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Fixler, Samuel A., Hyporheic Flow Processes within Lamprey (Petromyzon marinus) Redds on 

the Blackledge River, in Marlborough, Connecticut: unpublished honors thesis, Connecticut 

College, New London, Connecticut.  

 

1. Abstract  

The fluvial geomorphic process of hyporheic flow provides critical nutrients and 

dissolved oxygen to macroinvertebrates and eggs within riverbeds through hyporheic exchange. 

Hyporheic flow may operate at similar scales within sea lamprey (Petromyzon marinus) redds. 

Limited documentation exists on the hyporheic processes within lamprey redds. This study 

attempts to measure hyporheic flow using a saline injection syringe and salinity probe to record 

salinity-time curves. The method was applied to several redds on the Blackledge River, 

Marlborough, Connecticut. The second aspect of this study examined the hydraulic properties of 

lamprey redds within a controlled environment in a 0.5 m by 6 m flume at Connecticut College, 

New London, Connecticut. A 50% scale redd was constructed and velocity measurements were 

taken using an acoustic Doppler velocimeter at three different discharges. The salinity syringe 

provided moderate success in measuring the percent change of salinity and decay rate, with the 

strongest correlation at the beginning of the mound, but failed to provide accurate intergranular 

velocity measurements. The results of the flume study indicate strong areas of downwelling and 

upwelling at the pit and mound, respectively. Turbulent kinetic energy (TKE) is highest over the 

mound, indicating different pressures that may induce hyporheic flow through the redd mound. 

Velocity was the slowest downstream of the mound for all three discharges, and mean vertical 

velocity (Vz) values increased then decreased rapidly moving downstream over the mound. 

Although the hyporheic flow was not directly measured, the results reveal that lamprey redds 
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influence localized velocity patterns and create low pressures downstream of the mound, which 

should enhance hyporheic exchange. 

 

Key terms: Hyporheic flow, hyporheic exchange, complexity, scalability, hydraulic conductivity, 

redd, supercritical flow. 
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2. Introduction  

The hyporheic zone is an active region between the surface water of the main channel 

and groundwater. The hyporheic zone is present in all rivers, streams, and creeks and it provides 

vital habitat for macroinvertebrates and fish species that rely on the interstitial spacing between 

the sediment. The exchange between the hyporheic zone and surface water, nutrients, and 

organic matter respond to variations in discharge, bed topography, and porosity (Boutlon et al., 

1998; Brunke and Gonser, 1997). The process of hyporheic flow provides the exchange of 

critical nutrients and dissolved oxygen (DO) to organisms within the bed. The goal of this thesis 

is to examine hyporheic flow at lamprey redds on the Blackledge River in central Connecticut. 

Redds are a nest of eggs created by spawning lamprey, and are used for reproduction and 

breeding.  This will be achieved by surveying water velocities and topography within lamprey 

redds with the objective of learning the manner of hyporheic flow through lamprey redds. This 

study compares hyporheic processes using two different methods. The study involves a field 

portion complimented by a laboratory experiment. The field investigation involves obtaining 

velocity measurements within the hyporheic zone using a salinity injection syringe method. This 

method quantified hyporheic flow by measuring it directly. The laboratory experiment involved 

the creation of an artificial lamprey redd within a recirculating flume. This process measured 

hyporheic flow in a 0.5 m by 6.0 m flume at Connecticut College, New London, Connecticut 

indirectly by measuring velocities above the redd in the surface water to indicate areas of low 

and high pressures where upwelling and downwelling can be correlated to incidences of 

hyporheic flow.  

The artificial redd experiment is hypothesized to create areas of upwelling and 

downwelling in the redd, at the pit and mound, respectively. It is expected that the velocity 
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patterns moving downstream will create an area of low pressure and a wake zone just 

downstream of the mound. The wake zone will force water upstream because of the low pressure 

zone and cause movement through the interstitial spacing in the mound.  The resulting 

movement would signal the presence of hyporheic flow. The expected result of the salinity 

syringe experiment is that the readings will show a percent change in salinity over time, which 

will indicate a decay rate and give insight into the retention and function of hyporheic exchange 

within the redd. The field experiment is predicted to suggest higher levels of salinity readings 

close to the pit and mound injection sites, which would imply the presence of flow moving 

through the redd.  

 

2.1. The Hyporheic Zone 

Downwelling and upwelling from the hyporheic zone play important roles in the function 

of a riverine ecosystem. The downwelling provides 

dissolved oxygen and organic matter to organisms in 

the hyporheic zone, while upwelling delivers stream 

organisms with nutrients. This process is called 

hyporheic exchange and is represented by the water 

volume per time (m3/s) that enters and subsequently 

exits the porous area at the top of the hyporheic zone 

(Trauth et al., 2013). Hyporheic exchange is the flow 

between groundwater and surface flow, hyporheic 

flow and surface water, or the flow between 

groundwater and the hyporheic zone The hyporheic 

This content downloaded from 136.244.136.211 on Tue, 03 May 2016 19:35:57 UTC
All use subject to http://about.jstor.org/terms

Figure 2.1. Illustrates the scale at which the 

hyporheic zone operates, and the various 

progressions within (Boutlon et al., 1998). 
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zone and exchange that occurs at deep pools and following shallow riffles at the pool-riffle stage 

is especially important for fish species like lamprey and salmon that spawn in the interstitial 

spaces in riffle reaches. The hyporheic zone plays an important function both geomorphically 

and ecologically in pool-riffle systems. Unfortunately, management strategies typically overlook 

its importance in favor of fish-level restoration (Boulton et al., 1998; Findlay, 1995). 

 The hyporheic zone hosts different forms of lateral, vertical, and longitudinal movement 

of water through the bed of the channel. The type of movement depends on the morphology of 

the channel. The exchange processes of the hyporheic zone also contain different scales that 

provide different functions like exchange with groundwater or channel flow (Figure 2.1, 2.2, and 

Figure 2.3). 

 

Figure 2.2. Shows a simplified view of hyporheic exchange in relation to surface flow and subsurface flow (Findlay, 

1995). 

This content downloaded from 136.244.136.211 on Tue, 03 May 2016 19:36:41 UTC
All use subject to http://about.jstor.org/terms
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Figure 2.3. The different longitudinal profile scales of hyporheic exchange; boundaries in scales are indicated by 

dashed lines. Three-dimensional hyporheic flow occurs in and out of the diagram. (Buffington and Tonina, 2009). 

 

The aim of this study is to provide new insight into the processes and functions of 

hyporheic flow within lamprey redds. An additional goal of this study is to quantify the 

importance of hyporheic exchange and its biological functions, hopefully providing insight into 

the reason for lamprey redd creation.  
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3. Background 

The hyporheic zone can be altered by many different factors. Different variations in flow 

produced by hydraulic jumps, which is a phenomenon when water travelling at a supercritical 

velocity suddenly slows down to subcritical conditions and causes an abrupt rise in the surface 

height of the water. These jumps typically precede a riffle zone and can change the profile and 

characteristics of the hyporheic zone (Trauth et al., 2013). The trough of a standing wave or 

jump corresponds with the highest streambed pressures, which can result in changes in the 3-D 

hyporheic flow field (Trauth et al., 2013). This interpretation of the hyporheic zone has 

important implications for the hyporheic zone and its relationship to organisms that rely on it. 

 Conditions that limit exchange flow result in groundwater discharge that is 5-20 times 

greater than at the sides of a stream (Storey et al., 2003). This suggests that the impact to 

hyporheic exchange is most noticed at the sides of the system rather than the middle. If a stream 

has been modified for erosion control at the banks, then the potential for hyporheic exchange 

with the adjacent groundwater might be limited because exchange flows tend to be greater at the 

sides than at the center of the channel. In some cases, groundwater discharge inhibits lateral and 

vertical flow in the hyporheic zone at the sides of the channel, but vertical exchange still occurs 

underneath the center of the channel (Storey et al., 2003). In settings that permit exchange flow, 

outwelling and downwelling in the hyporheic zone at the sides of the channel is up to twice that 

of the center of the channel (Storey et al., 2003). These findings have important implications for 

the hyporheic zone because lack of lateral movement and downwelling prevents important 

oxygen and nutrient exchange necessary for microorganism and macroorganisms.  

 Temperate streams can have hydraulic conductivity that can vary up to 40% with 

seasonal variations in water temperature (Storey et al., 2003). These occurrences are a result of 
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the relationship of density and temperature. Hydraulic gradients between upstream and 

downstream riffles can decline by half in the winter, and groundwater discharge can increase by 

a factor of two or more (Storey et al., 2003). These factors can result in a ten to thirtyfold 

reduction in hyporheic exchange in low-gradient, temperate streams during winter (Storey et al., 

2003). The reduction of hyporheic exchange in low-gradient streams, like a pool-riffle system, 

can critically reduce the healthy functioning of the ecosystem. The reduction can also limit the 

developmental ability of gravel-spawning fish, and the abundance of macroorganisms and 

microorganisms. These findings coupled with a modified stream bed can severely diminish the 

rate of hyporheic exchange, especially in a pool-riffle system. In a pool-riffle system that has a 

healthy hyporheic zone, the flow rates can greatly affect the efficiency of the hyporheic zone 

ability to support a healthy trophic network or multiple levels of organisms in the food chain. 

The morphological function of an unhealthy hyporheic zone is poorly understood and so is the 

specific morphological functions of the hyporheic zone itself.  

 Historically, measuring hyporheic-flow conditions involved using tracer fluids, like dyes 

and saline solutions, to characterize hyporheic exchange. However, these sensitivity tracer 

methods at higher base flows causes bias towards only fast and shallow hyporheic exchange 

(Harvey et al., 1996). The current method makes use of tracer models that consider multiple rate 

constants that measure two different rates of both faster exchange with streambed gravel and 

slower exchange with deeper alluvium (Harvey et al., 1996; Castro and Hornberger, 1991). 

These methods help better predict the function of hyporheic exchange in pool-riffle systems. 

There are also computational models that predict different simulated flow patterns with 

variations in channel width, sediment size, stream gradient and other variables. Models and 

tracer particle methods applied to specific channel morphologies will contribute to a better 
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understanding of the geomorphological function and resulting ecological function of hyporheic 

exchange. The next step for methods might be also applying hydrological and biogeochemical 

models that help explain stream ecosystem behavior (Findlay, 1995). Combining 

geomorphological simulations to these models might also add another level of understanding for 

the geomorphological and ecosystem-level importance of hyporheic exchange. 

 The study of the hyporheic zone and the exchange processes it exhibits are important for 

understanding the ecological roles of the organisms within it, and how these organisms react to 

changes in the hyporheic zone. For example, if lateral hyporheic exchange has higher seasonal 

variability than vertical exchange, then the biological community lateral to the stream channel 

will experience higher levels of physiochemical variance than the community beneath (Storey et 

al., 2003). In these conditions microorganisms and macroorganisms with flexible metabolisms 

might be favored in more variable areas of the hyporheic zone (Storey et al., 2003). If the sides 

of the channel experience stronger downwelling and upwelling than the center, then a spatial and 

temporal pattern in the biogeochemical processes may be created because of responses to the 

replenishment of resources (Storey et al., 2003). These conditions might be especially apparent 

in a pool-riffle channel. 

In low channel gradient pool-riffle system there is much more spatial variation in 

sediment size, and as a result hyporheic exchange is expected to be more complex, slower and 

deeper (Buffington and Tonina, 2009; Harvey and Bencala, 1993). Hyporheic exchange in pool-

riffle channels is much more complex because of the unconfined valleys in which they generally 

occur. These channel types generally have much more lateral hyporheic exchange (Buffington 

and Tonina, 2009). Meander bends, divided channels, floodplain bodies, and paleochannels all 

play important roles in promoting hyporheic exchange, which is why the complex network in a 
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pool-riffle system creates more chances for hyporheic exchange (Buffington and Tonina, 2009). 

The pool-riffle system also has widely varying sediment sizes which create opportunities of rapid 

rates of exchange, but the alluvial fines also promote deeper and longer flow paths for hyporheic 

exchange, but less hydraulic conductivity near the surface (Buffington and Tonina, 2009). 

Because of the complex hyporheic patterns a pool-riffle system contains, there is generally a 

longer residence time compared to steeper more confined channels (Buffington and Tonina, 

2009; Kasahara and Wondzell, 2003). 

In comparison, in higher-gradient channels, like cascades and step-pools, one would 

expect a faster and shallower rate of exchange (Buffington and Tonina, 2009). This factor 

corresponds with a pool-riffle system generally having higher abundance and diversity of aquatic 

and riparian organisms (Buffington and Tonina, 2009), illustrating that hyporheic flow most 

likely plays a much more important role in terms of productive habitats in lower gradient 

systems. Pool-riffle systems most likely have the best range of scale of hyporheic exchange, 

especially those that occur in broad alluvial valleys (Buffington and Tonina, 2009).    

The subsurface flow in pool-riffle system has several distinctive characteristics in flow, 

like multiple scales of turbulence and near-bed pressure fluctuations, but the hyporheic exchange 

from this pool-riffle system is most likely minor because a layer of coarser sediment is usually 

found above a layer of finer sand, which most likely would dampen the turbulence induced 

hyporheic flow (Buffington and Tonina, 2009). Thus, hyporheic exchange will vary with the 

spatial variation in sediment type and size (Buffington and Tonina, 2009). Significant sediment 

transport generally only occurs at bankfull flows on pool-riffle channels, thus, locational change 

of hyporheic exchange is limited to these events (Buffington and Tonina, 2009). Therefore, the 

distribution of hyporheic zones is much more steady compared to systems with more varied 
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discharges. The greater percentage of the hyporheic exchange allows for the higher relative 

abundance of hyporheic organisms in a pool-riffle system compared to higher-gradient channels. 

Anthropogenic effects can have significant impacts on channel morphology at multiple 

scales. The influence of anthropogenic modifications can also effect the hyporheic zone at 

multiple scales. The impact of anthropogenic effects on the hyporheic zone, however, has not 

been studied as thoroughly as the effects on bed features.  

 

Figure 3.1.  Anthropogenic impacts that encourage colmation, which is the clogging of sediments in top layer of the 

stream bed (Brunke, 1999; Brunke and Gonser, 1997; Veličković, 2005). 

When a river system is modified by anthropogenic forces that result in increased or 

decreased discharge, the hyporheic zone can be damaged. In a low-gradient stream system, 

hyporheic exchange is only possible with highly permeable materials surrounding the stream 

channel (Storey et al., 2003). Streambed morphology at pool-riffle systems is affected by bank 

erosion controls and large wood (LW). Sediment dynamics are limited by LW and erosion 

controls, subsequently resulting in a small ratio of pool-riffle wavelength to stream width 
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(Montgomery et al., 1995; Trauth et al., 2013). These factors might limit the standing pressure at 

the hydraulic jump, which would result in a smoother hydraulic zone pool-riffle transition with 

fewer hydraulic jumps (Trauth et al., 2013). Increased sediment loads and the effects of pollution 

can drastically effect the hyporheic zone and its inhabitants because of longer residence times 

found in the hyporheic zone. Natural variations in the hyporheic zone are important for 

promoting different levels upwelling and downwelling (Cardenas et al., 2004). However, it is 

important to note that complexity in river morphology is important for fulfilling different 

ecological niches. The different types of river morphology, whether a pool-riffle system or a 

meandering system, satisfy the needs of different organisms. The change in a river system’s 

morphology is what makes it healthy. 

The rate of modification, whether it includes dams, erosion control, or poor habitat 

structures, can cause drastic changes in the rate of sediment deposition in pool-riffle systems 

(Brandt, 2000). Channel morphology and its relationship to the hyporheic zone can certainly 

have negative effects throughout the whole system. It is unclear how important the hyporheic 

zone and the exchange processes that take place are to the health and the ecological function of 

the stream, but a lot of organisms do rely on these processes. Without the nutrient and dissolved 

oxygen (DO) exchange that takes place in the hyporheic zone, it can be assumed that there would 

be an upscaling-trophic-cascade effect on species that rely on these processes (Brunke and 

Gonser, 1997). The failure of organisms at the bottom of the trophic network would cause a 

collapse of the network to the top. Because the hyporheic zone is relatively poorly understood, it 

is difficult to assess the impacts of anthropogenic modification beyond general assumptions, like 

the relationship that bank erosion, hydro-engineering, contamination, and land-use practices have 

on the hyporheic zone’s effectiveness (Figure 3.1). Most of the impacts would be a result of 
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increased sediment transport, which would have an effect on the interstitial spacing between 

gravel particles. The most obvious result of this would be on gravel-spawning fish and 

macroinvertebrates. 

 In pool-riffle channels, the anthropogenic impacts on the hyporheic zone are likely to be 

much greater than in a steeper system. Thus, the impact on gravel-spawning fish species is likely 

to be much greater at this channel type as well. The impact of chemical pollution also has a 

gradual and prolonged effect on the hyporheic zone because of the long residence times it 

exhibits at the pool-riffle level. Long pollution decay time, which is the rate pollution remains in 

a system, would have a negative impact on organisms that rely on the hyporheic zone. The 

impact of eutrophication events is likely to increase as well. Coupled with sediment entrapment, 

the effects on the hyporheic zone can be swift and devastating, and maintaining the hyporheic 

zone would be difficult (Brunke and Gonser, 1997).  The restoration practices that are commonly 

used on rivers mostly involve structure additions for improving fish habitats, but most do not 

take into account the importance of the hyporheic zone. The pool-riffle system, which can have a 

meandering morphology might not contain the necessary structures essential for proper 

hyporheic exchange when anthropogenically altered. Some suggestions for hyporheic zone 

management on pool-riffle channels might be to prevent sediment from reaching interstitial 

spaces, but also to provide a varied range of sediment sizes so different hyporheic conditions can 

exist. 

The hyporheic zone plays a key ecological role in the healthy functioning of a pool-riffle 

channel, and management strategies should involve not just stream connectivity, but hyporheic 

zone and exchange connectivity as well.  However, because the hyporheic zone is difficult to 
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study and is not well understood, there needs to be more research on its geomorphological and 

ecological function before properly implementing better management techniques. 

 

3.1. Biological Interactions  

To better understand the ecological and hydraulic function of the hyporheic zone, it is 

important to gain a better understanding of some species that interact with hyporheic processes. 

The sea lamprey (Petromyzon marinus) and Atlantic salmon (Salmo salar) create a spawning 

nest called a redd. The sea lamprey and Atlantic salmon construct redds by moving cobbles to 

form a pit and mound structure, with the pit upstream from the adjacent cobble mound.  These 

structures are commonly found miles upriver when these two species swim into freshwater to 

spawn.  

 

3.1.1. Sea Lamprey (Petromyzon marinus) 

Sea lamprey are an anadromous fish species that are commonly found along the Atlantic 

coast from Florida to the Gulf of St. Lawrence. Lamprey are a cartilaginous fish without true 

jaws, and instead have a large circular mouth with rows of teeth. A lamprey’s mouth provides 

powerful suction when attaching to prey and constructing their spawning redds in freshwater.  

When spawning in freshwater the lamprey loses its ability to see, so it relies on its other senses 

during this period. Lamprey redds consist of a pit and mound; the mound is constructed when the 

lamprey suctions cobble sized rocks into a pile (Figure 3.2 and Figure 3.3). The pit is a result of 

the excavation of cobbles to build the mound. When the lamprey eggs hatch, they rely on the 

interstitial spaces in the mound for protection, oxygen, and nutrients. These requirements are 

transported into the mound by hyporheic flow into the redd. 
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Figure 3.2. A sea lamprey spawning on the Blackledge River in Connecticut. (Photo by D. Thompson). 

 

Figure 3.3. A lamprey redd (Photo by G. Susac, OASIS). 
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3.1.2. Atlantic salmon (Salmo salar) 

Atlantic salmon are an endangered, anadromous fish species found in Down-east Maine 

to the south of Greenland to Europe and Iceland. In the United States, Atlantic salmon are only 

found on the Dennys River, East Machias River, Machias River, Pleasant River, Narraguagus 

River, Ducktrap River, Sheepscot River, Cove Brook, Penobscot River, Androscoggin River, and 

Kennebec River (NOAA Fisheries, 2015), although some Atlantic salmon survive in the 

Connecticut River and Merrimack River as stocked fish. However, Atlantic salmon historically 

had a much larger southern range to the Long Island Sound (NOAA Fisheries, 2015). When 

spawning, suitable river habitats consist of gravel or cobble in riffle areas. Atlantic salmon face 

upstream and use their powerful tails to create their redds. The tail movement excavates the pit to 

form the mound of medium sized cobbles. The pit is created as a result of the downstream 

movement, and fine sediments are sorted with the largest particles and cobbles moved to the 

mound, while the finer particles end up downstream (Figure 3.4 and Figure 3.5). A typical 

salmon redd is generally larger than a lamprey redd. When the salmon eggs hatch in March or 

April they become fry. They remain in the gravel for about six weeks, and rely heavily on the 

redds for protection, dissolved oxygen, and nutrients: a result of hyporheic flow in the redds.  
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Figure 3.4. Diagram of a redd (Washington Department of Fish and Wildlife). 

 

Figure 3.5. A Salmon redd on the Narraguagus River in Maine. (Photo by D. Thompson). 

 

 The process of hyporheic flow provides a lot of useful benefits for organisms that rely on 

the exchange for nutrients and DO. Like most aspects of a riverine system, hyporheic flow is 

very fragile process that can be easily disrupted. Hyporheic flow processes within lamprey redds 

likely provide similar benefits to lamprey eggs.  
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4. Methods 

4.1. Study Area 

The goal of the field study was to examine hyporheic flow processes at lamprey redds in-

situ on the Blackledge River, Marlborough. The Blackledge River is 26.4 km long and is a 

tributary of the Salmon River, with a drainage basin of 3.88 x 108 m2. The location of the site on 

the Blackledge River is: 41.577424°, -72.426456° (Figure 4.1; Figure 4.2). A salinity reader, 

recorded by video camera, and a saline injection apparatus were used to record velocity moving 

through several redds on July 8th, 2016. Redds were also measured for size, depth, and sediment 

size and averaged for an approximate size for a typical lamprey redd from June 8th and 9th, 2016. 

The location data for these redds can be found in Appendix A.  
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Figure 4.1. The location of all lamprey redds that were measured (Photo by D. Thompson). 

 

An artificial redd was constructed in a recirculating flume using the average dimensions 

and sediment size obtained from lamprey reds in the Blackledge River. The flume house at 

Connecticut College, New London, Connecticut is 6.0 m by 0.5 m. The redd constructed within 
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the flume was observed using an acoustic Doppler velocimeter to measure surface flow velocity 

above the redd at different discharges using the Froude number. Then the data was compared to 

analyze areas of different pressures to investigate where hyporheic flow was taking place.  

 

4.2. Saline Injections 

 The salinity probe was used to quantify hyporheic flow on the Blackledge River site: 

41.577424°, -72.426456° (Figure 4.2). Hyporheic flow at two lamprey redds were measured in 

terms of salinity per unit time (ppm/s). The salinity probe measured salinity in parts per million 

(ppm). Saline injections of 3% (30,000 ppm) salt content or 30 g/L were delivered with a hollow 

metal rod, a plastic tube and a syringe containing the saline solution (Figure 4.3; Figure 4.4). 

These three items were connected together so it resembled an extended syringe. The metal tube 

was tapered at one end to allow for easy insertion into the bed (Figure 4.5). Then a small hole 

was punched through the tube at 2 cm from the bottom to allow the saline solution to pass 

through (Figure 4.4).  

A measuring tape was laid 3-m down the approximate center of the redd parallel to the 

direction of the surface flow. The tape was not always straight because the flow moved 

differently over the redds. For example, large cobbles forced the flow laterally in some spots, 

causing the direction of the flow to move. At the beginning of each trial, saline injection rod 

distance, salinity probe distance, base salinity, rod depth, and salinity probe height were recorded 

(Figure 4.5). The redd mounds, pits, and sides were measured for hyporheic velocity. The height 

of the probe was kept 4.5 cm above the bed. The injection syringe was inserted 10 cm below the 

bed. The depth of the saline insertion point was kept constant at 10 cm into the bed for every 

trial, and the same volume (60 cm3) of solution was inserted in a methodical way each time. 
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Injection rates were kept constant for each test. The time of the injections and recording was 30 

seconds for each test. Only one side of the redd was tested, as it was assumed that the redds are 

generally symmetrical in behavior. The base of the pit, tail-spill, top of mound, rise in mound, 

and center of pit were probed for hyporheic flow in two redds. However, distances from those 

points were recorded at 10-cm intervals.  

To accurately represent the fluctuation of salinity, a video camera was used for the 

duration of each injection time (Figure 4.3). The salinity (ppm) was recorded by an underwater 

camera, which taped the rise, peak, and fall of the salinity moving throughout the redds. A total 

of 30 trials for two redds were recorded. This data was then visually analyzed and recorded in 

Grapher to create salinity vs. time graphs. A secondary analysis was conducted by utilizing a 

concentrated dye solution. The dye was injected into the bed in a similar fashion as the salinity 

syringe, but only 10 injections took place in each redd because of retention of the dye in the 

redds. The purpose behind this investigation was only to visually confirm water flow through the 

redd. 
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Figure 4.2. The study site for the saline injections into the sea lamprey redds 



 30 

 

Figure 4.3. The salinity probe setup with recording device. 
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Figure 4.4. The syringe used to inject the saline solution. The first black tape (arrow) on the metal rod represents the 

10 cm mark, which was the depth of the injection into the bed. 

10-cm mark  

Saline ejection hole 
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Figure 4.5. The salinity probe and the saline solution bottle in action in the Blackledge River. 
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4.3. Lamprey Redd Longitudinal Cross Sections and Velocity 

Longitudinal cross sections of eight lamprey redds on the Blackledge River were 

measured as well as 60% surface flow velocity measurements (m/s) using an auto level and a 

Marsh McBirney Flow Meter, respectively. The sampling data was collected on June 1st (107 

cfs), 2nd (65 cfs), 7th (103 cfs), 10th (51 cfs), and 13th (62 cfs) (Figure 4.7). The redds were 

sampled 2-m upstream, at the pit, at the mound, and 2-m downstream. This data was useful for 

examining average velocities of the redds, which would be compared to the velocities found at 

the constructed redd within the flume. The USGS data was used in combination with the Froude 

number to scale the redd to the flume (See Section 4.5 Flume Measurements). 

 

4.4. Lamprey Redd Topography 

 Lamprey redds were surveyed using a TopCon GTS Laser Total Station on June 12th, 

2016. A benchmark was set so accuracy could be determined and future datasets could be 

recorded. Each lamprey redd was measured systematically around its pit and mound. Cross 

sections of the bed stream topography were also measured 2-m upstream and 2-m downstream 

from each redd. The third cross section was measured directly over the redds. Data sets were 

downloaded and topographically analyzed using Surfer by creating isoline maps.  

 

4.5. Flume Measurements  

The sediment sampling of the eight lamprey redds was needed to obtain the average phi 

size of a lamprey redd. An artificial lamprey redd was created in the 6.0 m by 0.5 m flume and 

approximately scaled to 50% actual size using the average dimensions of the eight lamprey redds 

and the average phi sizes. Sediments were sorted into 50% phi sizes of those found on lamprey 
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redds in the Blackledge River because the flume can only fit a scaled redd. The recipe for the 

sediment was based on approximately 50% surface composition and 50% subsurface 

composition.  

The sediment mix for the surface layer was obtained by taking several 5 gallon buckets 

and filling them with sediment from the Blackledge River. The sediment mix for the subsurface 

layer was created by using smaller sediments from the Blackledge River and gravel and sand 

from a nearby quarry. These sediments were mixed together and placed in the flume according to 

the percent they were found in the Blackledge River (Figure 4.6 and Table 4.1). A subsurface 

layer was created with small fines, gravel, and cobbles. 

 

Figure 4.6. Sediment size distribution for the subsurface and surface sediments from the Blackledge River. 
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Table 4.1. Phi size and percent of phi sizes needed for each bucket for use in the construction of the artificial redd. 

The buckets column represents the amount buckets that needed to be filled with sediments to match. 

Phi Size Surface % Subsurface % Size (mm) Size (in) Buckets 

2 0% 0% 0.25 S   

1 0% 0% 0.5 A   

0 3% 10% 1 N   

-1 3% 10% 2 D 1.3 

-2 7% 10% 4 0.157 0.85 

-3 13% 14% 8 0.315 1.35 

-4 22% 16% 16 0.630 1.9 

-5 22% 26% 32 1.26 2.4 

-6 17% 14% 64 2.52 1.55 

-7 13% 0% 128 5.04 0.65 

-8 0% 0% 256 10.1 0 

-9 0% 0% 512 20.16 0 

-10 0% 0% 1024 40.31 0 

 

 

 Topographic stream bed and velocity data were collected in the flume from 250 cm to 

350 cm from the head of the flume. The topography of this section consisted of the most river-

like sediments, gravels, and cobbles. The cobble, gravel, and sediment placed in the flume was 

the same phi-size percent surveyed on the Blackledge River (Figure 4.7). The slope of the flume 

was set to the average slope of the Blackledge River along the sampled redd location, at 0.6%. 

Once the sediment was placed in the flume, several flume runs were implemented at high 

velocities to test the integrity of plain bed and to settle any loose sediments. The bed topography 

was measured with a point gauge in a grid pattern from the longitudinal distance of 250 to 350 

cm in 5-cm increments, and latitudinal measurements occurred from 5 to 45 cm in 5-cm 

increments.  
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Measurements were scaled using the Froude number from the Blackledge River flows of 

June 6th, 7th, and 9th of 2016 (Equation 4.1). The 6th and 7th of June dates represent the potential 

spawning dates of lamprey on the Blackledge River (Figure 4.7). The 9th of June represents 

observed data and a sighting of a lamprey on its spawning redd. Discharge in the flume was 

scaled to the flume using approximate discharges recorded by USGS gaging station 01193500 on 

the Salmon River near East Hampton, CT (Figure 4.9; Equation 4.1). This is the closet gaging 

station to the Blackledge River, which is a tributary of the Salmon River.  

                                                                                                       

           (Equation 4.1)  

     (where F=Froude number, V=velocity, g=gravity, and D=density) 

 

 The Froude number values were calculated for the field conditions that translated to the 

data from the recorded cfs dates from the USGS (Equation 4.1). The Froude numbers were then 

compared to the Froude number values that were collected at lamprey redds on the Blackledge 

River. The average depth upstream of the pits was used to scale the flume depth. The Froude 

numbers were converted to low, medium, and high flows that would be found on the river. These 

scaling calculations established that the artificial redd would be made at a flow rate of 19.5 l/s in 

the flume which corresponds to the Salmon River discharge of 100 cfs. The calculations for the 

Froude number values can be found in Appendix B. The flood simulation for the Blackledge 

River would be 32.4 l/s at approximately 25 cm of water depth in the flume. This flow would be 
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the most likely time the lamprey came upstream to spawn (Figure 4.7). The low flow of the 

Salmon River would be scaled to 11.7 l/s in the flume. 

 
 
Figure 4.7. A hydrograph for the Blackledge River from June 1st-30th. This data was used to scale discharges in the 

flume. 
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Figure 4.8. The two plates, that represent the average size of the redds, show the placement of the redd in the flume. 

 

Figure 4.9. The final created product of the redd in the flume with the templates used in their construction. 
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The artificial lamprey redd was constructed in water flowing at 19.5 l/s using metal 

templates (Figure 4.9; Figure 4.10). The templates were created using the average width and 

length measurements from eight redds (Table 4.2). The redd was constructed in a “blind” manner 

to replicate the lamprey’s situation during redd construction. Without looking, rocks were moved 

from upstream to downstream by hand and by only moving one rock at a time to create a redd 

within the scaled values. When the flow was shut down, it was determined that the scaled redd 

was not large enough the first time compared to the area of the metal templates. As a result of 

this, the flow was resumed and the redd was constructed to be slightly bigger under the same 

flow conditions. The goal was to replicate a real redd as much as possible. Special attention was 

paid to the size of the pit and the mound, and the height and depth were roughly scaled to be 

replicas of the redds observed in the Blackledge River. The pit was approximately 5.5 cm deep, 

which was close to the scaled value of 5.65 cm (Table 4.2). The scaled value of 2.1 cm for the 

mound closely resembled the actual value of 2.38 cm (Table 4.2). The process was fine-tuned 

several times in order to represent a realistic redd.  

Table 4.2. The average parameters for the creation of the redd in the flume 

 

Once the model redd was constructed, velocity measurements were taken at the three 

scaled discharges using a SonTek acoustic Doppler velocimeter (ADV). Measurements were 

taken from 250 to 350 cm at 10-cm longitudinal increments. Measurements were taken from 5 to 

45 cm at latitudinal 10-cm increments. To create a more precise 3-D field at the location of the 

Lamprey Spawning Redds Pit Depth 

(cm) 

Pit Width 

(cm) 

Pit Length 

(cm) 

Mound  Height 

(cm) 

Mound Width 

(cm) 

Mound Length 

(cm) 

Mean  11.31 43.13 55 4.75 46.43 42.14 

Standard Deviation 4.12 10.33 16.48 3.05 12.82 13.18 

Scaled 50% 5.66 21.56 27.5 2.38 23.21 21.07 
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redd with additional measurements were taken longitudinally from 270 to 320 cm at the 20 cm 

and 30 cm widths. Measurements were taken for a 2-minute duration with the ADV at a 60% 

depth of the 19.5 l/s discharge level. This height above the bed stayed the same throughout the 

duration of the experiment so the ADV measured the same 60% depth point at all three 

discharges.  

 

4.6. Computational Analysis 

Topographical maps of the bed before and after the redd construction were created using 

Surfer 8. This data was used to analyze the relationship between topography and velocity. The 

ADV data was then analyzed using WinADV and SonTek software to remove inaccurate data 

points and create more precise data. The points were then filtered using Nortek software where 

the Signal to Noise Ratio (SNR) was used to remove data points with less than 0.85 dB 

correction (Thompson, 2006). A Gaussian low-pass filter was also used to filter the data and 

account for problems associated with aliasing (Thompson, 2006). The data points were then 

averaged to create a velocity field at the measured points within the flume. 

The RMS values (Root Mean Squared), created by the ADV velocity measurements were 

used to create turbulent kinetic energy values (TKE) (Equation 4.2).  

 

                          k = 0.5 . p . (RMS Vx
2 + RMS Vy

2 + RMS Vz
2)             (Equation 4.2) 

                                                                                             

The RMS Vx, RMS Vy, and RMS Vz are the root mean square values for the downstream, lateral, 

and vertical components of the flow that were obtained in a 3-D field by the ADV, and p is fluid 

density. The TKE values were created for the x, y, and z planes. The TKE values were used to 
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produce maps that illustrate zones with high turbulence production (fluid motion to thermal 

energy), and these areas of turbulence were used to extract information on areas of upwelling, 

downwelling, and lateral movement. The aim of this information was to deduce areas of low and 

high pressure zones to predict the amount of hyporheic flow taking place. This is based on the 

assumption that the low and high pressures push water through the redd and into the mound.  The 

TKE data, velocity values, and vertical velocity (Vz) mean values were scaled to create arrows 

on post-maps, which overlay the underlying topographical isoline maps. The velocity data x and 

y values were translated through the Pythagorean theorem to produce the magnitude and 

direction of the two combined into a single vector.  The length of the arrows corresponds to the 

velocity, and the angle dictated the direction of the flow. The underlying isoline data was TKE 

data. The downstream and cross-stream Vz-isolines were transformed to magnitude or vertical 

velocity on the post-maps. 

 The methods were designed to produce an experiment that would help illustrate the 

hyporheic processes at work within lamprey redds. The topographical surveys, longitudinal 

surveys, saline injections, phi size distribution, and scaled redd experiment were all designed to 

work in conjunction and provide an outline to hyporheic methods. Overall, the combined 

methods were expected to provide a representation of hyporheic flow processes and flow 

movement within an average lamprey redd. 
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5. Results 

 The results from the combination of the studies indicate that the pit and mound force 

vertical velocity patterns over the mound and create strong upwelling and large localized TKE 

values. TKE values are always higher over the mound, and the areas of strong upwelling and 

downwelling increase with stage. The saline injection study suggests that there is a stronger 

correlation in readings just before the mound, which indicates potential travel through the 

mound. The injections further upstream suggest longer residence times and more input of the 

solution into the bed.  

 

5.1. Redd Topography and Velocity 

The topography of the redd is lowest in the pit and highest at the mound down the center 

line of the redd. The velocity for the 11.7 l/s flow rate increases through the pit and decreases 

over the mound and immediately downstream of the mound, most apparently down the center 

line of the redd (Figure 5.1). At the second stage the velocity for the 19.5 l/s flow rate increases 

through the pit and decreases over the mound and immediately downstream of the mound. These 

results are most obvious down the center line of the redd (Figure 5.2). The velocity for the 32.4 

l/s flow rate increases through the pit and decreases over the mound and immediately 

downstream of the mound, the pattern is most evident down the center line of the redd (Figure 

5.3). 
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Figure 5.1. The topography isolines of the constructed redd with arrows representing scaled velocity at a stage of 

11.7 l/s. The arrow illustrates the scale for velocities (cm/s). 
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Figure 5.2. The topography isolines of the constructed redd with arrows representing scaled velocity at a stage of 

19.5 l/s. The arrow illustrates the scale for velocities (cm/s). 
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Figure 5.3. The topography isolines of the constructed redd with arrows representing scaled velocity at a stage of 

32.4 l/s. The arrow illustrates the scale for velocities (cm/s). 
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5.2. Redd Longitudinal Profiles 

Lamprey redd 1 has a much more variable water surface profile than redd 2, with a 

steeper mean gradient (Figure 5.4; Figure 5.5). Redd 1 has a shorter pit to mound distance than 

redd 2, and the tail spill is rougher. The water surface slope also decreases after the top of the 

mound as the slope of the mound decreases.  

 

Figure 5.4. The longitudinal topographic profile of the first redd and the water surface height.  
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Figure 5.5. The longitudinal topographic profile of the second redd and the water surface height.  
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5.3. Mean Vertical Velocity  

The mean vertical velocity for the flume discharge of 11.7 l/s was lowest before the pit 

and highest over the mound. The velocity was fastest down the center of the redd. The velocity 

arrows indicate lateral movement around the redd at the 5-cm latitudinal line. Velocity was 

lowest immediately downstream of the mound at the 310-cm latitudinal mark (Figure 5.6).  

The mean vertical velocity for the flume discharge of 19.5 l/s was lowest before the pit 

and highest over the mound, similar to the low flow rate. The velocity was fastest down the 

center of the redd. The velocity arrows indicate lateral movement around the redd at the 5-cm 

and 45 cm latitudinal lines. Velocity was lowest immediately downstream of the mound at the 

310-cm longitudinal mark (Figure 5.7). Similar but exaggerated patterns exist between the low 

and medium flow rates.  

The mean vertical velocity for the flume discharge of 32.4 l/s was lowest before the pit 

and highest over the mound, similar to the low and medium flow rates. The velocity was fastest 

down the center of the redd. The velocity arrows indicate lateral movement around the redd at 

the 5-cm, 35-cm, and 45-cm latitudinal lines. Velocity was lowest immediately downstream of 

the mound at the 310-cm longitudinal mark (Figure 5.8). Similar but exaggerated patterns exist 

between the low and medium flow rates and the high flow.  
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Figure 5.6. The average vertical velocity represented by isolines at a stage of 11.7 l/s with arrows indicating scaled 

velocity. Upwelling is represented by positive values, and downwelling is represented by negative values. The 

dashed red circles represent the approximate location of the upstream pit and the downstream mound. The white 

areas indicate values near zero. The arrow illustrates the scale for velocities (cm/s). 
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Figure 5.7. The average vertical velocity represented by isolines at a stage of 19.5 l/s with arrows representing 

scaled velocity. Upwelling is represented by positive values, and downwelling is represented by negative values. 

The dashed red circles represent the approximate location of the upstream pit and the downstream mound. The white 

areas indicate values near zero. The arrow illustrates the scale for velocities (cm/s). 
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Figure 5.8. The average vertical velocity represented by isolines at a stage of 32.4 l/s with arrows representing 

scaled velocity. Upwelling is represented by positive values, and downwelling is represented by negative values. 

The dashed red circles represent the approximate location of the upstream pit and downstream mound. The white 

areas indicate values near zero. The arrow illustrates the scale for velocities (cm/s). 

 

	

	

	

	

	

	

	

	

Topo	12	

0 10 20 30 40 50

250

260

270

280

290

300

310

320

330

340

350

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 = 25.0 cm/s

Latitude (cm) 

L
o

n
g
itu

d
e (c

m
) 



 52 

5.4. Turbulent Kinetic Energy  

The TKE values were highest over the mound down the center of the redd at the 11.7 l/s 

flow rate. TKE was lowest immediately after the mound. The velocity correlates with the TKE 

values as the lowest velocity exists at the 310-cm longitudinal mark immediately downstream of 

the redd (Figure 5.9). The TKE values were highest over the mound down the center of the redd 

at the 19.5 l/s flow rate. TKE was lowest immediately after the mound at the 25-cm, 310-cm 

longitudinal mark. There is a slight increase at the 20-cm, 300-cm point and at the 35-cm, 300-

cm point. The velocity again correlates with the TKE values as the lowest velocity exists at the 

310 cm longitudinal mark immediately downstream of the redd (Figure 5.10). The TKE values 

were highest over the mound down the center of the redd at the 32.4 l/s flow rate. TKE was 

lowest immediately after the mound at the 25-cm, 310-cm point. There is a slight increase at the 

20-cm, 290-cm point and at the 35-cm, 290-cm point. The velocity again correlates with the TKE 

values as the lowest velocity exists at the 310-cm longitudinal mark immediately downstream of 

the redd (Figure 5.11). However, this stage indicates areas of much larger TKE values at the 

mound and just downstream of the mound. 
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Figure 5.9. The average TKE (m2/s2 ) represented by isolines at a stage of 11.7 l/s with arrows representing scaled 

velocity. The dashed red circles represent the approximate location of the upstream pit and the downstream mound. 

The arrow illustrates the scale for velocities (cm/s). 
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Figure 5.10. The average TKE (m2/s2) represented by isolines at a stage of 19.5 l/s with arrows representing scaled 

velocity. The dashed red circles represent the approximate location of the upstream pit and the downstream mound. 

The arrow illustrates the scale for velocities (cm/s). 
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Figure 5.11. The average TKE (m2/s2) represented by isolines at a stage of 32.4 l/s with arrows representing scaled 

velocity. The dashed red circles represent the approximate location of the upstream pit and the downstream mound. 

The arrow illustrates the scale for velocities (cm/s). 
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5.5. Stage Variation of Turbulent Kinetic Energy  

The increase in TKE is most notable between the 32.4 l/s and 19.5 l/s flow rates (Figure 

5.13). The largest increases come before the mound at the 20-cm, 290-cm point and the 35-cm, 

290-cm point. There is also an increase between the 20-cm and 320-cm to 330-cm points. There 

are slight increases in TKE between the 19.5 l/s and 11.7 l/s flow rates (Figure 5.12). The largest 

increases come before the mound at the 20-cm, 300-cm point and the 20-cm, 320-cm point. 
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Figure 5.12. The difference in TKE m2/s2 represented by isolines between stages 19.5 l/s and 11.7 l/s. The dashed 

red circles represent the approximate location of the upstream pit and the downstream mound. The white areas 

indicate values near zero. The arrow illustrates the scale for velocities (cm/s). 
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Figure 5.13. The difference in TKE m2/s2 represented by isolines between stages 32.4 l/s and 19.5 l/s. The dashed 

red circles represent the approximate location of the upstream pit and the downstream mound. The white areas 

indicate values near zero. The arrow illustrates the scale for velocities (cm/s). 
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5.6. Stage Variation of Mean Vertical Velocity   

The mean vertical velocity increase is most apparent between the 32.4 l/s and 19.5 l/s 

flow rates. The largest increase was over the mound at the 20-cm, 300-cm point. The largest 

decrease was right before the mound at the 25-cm, 270-cm point, and moving up the mound at 

the 25-cm, 290-cm point (Figure 5.15). There are subtler differences in mean vertical velocity 

between the 19.5 l/s and 11.7 l/s flow rates. The largest increase was over the mound at the 35-

cm, 300-cm point. The largest decrease was right after the mound at the 25-cm, 320-cm point 

(Figure 5.14). 
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Figure 5.14. The difference in mean vertical velocity represented by isolines between stages 19.5 l/s and 11.7 l/s The 

dashed red circles represent the approximate location of the upstream pit and the downstream mound. The white 

areas indicate values near zero. 
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Figure 5.15. The difference in mean vertical velocity represented by isolines between stages 32.4 l/s and 19.5 l/s. 

The dashed red circles represent the approximate location of the pit and mound. The white areas indicate values near 

zero.  
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5.7. Salinity Injections  

The salinity (ppm) for the first measured redd showed the larger rates of change at the 

1.4-m, 1.3-m, 1.1-m, 1.0-m, 0.9-m, and 0.6-m marks running down the center of the redd (Figure 

5.16). The 1.4-m, 1.1-m, mark injection sites were mid mound with the probe recording from 

downstream of the mound with a probe height of 4.5-cm and a distance of 0.39-cm and 0.69-m, 

respectively, from the injection sites. The 1.3-m injection site was slightly to the side of the 

mound with a probe height of 4.5-cm and a distance of 0.43-m from the injection site. This 

reading was the only one of five injections at the side of the center of the redd that showed 

variation in salinity levels. The 1.0-m, 0.9 m, and 0.6-m mark injection sites were all at the pit 

with the probe distance at the 1.25-m mark downstream (Figure 5.16). The probe heights for all 

these injections was 4.5-cm above the bed. All other injections had minor or no changes in 

salinity. The base of the pit showed the most variation in salinity for redd 2, and received the 

highest recording for the trials. The background salinity rate always returned to pre-injection 

levels after 30 seconds for all trials.  

The salinity (ppm) for the second measured redd showed the greatest rates of change at 

the 0-m, 0.45-m, and 0.55 m marks running down the center of the redd (Figure 5.17). The 0.45-

m and 0.55-m injections were over the pit with the probe height of 4.5-cm over the bed and 0.55-

m and 0.45-m, respectively, downstream of the injection site. The 0 m injection site was at the 

base of the pit with a probe height of 4.5-cm over the bed and a distance of 0.3-m from the 

injection site. The base of the pit showed the most variation in salinity for redd 2, and received 

the highest recording for the trials. The background salinity was always returned to pre-injection 

levels after 30 seconds for all trials. 
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A concentrated dye solution was used in combination with the salinity injections to 

corroborate flow movement at the lamprey redd sites. Visual observation showed that the syringe 

injected some dye into the bed and some dye reappeared downstream. The dye that reappeared 

downstream took on average approximately 20 seconds to reappear 2 m downstream of the 

injection site. It then took about 10 seconds for the dye to disappear. 

The results indicated that the topography of the redd greatly influences the movement of 

the flow by forcing multidirectional movement into the bed, laterally, or over the mound. The 

TKE values and vertical velocity values are highest at the mound. The downstream velocity was 

fastest down the center of the redd as the flow travelled down the pit, and downstream velocity 

slowed moving over the mound and was the slowest at the end of the mound. The salinity study 

showed the highest levels of response at the downstream end of the pit.  
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Figure 5.16. The salinity variation of redd 1 over time at different distances down the center line of the redd. The z-

axis (Rod Distance) identifies a trial by spatial location. The y and x-axes represents the change in salinity over time, 

representing residence time. Each graph line represents one injection, with multiple trials at some sites. Some trials 

had no results.  
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Figure 5.17. The salinity variation of redd 2 over time at different distances down the center line of the redd. The z-

axis (Rod Distance) identifies a trial by spatial location. The y and x-axes represents the change in salinity over time, 

representing residence time. Each graph line represents one injection, with multiple trials at some sites. Some trials 

had no results. 
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6. Discussion 

 The combination of the field experiment and the flume experiment constructs a picture of 

how hyporheic flow operates within a redd. The flume experiment illustrates that the velocity 

and TKE patterns created by the redd cause areas of upwelling and downwelling moving over 

the redd. These patterns induce a low pressure zone just downstream of the mound, which 

suggests the presence of hyporheic flow in the redd. The field experiment demonstrates that 

when a salinity solution is injected into a redd there is some retention as water actually moves 

throughout the redd. The mechanisms behind the movement are represented by the flume study. 

The velocity of the hyporheic flow that moves through the redd is still unknown, but as a result 

of the salinity measurements, the movement is faster than 30 seconds per injection. It can be 

inferred that the higher the flow rate, the stronger the differences of low and high pressure zones 

existing at the redd, thereby causing faster hyporheic velocities.  

The results of the flume study indicate strong areas of downwelling and upwelling at the 

pit and mound, respectively, with increases in higher stage. These results are shown by the 

vertical mean velocity outcomes and the TKE values. This data suggests that moving 

downstream over the redd, especially down the center of the redd (which contains the highest 

and lowest topographical heights) that the flow increases and decreases in velocity creating areas 

of downwelling and upwelling. The high levels of turbulence after the mound at all stages 

indicates that the mound forces the creation of an eddy downstream of the mound, therefore 

slowing down velocity immediately after the mound because of vortex shedding. The presence of 

the eddy could also be an indication of some upstream movement lower to the bed than was 

measured. The presence of the eddy signifies good fluid mixing downstream of the mound. The 

Vz values all increase after the mound and increase with higher stage, similar to the TKE values. 
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The increase in TKE values as stage increases creates a stronger eddy system downstream of the 

mound. The resulting turbulence from the eddy at the higher stages would cause more mixing. 

 The Vz values show upwelling at the mound. This illustrates the pit and mound force the 

flow upwards, which reduces the velocity downstream of the mound. The water surface slope of 

the Blackledge River suggests higher pressure upstream of the mound, similar to the water 

surface slope in the flume.  The rapid decrease of velocity downstream of the mound could be an 

indication of hyporheic flow moving through the redd because the low velocity values suggest a 

low pressure zone downstream of the mound. This low pressure zone would cause an induction 

of flow through the cobbles of the mound. The increase in Vz values as stage increases suggests 

that during spawning times at the higher discharges the hyporheic exchange is more vital. This 

phenomenon is most obvious at the medium and high flow stages of 19.5 l/s and 32.4 l/s. These 

flow rates are most likely when a lamprey would spawn in a riverine environment, and the 

conditions created by the redd and higher flows would improve hyporheic exchange into the 

mound when the eggs require vital dissolved oxygen and nutrients. The flow movement through 

the redd might also aid in getting the spawning eggs into the mound.  

The results of the salinity syringe injection method appear to support the suggestion of 

the induced hyporheic exchange at the redd. The injection sites just before the mound for redd 1 

and redd 2 indicated the highest retention rates of salinity with all other injections showing minor 

or no change. These injections indicated good variability and retention of salinity compared to 

injections further upstream of the mound. The results indicate the strongest areas of 

downwelling, percent change, and variability when injected in the pit just upstream of the 

mound. These areas of injection tended to contain a good mix of cobbles and gravels that caused 

a faster rate of flow through the mound.  
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The areas where the salinity probe did not pick up any readings might suggest the salinity 

solution might be going into the bed and traveling through the sediment and underneath the 

probe. The reason for this phenomenon might be a result of groundwater flow underneath the 

hyporheic zone. The concentrated dye solution confirms this theory because the visual 

observations showed that the syringe injected some dye at the downstream end of the pit and 

some dye reappeared farther downstream. This can be translated to the salinity injection method 

because both tended to have slow decay rates. Low hydraulic conductivity might be a reason 

why some salinity readings had low values. Difficulty in inserting the injection probe into the 

bed suggests tightly compacted sediments. The compact substrate might limit the downstream 

movement of the saline solution. The field experiment, while difficult to directly measure 

hyporheic velocity, showed that there is certainly instances of hyporheic exchange within 

lamprey redds, especially just before and into the mound.  

Hyporheic flow processes within spawning redds is important for the egg survival rates. 

Redd construction results in increased hydraulic conductivity because of sediment sorting and 

forced downwelling and upwelling (Bowerman et al., 2014). Understanding the processes at 

lamprey redds is crucial for the continued conservation of lamprey. The saline injection results 

are impactful because the data showed that there appeared to be low hydraulic conductivity at 

redd 1 and redd 2, which both showed minimized salinity readings farther upstream from the 

mound. Both redds showed similar trends in readings, which suggests that they are constructed 

relatively similarly. The low hydraulic conductivity is probably a result of the intrusion of fines 

in the redd structures. The presence of fines in the redds found in the field might suggest that the 

redds were not new features. However, the hydraulic conductivity in the flume experiment 

appeared to be greater because of relative lack of fines in the redd structure. The flume 
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experiment and the field experiment showed similar results in relation to the upstream end of the 

mound causing the highest upwelling and peak salinity readings.  

The results of the field study agree with the scientific literature in that most studies 

indicate that quantifying hyporheic flow is difficult. Packman et al., 2004 notes that the 

relationships between hyporheic exchange and bed-form scale with the square of the stream 

Reynolds number, but understanding of this process is still ongoing. The flume study does not 

relate to any present literature because this methodology has not been used to examine hyporheic 

flow at a scaled lamprey redd.   

The flume experiment appears to represent a reliable dataset because of the methodology 

and the equipment used. The computational analysis was robust and the topographic maps 

illustrate what is happening within the lamprey redds. However, the saline injection experiment 

data might not be as reliable because it is impossible to construct an accurate picture of the 

movement of the flow, and the dye tracer might not accurately represent the movement of the 

flow because of the flow around the probe. The assumptions that were made about the injections 

are not as reliable as the assumptions made in the flume. Future research might include a 

combination of a saline solution and dye solution that would illustrate what is happening in real 

time. The flume experiment might involve a dye tracer experiment as well, so multiple tests can 

be repeated. This study could be repeated on salmon redds because of their similar structure to 

lamprey redds. 
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7. Conclusion  

 The flume and field experiments provided strong evidence for the operation and presence 

of hyporheic flow within lamprey redds. The upwelling and downwelling flows and their 

increases at higher stage indicate how the topography stimulates variations in flow and causes 

vertical movement. The velocity created by the redd in combination with the TKE and Vz values 

illustrates the existence of a low pressure zone just downstream of the mound. This low pressure 

zone suggests that the high pressure zones with faster velocities upstream of the mound might be 

drawn through the mound by the low pressure zone. The addition of the field experiment is 

useful in adding supplementary knowledge on the retention and movement of water through the 

redd. The experiment indicates that there is water moving through the redd, especially just before 

the mound, although the direction and exact velocity is unknown. 

 The presence of hyporheic flow within lamprey redds is important for the understanding 

of exactly why redds are created. The hyporheic flow causes the exchange of DO and nutrients 

essential for the eggs and juvenile lamprey in the mound. The processes of hyporheic flow within 

redds is still largely unknown, but this study provides strong evidence that it does operate within 

lamprey redds and increases with higher stage. Future research needs to expand on the salinity 

and tracer method. The data would be strengthened if a 3-D hyporheic model was used with the 

redd topography. This thesis study provides a good start to a process that remains complicated, 

especially within lamprey redds.  
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Appendix A: Raw Field Data 
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All lamprey redd GPS coordinates 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N41 37.028 W72 25.575

N41 37.049 W72 25.587

N41 40.774 W72 27.709

N41 40.733 W72 27.658

N41 40.690 W72 27.667

N41 40.663 W72 27.672

N41 40.632 W72 27.678

N41 40.625 W72 27.674

N41 34.933 W72 25.356

N41 34.949 W72 25.347

N41 35.278 W72 25.218

N41 35.284 W72 25.211

N41 35.352 W72 25.173

N41 35.354 W72 25.169

N41 36.479 W72 25.575 Sampled

N41 36.480 W72 25.576 Sampled

N41 36.488 W72 25.568 Sampled

N41 36.507 W72 25.562 Sampled

N41 36.505 W72 25.564 Sampled

N41 36.502 W72 25.576 Sampled

N41 36.500 W72 25.570 Sampled

N41 36.500 W72 25.565 Sampled

one additional redd hereSampled
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Lamprey redd phi size classification 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Site Sample A5Redd Upper UPS Pit Site Sample A7Large Redd Mound Site Sample ? Large Redd Pitt

Total Mass 2916.4 Total Mass 32762.1 Total Mass 5253.86

Phi Size Sieve SizeClass MassClass PercentPercent Finer Phi Size Sieve SizeClass MassClass PercentPercent Finer Phi Size Sieve SizeClass MassClass PercentPercent Finer

-8 256 mm 0 0 100 -8 256 mm 0 0 100 -8 256 mm 0 0 100

-7.5 181 mm 0 0 100 -7.5 181 mm 0 0 100 -7.5 181 mm 0 0 100

-7 128 mm 0 0 100 -7 128 mm 0 0 100 -7 128 mm 0 0 100

-6.5 91 mm 0 0 100 -6.5 91 mm 2480 0.0757 92.43027767 -6.5 91 mm 3.56 0.00068 99.9322403

-6 64 mm 0 0 100 -6 64 mm 17820 0.54392 38.03815995 -6 64 mm 0 0 99.9322403

-5.5 45 mm 200 0.06858 93.14223015 -5.5 45 mm 10520 0.3211 5.927886186 -5.5 45 mm 0 0 99.9322403

-5 32 mm 300 0.10287 82.85557537 -5 32 mm 1740 0.05311 0.616871324 -5 32 mm 265 0.05044 94.88832972

-4.5 23 mm 419.4 0.14381 68.47483198 -4.5 23 mm 200 0.0061 0.006409846 -4.5 23 mm 698.2 0.13289 81.59905289

-4 16 mm 541.8 0.18578 49.89713345 -4 16 mm 0 0 0.006409846 -4 16 mm 1295.5 0.24658 56.94099196

-3.5 11 mm 545.2 0.18694 31.20285283 -3.5 11 mm 0 0 0.006409846 -3.5 11 mm 887.7 0.16896 40.04484322

-3 8.0 mm 232.9 0.07986 23.21697984 -3 8.0 mm 0 0 0.006409846 -3 8.0 mm 519.9 0.09896 30.14926169

-2.5 5.7 mm 157.4 0.05397 17.81991496 -2.5 5.7 mm 0 0 0.006409846 -2.5 5.7 mm 375.9 0.07155 22.99452212

-2 4.0 mm 87.1 0.02987 14.83335619 -2 4.0 mm 0.5 1.5E-05 0.004883692 -2 4.0 mm 192.5 0.03664 19.33054935

-1.5 2.8 mm 78.9 0.02705 12.12796599 -1.5 2.8 mm 0.5 1.5E-05 0.003357538 -1.5 2.8 mm 171.7 0.03268 16.06247597

-1 2.0 mm 68 0.02332 9.796324235 -1 2.0 mm 0.4 1.2E-05 0.002136615 -1 2.0 mm 154.8 0.02946 13.11607085

-0.5 1.4 mm 63.2 0.02167 7.629268962 -0.5 1.4 mm 0.3 9.2E-06 0.001220923 -0.5 1.4 mm 165.9 0.03158 9.958392496

0 1.0 mm 65.5 0.02246 5.383349335 0 1.0 mm 0.2 6.1E-06 0.000610461 0 1.0 mm 176.6 0.03361 6.597054356

0.5 0.71 mm 58.9 0.0202 3.363736113 0.5 0.71 mm 0.1 3.1E-06 0.000305231 0.5 0.71 mm 146.2 0.02783 3.81433841

1 0.50 mm 52.8 0.0181 1.553284872 1 0.50 mm 0.1 3.1E-06 4.92748E-15 1 0.50 mm 110.6 0.02105 1.709219507

1.5 Pan 45.3 0.01553 3.55271E-15 1.5 Pan 0 0 4.92748E-15 1.5 Pan 89.8 0.01709 2.88658E-15

Total Mass 2916.4 1 Total Mass 32762.1 1 Total Mass 5253.86 1
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Appendix B: Calculations and Statistical Results 
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Connecticut College flume hertz numbers converted from the scaled Froude numbers from 

the discharges from the USGS database for the month of June at Station 01193500. 

 

Hz Depth Dischar

ge 

 
Depth of 

water (m) 

Discharge 

m^3/s 

Velocity 

(m/s) 

Fr 

40 141.87 25.01 0.14187 0.08946 0.02501 0.559132

573 

0.596952

821 

45 152.51 28 0.15251 0.1001 0.028 0.559440

559 

0.564646

412 

50 156.6 31.4 0.1566 0.10419 0.0314 0.602744

985 

0.596293

738 

53 159.53 33.9 0.15953 0.10712 0.0339 0.632935

026 

0.617537

749 

56 161.78 35.6 0.16178 0.10937 0.0356 0.651001

189 

0.628597

049 

60 162.59 37.8 0.16259 0.11018 0.0378 0.686149

936 

0.660096

311 

62.5 163.49 39.1 0.16349 0.11108 0.0391 0.703997

119 

0.674516

548 

24.5 157.44 11.7 0.15744 0.10503 0.0117 0.222793

488 

0.219525

751 

33.5 167.81 19.5 0.16781 0.12475 0.0195 0.312625

251 

0.282646

387 
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Peak discharge from USGS station 01193500 converted to flume l/s, which was then used to 

scale the flume discharge stages. 

  
date ft^s flume l/s 

peak 6-Jun 166 32.4  
11:am at 

6/9 

100 19.5 

 
12 pm at 

6/9 

60 11.7 
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Significant difference chart for depth at Mound vs. Pit at the surveyed lamprey redds. 

 

Depth     

Sections compared Mean Difference Significant 

UPS 1 – UPS 2 -0.0138 No 

DS 1 – DS 2 0.03092 No 

DS 1 – UPS 1 -0.0555 Yes 

DS 1 – UPS 2 -0.0417 Yes 

DS 2 – UPS 1 -0.0246 No 

DS 2 – UPS 2 -0.0108 No 

Pit - Mound -0.2239 Yes 

Pit – UPS 1 0.21475 Yes 

Pit – UPS 2 0.08475 Yes 

Pit – DS 1 -0.1264 Yes 

Pit – DS 2 -0.0955 Yes 

Mound – UPS 1 -0.153 Yes 

Mound – UPS 2 -0.1392 Yes 

Mound – DS 1 0.0975 Yes 

Mound – DS 2 0.12842 Yes 
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Significant difference chart for the Froude number values at the Pit vs. Mound at the 

surveyed lamprey sites. 

 

Froude Numbers     

Sections compared Mean Difference Significant 

UPS 1 – UPS 2 -0.006 No 

DS 1 – DS 2 -0.0161 No 

DS 1 – UPS 1 0.1152 No 

DS 1 – UPS 2 0.12117 No 

DS 2 – UPS 1 0.09913 No 

DS 2 – UPS 2 0.10509 No 

Pit - Mound 0.61447 Yes 

Pit – UPS 1 -0.179 Yes 

Pit – UPS 2 -0.1731 Yes 

Pit – DS 1 0.29422 Yes 

Pit – DS 2 0.27815 Yes 

Mound – UPS 1 0.43544 Yes 

Mound – UPS 2 0.44141 Yes 

Mound – DS 1 -0.3202 Yes 

Mound – DS 2 -0.3363 Yes 
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Appendix C: Additional Graphs 
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Graph showing the topographical profile variation of every lamprey redd with the value 0 

being the center of the pit. 
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Graph showing the phi size variation for the pit vs. mound for all surveyed lamprey redds. 
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