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Abstract    

The estimation of a reliable rock-physics model (RPM) plays a crucial role in reservoir 

characterization studies. In this work we assess different methods in deriving a reliable RPM that 

will be used in conjunction with amplitude versus angle inversion for the characterization of a 

clastic reservoir located in offshore Nile delta. The reservoir zone is located in gas saturated sand 

channels surrounded by shale sequences within a depth interval ranging between 2300 and 2700 m. 

A theoretical and three empirical approaches to derive a RPM are analyzed: the theoretical RPM is 

established using the well-known rock-physics equations valid for granular materials, whereas the 

empirical RPMs are derived using a multi-linear stepwise regression and two non-linear regression 

procedures based on neural networks (NN) and genetic algorithms (GA). A proper calibration and 

validation of the derived RPMs is conducted by using the extensive log suite of four existing wells 

drilled over an area of 100 km2. For the investigated reservoir interval and for the encasing shales 

all the analyzed methods gives a final RPM that is able to reliably predict the elastic attributes (P-

wave, S-wave velocity and density) from the petrophysical properties of interest (porosity, water 

saturation, and shaliness). Among the empirical approaches, the RPM predicted by the multi-linear 

regression is characterized by a prediction capability very similar to the RPMs predicted by the non-

linear GA method, thus demonstrating that in the investigated zone the relation linking the 

petrophysical properties to the elastic attributes can be conveniently described by a multi-linear 

model. Differently the NN method seems to be affected by the overfitting problem that produces a 

RPM with less prediction capability than the RPMs estimated by the other methods. For what 
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concerns the theoretical method it produces a final estimates very similar to those produced by the 

multi-linear regression.  

 

Introduction 

Reservoir characterization studies provide rock property maps for field appraisal, selection of 

optimal well location, and production enhancement (Bosh et al. 2010). Seismic-reflection data are 

often used for reservoir characterization not only for obtaining a geometric description of the main 

subsurface structures but also for estimating properties such as lithologies and fluid contents at the 

target levels. To this end, a rock-physics model (RPM) is often incorporated into a seismic 

inversion scheme, such as amplitude versus angle (AVA) inversion (Mukerji et al.2001; Eidsvik et. 

al 2004; Bosh et al. 2007; Grana and Della Rossa, 2010; Bosch et al. 2015) or full-waveform 

inversion (Bacharach, 2006) to directly derive petrophysical rock properties from pre-stack seismic 

reflection data. This inversion process is usually referred to as the seismic-petrophysical inversion 

(Coléou et al. 2005). 

A RPM is a generic relation (fRPM) that can be expressed as follow: 

    )1(),,,(,, zShSwfDensityVsVp RPM =  

It links petrophysical rock properties (which in case of clastic lithologies typically are porosity - 

φ -, water saturation - Sw - , shale content - Sh -) to elastic attributes (such as P-wave and S-wave 

velocities - Vp, Vs - and density) within the depth level of interest (z). Equation 1 can be based on a 

theoretical model (Avseth et al. 2005; Mavko et al. 2009), or on empirical relation derived from 

available well-log data or core measurements by means of a regression procedure (Mazzotti and 

Zamboni, 2003; Chiappa and Mazzotti, 2009). In the last case, either a linear or a non-linear rock-

physics model can be considered (Han, 1986; Eberhart-Phillips et al. 1989).  

Establishing an appropriate RPM deserves special attention in the case of seismic-petrophysical 

inversion. Many and very different inversion algorithms/approaches have been proposed to derive 

petrophysical rock properties from seismic data. These approaches go from simple deterministic 



3 

 

linear or non-linear inversions, to probabilistic inversions with different assumptions about the prior 

distributions, and to other even more complex inversion algorithms that try to incorporate as many 

prior information (e.g. geostatistical information) and as many experimental data (e.g. joint 

inversion) as possible to better constrain the final results. However, it is evident that any inversion 

method would fail if the RPM has a suboptimal prediction capability. For this reason, the present 

paper focuses on the derivation of a reliable RPM and presents a case history in which four different 

approaches to rock-physics modeling are investigated in the context of a clastic, gas-saturated 

reservoir in offshore Nile Delta. One of the reasons that motivate this study is that, at the best of our 

knowledge, it is not common to find publications in which different approaches to rock physics 

modeling have been discussed and compared based on the same reservoir data.  

The investigated field is located in the offshore Nile delta and covers an area of approximately 

100-km2 in the Abū Qīr bay, off the coast of Alexandria (Egypt). The targets are gas-bearing sands 

at the depth range of 2300-2700 m that pertain to slope-channel systems of Plio-Pleistocene age. 

Layering is typically on the centimeter scale, and the reservoir mainly consists in rather clean-sand 

layers interbedded with laminated non-permeable shales, whereas in localized portions the sand 

bodies are characterized by a lesser amount of limestone and anhydrite that will be excluded from 

the derivation of the rock-physics models.  

We consider three empirical methods and the well-known approach based on the theoretical 

formulas known as Hertz-Mindlin model, Hashin-Strickmann bounds and Gassmann equations, 

valid for granular materials (Mavko et al. 2009). The empirical approaches we consider are a multi-

linear stepwise regression and two non-linear regression procedures driven by neural networks and 

genetic algorithms. We start by introducing the different methods used to derive the theoretical and 

the empirical RPMs. Then, after a brief overview of the geological setting of the investigated area, 

we appraise the estimated RPMs by comparing the actual versus the predicted elastic properties, by 

analyzing the correlation coefficients between the estimated and the actual recorded elastic 

properties and by performing a series of blind tests. Moreover, the RPMs resulting from theoretical 
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and empirical approaches are analyzed in detail to define the benefits and the limits of each method. 

We also discuss the differences between linear and non-linear methods for the specific case under 

examination, and we analyze the possible drawbacks that affect the neural network technique.  

 

A brief introduction to the methods used for deriving the rock-physics models 

In this chapter we briefly describe the empirical and the theoretical methods tested in this study 

to derive the RPMs. For each method we indicate appropriate references to the reader interested in 

additional details. We start with the multi-linear stepwise regression followed by the genetic 

algorithm optimization and the neural network method that have been used in the empirical 

approach. The theoretical approach to the definition of a RPM will be introduced thereafter.  

 

Multi-linear stepwise regression  

Stepwise regression (SR) is a semi-automated process of deriving a linear equation by 

successively adding or removing variables in the regression procedure based solely on the t-

statistics of their estimated coefficients (Draper and Smith 1985). Using the multi-linear SR the 

equation describing the RPM can be written as follows:  
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where the vector EP represents an elastic property (Vp, Vs or density), PP is the vector 

containing a generic petrophysical property (φ,  Sw or Sh) and N is the total number of petrophysical 

properties considered in the regression process. The intercept term (k), the b term that describe the 

depth influence, and the weight of each input petrophysical properties (a) can be determined by 

means of three approaches: forward selection, backward elimination and bidirectional elimination. 

The forward selection approach starts with no variable in the model (i.e. all coefficients a, k and b 

are set to zero) and proceeds forward (adding one variable at a time). The backward elimination 

starts with all potential variables in the model and proceeds backward (removing one variable at a 
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time). The bidirectional elimination, that is the approach used in this study, is essentially a forward 

selection procedure that allows to a selected variable to be eliminated or added at each optimization 

stage. 

 

Genetic algorithm optimization 

Genetic algorithms (GA) are a global stochastic optimization method based on the mechanics of 

natural selection and evolution according to the Darwinian principle of “survival of the fittest” 

(Holland, 1975). In a GA optimization procedure a population of randomly generated individuals, 

which represent candidate solutions to an optimization problem, is evolved toward better solutions 

applying three main genetic operators: selection, cross-over and mutation. More details can be 

found in Mitchell (1996) or Sivanandam and Deepa (2008).  

Following Aleardi (2015), in the RPM estimation we apply a GA optimization to the following 

regression model: 
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that is based on a generalization of classical depth trends (Banchs et al. 2001). The RPM 

described by Equation 3 differs from the RPM considered by step-wise regression (Equation 2) for 

the exponent c that is used to reproduce possible non-linear effects in the relation linking the 

petrophysical properties to the elastic attributes. In this work we apply a GA optimization in which 

a population of 100 individuals is evolved into 50 iterations. The unknown coefficients (k, a, b and 

c) are contained in each individual that is evolved during the GA optimization in which the L2 norm 

between observed and predicted elastic properties defines the error function to be minimized. 

 

Neural Network optimization  

A neural network (NN) is a mathematical algorithm that mimics a central nervous system and 

can be trained to solve both classification problem (i.e. pattern recognition) and prediction problem 
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(i.e. interpolation problems) (Haykin, 1999). According to the type of training used, the NN can be 

classified into two main categories: supervised or unsupervised. An unsupervised NN learns to 

represent particular input patterns in a way that reflects the statistical structure of the overall 

collection of input patterns. In this procedure there are no explicit target outputs associated with 

each input. Conversely a supervised NN corresponds to a problem in which a set of input data and 

their corresponding outputs are available; in this way, the network can attempt to infer the relation 

that links the input and the output. Supervised neural networks provide a convenient framework for 

dealing with strongly nonlinear problems and they can be used to approximate any non-linear and 

continuous function if a sufficient number of input and corresponding output data is available 

(Bishop, 1995). In this work we use a supervised network, thus with the acronym NN we always 

refers to this type of algorithm.  

Among the many different types of NN implementations the one that has found several 

applications in solving geophysical problems is the multilayer feed-forward neural network (Van 

der Baan and Jutten, 2000). The architecture of this network consists of one input layer, one output 

layer, and one or more hidden layers. The nodes (also called neurons) of each layer are connected 

with weights, and the nodes of the hidden layers can consist of non-linear or linear activation 

functions. The NN optimization is essentially a steepest descent algorithm that starts form randomly 

initialized weights that are iteratively adjusted using a technique called back-propagation (Haykin, 

1999).  

If we consider a single hidden layer with K neurons, N  input nodes, and a single output node the 

final RPM given by the network can be written as: 
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Where σh and σo represent the activation functions associated with the K nodes in the hidden 

layer and with the output node, respectively. By comparing Equation 2, 3 and 4 emerges that the 

founding relations at the base of the SR, GA and NN approaches are similar. However, moving 
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from SR to GA and to NN more and more highly non-linear terms are progressively introduced in 

order to describe possible complex relations linking the petrophysical properties to the elastic 

attributes.  

The sigmoid function is the activation function considered in this work. This is a continuously 

differentiable, monotonically increasing function that can be generically written as: 
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Where x is an input vector, b represents the bias that shifts the sigmoid curve to the left or the 

right, and the weight w determines the slope of the sigmoid curve at the midpoint. The coefficients 

b and w for each node are computed such that the L2 norm misfit between actual and predicted data 

is minimized. In this work, the output layer has a single node corresponding to a given elastic 

property, the input layer has 4 nodes (three for the petrophysical properties of interest and one for 

the depth), whereas 15 nodes form the single hidden layer we use. A schematic representation of 

this NN architecture is shown in Figure 1. For a review of neural networks and their geophysical 

applications see van der Baan and Jutten (2000), Poulton (2002) or Saggaf et al. (2003), whereas for 

more specific applications of the NN approach to derive a relation between petrophysical rock-

properties and other attributes (such as seismic velocity, density, quality factors) see for example de 

Roos et al. (2001), Valenti (2009), Leite and Vidal (2011) or Parra et al. (2014).  

 

Figure 1: schematic representation of the NN architecture used in this work. 

 

Theoretical rock-physics model  
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With theoretical rock-physics model (TRPM) we refer to one or more theoretical equations that 

establish a relationship between elastic attributes and petrophysical properties. To this end several 

models exist (e.g. granular media models and inclusion models). An extensive discussion of TRPM 

can be found in Mavko et al. (2009). In this work, following Avseth et al. (2005), we use the Hertz-

Mindlin theory to define the shale and sand dry elastic properties at critical porosity and hydrostatic 

pressure, whereas the Hashin-Strikmann lower bound is used to simulate the compaction effect on 

the dry elastic moduli. The density and bulk modulus of gas and water are defined applying the 

Batzle and Wang equations (Batzle and Wang, 1992) taking into account temperature and pressure 

at the target depth. The properties of gas and water are combined according to the Wood equation 

(Mavko et al. 2009) to derive those of the saturating fluid. Finally, the Gassmann equation is used 

to combine the dry elastic properties of the rock matrix and the bulk modulus of the saturating fluid 

to compute the elastic moduli of the saturated rock. A schematic representation of this work-flow is 

represented in Figure 2. In the Nile delta province a temperature of approximately 60-65 °C 

characterizes the depth interval we investigate (2300-2700 m). This temperature is lower than the 

values of 130 °C at which starts the kaolinite-illite transformation and is also below the value of 75 

°C at which starts the diagenetic transformation from smectite to illite that marks the boundary 

between the mechanical compaction regime and the transitional regime (Goulty and Ramdhan, 

2012). For this reason, we consider a shale formed by a mix of smectite and kaolinte minerals and a 

not-cemented sand totally formed by quartz grains. The elastic moduli of clay minerals forming the 

shales, are highly variable (Avseth et al. 2005) since they are strongly influenced by mineral 

constituents, pore space microstructure, and orientations of clay platelets. Information about these 

variables is rarely available in real cases and thus the setting of reliable values for the elastic 

properties of clay is a very delicate issue when defining and calibrating a RPM. In this work, we 

have first averaged the values for the smectite and kaolinite elastic moduli reported in the literature 

(e.g. Brevik 1996; Mondol et al. 2007; Moyano et al. 2012). Then, the averages we obtained have 



9 

 

been slightly modified to improve the fitting with the observed Vp and Vs values. The principal 

parameters used in defining the theoretical rock-physics model are summarized in Table 1. 

 

Figure 2: Schematic representation of the work-flow used to derive the theoretical RPM. The left 

side operations are used to derive the elastic properties of the dry rock, whereas the right side steps 

model the fluid properties. Then the Gassmann model combines the rock and the fluid properties to 

derive the elastic properties of the saturated rock.  

 

Quartz bulk modulus 37 GPa 

Quartz shear modulus 39 GPa 

Quartz density 2650 Kg/m3 

Clay bulk modulus 13 GPa 

Clay shear modulus 2 GPa 

Clay density 2380 Kg/m3 

Shale critical porosity 70 % 

Sand critical porosity 40 % 

Coordination number 7 

Brine bulk modulus 2.25 GPa 
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Brine density 1045 Kg/m3 

Specific gas density 0.9 

Temperature at the target depth 65 °C 

Table 1: The input parameters used in the definition of the theoretical RPM. 

 

Results 

In this chapter we analyze and comment the RPMs resulting from theoretical (TRPM) and from 

linear (SR) and non-linear (NN and GA) empirical approaches. The well-log data used to calibrate, 

estimate and validate the RPMs pertain to four exploration wells drilled through the reservoir zone 

(sand) and the encasing rocks (shale). The elastic (Vp, Vs, density) and the petrophysical (Sh, Sw, φ) 

properties we consider are derived from formation evaluation analysis of actual well-log 

measurements and have been subjected to an accurate outlier removal procedure. The few and 

localized logged intervals with a not negligible content of limestone and/or anhydrite (higher than 

10%) have been removed from the set of well log data used in the calibration and validation 

processes. In deriving the following RPMs we consider the entire shale content and water saturation 

ranges (from 0% to 100%), whereas the depth interval is limited to the target sands and the encasing 

shales and ranges from 2300 to 2700 m, approximately. This significant depth range allows us to 

consider the depth as an independent variable in the empirical RPMs and to reliably estimate its 

influence on the elastic properties. Therefore, the empirical RPMs can be used to predict the Vp, Vs 

and density values for different depths of the considered reservoir interval. 

Figure 3 shows an example of logged elastic and petrophysical properties for a single well that 

reached the target, gas saturated, sand. Note the finely layered shale-sand sequence and the strong 

decrease of water saturation (increase of gas saturation) and the corresponding decrease of Vp and 

density and increase of Vs that occur at the top of the target gas-sand located at 2450 m depth, 

approximately.  
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Figure 3: Examples of logged elastic properties and calculated petrophysical properties 

pertaining to a well that reached the reservoir rock. The top of the target gas-sand is located at 

2450 m, approximately. From left to right: Vp, Vs, density, water saturation, porosity and shaliness.  

 

A first assessment of the estimated RPMs can be done by comparing the measured elastic 

properties (from well-log), with those properties predicted by including the actual petrophysical 

data in the RPMs. Figure 4 shows this comparison together with the resulting correlation 

coefficients. In Figure 4a, Figure 4b and Figure 4c we show a close-up of only 1000 samples, 

representative of both sand and shale extracted from the entire set of more than 4000 well-log 

samples used in the regression and that yield the correlation coefficients illustrated in Figure 4d, 

Figure 4e and Figure 4f. First of all, we note that independently from the method applied (SR, NN, 

GA or TRPM) the prediction capability of the RPMs decreases passing from density (Figure 4a) to 

Vp (Figure 4b) and to Vs (Figure 4c). Indeed, as it is well known, the relation linking the density to 

the petrophysical properties is simpler than the relations linking these properties to Vp and Vs. The 

higher correlation coefficient obtained for Vp (Figure 4e) with respect to Vs (Figure 4f) can be 

explained by the low performance of the logging tools in measuring the S-velocity, and then the 

lower reliability of the Vs measurements with respect to the Vp and the density ones. For the density 
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the four methods return very high correlation coefficients. Differently, for Vp and, particularly, for 

Vs the NN method yields final estimates with the highest correlation coefficients, whereas slightly 

lower correlation coefficient are obtained by the SR, GA and the TRPM methods. The slightly 

higher correlation coefficients obtained by the empirical methods with respect to the TRPM can be 

easily explained taking into account that the empirical approaches are data-driven procedures, that 

derive the RPM by means of a regression procedure of the actual petrophysical properties and 

elastic attributes. Conversely, the theoretical approach is a data-independent method based on 

equations with general validity. Among the empirical approaches, NN produces a slightly better 

match than SR and GA, whereas the non-linear GA method and the multilinear SR algorithm return 

very similar predictions. In Figure 4c note that the NN method has been the only one that correctly 

fit the measured Vs value in the interval between 270-370 samples, approximately. 
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Figure 4: Comparison between the actual and the predicted elastic properties by the four RPMs. 

Density, Vp and Vs are represented in a), b) and c), respectively. The correlation coefficients 

computed for each approach are shown in d), e) and f) for density, Vp and Vs, respectively. 

  

The main advantage of the SR and GA methods over the NN approach is that they directly 

provide final RPM equations with an easily interpretable rock-physical meaning. Conversely, with 

the NN method we derive a final equation that does not help us to infer anything about the physical 

meaning of the sought relation.   

The SR approach returns the following RPM: 

e) d) f) 

c) 

b) 

a) 
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where the depth (z) is expressed in meters and Sw, φ and Sh in percentage. By comparing 

Equation 6 and 7, it emerges that the intercepts and the coefficients are very similar and, in addition, 

the exponents in Equation 7 are very close to one. These characteristics enable us to conclude that, 

in the specific case under examination, the relations linking the petrophysical to the elastic 

properties are close to be linear. This explains the very similar predictions returned by GA and SR, 

as previously evidenced in commenting Figure 4. Focusing our attention on the coefficients 

associated to the petrophysical variables we note that, as expected, Vp, Vs and density increase as 

the depth increases (the z parameter has always a positive coefficient), and decreases as the porosity 

increases (the φ parameter has always a negative coefficient); the Vp and density increases as the 

water saturation increases because gas is characterized by a lower bulk modulus (and density) than 

water (in Equations 6a, 6c and 7a, 7c, the Sw parameter has a positive coefficient). Conversely, the 

shear modulus is not affected by the saturating fluid and this fact, together with the density decrease 

produced by the increase of hydrocarbon saturation, explains the Vs increase as the water saturation 

decreases (in Equations 6b and 7b, the Sw parameter has a negative coefficient). The negative 

coefficients associated to Sh can be related to the reservoir depth interval we consider (2300-2700 

m), characterized by a mechanical compaction regime. In this depth interval the Vp, Vs and the 

density of shales are lower than those of sands, as confirmed by a direct analysis of the well-log 

data (Figure 3). Finally, by comparing the magnitude of the coefficients, we conclude that the 
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porosity plays the major role in determining the elastic properties, followed by the shale content and 

the water saturation.  

In Figure 5 we represent the so called rock-physics template (RPT) (Avseth et al. 2005). The 

RPT is a cross-plot that shows the influence of each petrophysical property on the elastic attributes 

P-impedance (Ip) and S-impedance (Is). Figure 5a shows the RPT derived from the actual well-log 

data and the associated petrophysical properties. The hydrocarbon trend is also represented. As 

expected, we observe a decrease of Ip and an increase of Is as the water saturation decreases and a 

decrease of both Ip and Is with the increasing of porosity and shale content. These general trends 

are well matched by the RPTs derived from the empirical (Figure 5b, Figure 5c and Figure 5e) and 

the theoretical (Figure 5d) RPMs. As previously discussed, the RPTs estimated by GA and SR are 

very similar, and even in this case the NN method yields a better match with the actual RPT 

computed from actual well-log data. A slightly lower match characterizes the SR and the GA 

estimates and, particularly, the TRPM results. 
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Figure 5: Rock-physic templates showing the influence of each petrophysical parameter on the 

P-impedance (Ip) and S-impedance (Is). Water saturation (Sw), porosity (φ) and shaliness (Sh) are 

represented from left to right.  Part a) refers to the actual well-log data, whereas parts b), c), d) 

and e) refer to the elastic properties predicted by the SR, NN, TRPM and GA methods, respectively. 

In part a) the hydrocarbon trend is indicated by the black arrow.  

 

 

a) 

b) 

c) 

d) 

e) 
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The similarities and differences for each RPM can be better seen by performing a numerical 

analysis that allows for a graphical representation of the derived RPMs. In fact, the RPMs can be 

described as surfaces in a 5D space in which four orthogonal directions correspond to the 

independent variables (φ, Sw, Sh and z), and the fifth orthogonal direction can be either Vp or Vs or 

density. Such 5D surface can be also visualized in a 3D plot in which only two independent 

variables change, while the other two are considered fixed. For example, Figure 6 shows a graphical 

representation of the derived RPM for the Vs parameter as the porosity and shaliness vary while the 

water saturation and depth are kept constant at 50% and 2600 m, respectively. The great similarity 

between the SR and the GA results can be observed by comparing Figure 6a and Figure 6d. In 

addition, we note a fair similarity between the rock-physics models derived by the empirical SR and 

GA methods and the one resulting from the TRPM. All these three RPMs predict similar Vs 

increases with the decreasing of shale content and similar Vs increases as the porosity decreases. 

Conversely, the RPM obtained by the NN method is substantially different from the other ones: it 

shows an un-physical Vs decrease for a shaliness less than 40-50%, approximately. We interpret this 

fact as an overfitting problem that usually affects the NN method (van der Bann and Jutten, 2000). 

Generally speaking, overfitting occurs when a model describes random error or noise instead of the 

underlying relationship linking the input data to the output data. A model that has been overfitted 

will generally have poor predictive performance. This problem can be usually related to the 

architecture of the net used. However, not a unique rule exists to set the NN user-defined 

parameters (such as number of nodes, number of hidden layers or type of activation function). In 

addition neither theorem is able to predict the optimal number of neurons for a specific optimization 

procedure, although as indicated by Huang and Huang (1991) this number should never exceed the 

number of training samples. Usually, the best configuration is found by trial and error, starting with 

a small number of nodes and increase this number until the results does not change with increasing 

the number of neurons. Several methods are devoted to attenuate the overfitting problem, such as 

the early stopping criterion (van der Bann and Jutten, 2000), that has also been applied in this work. 
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However, in this specific case the early stopping criterion alone has not been able to completely 

prevent the overfitting problem. The overfitting associated with the NN method is also visible by 

comparing Figure 5a and Figure 5c, in which we observe that the RPT derived from the NN 

approach tends to reproduce the scatter visible in the RPT derived from the recorded logs. Since we 

have removed the lithological heterogeneities from the set of input data for the calibration and 

validation processes, we opt to ascribe this scatter to inaccurate measurements or to residual noise 

in the well-log data. In Figure 5 we can also appreciate that the theoretical RPM is characterized by 

the smallest scatter among the derived RPMs. 

 

Figure 6: Graphical representations of the rock-physics models derived by step-wise regression, 

neural network, theoretical rock physics model and genetic algorithms are, respectively, shown in 

a), b), c) and d). These surfaces represent the Vs variations as a function of the shale content and 

the porosity, keeping fixed the depth and the water saturation to 2600 m and to 50%, respectively. 

b) a) 

c) d) 
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Figure 7 shows a graphical representation of the derived RPM for the Vp parameter as the 

porosity and water saturation vary while the shaliness and depth are kept constant at 20% and 2600 

m. Also in this case we observe a great similarity between the outcomes derived by the SR, GA and 

the TRPM. The surfaces related to the SR, TRPM and GA clearly show the expected decrease of Vp 

as the porosity and water saturation decreases. As in Figure 6 the results of the NN method show 

complex and often unphysical Vp variations with porosity and water saturation changes. In 

particular, note the unphysical Vp decrease as the water saturation increases that occurs for a 

porosity range between 15% and 18% and the slight Vp increase as the porosity increase that occurs 

for a water saturation range between 80% and 100%. Finally, also note the unphysical Vp variations 

as the water saturation changes occurring for a porosity equal to 25%-30 %. We again interpret 

these unphysical Vp variations as an effect related to the overfitting problem.  
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Figure 7: Graphical representations of the rock-physics models derived by step-wise regression, 

neural network, theoretical rock physics model and genetic algorithms are, respectively, shown in 

a), b), c) and d). These surfaces represent the Vp variations as a function of the water saturation 

and the porosity, keeping fixed the depth and the shaliness to 2600 m and to 20%, respectively. 

 

Finally, if we compare the surface describing the density variations predicted by the four RPMs, 

we observe that a great similarity characterizes the outcomes of the different methods (Figure 8). 

This fact is another demonstration of the nearly linear relation that relates the density to the 

petrophysical rock properties. In this last example also the NN method generate a nearly flat surface 

and density variations that are comparable with those predicted by the other methods. 

a) b) 

c) 
d) 
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Figure 8: Graphical representations of the rock-physics models derived by step-wise regression, 

neural network, theoretical rock physics model and genetic algorithms are, respectively, shown in 

a), b), c) and d). These surfaces represent the density variations as a function of the shaliness and 

the porosity, keeping fixed the depth and the water saturation to 2600 m and to 50%, respectively. 

 

a) b) 

c) d) 
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Figure 9: Results of the blind test. Vp, Vs and density are represented in a), b) and c), 

respectively. The correlation coefficients computed for each approach are shown in d), e) and f) for 

Vp, Vs and density, respectively. 

 

To further assess the applicability and the reliability of the derived RPMs we perform a series of 

blind tests in which the petro-elastic relations expressed by the four RPMs are used to predict the 

elastic properties in a nearby well that was not used in the estimation process of the RPMs (Figure 

9). This well was drilled in the same target area and through geological formations with similar 

characteristics. This test is also aimed at quantifying the prediction capability of each RMP. Figure 

9 shows that, as expected, the prediction capability for each method decrease passing from the 

density (Figure 9a) to Vp (Figure 9b) and, particularly, to Vs (Figure 9c). We also note that, thanks 

to its general validity, the TRPM estimates show very high correlation coefficients with the actual 

a) 

b) 

c) 

d) e) f) 
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data. Conversely, the correlation coefficients associated with the empirical, data-driven, approaches 

are generally decreased with respect to the results obtained in the optimization procedure (see 

Figure 4). This blind test allows us to discuss a fundamental difference between the empirical and 

the theoretical approaches that explains the lower correlation coefficients that characterize all the 

empirical RPMs with respect to the theoretical one. Even if the input set of elastic and petrophysical 

properties, used in defining the rock-physics model, belong to wells drilled through geological 

formations with similar characteristics, the empirical, data-driven, approaches return slightly 

different models depending on the set of input data considered in the prediction procedure. This fact 

can be ascribed to errors and uncertainties that affects the measured elastic properties and to errors 

and approximations made in the formation evaluation analysis to derive the petrophysical 

properties. Differently, the TRPM result, being based on theoretical equations, is totally 

independent from errors and uncertainties in well-log measurements. Moreover, in this blind test the 

NN approach is always characterized by the lowest correlation coefficients, thus confirming that the 

overfitting problem is often associated with a sub-optimal prediction capability.  

Another drawback of the NN method, not investigated here, is related to its local nature. In a NN 

optimization, the weights associated with each neuron are usually randomly initialized and are 

subsequently adjusted using a gradient-based strategy. This demonstrates the importance of a good 

initial model to prevent convergence towards a local minimum in the case of a complex 

multiminima error function. To attenuate this limitation, the NN optimization must be repeated 

many times starting from different initial models, from which the best result will be selected. This 

procedure can be very time consuming in the case of large numbers of training samples. 

Conversely, GA method (or other global search algorithms) circumvents this drawback by 

performing a wide and efficient exploration of the entire model space in a single inversion. These 

derivative-free, stochastic methods ensure that the final result is much less affected by multiple 

minima in the error function and by the choice of the initial model. 
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Conclusions 

We have analyzed the rock-physics models (RPMs) obtained by applying both theoretical and 

empirical approaches. The fair match between the measured and predicted elastic properties and 

between the actual and the predicted RPTs demonstrates the potential of all the considered methods 

to yield final equations that are capable of estimating the elastic properties from a set of input 

petrophysical properties. The density estimates are characterized by very high correlation 

coefficients, whereas lower correlation coefficients characterize the predicted seismic P-wave and 

S-wave velocities. This result can be explained taking into account that the relation linking density 

to the petrophysical parameters is simpler than the relations existing between the petrophysical 

parameters and Vp and Vs. In addition, the lower correlation coefficient observed for the Vs 

estimates might be due to the lower performance of the logging tools in measuring the S-wave 

velocity.  

We have shown that the non-linear GA and the linear SR methods return very similar equations, 

demonstrating that the relations linking the input petrophysical properties to the elastic attributes 

are, in this specific case, close to linear. This fact makes the application of an empirical non-linear 

method useless for the case under examination. However, in more complex geological scenarios the 

linear approach may not be enough to ensure a good match between measured and predicted 

properties. In these cases non-linear methods should be applied.  

Among the non-linear methods we tested, an important limitation of the NN over the GA method 

is the overfitting problem and the difficulty that it is usually encountered in designing the NN 

architecture. Another drawback of the NN method is related to its local nature and to the need of a 

good initial model to prevent convergence towards local minima. A common approach to overcome 

this drawback consists in performing many NN optimizations starting from different initial models, 

and then considering as the final result the model with the minimum prediction error. In the 

particular application described in this work, we think that the main advantage of GA and SR over 
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NN is that they directly provide simple equations characterized by easily interpretable rock-physical 

meanings.  

The blind test evidenced that the high correlation coefficients associated to the NN approach are 

likely related to the well-known overfitting problem. The blind test also demonstrated that the 

TRPM approach, thanks to its general validity, ensures very high prediction capabilities. Such high 

prediction capability and the general validity constitute the main advantages of the theoretical 

approach with respect to the empirical one. However, the very similar relations obtained in this 

specific case by the theoretical rock-physics approach and by the linear step-wise regression make 

the empirical method for deriving the RPM particularly attractive because it is very simple to 

calibrate and to implement. Therefore, the theoretical RPMs may not be necessary when dealing 

with simple geological and lithological contexts as the Plio-Pleistocenic formations in the Nile 

delta.  In these cases the empirical approach to rock-physics modeling can be the fastest way of 

obtaining a model calibration suitable for reservoir characterization. In complex geologic scenarios 

(fractured rocks, non-clastic rocks, overpressured rocks, chemical compaction regimes) multiple 

parameters (e.g. parameters about the pore space microstructure and/or anisotropy parameters) must 

be taken into account and a deeper insight into the geological context are needed to define a RPM 

suitable for reservoir characterization. The consideration of all these variables and their complex 

interrelationships in an optimization procedure could make the empirical approach inapplicable. In 

these cases the theoretical formula could be the only way of obtaining a reliable RPM. It should be 

taken into consideration that the empirical approaches must be intended as strictly target-oriented 

approaches to rock-physics modeling. In other words, the RPM equation derived by applying an 

empirical method must be redefined for each different exploration target. This fact determines that 

the suitability of a RPM derived by an empirical approach is strongly case dependent. On the 

contrary a theoretical RPM is based on equations that offer a continuum-mechanics approximation 

of the elastic, or viscoelastic properties of rocks. Therefore, these theoretical equations should be 

able (in principle) to yield accurate predictions for every situations given that the assumptions made 
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in deriving the theoretical model are verified and being the input parameters to the theoretical 

formula (e.g. the elastic moduli of the mineral constituents and of the saturating fluid) in good 

agreement with the true ones. This is the main difference between the theoretical and the empirical 

approach to rock-physics modeling.  

In conclusion, in the analyzed case, the simplicity of the empirical rock-physics model derived 

by applying multi-linear stepwise regression, and the reliability of the theoretical rock-physics 

equations make the outcome resulting from these two approaches the best candidates to play the 

role of RPM in the following seismic-petrophysical inversion that we performed in the next phase 

of the reservoir characterization study (Aleardi et al. 2016a, 2016b). In particular, the possibility of 

describing the RPM by means of linear equations is particularly useful as it greatly simplifies the 

uncertainty propagation in the inversion. We are aware that the present paper can not constitute a 

complete overview of all the possible geologic scenarios that could be encountered in hydrocarbon 

exploration. However, the different approaches we presented are generally applicable to different 

scenarios and some conclusions we drew, although specifically valid for the analyzed case, could 

reveal to be of practical utility in similar geological contexts. 
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Captions 

 

Figure 1: Schematic representation of the NN architecture used in this work. 

 

Figure 2: Schematic representation of the work-flow used to derive the theoretical RPM. The left 

side operations are used to derive the elastic properties of the dry rock, whereas the right side steps 

model the fluid properties. Then the Gassmann model combines the rock and the fluid properties to 

derive the elastic properties of the saturated rock.  

 

Table 1: The input parameters used in the definition of the theoretical RPM. 

 

Figure 3: Examples of logged elastic properties and calculated petrophysical properties pertaining 

to a well that reached the reservoir rock. The top of the target gas-sand is located at 2450 m, 

approximately. From left to right: Vp, Vs, density, water saturation, porosity and shaliness.  

 

Figure 4: Comparison between the actual and the predicted elastic properties by the four RPMs. 

Density, Vp and Vs are represented in a), b) and c), respectively. The correlation coefficients 

computed for each approach are shown in d), e) and f) for density, Vp and Vs, respectively. 
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Figure 5: Rock-physic templates showing the influence of each petrophysical parameter on the P-

impedance (Ip) and S-impedance (Is). Water saturation (Sw), porosity (φ) and shaliness (Sh) are 

represented from left to right.  Part a) refers to the actual well-log data, whereas parts b), c), d) 

and e) refer to the elastic properties predicted by the SR, NN, TRPM and GA methods, respectively. 

In part a) the hydrocarbon trend is indicated by the black arrow.  

 

Figure 6: Graphical representations of the rock-physics models derived by step-wise regression, 

neural network, theoretical rock physics model and genetic algorithms are, respectively, shown in 

a), b), c) and d). These surfaces represent the Vs variations as a function of the shale content and 

the porosity, keeping fixed the depth and the water saturation to 2600 m and to 50%, respectively. 

 

Figure 7: Graphical representations of the rock-physics models derived by step-wise regression, 

neural network, theoretical rock physics model and genetic algorithms are, respectively, shown in 

a), b), c) and d). These surfaces represent the Vp variations as a function of the water saturation 

and the porosity, keeping fixed the depth and the shaliness to 2600 m and to 20%, respectively. 

 

Figure 8: Graphical representations of the rock-physics models derived by step-wise regression, 

neural network, theoretical rock physics model and genetic algorithms are, respectively, shown in 

a), b), c) and d). These surfaces represent the density variations as a function of the shaliness and 

the porosity, keeping fixed the depth and the water saturation to 2600 m and to 50%, respectively. 

 

Figure 9: Results of the blind test. Vp, Vs and density are represented in a), b) and c), respectively. 

The correlation coefficients computed for each approach are shown in d), e) and f) for Vp, Vs and 

density, respectively. 
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Figures and Tables 

 

Figure 1 
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Figure 2 
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Table 1 

Quartz bulk modulus 37 GPa 

Quartz shear modulus 39 GPa 

Quartz density 2650 Kg/m3 

Clay bulk modulus 13 GPa 

Clay shear modulus 2 GPa 

Clay density 2380 Kg/m3 

Shale critical porosity 70 % 

Sand critical porosity 40 % 

Coordination number 7 

Brine bulk modulus 2.25 GPa 

Brine density 1045 Kg/m3 

Specific gas density 0.9 

Temperature at the target depth 65 °C 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 8 
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Figure 9 
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