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We experimentally demonstrate efficient third harmonic generation from an indium tin oxide

nanofilm (k/42 thick) on a glass substrate for a pump wavelength of 1.4 lm. A conversion efficiency

of 3.3 � 10�6 is achieved by exploiting the field enhancement properties of the epsilon-near-zero

mode with an enhancement factor of 200. This nanoscale frequency conversion method is applicable

to other plasmonic materials and reststrahlen materials in proximity of the longitudinal optical

phonon frequencies. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4917457]

Third harmonic (TH) generation is a commonly used

nonlinear optical process that triples the input photon energy.

Large conversion efficiency in traditional nonlinear optical

devices requires large nonlinearities, low material absorption,

and phase-matching techniques that increase the interaction

length to the millimeter-to-centimeter range. Phase matching

is irrelevant at the nanoscale, and new strategies must be

developed to boost the performance of sub-wavelength non-

linear optical devices which are expected to play an important

role in optoelectronics and optical information processing.

Several approaches involving high-Q photonic modes have

been proposed, including ring cavity modes, guided mode

resonances, photonic crystal band edges, and defect states of

periodic structures.1 Recently, metallic and more generally

plasmonic nanostructures have received considerable atten-

tion.2,3 While the Q-factors of plasmonic resonators are usu-

ally smaller than those achieved with all-dielectric photonic

devices, larger field enhancements are possible since plas-

monic modal volumes can be deeply sub-wavelength.

However, harmonic generation using the sub-wavelength

structures reported thus far relies on field enhancements asso-

ciated with localized surface plasmon resonances or collective

resonances and requires exquisite fabrication techniques.1,4–7

Frequency mixing from interfaces and thin nonlinear

films has also been intensely investigated since the early days

of nonlinear optics,8,9 with several studies exploiting the field

enhancement associated with the excitation of short10 and

long11 range surface plasmon polaritons.12 More recently, in-

triguing light-matter interactions occurring in natural or artifi-

cial epsilon-near-zero (ENZ) materials have come under

scrutiny. In this paper, we present a method to enhance TH

generation using the ENZ polariton mode13 supported by

deeply sub-wavelength, unpatterned films. The material uti-

lized in this work is indium tin oxide (ITO), a common trans-

parent conductive oxide, but the results can be generally

extended to other materials such as reststrahlen materials that

exhibit ENZ behavior and nonlinear properties.

In natural media, ENZ behavior occurs at the plasma fre-

quency—the frequency at which the real part of a material’s

dielectric constant crosses zero. Plasma frequencies in the

ultraviolet and visible ranges are typical for metals, while

heavily doped semiconductors or oxides such as ITO show

zero-crossing frequencies in the near-infrared. Moreover, ENZ

may be synthesized at virtually any frequency with properly

designed metamaterials, using sub-wavelength arrangements

of plasmonic resonators or using guided modes and operating

near the cutoff frequency. Many optical effects and potential

applications arising from ENZ behavior have been proposed or

demonstrated including optical tunneling,14–16 phase pattern-

ing,17 directional emission,18 perfect absorption,19,20 dielectric

sensing,21 guided index lensing,22 enhanced emission,23–25 op-

tical cloaking,26 strong coupling phenomena,27–29 optical mod-

ulation,30,31 thermo-photovoltaics,32 and enhanced optical

nonlinearities.33–35

Bulk plasmon modes (which occur at the ENZ fre-

quency) in infinite homogeneous media are longitudinal in

nature and cannot interact with transverse electromagnetic

fields. However, in ultrathin plasmonic materials, an external

plane wave may couple to the volume plasmon.36 When this

coupling is achieved to the left of the light line, the volume

plasmon polariton mode is sometimes referred to as the

Berreman mode,13 to which one can couple directly from

free space. When this coupling is achieved to the right of the

light line, the volume plasmon polariton mode is sometimes

referred to as the epsilon-near-zero mode.13 Under the right
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conditions, an external plane wave can be coupled to the

ENZ mode and completely absorbed in a deeply sub-

wavelength film.20 For thin-film configurations that exhibit

low reflectivity near the ENZ frequency, the continuity of

the normal component of the electric displacement necessar-

ily requires the existence of a large electric field immediately

inside the film.37 However, such low reflectivity can only be

achieved through excitation of a thin film resonance, which

in the present case is the ENZ mode. This field enhancement

can, in turn, lead to substantial increases in nonlinear optical

processes such as harmonic generation which depend super-

linearly on the field amplitude at the fundamental frequency

(FF). This concept has been proposed theoretically as a sim-

ple and effective way to enhance second and third harmonic

generation in ENZ slabs illuminated by p-polarized light at

oblique incidence in a symmetric substrate/superstrate con-

figuration.33 In this work, we propose and experimentally

demonstrate an approach to strengthen the coupling to the

ENZ mode and further increase the nonlinear response. In

particular, we show that excitation of the ENZ mode under

total reflection conditions (i.e., above the glass/air critical

angle) enhances the reflected third harmonic generation by

two orders of magnitude due to ENZ field enhancement.

Note that, although the structure in Ref. 13 is different from

the one employed in this work (metal substrate in Ref. 13

and glass in the present work), many of the important proper-

ties of the ENZ modes are similar for the two configurations.

The ENZ sample utilized in this study was purchased

from Delta Technologies and consists of a 33 nm thick ITO

layer deposited on alumino-silicate glass (Fig. 1(a)). In the fre-

quency ranges investigated, ITO has a moderately large third

order susceptibility, which is comparable to that of Si or GaAs.

The origin of the large third order nonlinear susceptibility of

ITO38–40 is due to delocalized electrons with large mobility,

analogous to pi-electrons in polymers.39 Schematics of the

excitation geometry and optical setup are shown in Figs. 1(a)

and 1(b). The dielectric permittivity of the ITO film was deter-

mined from an isotropic Drude model fit to measured ellipsom-

etry data (eITO ¼ e1 �
x2

p

x2þixc with parameters e1 ¼ 4:0824,

x2
p ¼ 7:643� 1030 rad2=s2 (x2

p ¼ 2:1511� 108 cm–2), and

c ¼ 1:239� 1014 rad=s (c ¼ 657:31 cm–1), see Fig. 1(c)), and

the ENZ wavelength is determined to be 1.385 lm

(7220 cm�1). The dielectric permittivity of glass is equal to

2.25. For efficient TH generation, we used the Kretschmann

excitation scheme in order to optimize the coupling to the

ENZ mode. This is necessary because the ENZ mode lies on

the right side of the light line as described in Ref. 13, and the

glass prism index-matched to the glass substrate provides the

required momentum to couple to the ENZ mode. The signature

of efficient coupling to the ENZ mode is the near-perfect

absorption feature of incident p-polarized light at the specific

angle of incidence of 43.7�. The measured absorption (Fig.

1(d)) agrees well with the transfer matrix calculation based on

the fitted dielectric function.

The fundamental pump beam is derived from a femto-

second optical parametric amplifier pumped by a

Ti:Sapphire regenerative amplifier. The pump wavelength

can be tuned in the vicinity of the ENZ wavelength of ITO.

This source delivers an average power of about 6–10 mW

(depending on the wavelength) with a pulse repetition rate of

100 kHz and a typical pulse width of 50 fs FWHM. The

beam was focused with a 75 mm focal length lens to a near

Gaussian spot, with full width at 1/e2 of about 80 lm as

measured using an up-conversion CCD camera. We use a

5 mm prism (matched to the glass substrate) in the

Kretschmann geometry to excite the ENZ mode near the

glass-to-air critical angle. Due to in-plane momentum con-

servation and low dispersion of the prism, the reflected third

harmonic wave emerges nearly collinearly with the

FIG. 1. (a) Schematic picture of the

Kretschmann excitation geometry. (b)

Components of the optical setup for

the TH measurement. The short pass

(SP) filter is a 2 mm thick Schott glass

BG40 filter. (c) Real (blue) and imagi-

nary (red) parts of the permittivity of

the ITO sample versus wavelength. (d)

Measured (solid) and calculated

(dashed) p-polarized absorption profile

at 43.7� versus wavelength.

151103-2 Luk et al. Appl. Phys. Lett. 106, 151103 (2015)
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specularly reflected fundamental wave. The harmonic light is

visible to a dark-adapted naked eye when projected on a white

card. After the fundamental wave is rejected using a 2 mm

thick BG40 filter, the third harmonic radiation is collected by

a lens and focused onto a fiber-coupled imaging spectrometer

equipped with a liquid nitrogen cooled CCD camera. The

inset of Figure 2(a) shows the TH spectrum for the case of a

1.4 lm fundamental wavelength. As expected for a third har-

monic process, the spectrum peaks at �470 nm. Also as

expected for third harmonic generation, the intensity of the

third harmonic output has a pump intensity dependence of

I3:060:15
FF , as shown in Fig. 2(a). To verify that the harmonic

yield depends on the coupling to the ENZ mode, we varied

the incident wavelength and angle, and in all cases the third

harmonic yield declines when the excitation condition devi-

ates from the optimal coupling condition (see Fig. 2(b)). A

mere shift of the pump wavelength by 100 nm from the opti-

mum 1.4 lm to 1.3 lm reduces the TH emission by nearly a

factor of 2. At the maximum average pump power of 6 mW

(pulse peak intensity of 2 � 1010 W/cm2), we obtained 20 nW

of third harmonic, which implies a conversion efficiency of

3.3 � 10�6, an impressive value given the sub-wavelength

dimensions of the ITO layer. The third harmonic efficiency

was also measured in the non-Kretschmann geometry, with

incidence from air onto the ITO films, and was found to be

�200 times smaller than the TH from the Kretschmann geom-

etry (see Fig. 2(c)). Finally, the measurements were repeated

without the ITO sample in place, and we found that the TH

generation from the prism glass only was more than four

orders of magnitude smaller than the ITO contribution.

From a theoretical perspective, the waves radiated at the

TH frequency can be obtained by solving the inhomogene-

ous Helmholtz equation using the nonlinear polarization as

the source term

r�r� ETH � x2
TH=c2eTH � ETH ¼ x2

THl0PTH; (1)

where ETH is the TH electric field, eTH is the relative permit-

tivity tensor at the TH frequency, xTH is the TH angular fre-

quency, and PTH is the TH nonlinear polarization density,

i.e., the source of the TH signal. The solution of this inhomo-

geneous equation can be expressed as the superposition of a

TH free wave that is the solution of the homogeneous wave

equation (assuming PTH¼ 0 in the Helmholtz equation) and

travels at the TH phase and group velocity, and TH bound

waves that are particular solutions related to the presence of

the inhomogeneous term x2
THl0PTH and locked to the pump

field.8,41

The source term appearing in the Helmholtz equation

(1) stems from the nonlinear mixing of the forward and back-

ward pump waves in the ENZ film, which generates four

polarization waves at the third harmonic frequency which

are locked to the fundamental electric fields. Thus, the non-

linear polarization density at the TH frequency is given by

(adapting the results from Bloembergen and Pershan8 to the

case of TH generation)

PTH ¼ ei3kinc
x xe0v

ð3ÞðxTH;xFF;xFF;xFFÞ

�
EþEþEþei3kzzþ
3EþEþE�eikzzþ
3EþE�E�e�ikzzþ
E�E�E�e�i3kzz

2
664

3
775; (2)

where kinc
x is the transverse component of the incident FF

wave-vector at the FF angular frequency xFF, vð3ÞðxTH;
xFF;xFF;xFFÞ is the nonlinear susceptibility tensor, kz is the

longitudinal (z-direction) component of the FF wave-vector in

the ITO film and Eþ=� are the complex amplitudes of the for-

ward (þ) and backward (�) FF waves (see Fig. 3 for a picto-

rial view of these waves). In the undepleted pump

approximation (i.e., the TH generation does not cause pump

depletion), Eþ=� may be found using the linear transfer matrix

technique at the FF. In Eq. (2) we can identify a purely forward

bound wave with wavevector kI ¼ 3kinc
x x̂ þ 3kzẑ and ampli-

tude dependent only on the forward component of the pump

wave and a purely backward wave with wavevector kIV ¼
3kinc

x x̂ � 3kzẑ with amplitude dependent on the backward

component of the pump signal. The other two bound waves

originate from the mixing of the forward and backward pump

waves. Hence, their wavevectors are kII;III ¼ 3kinc
x x̂6kzẑ. The

polarization waves then radiate two homogeneous or free TH

waves that propagate in the forward and backward directions

following the usual Snell’s refraction law in the ITO film.

Interestingly, we find that the four inhomogeneous waves in

Eq. (2) are equally important for the nonlinear interaction

when the ENZ mode is excited, and give similar contributions

to the overall TH generation efficiency.

Solution of the inhomogeneous Helmholtz equation (1)

for the fields radiated at the harmonic frequency8 computed

FIG. 2. (a) IFF intensity dependence of TH yield for a 1.4 lm (7246 cm�1)

incidence wavelength. The inset shows the TH spectrum. (b) The angular de-

pendence of TH yield as a function of incident angle for incidence wave-

lengths of 1.3 lm (red dots) and 1.4 lm (blue dots) at IFF intensity of 1.2 �
1010 W/cm2. The dashed lines are full-wave simulation results for corre-

sponding excitation conditions. Due to the uncertainty of the absolute exper-

imental angle, the theoretical result was shifted by 2�. (c) TH yield versus

angle of incidence of 1.4 lm pump wave for the Kretschmann (blue dots)

and non-Kretschmann (green dots) geometries shown as insets.

151103-3 Luk et al. Appl. Phys. Lett. 106, 151103 (2015)
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via full-wave simulations are shown in Fig. 2(b) as dashed lines

and provide excellent agreement with the experimental results.

In these simulations, we assumed a dispersionless, nonlinear

tensor with only three, equal nonzero terms for frequencies

around the ENZ frequency: vð3Þxxxx ¼ vð3Þyyyy ¼ vð3Þzzzz ¼ v, and

achieved best agreement with the experimental results when

v¼ 3 � 10�21 m2/V2, which is in good agreement with previ-

ous estimations.39 Our choice of nonlinear tensor is valid only

around the ENZ frequency, and is justified by the fact that,

under the monochromatic excitation of the ENZ mode, the

dominant nonlinear polarization component originates from the

tensor element vð3Þzzzz, which couples with the cube of the longitu-

dinal field Ez at the pump frequency. The same assumption was

also made in Ref. 42. In Fig. 4 we show maps of theoretical TH

conversion efficiencies as a function of frequency and angle of

incidence obtained via full-wave simulations. The efficiency is

calculated as gT;R ¼ PT;R
TH =PFF, where PT;R

TH is either the TH

power transmitted to the air side or reflected back to the prism,

and PFF is the input FF power. Both efficiency maps display

peaks near the ENZ crossing point of ITO (�1.385 lm or

7220 cm�1), where pump absorption and field enhancement are

maximized. The peaks also have angular selectivity, showing a

strong maximum close to the glass/air critical angle (�41.8�,
indicated as white dashed lines in the theoretical maps). The

transmitted TH peak just below the critical angle is more than

an order of magnitude smaller than the reflected TH peak a few

degrees above the critical angle. Note that these predictions are

valid when the TH process does not deplete the pump and pro-

vided nonlinear saturation and self-phase modulation effects

are not significant—approximations that are amply justified in

the case under investigation.

To further probe the origin of the enhanced TH genera-

tion we compare the profile and magnitude of the electric field

intensity within the ITO film for both the Kretschmann and

non-Kretschmann excitation geometries. It is known that a

thin plasmonic material supports long and short range surface

plasmon modes.43 As the thickness of the film shrinks into the

deeply sub-wavelength regime, the long range surface plas-

mon mode evolves into the so-called ENZ mode, similar to

the one discussed in Ref. 13. The ENZ mode utilized in the

present work differs somewhat from that of Ref. 13, due to the

difference in the substrate (metal in Ref. 13 and glass in

the present work), but many of the important properties of the

ENZ modes are similar for the two configurations. Figures

5(a) and 5(b) show the longitudinal electric field intensity

(i.e., jEzj2) obtained from finite-difference time-domain

(FDTD) simulation44 as a function of wavelength for an inci-

dence angle of 43.7� for the Kretschmann (Fig. 5(a)) and non-

Kretschmann (Fig. 5(b)) excitation schemes (the transverse

electric field intensity is negligible). Enhancement of the in-

tensity within the film is clearly seen near the ENZ wave-

length for both configurations. However, the field intensity is

almost six times larger for the Kretschmann scheme, due to its

ability to couple to the ENZ mode, which lies to the right of

the light line. Since the TH emission scales roughly as the

intensity cubed, this observation is consistent with our experi-

mental observation of �200 times larger TH from the

Kretschmann geometry. Further, we note that the field inten-

sity is nearly constant across the ITO film, in agreement with

what is expected for an ENZ mode.13

FIG. 3. (a) FF waves, (b) bound TH waves, and (c) free TH waves in the

input medium, ITO film, and output medium. In (b), the arrows labeled with

roman numbers correspond to the bound, inhomogeneous TH sources in Eq.

(2). In (c), the blue solid arrows represent the free, homogeneous TH

components.

FIG. 4. (a) Reflected TH efficiency versus frequency and angle of incidence

from full-wave simulations. (b) As in (a), for the transmitted TH efficiency.

The dashed white lines indicate the critical angle of 41.8�.

FIG. 5. (a) Spatial and wavelength

dependence of jEzj2 at an angle of inci-

dence of 43.7� for the Kretschmann

geometry. (b) As in (a), but with the

incident wave from the air side.

151103-4 Luk et al. Appl. Phys. Lett. 106, 151103 (2015)
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In conclusion, we have demonstrated that efficient TH

generation can be achieved with ultrathin ITO films by cou-

pling the pump wave to the ENZ mode of the thin film.

Exploiting the field enhancement effect resulting from effi-

cient coupling to the ENZ mode through the Kretschmann

geometry, the TH yield is more than 200 times larger than

when the pump wave is incident from air in the non-

Kretschmann geometry, and more than 10 000 times larger

when only the glass prism is present (i.e., no ITO nanolayer).

Because the ENZ wavelength is very sensitive to the electron

density, the potential exists for active tuning via electrical

modulation. Furthermore, the extremely small length scales

involved render the need for phase matching irrelevant.33,45

Since the conditions used in this paper can be easily met in

other plasmonic and low-loss reststrahlen materials, these

results provide a general method for harmonic conversion

for infrared and ultraviolet radiation in deeply sub-

wavelength environments.
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