
G2 values. The threshold M is set to 0.3.
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(a) Single axis test scenario.
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(b) Multiple axes test scenario.

Fig. 5: Precision/recall curve on the dataset (blue line). We
have also drawn selected values of the other considered
techniques: [9] with red crosses and [10] with black circles.

Fig. 6: Collage of visual results on selected images taken from
the 2013 CVPR competition dataset.



Fig. 5 depicts the precision/recall obtained on the provided
dataset, for both the single axis and multiple axes detection
scenarios. Such a curve shows very good performance. To
put our results in perspective, we have also drawn some
selected precision/recall values obtained from [8] for the best
two techniques previously described [9] [10]. In particular it
is clear how the proposed algorithm outperforms the other
baseline methods.

Last, Fig. 6 shows a collage of detected symmetries, con-
sidering G2 > 0.85, superimposed on the actual images,
taken from the provided dataset, that we think best represent
the success and the limits of our algorithm. Most of them
show how accurately existing symmetries are detected. We
also show a particularly interesting example, the bottom right
image of Fig. 6, where our algorithm mis-detect the symmetric
objects twice. For the red axis, the problem is that the
background divides two identical objects. The difference with
what our brain does here is the fact that we perceive as objects
the peripheral symmetric area and not the central one. Edge
information is in this case insufficient to avoid this occurrence.
For the blue axis instead, the detection mixes foreground and
background objects into a single object. Again, our brain is
efficiently able to extract the foreground using 3-D processing,
something that is not consider yet in the method described in
this paper.

V. CONCLUSIONS

In this paper we presented a new method for reflection sym-
metric objects detection. The proposed algorithm complements
data analysis aimed at the search for structural symmetries
with arguments taken from object recognition processing done
by the human brain. First, a symmetry value for each pixel
and each angle is calculated to form a stack of symmetry
maps, through the computation of the energy-normalized, 2D
row-wise auto-convolution of the pixels in a 2D patch. The
patch is centered on the considered pixel of the suitably rotated
image. The candidate symmetry points are found by looking
for local maxima in the orthogonal direction and not by simply
thresholding the values in the symmetry maps. Such candidate
points are then connected through a morphological operator,
constructing candidate symmetry axes.

Then, these axes are validated using the magnitude of
the image gradient. In a manner similar to what our brain
unconsciously does, the specular character of the gradient
magnitude in the vicinity of the axis is evaluated, indicating
whether the considered symmetry axis runs through the center
of a symmetric object. When the gradient information is taken
into account to validate the axes derived from the purely
mathematical symmetry analysis, the correspondence between
the outcomes of our algorithm and a human-built ground truth
is significantly improved.

The method has been experimentally tested using the frame-
work of the 2013 CVPR symmetry detection competition, and
we have shown how our algorithm outperform all of those
reported in [8].
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