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The functional anatomy of the reticular formation (RF) encompasses a constellation
of brain regions which are reciprocally connected to sub-serve a variety of functions.
Recent evidence indicates that neuronal degeneration within one of these regions
spreads synaptically along brainstem circuitries. This is exemplified by the recruitment of
various brainstem reticular nuclei in specific Parkinson’s disease (PD) phenotypes, and by
retrospective analysis of lethargic post-encephalitic parkinsonism. In fact, the spreading
to various monoamine reticular nuclei can be associated with occurrence of specific
motor and non-motor symptoms (NMS). This led to re-consider PD as a brainstem
monoamine disorder (BMD). This definition surpasses the anatomy of meso-striatal
motor control to include a variety of non-motor domains. This concept clearly emerges
from the quite specific clinical-anatomical correlation which can be drawn in specific
paradigms of PD genotypes. Therefore, this review article focuses on the genetics and
neuroanatomy of three PD genotypes/phenotypes which can be selected as prototype
paradigms for a differential recruitment of the RF leading to differential occurrence of
NMS: (i) Parkin-PD, where NMS are rarely reported; (ii) LRRK2-PD and slight SNC point
mutations, where the prevalence of NMS resembles idiopathic PD; (iii) Severe SNCA
point mutations and multiplications, where NMS are highly represented.

Keywords: Parkinson’s disease, non-motor symptoms, pyramidal syndrome, genetic Parkinsonism, genotype-
phenotype correlation

INTRODUCTION

In the process of re-defining Parkinson’s disease (PD) a task force is working on various symptoms
which, despite being unrelated to the extra-pyramidal motor system, are now considered as
fundamental features of PD (Poewe, 2008; Fornai and Ruggieri, 2013; Marras and Chaudhuri, 2016;
Wei et al., 2016). Although most cardinal symptoms of PD involve the extra-pyramidal motor
system, an in depth knowledge of PD patients led to describe a variety of non-motor alterations
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as well as pyramidal motor dysfunctions which are presently
under intense scrutiny (Li et al., 2010; Fornai and Ruggieri, 2013;
Fornai et al., 2013; Natale et al., 2013; Xu et al., 2015; Zou et al.,
2016). In fact, the occurrence of these symptoms may be helpful
to discern between various PD genotypes/phenotypes, while it
provides new vistas on the variety of brainstem reticular nuclei,
which may or may not, be recruited during the disease course
(Chao et al., 2015). Despite being missed out for a long time or
being considered as an unexpected complication of a pure extra-
pyramidalmotor disorder, non-motor symptoms (NMS) are now
a fundamental feature of PD. At the same time NMS provides
an unusual perspective to elucidate the anatomical network
sub-serving a brainstem monoamine disorder (BMD) which is
the anatomical core of PD. In PD, NMS are often present during
the disease course (Chaudhuri et al., 2006; Li et al., 2010; Bonnet
et al., 2012; Chege and McColl, 2014; Bastide et al., 2015; Gao
et al., 2015). In fact, brain areas, which control extra-pyramidal
motor systems concomitantly, affect other neurological and
psychiatric domains. This is evident when examining several
reticular brainstem nuclei, whose functions affect both extra-
pyramidal motor circuitries and a variety of non-motor domains
during the neuropathology of sporadic PD (S-PD; Fornai and
Ruggieri, 2013). Within these sub-cortical regions a variety
of activities beyond extra-pyramidal motor control take place,
which explains why non-motor alterations should be expected
to occur rather than being unusual in most PD patients. In

a recent article, we emphasized such a concept focusing on
the involvement of a number of brainstem monoamine nuclei
(Fornai and Ruggieri, 2013). In this analysis, we proposed the
definition of BMD as more balanced to define the neuroanatomy
of PD. In fact, a constellation of nuclei belonging to the brainstem
reticular formation (BRF), are affected at various disease/stage
severity. There is an appreciable site-specificity, which connects
neuroanatomy with the onset of NMS and this works as a general
model to build a clinical anatomical correlation within various
PD syndromes. Within this context, progress in neurogenetics
provided a powerful tool to improve PD nosography since
specific gene/protein alterations connect quite specifically with
clusters of both motor and NMS, which in turn, are related to
a damage in quite selective brain areas. This configures PD as
a spectrum of brainstem disorders which ranges between the
occurrence of solely extra-pyramidal motor symptoms, up to
the coexistence of pyramidal, extra-pyramidal symptoms along
with NMS. Remarkably, a deep insight in the genetics of PD,
along with the progressive awareness of NMS in PD, provided
two key elements, which fostered the need to re-define PD itself.
This is listed in the form of three paradigms shown in Figure 1
as PD due to mutations in three different loci (Parkin; LRRK2;
SNCA). Similarly, Figure 2 shows the anatomy of the BRF and
highlights those reticular nuclei which are often recruited in
each paradigm of PD (Parkin; LRRK2; SNCA). When combining
Figures 1, 2, one may get a general correlation between PD

FIGURE 1 | Non-motor symptoms (NMS) and paradigms of genetic Parkinson’s disease (PD). This image shows the frequencies of each NMS (depression,
anxiety, hallucination, dementia, autonomic dysfunction, sleep disorders) for Parkinsonism related to Parkin, LRRK2, SNCA point mutation (SNCAp), SNCA
duplication (SNCAd), SNCA triplication or homozygote duplication (SNCAt). Image adapted from tables reported in Chaudhuri et al. (2015).
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FIGURE 2 | The chemical neuroanatomy of the brainstem reticular formation (BRF) and its involvement in specific PD paradigms. This cartoon offers a
schematic description of those brainstem areas properly belonging to the reticular formation (RF), which may be the key in PD pathology, as well as their selective
recruitment in the three PD paradigms taken into account. In the upper part is shown the constellation of the RF nuclei following a neurotransmitter chemical
classification. The isodendritic morphology of the neurons composing the RF nuclei, configures them as crucial stations of both afferent and efferent projections
descending and projecting up to the cortex and spinal cord (SC). This network of overlapping connections is involved in a plenty of either extrapyramidal motor and
non-motor functions. The major monoamine containing areas, mainly localized in the lateral RF except from C3, are the noradrenergic (A1–A7) adrenergic (C1–C3)
dopaminergic (A8–A10) and cholinergic (Ch5–Ch6) nuclei. These are crucial for respiratory activity and for regulating blood pressure and heart rate, micturition,
sweat, sleep-wakink cycle as well as descending motor control. Serotonergic nuclei are found in the median RF raphe nuclei, mainly in the B3, B8 and B9 areas.
They control vegetative functions such as mood, sleep and sexual behavior, depression and pain. The medial RF, found between the median and the lateral column,
is a region lacking monoamine nuclei, but whose giganto-cellular and paramedianpontine nuclei act as a station for fibers connecting with monoamine regions such
as A6 (LC) and Ch6. They are involved in voluntary movement regulation, as well as in optical, acoustic and olfactory control due to their connections respectively, to
the spinal cord and to the main cranial nerves’ nuclei. In the second part of the figure, it is shown how a progressive and selective anatomic recruitment of such
nuclei may be phenotypically and genotypically related to specific PD subtypes. (A) Parkin PD—Impairment of ventral SNpc (A9), mild impairment of LC (A6) leading
to solely motor symptoms. A minimal alteration of the dorsal raphe nucleus (B8–9) may lead to apathia or anhedonia. DMV is affected as well, which may lead to a
partial impairment of the overlapping C2/A2 area controlling the parasympathetic outflow. (B) LRRK2 and slighter SNCA point mutations—Featuring the typical PD
motor symptoms, along with the presence of sleep disorders, depression and dementia which are here related with a more extended involvement of monoamine
nuclei of the lateral RF as well as of the median raphe nuclei. (C) Severe SNCA point mutations and large gene rearrangements—They present as a predominance of
non-motor autonomic, psychotic and cognitive symptoms relying on the massive involvement of rostral and caudal areas of the RF extending above and beyond the
brainstem.
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genotype, the occurrence of specific NMS, and the recruitment
of specific brainstem reticular nuclei. For instance, Parkin disease
represents an almost pure extra-pyramidal motor disorder. This
is well described by Doherty et al. (2013) showing the paucity
of symptoms (Figure 1) and affected brain areas (Figure 2),
limited to the substantia nigra pars compacta (SNpc) dorsal tier,
locus coeruleus (LC) and dorsal motor nucleus of the vagus.
Conversely, the specific point mutation p.G51D in the SNCA
gene (Lesage et al., 2013) or multiplications of SNCA gene itself
leads to a plethora of non-motor alterations (Figure 1). In this
latter SNCA-dependent syndrome, motor alterations surpass the
extra-pyramidal circuitry featuring also a pyramidal disorder
with fatal prognosis (Mutez et al., 2011; Chen et al., 2015;
Kiely et al., 2015). The p.G51D mutation additionally shifts
the disease towards multiple system atrophy (MSA). The great
amount of NMS shown in Figure 1 is consistent with massive
recruitment of brainstem nuclei shown in Figure 2. Roughly,
in the middle of these extremes we describe most LRRK2-
associated PD, which features extra-pyramidal motor symptoms
along with some NMS (Zimprich et al., 2004). This resembles
most SNCA point mutations but p.G51D, as well as S-PD patients
(Figure 1).

THE CASE OF PARKIN DISEASE

The Parkin gene (OMIM 602544), codes for a protein called
Parkin, a E3 ubiquitin-ligase, which tags altered proteins by
ubiquitin chains (Hristova et al., 2009; Yoshii et al., 2011).
The loss of function of parkin activity leads to a restricted
pathology of the mesencephalic RF (SNpc; Takahashi et al.,
1994), which is affected only in the ventral tier (Doherty
et al., 2013). This is quite odd in PD since we are now aware
that in most PD cases the pontine nucleus of LC (A6) is
massively affected and represents a hallmark for pathological
diagnosis (Braak et al., 2000; Dickson, 2012). Mutations in
Parkin produce autosomic recessive (AR) parkinsonism with
early onset. Alterations are spread over the entire gene and
include deletions and duplications of one or more exons in
more than 50% of cases (Matsumine et al., 1997; Kitada et al.,
1998; Abbas et al., 1999; Labandeira-Garcia et al., 2011). Motor
symptoms of PD patients with two Parkin mutations present
with classic parkinsonism, slow disease progression and more
symmetrical onset, with fewer NMS than classic PD (Lesage and
Brice, 2009; Lohmann et al., 2009; Kasten et al., 2010), supporting
the concept of limited pathology (Kägi et al., 2010). In line with
this, the frequency of dementia in Parkin mutations matches
the frequency of the general population above the age of 65
(Khan et al., 2003; Macedo et al., 2009; Xu et al., 2012). Even
psychiatric symptoms are almost absent (Lohmann et al., 2009;
Alcalay et al., 2014). These observations may be unexpected since
the occurrence of psychiatric disorders PD patients is connected
with dopamine (DA)-induced motor fluctuations. Indeed, these
patients undergo DA-dependent motor fluctuations early in their
life, nonetheless these motor fluctuations do not contaminate
the psychiatric domain. This evidence is critical to understand
the neurobiology of DA-dependent psychiatric disorders. The
occurrence of fluctuations in response to DA replacement

therapy is concomitant with a massive loss of DA axons
(Lohmann et al., 2009). Thus, the DA replacement therapy
generates peaks and valleys of extracellular DA concentrations,
which trigger a non-canonical transduction pathway within
post-synaptic neurons (Gerfen, 2006; Biagioni et al., 2009).
When the DA axons are present, the DA substitution therapy
does not generate fluctuations. In fact, the excess of DA
concentrations is quickly buffered by the powerful uptake from
surrounding DA terminals via the DA transporter (DAT). In
PARK2 patients, the loss of DA selectively occurs in the dorsal
striatum which produces motor fluctuations only consistent
with the loss of ventral tier of the SNpc. In contrast, the
meso-limbic DA rising from the reticular nucleus of ventral
tegmental area (VTA) pathways is spared preserving DA
fluctuations in the ventral striatum and brain areas, which are
key for psychopathology. Other psychiatric symptoms such as
depression, panic, and anxiety are absent as well, which is
likely to depend on sparing 5-hydroxytryptamine (5-HT) and
the NA neurons of the RF (Figure 2; Fornai et al., 2013).
In fact, depressive symptoms in PD as a whole syndrome,
or a few items such as apathy or anhedonia, are likely to
rely on degeneration of reticular 5-HT dorsal raphe nucleus
and/or NA LC nucleus (Politis and Loane, 2011). Interestingly,
although PINK1mutation carriers are clinically indistinguishable
from Parkin mutation carriers, frequency of depression is
higher in PINK1 carriers, calling for more detailed anatomical
comparisons between these two diseases (Schneider and Klein,
2010; Ricciardi et al., 2014; Chaudhuri et al., 2015). Autonomic
dysfunction often relies on medullary A1, A2 and C1 and
C2 noradrenergic and adrenergic neurons, respectively, which
provide the descending fibers to preganglionic sympathetic
neurons (Figure 2). The absence of disease spreading caudally
may explain the preservation of blood pressure, micturition,
sweating and other autonomic functions in PARK2 patients
(Palma and Kaufmann, 2014). This is further explained by
the lack of involvement of post-ganglionic ortho-sympathetic
neurons, which otherwise degenerate in most PD cases. The lack
of upstream disease progression and preservation of cholinergic
and noradrenergic ascending reticular pathways as shown in
Figure 2 may explain why cognitive dysfunction and sleep
disorders are absent in these patients. As reported for PINK1 and
DJ-1, these PD patients show a largely preserved sense of smell,
adding evidence to the observations that autosomal dominant
forms of monogenic parkinsonism exhibit more severe olfactory
impairment than the recessive ones (Yoritaka et al., 2011).
Only in a few cases slight psychiatric symptoms may occur in
Parkin PD patients (Cooney and Stacy, 2016; Lynch and Fujioka,
2016).

LRRK2 MUTATIONS

Mutations of the LRRK2 gene (leucine-rich repeat kinase 2,
OMIM 609007) is considered the most common genetic cause
of late-onset, autosomal-dominant (AD) familial PD (PARK8;
Paisán-Ruíz et al., 2004). The gene codes for a member of the
leucine-rich repeat kinase family, widely expressed in isocortex,
striatum, cerebellum, BRF and hippocampus (Sweet et al., 2015).
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Several LRRK2 mutations have been reported so far. These
genotypes differently affect the amount of catecholamine nuclei
of the BRF, and produce various NMS patterns (Vitte et al., 2010).
LRRK2 overlaps with alpha-synuclein pathology in the BRF,
where deposition of LRRK2 appears to anticipate alpha-synuclein
pathology (Alegre-Abarrategui et al., 2008). This makes the
involvement of brainstem reticular nuclei in LRRK2 PD closely
resembling point SNCAmutations and idiopathic PD.

In fact, clinical data support that in LRKK2 patients the
prevalence of NMS is similar to idiopatic PD (i-PD; Estanga et al.,
2014; Gaig et al., 2014).

Depression is quite common and can affect up to 40% of
individuals with LRRK2 mutations (Chaudhuri et al., 2006;
Langston, 2006; Schrag and Schott, 2006; Shanker et al., 2011;
Gaig et al., 2014; Pont-Sunyer et al., 2015). Similarly, REM
sleep behavioral disorder (RBD) is quite frequent (Trinh et al.,
2014). This suggests a recruitment of ascending reticular nuclei
extending beyond the SNpc. In fact, just like idiopathic PD,
LRRK2 involves the substantia nigra and LC (Vitte et al., 2010).

The occurrence of dementia in 17% of LRKK2 patients
is lower than i-PD (Aarsland and Kurz, 2010). This appears
to rely on altered synaptic activity within hippocampus.
Supporting this concept, transgenic mice expressing p.G2019S
LRRK2mutations show altered long-term depression (LTD) with
potential impairment of learning and memory as shown in PD
patients carrying LRRK2 mutations (Shanker et al., 2011; Sweet
et al., 2015). Olfactory functions is preserved in PD patients
carrying the LRRK2 mutations which is confirmed in preclinical
models where mice expressing p.R1441C LRKK2 mutations
exhibit normal olfactory function (Tsika et al., 2014). These
latter findings may be in contradiction with the classic Braak
staging of PD. Nonetheless, the brainstem progression involves
monoamine containing nuclei of the RF and starts from the
dorsal nucleus of the vagus and nucleus solitarius (Kingsbury
et al., 2010). According to Figure 2 this area corresponds roughly
to the A2/C2 catecholamine region of the medulla. The cortical
pathology is independent from the recruitment of the brainstem
and so would be the olfactory allocortex including the olfactory
bulb.

SLIGHT AND SEVERE SNCA POINT
MUTATIONS AND MULTIPLICATIONS

The SNCA gene (alpha-synuclein, OMIM 163890) was the first
gene to be associated with familial parkinsonism (Houlden
and Singleton, 2012). This gene codes for the protein alpha-
synuclein which is altered in both familial PD (F-PD) and S-PD
(Oczkowska et al., 2013). Both point mutations (PARK1) and
gene multiplications (PARK4), have been reported to produce
PD with different age at onset, penetrance and clinical motor
and non-motor features (Singleton et al., 2003; Puschmann et al.,
2009; Kiely et al., 2013).

SNCA Multiplications
Triplication carriers have disease onset about 10 years earlier and
amore rapid disease course than duplication carriers, who overall
closely resemble i-PD patients, while higher clinical variability

has been reported for different point mutations (Miller et al.,
2004; Ferese et al., 2015). NMS are constantly present in all SNCA
patients. Remarkably, those patients carrying four copies of
SNCA undergo a severe phenotype of PD that leads to death in a
few years from diagnosis. These patients possess early onset sleep
disorders, autonomic dysfunction, and psychotic episodes, with
massive involvement of the BRF (Figure 2). This is evidenced
by a massive deposition of alpha- synuclein oligomers in the
BRF (Roberts et al., 2015). These oligomers are made up of
prion-like partially proteinase-K resistant alpha-synuclein just
like oligomers in the brainstem of PD patients. These patients
show rapid cognitive and motor deterioration which surpasses
the extrapyramidal circuitry affecting the corticospinal pathway
as evidenced by a pyramidal syndrome which adds on the
extrapyramidal movement disorder which is the main cause of
death in these patients (Singleton et al., 2003; Ferese et al., 2015).
These latter syndromes indicate that neuronal degeneration
recruits brain areas above the brainstem level extending well
beyond the classic neuropathology described by Tretiakoff in
1919 (Parent and Parent, 2010).

SNCA Duplication
SNCA duplications lead to various NMS (dysautonomia, RBD,
hallucinations, depression; Konno et al., 2016) albeit with lower
prevalence compared with carriers of four SNCA copies, but
still higher compared with i-PD. SNCA duplication shows an
incomplete penetrance in some carriers and, interestingly, NMS
are reported in both healthy people and PD patients carrying
this kind of mutation. Such carriers are reported to show an
impairment of reward learning, suggesting that a copy number
variation of the SNCA gene may be associated with NMS
(especially selective learning impairment) more than producing
classic motor parkinsonism (Kéri et al., 2010). In contrast,
olfactory dysfunction and RBD are observed only in symptomatic
carriers (Nishioka et al., 2009).

SNCA Point Mutations
High clinical variability has been reported in SNCA point
mutations, where NMS are less frequent if compared with
SNCA multiplications, and dementia is also less frequent when
compared with i-PD patients (Aarsland et al., 2005; Aarsland
and Kurz, 2010). NMS features are variably associated with
different point mutations. p.A53T and p.A30P are reported to
correlate with dementia (Puschmann et al., 2009), p.E46K with
dementia and visual hallucinations (Zarranz et al., 2004), and
p.G209Awith olfactory dysfunction and RBD. In G209A carriers,
prominent motor decline and deterioration of autonomic and
cognitive function occur.

Remarkably, the point mutation p.G51D leads to a rapidly
evolving syndrome. In this case, despite no gene multiplication
occurs, there is a widespread neuropathology that, similarly to
patients carrying four SNCA copies, leads to the involvement
of the pyramidal tract. Even in this case, the cortico-spinal
degeneration is the main cause of death with a clinical course and
neuropathology which surpasses PD and features MSA, where a
plethora of NMS and massive areas in the brainstem are affected
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to extend rostrally to the prosencephalon and caudally to the
spinal cord (Lesage et al., 2013; Kiely et al., 2015).

CONCLUSIONS

The occurrence of both motor NMS in most cases of PD is
now well established. This is related to the engagement of a
constellation of brain areas mostly located in the core of the
BRF. The severity and variety of motor symptoms and mostly
the various occurrence of NMS produce different PD syndromes,
which appear more and more as a variety of diseases. This is
substantiated by the number of genetic alterations, which may
produce PD, and it is confirmed by the variety brain nuclei which
may be involved. The present manuscript suggests a clinical
anatomical correlation based on different genetic alterations
which produce PD. These genetic conditions were used as
paradigms for a clear-cut separation of different PD syndromes.
The various involvement of brainstem reticular nuclei in these
three paradigms was discussed.

Evidence was provided that the onset of an almost pure
extrapyramidal syndrome due to a Parkin mutation was related
to a quite unusual pathology mostly confined to the ventral
tier of the SNpc. On the other hand, the multiplications of
the SNCA genes and the p.G51D SNCA point mutation were
related to the most severe phenotype in which a plethora of
NMS (psychotic and mood disorder, sleep disorder, cognitive
alterations, autonomic dysfunctions) were associated with a
massive involvement of several nuclei of the BRF. Remarkably
the most severe condition (point mutation p.G51D is definitely
considered as MSA rather than PD). In the middle of these
paradigms, we described the clinical anatomical correlation
in the case of most LRRK2 mutation and SNCA point
mutation, which resembles S-PD. An interesting correlation
was evident between specific NMS and specific brainstem

reticular nuclei. This is quite remarkable for anxiety, mood and
sleep disorders which associate with serotonergic neurons and
lateral reticular noradrenergic nuclei. Similarly, the occurrence
of autonomic dysfunctions witnesses for the involvement of
the bulbar noradrenergic and adrenergic areas (A1/A2 and
C1/C2, respectively). The impairment of oculo-motor activities
suggests the impairment in the paramedianpontine RF, while the
presence of DA-dependent psychotic symptoms relates with the
involvement of the mesencephalic VTA of the RF which projects
to limbic and iso-cortical regions. In the most severe phenotypes,
the disease surpasses the definition of BMD and configures as a
MSA where the early involvement of the brainstem is expected
to spread quickly to distant brain regions also including the
motor cortex and spinal cord. The spreading of symptoms in the
disease course is likely to rely on the prion-like properties of key
proteins such as alpha-synuclein. The variety of brain areas is
not totally unexpected in the light of the remarkable branching
and collateralization of the iso-dendritic neurons forming the
core of the BRF which represents a powerful stream to drive
physiological and altered synaptic activity.
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