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ABSTRACT

Differential Geometry is the study of geometric figures in space using the
‘methods of Analysis and Linear Algebra. Concepts involving the basis of a
vector space, the differential of mappings and perhaps, most importantly, _ |
curvaitures, aré employed extensively when examining surfaces in three

dimensions. These surfaces are given by the images of a function f: U —>[F’33,
where U is understood to be an open set in R>. The first portion of my project

will be devoted to examihing the fundamental ideas underlying Differential
Geometry, focusing on the features of a specific mapping. Secondly, | will
concentrate on a special class of surfaces, referred to as minimal surfaces,
defined to be any surface having a zero mean curvature. Minimal surfaces can
be characterized by the qﬁality of having the least surface area of all surfaces
 bounded by the same Jordan éurve. This analysis will establish a framework fo -
understand the Classical Plateau Problem asserting the existence of a minimal
surface bounded by a given Jordan curve; This background will lead me o my
third goal: to investigate which surface of revolution is a minimal surface. My
fourth chapter will highlight the differences between Euclidian Geometry and |
the geometry on the surfaces by examining the propertiés of Parallel |
Translaﬁon and Geodesiés. | will then conclude my project by SUmmarizing a

practical application of a minimal surface.
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| CHAPTER ONE: THE FOUNDATIONS OF DIFFERENTIAL GEOMETRY

To understand Diﬁerential' Geornetry,‘ !.will ’begin by investigating the .
fcllowing p_rcperties ot the éominmus mapping f: U —_ a.cefined by the -
formula. - ' | | L |

-~ f{u, v) (u v, 1 U+ V):

(a) leferentlal mappings _ -

. (b) First and Second Fundamental Forms -

(¢ Gauss and Mean Curvatures : |
Generally, U refers to an infinite open setin R however since we want fo
examine a surface with boundary for the purpose of ftndtng its area, we will
| parametrtze our surface by the compact unit dtSk B: {w eR%wl< 1 }centered
at the ongm That is, B is the domain of f. The image of thrs functton f(By=S, is
the set S={(u,, 1 U+ vz) (u, v) E F’tz} in &, Thts set Sis defmed to be a.

hyperbohc parabolo:d a closed surface wuth boundary Thts functton is
tllustrated in the first ftgure of the appendtx,, R
twill be understood that

fj:u
f2_=V
f =1-u’+ V2

The tangent plane of this surface is the mfmtte set of all vectors tangent to the
surface at a specific pomt; ‘From this tangent point emanates tnfrnttely many |

tangent vectors, which forrn a set. This set, dencted by Tf whereu is the point



of tangency on the surface is the tangent plane to S at the tangent pomt u. To " R

flnd the basrs of thrs tangent plane we wrll explore the drfl‘erentlal mappmg of f

| grven by the matrrx =

o ot |
e e |
Cofd b

oy du dv'b ’

In our example, thisequals

Composmg thrs matnx df wrth e (1 O) we wrll obtaln the flrst element in the G

basrs of the tangent plane f= (t 0, 2u) srmrlarly, the second element in our

basrs is tound by composing df wrth e, _(0 1). f,= (0 1 2v) lt is clear that the

natural basrs of F‘tz is mapped by df lnto a basrs of Tf Smce the set{ f, t } lS | } R |

~the basis of our tangent plane we can represent the tangent plane Tt by
{af + bt | (a b) e H2} The surface accompamed by lts tangent plane at the -
pomt (0 0,1 )is rllustrated in tlgure 2 of the appendrx Notlce that the pornt

(0,0 1) on the surface was mapped trom the ongrn in the domam B that i is, o

‘ '»f(O O) (0 0 1) At (0 0 1) we can trnd a line £ which i rs perpendlcular to all the e

. . tangent vectors thls is referred to as the normal lme orthogonal to the tangent o
plane. Observe that all the mhmtely many vectors paralle 1 to y are also

orthogonal to the tangent plane also shown in figure 2 in the appendrx S



| However, we are omy interested, in the two un,it.norntal vectors parallel to!grven L
B N(uv)-+ £XE)
: : B ” X1, I S : _

| Thrs defmrtron arises from the fact that the cross product aXxX b of two nonzero' )
. vectors a and bis orthogonal to both a and b lying i m a plane For the mapprng T
. | f(u v)= (uv1u2+v2) % |
2 the two unrt normal vectors wrth respect to the tangent pomt (0 O 1) are S
. N(u v) + (2u/[4u2 + 2v2+ 1}“’2 -2v/[4u + 4v2+ 1}‘2 [4u + 4\F+ 1] 1’2)

| | K »_+(001) - » R

, For the remarnder of thls analysrs Iet D= [4u +4v + 1]"2 For our purposes we' : | E
, wrll focus only on the unit normal vector (0 0 1) We can recogmze from frgure 2.“7““' . }
fthat when we transtate the unit norma! vector (0 0 1) a!ong the z-axrs such that -

| ‘ltS rnrtral pomt is at (0,0, 1) and its termrnal pomt is at (O 0 2) th|s is the unit
, norma! vector of the tangent ptane at the pornt (0 0 1) |

| The untt normal vector at an mdlcated pornt serves as an mtroductron to :

- :;:‘;the Gauss mappmg N: B —> 82 {x = {FD?F txl 1 }defrned by a srmﬂar formula S

o _,glven earher

3 N(uv)_(fo)
lefl

o We can percerve the Gauss map as a composrtron of two functrons
First, f is our mappmg whrch wru correspond a pornt in E to a pornt on the SRR

o surtace s: for (u v) eB, f(u v) Pe S Secondly, h maps thrs pomt f(u v) p onj : o



the surface to its umt normat vector in R that |s

N(u V)= h(f(u v)) = (4, X f)
. - 1EXE]D .
This unit normal vector in S is then translated to the unit sphere 82 such that the

initial pomt of the unit normal vector comcrdes with the ongm and its termtnat
N point is a point on the sphere itself. The i image of the Gauss map, therefore |s
the set of untt normal vectors of the various tangent planes T f transtated to the
sphere 82 that i is, the Gauss map transtates all the unit nonnat vectors of the
mtmrtety many tangent planes at all pomts on the surface to S%. For mstance if
our surface were a plane parallel to the xy-plane, as illustrated i in figure 3, the
tangent‘plane of our surface i's the surface itsetf having a single unit normal
vector protruding from it; when we transfate this unit normal vector to S we
| discover, that the image of the Gauss mapping is a unit vector parallel to the z-
axis, having as its initial pofnt (0,0,0) and its terminal poiht (0,0,1). The intage is
just a point having zero area. This preceding illustration demonstrates that the
area of the image of the Gauss map, a subset of S% is a useful indication of the
flatness of our surface: since our surface is a flat plane, the area of the image of
the Gauss map is zero. | | - L
The unit normal vector which was used to understand the mechanics of
the Gauss map, also ptays a key role in determining the fundamental forms.

For the vectors X = (x

1’2

)and Y= (y1, y,) in R? the first fundamental formis -

defined as foltows

1X,Y) = (xl,xz) [ :, ( ) , where



G:=f, -f,
For our mappsng f(u v) (u v, 1- u +V’),
) E—l+4u o
- F=-4uv
- t,G‘=1"+'4v2.

XY =0 x) E; ;tu | 1-4uvv;l (y;)
‘ _ ) +4 \Y:/

This brlmear form equals

XY, + 4u x,y, 4uvx2y1 ,4uvx1y2 + X2Y2 + 4V“‘x2y2 |
lmportant local geometnc propertres of surfaces mcludmg length of

| Therefore,

'curves and surface area can be developed from the lrrst and second

_fundamental forms. Itis lmportant to note that smce fi is contmuous and our 5 -

| - domain is the compact set B, our surface S f(B) is also compact whlch |

lmplres that although Sisan mfmrte set in Hs it is bounded consequently, we B

can speak of the surface area of S parametenzed by the unlt disk B. For |

- example by a theorem the area of a surlace in three dlmensmns is glven by
o -ffn+(gf+<g£1"2dA - |

To relate the first fundamental form wrth the surface area of the map under

‘consrderatlon we will evaluate the determmant of the matrlx whose entnes are '



: the coeﬂrcrents of the first fundamental form f :

F ]

This determmant equals EG F= (1 + 4u2)( 14 4v2) (-4uv)( 4uv) 1 + 4v2 +. 4u ;' |

- We can relate this expressron with the square of the mtegrand in the above B o
surface area formula by expressmg the surface in parametnc form |
y v
z=g(uv)— 1-u? +v2

Therefore we have followmg partral denvattves ot g(u v)

g =-2u

This implies that 1 + (9 0+ (6 = 1 + 4u# + 4v* = EG - F* consequently, our area

A= I +'4u'2+4v2)'"2dA7 i

| Usmg methods developed in multrvarlable calcutus we can compute the area .
of our surface | L Lo | o

» A ff(1+4u +4v2)"2dA

B —1;/6{53’"-1] -

For vectors X and Y in R H2 the second fundamental form i is defmed to be' - |

e



The entnes ot the matnx are defmed as follows

L._f N(u v)
: "N'?’—v"f' i-n(u'\)) "

' gWrth respect to the mapplng under consrderation

(oo 2)
t—(OOO)
f—(002)

-"jTherefore recalllng D= [4u +4V2+1]‘2 |
| L L=-2/D
e M=0'

:fN 2/D and

Z,J(

o -(-2x1y1+ 2x2y2)/[4u +4v2+u"2 o |
We will now be usmg the coeffrcrents L M and N of the second fundamental

T Y)=(xx2) |

form to calculate the mmrmum and maxrmum pnncrpal curvatures ata grven - ;

- pomt on our surface thls wrll serve as a basrs to fmd he Gauss and Mean

,Curvatures of cur surtace

Before examrnrng these curvatures however w"_ need to understand the f‘;;ﬁ? BT

e concept ofa prmcrpal drrectron l_et S 'f denote the unrt'ctrcle in the tangent

o , plane havmg as |ts center the tangent pomt u where the tangent plane touches ;_‘ffi i

the surlace that is,



‘f—{XETf sx1_1}

Wthh is the set compnsed of umt tangent vectors. Bya proposmon glven m

Wi!helm Klmgenberg sA Course. in [_)_;fferenﬂal Geomet:_y,i X E.Su’f isa pnnc;pai o

, direetibn if and only if X is an eigenvector'of the Weingaften map L, having »as':i-.v :

| ‘, entries eoefﬁciehts of the second fundamental form':

15

‘There will be two unit pnnc1pal dlrect;ons denoted by X and X,, which are

found as follows

(a) Solve ( L - al ,) = 0 for .?n. Thvs equatton IS equwalent to

= N [ 3 )

: wh;ch reduces to
[?u.+ 2/( 4’ +4v2 +1)"2][?z. 2/(4u +4v2+ 1)""] 0,

gwmg us two elgenvalues | ,
o A= 24 +4v2+1)"2 and ?.? 2 AP+ A1)
(b) To fmd the eigenvector X, correspondlng to A= 2/(4u + 4v2 + 1)"2 we need .
to substitute this value of Ainto the expressnon o ' - B
" - ( L -l )x =0, obtammg

E’” Sk



.Solving this system yields | |
| - X, E R '
Since X, is unlt vector let X, = (0 1). Slmllarly, to frnd the ergenvector X, |
correspondrng to A, =-2/(4u’ + 4v2 + 1)”2 we wrll. substltute this value of A mto
the expressi_en o L |

- (L,- ;F’:.l2 )X =0.
Solving thrs system of equatlons yretd

X E R

X,=0.
Agam srnce X is a unit vector X _(1 0)

The next step is to find (X ) and K (x e representmg the mrnrmum and -

_ maxrmum pnncrpal curvatures ata glven pornt on the surface lt is rmportant to o )

understand that we do not speak of the curvature of a surface but rather thei .

curvature of a curve on the surface with respect to a grven pornt on thls curve

This curve is generated by the mtersectton of the surface and the plane formed‘ v ,

'by the drfferentrat ofa prrncrpal drrectron vector and rts unrt normat vector at a "

glven point. To find these pnncrpal curvatures we agarn utrhze the coeffrcrents :

L, M, and N of the second fundamental form; for our mappmg, the mrrumum’
principal curvature correspondrng to the prmcrpal dlrectron vector X, = (1 0) rs-_,
defined to be ® (X ) = II(X X ) whrch is equwalent to ' '

g6 )

When we evaluate this product, we will have our mrnlmum, pnncrpal curvature:

, O), ,‘ _‘




| z(x,) v-2/[4u +2v2+1]"2 o |
o Srmrlarly, our maxrmum prmcrpal curvature correspondmg to the prmcrpalv 5
| _drrectron X, is defined to be 1::1(X,) N !I(X,, X,) = 2/[4u +2v + 1]"2 Observe that rf ‘. "
| 1(X1) had been less than u-z(x,) then ﬂ,(x,) would have been the mrmmum
prrncrpal curvature In other words only when we evaluate ®,(X,) and &,(X)) and
- determine their magmtudes can we specrfy whrch one denotes the minimum
pnncrpal curvature and and whrch one denotes the maxrmum prmcrpat .
curvature . RS P o | Ll
| We will now examine in detai_l these two curvatures, beginning with the
- minimum principal curvature, r::z(x,)‘; -2/[4u* + 2v* + 1177, in the direction of )
X, = (1,0), at the following point"whioh is ‘rin_apped' from the origin in B to the
. surface: e B R
| | - 10,0)=(00,1). |
To locate thrs curve on the surface havrng curvature ﬁz(X,) at the pomt (0 0 1) }»
~ we will slice the surface in the direction of the prrncrpal direction vector '
= (1,0). To achieve this aim we wrll proceed as follows: |
(a) By regarding X, as the tangent vector, we mean that df (X)) = (1, O, 2u) is the |
tangent vector of the curve which we will produce at the point (0,0,1) determined
by X, Since we are mapping this point from the origin in B, whereu=v=0,itis
clear that e |
df(X)=(1,0,0)and
£,(X,) = 2402 + 207 + 1] = -
(b) Find the unit normal vector corresponding to the point (0,0,1). Again; the unit

normal vector is

CON(UY) = QU4 + 2+ 117, -2u[4u? + 4V + 117, [0 + 4V + 1]7)

10



-0 S
Our curve wrll be produced by the normal rntersectron ot the surlace and the e ‘
‘ plane formed by the vectors df, (XQ) (1 0 0) and N(O 0) (0,0, 1). Notlce that o
these two vectors are the basrs ot the xz-plane since they span the plane they B
'generate the plane. Notice from flgure 4, df, (Xz) is the tangent vector ot the - : g
curve atthe pornt (0,0 1) to make this more evrdent translate this tangent vector
‘to the pomt (0,0, 1) The normal mtersectlon is a curve resembllng an mverted
parabola in the xz-plane havrng (0 0,1) as the vertex From the perspectrve of
the unit normal vector (0, 0, 1), translated up on the z-axis, the curve is concave
~ down, justifying why our minimum prlncrpal curvature is negative. B
The maximum principal curvature, 1:1()(,) = ‘2/[4u2 + 2V + 1]’”, in the
direction of X, = (O, 1) at the point (0,0,1), is the cUrvaturev of the curve whichis
~ created when we slice the sun"ace in the direction of the prlncipal direction
vector X, = (0,‘ 1). Patterning our work from the previous exercise, we proceed
accordingly: ' o
(a) By regarding X, as the tangent vector, we mean that df (X,) (0 1, 2v) is the
tangent vector determmed by X, Agam smce we are mappmg our tangent.‘ -
pornt from the orrgrn m B, where u v = 0, itis clear that '
| | df(X,)—(010)and‘
1(X,) 2/[4u +2v +1]’2

(b) The unrt normal vector correspondrng to the pomt (0 0 1) is the same one s
found in the prror case: N(O 0) = (0, 0 1) Our curve therefore wrll be produced
| by the normal rntersectlon of the surface and the plane generated by the vectors"»-:
- df (Xz) (0 1 0) and N(0,0) = (0,0,1): the yz-plane Notrce from frgure 5 that
when we translate df (X,) = (0,1 ,0) to the pomt (0,0,1), it hecomes clear that

11



df (X,) rs tangent to the curve at the pornt (0 0 1 ) Thrs normal rntersectron isa

curve resemblrng an elongated parabola in the yz-plane. . From the perspectrve o

- of the unit normal vector (0, O 1) transtated up on the z-axrs thrs curve rs ’
. concave up, justrfyrng why our maxrmum pnncrpal curvature is posrtrve |
The rntermedrate curvatures of the curves generated by drfferent prrncrpaf .

" drrectron vectors at the pornt (0, 0 1) will vary between the mrnrmum pnncrpal

_curvature, 2 and the maxrmum prrncrpaf curvature 2 These curves are formed o

by sficrng the surface atong a pnncrpat drrectron vector other than X, or X For ; .
instance, to fi nd the pnncrpaf drrectron vector X’e S f whrch wou!d produce a
curve with 0 curvature we woutd solve the fotfowrng equatron for X’ |

: ff(X X) n(X’) 0. | o

, ‘The coordrnates of X* assume the form tx t-— Ix o wrthout toss of generatrty we |
| will let (t 1), (-1, t) (1 -1) and (-t 1) be our four possrbte solutrons to X’. .i |
Regardmg each X’ as the tangent vector we are able to frnd the correspondrng-

df (X7}, the tangent vector determined by each X’. In all cases below, u V= 0 "

and the correspondrng unit normal vector is (0 0 1) | | '

(ydf.(1,1) = (t 1, -2u+2v) (1,1 0)
(rr)df (-1,-1)= (1,1, 2u- 2v) =(-1,-1 0)
(m)df (t -1)=(1, 1 2u- 2v) (1, 1 O)
(rv)df (-1 1) ( -1,1 2u+2v) -1, 1 0) ‘
As rflustrated in trgure 6, when we cut the surface by the ptane generated by

df. (1, 1) (1 1 0) and the unit normal vector N(0, 0) = (0,0 1) a line, which can be: S

consrdered as a curve with 0 curvature resutts notrce that thrs frne comcrdes
with the line produced by the infersection of the surface and the plane whrch rs -
formed by df, (-1, 1) (- 1 -1,0) and N(O 0) (O 0 1) ltis ctear that thrs pfane

.whrch we can refer to as the dragonal plane cuts the xy plane ata 45 degree .

12



'angle The two other tangent vectors, df (1 t) (1 -1 0) and df (-1 1) = ( 1 1 0)
along with N(0,0) = (O 0 t) also generates a dragonal plane that when E
' intersected by the surtace forms a line. Observe from the figure, as we rotate

, erther dragonal plane closer to the xz-plane, we will produce curves on the

~ surface whose curvatures approach -2 at the pomt (0,0,1); srmrlarly, as we rotate )

either dragonal plane closer to the yz-plane we will produce curves on the L
| surface whose curvatures approach 2at the pornt (0 O 1) : |
The Gauss and mean curvatures ata grven pomt on our surface are
defrned to be the product and the average of the maxrmum prmcrpal curvature .

and the mrmmum pnncrpal curvature respectrvely

K= ﬁr(XJﬂz(Xz)

o | H=1/2] m(Xr) +ﬂ2(lel
ln our example with respect to the pomt (0, 0, 1)

<=-4/[4u +2v +1]”2 SRR
= 1/2{2/[4u oV 1D 2V 4 11"*} 0 |
By defmrtuon a pornt ona surface is elllptrc if and only if K > 0; hyperbolrc if and
onlyifK< 0; parabolic or planar if and only rf K 0. At the pomt (0 0 1) the £
‘Gauss curvature of our surface is less than 0 consequently, we know that the

:tangent point (O 0, t) is hyperbolrc This means that we can always find pomts rn |

| ~ the neighborhood of (0 0, 1) on S which l|e on erther srde of the tangent plane

- Figure 2 rllustrates this property of our surlace Consrder a surlace S’,the

| hemlsphere shown in frgure 7, wrth a positive Gauss curvature K>0,ata gtven‘ o

'pornt P. Inthis srtuatron we could find points, in the nerghborhood of P on S’ 5
- all lying on one srde of the tangent plane at P. Here P by defmrtron isan
ellrptlc pomt "

" For the case K -0, let us consrder the surlace grven by the rmage of ,

13



j(u,v) = (u v, 1 W), delmeated in flgure 8, accompamed by |ts tangent plane at

the pornt (0 0.1 ) Since at least one ot our prmcrpal curvatures must be zero we |
can infer that one of our curves generated by a normal mtersectlon must be a |
line. Similar to the manner in whrch we we found the maxrmum and minimum B
:curvatures of f wrth respect to the pornt P=(0,0,1), we can recognrze from the o
figure that when we intersect thrs surface with the xz-plane we will produce a f )

curve wrth a negatlve curvature at P however rntersectrng thls surface wrth the'_‘f o

: yz-plane will generate a strarght lme havrng zero curvature Such a pornt P is D

called parabohc and is charactenzed by the property that near P, there are

pomts on the surface which lfe on the same srde of the tangent plane

Smce the mean curvature of our orlgmal surface gfven by thei image of oo ‘ |

at the pomt (0 0 1) is zero our. surface by definition, rs a mmrmal surface K S
Mlmmal surfaces have the least surface area of all surfaces bounded by the .::‘:
‘same Jordan curve. Another example more trrvral of a mrmmal surface lS a; -

disk whose boundary isa crrcle Any other nng bounded surface whether

'barely wrmkled or strongly bulged would have a larger area.

14



© CHAPTER TWO: THE PLATEAUPROBLEM

‘ Now that we understand the concept of a mrnrmal surface we can focus .
on the Classrcal Plateau Problem assertrng the exrstence ofa mrnrmal surface e |
bounded by a closed Jordan curve.. By defrnrtron : ‘ |

| ‘,_Grven a closed Jordan curve I"in FF we say that

 X:B—>R?is a solution of Plateau’s problem forthe
- boundary contour T { or : a minimal surface spanned
by I'} if rt fulfllls the tollowmg three condmons

'»(r) X e C° (B Fl‘”') ) C2 (B, F’la)
- This means that X is continuous on : '
C el ‘B ={welR?:iwl< ‘l} and twrce drflerentrable on.
‘ __B {wehz lwl<1} »

' ,(,,) The surface X satrsfres in Bthe equatrons R
N (a)b.X 52x+82’=0**%
‘ B B
(b) lXul2 —lX,,lz ‘

(m) The restnctron X| c to the boundary c of the

o parameter domam B is a homeomorphrsm of C onto
. re . o

For two sets to be homeomorphrc there must exrst a brjectrve and contrnuous '

' mapprng between the two sets whose mverse rs also contrnuous

Betore explorrng this problem grven rn the form of a theorem in U

o _Drerkes Minimal Surfaces l we need to understand the varratronal problem

~ denoted by P(l") that will enable us to solve the Plateau problem Frrst we. wrllf_}; : L |

- 'defrne terms and notatron whrch wrll be used rn understandmg thrs problem -

: _}(1) Jordan curve: A closed curve denoted byl" in Fls whrch is not self



- interseeting»., In'topetogical terms;'this curve ea’n;be,deiscribed asa subset of [F’aé'. |
homoemorphie toa circle. | I -
(@) B:={we R :wl<} |

@) B = {weRZ “iwl s 1}
(4)0—{weFa2 Iwl=1}=8B | |
(5) H (B F’ts) the set of surfaces which are continuous and differentiable from B |
to R | | | |
(6) X: this will denote, depending on the conte)t't, 'eitlter‘e continuous andv
differentiable mapping from B td R° or the image of this mapping, nanﬁety a
surface in R®. | | | ‘

(7) Weakly monotonic : a mapping w.C —> Tis weakty‘monotonic if the intage
poihts w (w) traverse I" in a constant direction when w moves along' Cin a
constant direction. The image points rhay remain stationary, but never move
backwards if w moves monotonically on C and y (w) moves once around I" if w |
travels once around C. | | | |

(8) A mappmg X:B—> R?is sald to be of c!ass e(l" Jif X e H‘ ,(B, F’ﬁ"’) and if its -

trace X|c (that i is, restricting the domam of X to C= SB) can be represented by a

weakly, continuous mapping e :C—>I of Conto 1" .

(9) The Dmchlet integral | |

D(X) =D, (X): =2f ( Xu P+1Xv F)dudv

This integ_rat turmshes a majorant for t_he area‘ tunctiohv given' by
A, (X) =] Xu X Xvidudv -

Consequently, we will find that specific X which minimizes the Dirichlet integral,
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and thereby minimizes the area function. This is the crux of the variational

problem

“Jordan curve Tis defrned as the followrng task “mrnrmrze Dmchlet s rntegral
- D(X) in the class e | | |
' This means the followmg

First, define e’):= mf{D(X) Xe e(l" )} where the expressron on the nght

" The vanatlonal problem P(l") assocrated with the Plateau problem for the' ' ,5

| denotes the smallest D(X) (some real number) glven by a specrfrc surface say .

X. To clanfy {D(X) Xe e (l" B denotes the set of all Dmchlet mtegrals D(X)
thus, inf{D(X) : X e € (1" )} wrll gwe us the smallest value of D(X) among vall the
D(X) values in {D(X) X e e (1" )} Note that the smallest value of D(X) whrch we - |
can denote by D(X)=inf{D(X):Xe e r )} may or may not be an element of |
the set {D(X) Xe e Secondly, we are to ﬂnd that specrfrc surlace | " LR S
X £ e(l" ) such that D(X) = e(l") rs satrshed ThlS Iatter portron is the essence
of the vanatlonal problem P(l") flnclrng the mmrmal surface X g ' _
| The Classrcal Plateau Problem assertmg the exrstence of a mrmmal , |
~ surface bounded by a glven Jordan Curve is grven by the followmg theorem} !
from Mlnrmal Surlaces l by U. Drerkes |

Ke)is nonempty, then the minimum problem P(l")
- has at least one solution which is continuous on B
and harmonic in B. In particular, P(I') has such a
solutlon for every rectlfrable curve rs> :

Here itis my aim to clarify the proof glven in the above mentroned textbook
The proof proceeds as follows We need to fmd a solutron to PI), whrch '\ -
~ isthe followrng problem: R

(1‘) D(X);—v>}minin the class e*(r) -

17



whrch means to mrmmlze the Drnchlet mtegral D(X) in the class e*(l") e*(l" )
N represents the set of surfaces ine (I‘) satrslylng a ﬁxed three-pomt condrtron
) (2)X(wk) Q k=1, 2,3. | '_ ,
| H.ere".'w' W, W, denote three drstmct pomts onC =B and Q,, Qz, Q, are three " B
~different pomts on the Jordan Curve 1" That is, X maps 3 drﬁerent pomts on C to .
| ‘three different pointsonI”. |
N We wrll denote sequence of mapprngs Xn y where X E e* (1" ) by {X,} That
s, {X,} represents X1, Xa,. X We choose a sequence {Xn} of mapptngs such . .
that T e T
- ‘-(3.‘)7‘lr'rfp:j{leDf: e_t(fl“)ﬂ naidis.-i iy

N>

Here we are takmg the lrmrt of thrs sequence of mappmgs (surfaces) As n o

 increases, consecutive surfaces cluster toward the mrmmal surface Xm whrch o

‘may or may not be lncluded in {Xn} Consequently, lim D(X) D(X ) e (I'); o
n—>°°

‘ Assume wrthout loss of generalrty thatX,, isa surface of class o

C® (B lF’P) i C"’ (B, F’?P) Thrs means that X is conttnuous onBand twrce

drfferentrable on B We wrll also assume that X |s harmonrc that is,

(@ AX = B +BX= OmB
Eu , 5v2

We clarm that the boundary values X l of the terms ot any mrnrmrzrng

sequence {X }for P*(l") are equrcontmuous on C Thrs means that for all £> 0 :

the Euclrdran drstance between two rmage pornts of X| the boundary values

: which lie on- the ;Jordan curve I" WEll always be_ less than € provided that 'the

Euclidian distance between the two preimage points, which lie on C, is less



B than a given 5> 0. in symbols. we. have for all"_}: > 0 le(rv) X,‘"(w’)l <g if" o
Clw-w |<8. To prove this, we need to make use of the Courant-Lebesque ".‘_" SR
lemma: o R | B
. Suppose that Xi rs of class C° (B FF) 2} C1 (B R%) (that is, Xis -ﬁ S
- continuous on B and once differentiable on B) and safisfies
- D(X) <M, where 0<M<. Then foreveryz e C and for
. every § £ (0, 1), there exists a number p & (B, &) such that
the drstance between X(z) and X(Z) , the respectrve rmages

- ofzandz,where{z,2}=C n 5B, (zn)
ff_':can be estrmated by6 |

e 4Mn
lX(z) X(z)l < {Iog 1/}

_ See ﬁgure 9 Note that SB (zo) rs the crrcie wrth center z, and radrus [ We wrtl;: -

appty this !emma as foliows : :
'Srnce Tis the topo!ogrcat rmage ot C (that is I" and C are homeomorphrc to

each other) there exrsts for every e>0, another number ?L(E) a functron of €,

;. which is also greater than O wrth the fotlowmg property

o _Any parr of pomts P,Q £ r wrth

(6) O<tP Q!<3.(e) |
;decomposesl" rnto two arcs, I" (P Q')‘ andI‘ (P,:Q) as shown in frgure 10
Thatrsl" F(P Q)UF{P Q) suchthat T S

(7) draml" {P Q)<g B

o ,'where dramF (P Q) denotes the tength of the trne segment between Pand Q : e

vahus |f | o Ll
v'('8v)0:<‘._r:‘<'eo = mlle Ql
: where Q Q = l" thenl" (P Q ) contarns at mostone ofthe porntsQ appearmg



in the three pomt conditlon X(w) =. Ql , as shown in ftgure 11.

Note that mm lQ Q | denotes the shortest dlstance between Q and Q on F o
jzk : '

By exammlng O<e< €, closer itis ewdent from pnor deflnltrons that _' _

0 < diam r ,(P,Q)<e < minlQ-Q, lmplylng that diam l" ,(P,Q)<min lQ al
jk L - jEk '
KT (P Q ) contamed both pomts Q and Qk, we would have the srtuatlon

illustrated in figure 12; clearly, m this case dlam r (P Q)> min lQ Ql
: o o 1¢k e

Let X be an arbltrary mapptng in e*(l" ) fulftllmg the hypothes;s of the
Courant Lebesque lemma and let b, e (O 1) be a flxed number with

(9) 25 < min lw, - wl, wherew1,w2,w EC
' ik . :

See figure_ts. For an arbitrary € & (0,¢,), we select'so‘m"ej nu,rnber 5=5(c)>0

suchthat R
P : v 4Mrt

(10) lX(z)-_X(z’)l < {Iog 1/5 <?t.(e) and

(11)S<ﬁ

‘Now consrder an arbltrary pomt z, eC and let p e (5, 8) be some number such R

that the i tmages P =X(2) and Q -x(z ) of the two mtersectlon pomts z and z ot C |
and EB (zo) satrsfy ' ‘ '

N 4Mmn
(12) lX(z) X(z)l .IP-Ql< {|og 1/}
"Equatlons (12) and (10) |mply _
| (13) lP-Ql<?l.(e)

‘where from equatlon (), dtaml" (P Q)<e From equattons (7) and (8), we -



| know dtaml"1{P Q ) <E< minl Q Q I Thls suggests the arc 1" (P Q)
j#k ‘ . : ,

B 'contams at most one of the pomts Q, (As before, if the arc contalned both pomts .

- Q the prior mequahty would not hotd) ln addltton :tfollows from Xe e’ ), and N

from the facts listed below“ o A

(@) X(wk) Qk,k 123 |

by 2 E;; },mmlwi - wkl B
=k

" (c) 5-'-:5

that X(C nB (zo)) the lmage of the mtersectton of the circle C and the dtSk W|th .‘ '
center z, and radtus g, along with the boundary of this dtsk contams at most
| one of the pomts Q Thus X maps thts mtersectlon to the arc l" [P Q);
| thattsX(CnB (zo))-l"(PQ) i .‘ ] ,
| To understand why X(C nB (zo)) l" (P Q ) we wm carefully analyze theh 3 ,.
above facts along with figure 14. h | s

From (b) and (c), we know that &< S : "and B« mmlw wl. So by transmvnty .
| ° 1==k o _

8 <2 miniw, - w,}; consequently, E’ < mtntw - W, I
j=k . L =k

In the Courant-Lebesque lemma, we\ were glve that p = (5 8) hence pe 5 So |

again by transmwty '

pe8

& < min’.‘twiv- wl
i‘k R

P o< minlw-wl
fk



: Thrs tells us that the radlus of the dlsk —'(2:) Wl|| always be Iess than the " |
mlmmum dlstance between two arbltrary pornts w; and wk , on the crrcle C So_“”
-~ for three arbltrary pornts w1, w,, wa, £ C we know that one of these pornts say”f:_

| w ltestnthesetCn'B_(—z:) S e MR ,

| From the fact that X(wk) Qk, k= t 2, 3 we know that X(w) Q, Wthh o
without loss of generallty we will assume to be a pomt |n 1" (P Q) smce we N |

2 ‘concluded earller that T, (P, Q) contams at most one of the pomts Q appeanng;ii g ., - -

i the three pornt condrtton Conclusrvely, the followmg equalttres e ». o .
| X(Z) P : o :
X@)=Q
CX(w,) = Q

B _ coupled with the fact that X isa contlnuous tunctron mappmg closed sets to

“ closed sets we can lnfer that the closed set C rt B (zo) is mapped to the closed
| set T, (P, o) Hence, X(CrtB(zo)) T, (P, Q) |
" Consequently, we have lX(w) X(w)l < dlam T, (P Q) DR

forallw,w' e C ﬁﬂ Thrs is clear srnce X maps pomts from C ﬁ'B"(Z) to';ff , |
- points tn 1" (P Q). The image pomts X(w) and X(w) therefore lre somewhere g e
| on 1" (P, Q), ensunng that the Euclrdran dlstance between them denoted by

IX(w) - X(w)l ts less than the dlstance between the endpomts of 1" (P Q)
| denoted by dram r (P, Q) See frgure 15 And since dram r, (P Q)< £, we
“know, by transrttvrty , R ' B ’
| (14) lX(w) X(w')l<eforallw w ECﬁB ).

Thls rmplles I X(w) X(w) l< e for all w w eC Wlth lw w l< S.'Z
“That i is, when we restnct the dtstance of any two pomts on Cto less than 5:2

where S < p < S we can be sure that the drstance between X(w) and X(w')

| whrch may or may not lte inT (P Q) srnce w and w' are now any two pomts on '



~ C (not necessanly lylng on C A B (z )) is less than £. Thrs rs true because X |s a e

" contlnuous mappmg

Now consrder the mmlmlzrng sequence {X,} X1, Xz,-, X.

' Smce lrm D (Xn) e" (I), there is some number M > 0 such that D (Xn) < M
n—>0

~is true for all n‘ E N That is, ‘the Dmchlet mtegral when apphed to any XLrn {Xr) ‘
will, when e,valuated, produce a ‘_dlflerent number dependrng on the ch_osen X,-» o
Each one of these numbers is less than or’equal to some‘nu'mber M which is
| greater than zero. Therefore we can apply the fact that l X(w) X(w) I<e for all‘ ,
w,WeC wrth fw-w l< Er‘z toX=X, n € N, and conclude that the tunctlons X '
when the domain is restrlcted to C,is equrcontmuous By deflmtlon of -~
, equncontmuous applled to thrs case, for all € >0, there corresponds a E > 0 %
| :such that for all Xe{X }and for allw, w e c the followmg mequalltres are true o
| (15)lX(w) X (W) I<e | |
I X, (W) - X, (W) I<e

X (w) X, (w)l<e .
;whenever fw-w I<8/2. Thati is, only one number & > 0 allows the prewous S

mequalmes to hold true In short, thrs defmrtron essentlally asserts that the

Euclidian dlstance between X (w) and X (w) lor i= 1 2 n wrll always be less o ’.

than e as long as we ensure that the Euclldlan drstance between w and w for

allw,w eC,is less than 5/2. See flgure 16. Note that all the pomts |

. W, We C are “especrally chosen” so that | w - w l< 5/2 Further although every‘_ e

X‘_l has the same domam C and rmage r, each specrtlc X | maps the pomts

on I in a different order.
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ln addrtron we can conclude from X (C) 1" that the functlons X | are

unrformty bounded for n 1,2, 3... To understand why thrs is true we need to :
understand what it means for a famll_y of »functtons to be uniformly bounded; frrst_, o
consider the definition of what it means for’ a given functio_n of one variable to‘» be
bounded. A set of real numbers i_s‘said to be at bounded set if the set has both
_an upper and a lower bound Consider a functibn f: l —> R deﬁned on a"g;iven
interval | of real numbers. The functron is bounded on the rnterval rf the set of all'
values of the functron is a bounded set this means that for all x € |, there is

some real number A such that | f(x) | < A. Similarly, for a family of functions

Xn [‘c :C—>Ti=1,2,..nto be'unitormty »bounded, means that we can enclose
vvl" contai‘ning all the image ooints of all the rnaopings X-| : :C—>T in-a sphere j' |
of radrus r> 0; we can denote thrs sphere centered at the ongm by o

{x € RY Ixl=1}. Clearly, sincel is enclosed in S2 the rmage points X (w) '

on I" will always be less than r units from the origin. This is true regardless of
where the Jordan curve is located i_ns_ide S?in figure 17. |
This case, as well as all cases where I" is enclosed by S°, we know IX, (W)I <r .

for all wvr-:— C,n=1,2, .. Thatis, the norm of all XL(W)*is always less thanor
equal to the radius r of the 'sphere, so the functions X | are uniformly bounded .
forn=1, 2

Hence our sequence of unrformly bounded mappmgs {X | }sattsfy the -

- hypothesis of a version of the theorem of Arzela Ascoti :

lf {X | } is a sequence of harmomc functtons on C that

is umformty bounded on C, then all these mappmgs
~in{X | } converge to a specific map ¢:C—>TI7
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To understand this theorem, let us examine the image points of each X| , X[, .
. ‘ o s - e " 2le
as n —> . As shown in figure 18, as n increases infinitely, each consecutive

X (w), forn=1, 2, .. converges o a fixed point P; that s, lim X,(w)=P. -

n—>00
Therefore, by the theorem of Arie!éQAscoli, all the mappings in the sequence |
{X.l} converge uniformly to a specific continuous weakly monontonic map as G
n.;>oo, denoted by ¢ :C —>I", where ¢ (w) = P for a given w e C. Sowe have
fim X |, = ¢. Moreover, from a result of harmonic function theory, we know
00 .

that the uniform limit of functions (1') continuous on a closed disk B, (2)
harmonic in the rntenor B, and (3) satrsfymg the three pornt condmon is a

function havmg these three propertres ThlS functlon X B S F’ﬁ‘* is srmllar to q>

in the sense that just as each cortsecutrve Xd. (w) converges foa specrfrc pornt ‘

P on the Jordan curve, each consecutive )(L(w) converges toa specmc pomt Q
on the surface. Again, just as before, all the mapplngs in the sequence {X,}
converge to a specmc map X shanng the same properties of maps in the
sequence. Finally, restricting the domain of X tolC will produce image points On‘v
| the boundaryT‘ of the surface; thus, Moreover, from a result of harmonic fun’cﬁon‘
theory, we know X| = ¢. Consequently, X meets the requrrements for being of
class C*(T), defmed earlier, and therefore

| (16) e*(")< D(X)
This is true grven the definition of e*(I‘ ) :=inf{D(X) | X € C*(I")}, which W|||
produce the smallest possible value of D(X) this number will always be less

than or equal to a given D(X)
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Furthermore a classrcal result for harmomc functions (recall that a B
functtonX is harmomc if - ” o o
AX= S"‘X+52X 0) rmphes that
- Eu?_ﬁv2 L e
grad X,=5X i +5X | tend'sto o
Eu bv
. grad X=BXi+BX]
' - Bu dv

as n—> oo unlformly on every B’ccB As grad X, approaches grad X by the |
deﬂnmon that takmg the hmrt of vectors entarls taktng the llmtt of each

component, we know

BX,  approaches . 5X and - )
bu . Bu. »

BX  approaches  8X ,asn—sw, where

—=n

bv. -~ Bv

(a7 BX = Xn,

=3

bu

X = o,
bv '

X = X,
Eu

X = X,
. ov
Consequently, by substltutlon and squarlng

IXn P approaches |Xu|2 and

IXn? approaches IXvP. N
So we can infer that since, by de‘finiti'on; i
| Dy(X): = % ( Xaf + XnF)dudv  and
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D (X) Zfs ( |)( |2 + IXVIQ) dudv e

'*mD (xn) = D (X)rstrue RSN
_ When we restrlct the Dlnchlet rntegral to B’ a stnct subset of B the result - '
~ of the integration will produce number less than or equal to the smauest D (x) P

: thrs number is denoted by lim inf D (Xn) Asa result
- hm mf D (xn)> lrm DB,(Xn) rf LT

, B’< < B When we replaoe lrm D (X,,) by DF(X) we wrll obtarn
. . ) _ n->oo . _
(.18) lim inf D, (X,,) > D (X)

n—>,°° ,.

Wrthout Ioss of generahty, fim rnf D (X,,) lrm D (X ") - "m D (X‘,',);v .

“"'>°°. S , , n—,->°.o o

, Thus we fmatly obtam e*(I‘ ) hm D(Xn) > D(X) > e*(l" )

_ . n—>%
The first p,ertio'n*of this »expressio'_n,‘e*(r") = lim D(X n)'l,',} |

was an assumptron we establrshed earller and the Iast portron of the L E .;: ,‘

expressron SRR o o

(1 9) D(X) > 9*(1" )

is true by the det" mtron of e*(l") We can n ow explarn why v :,.;;» 5}
| (20) lrm D(X,.)>D(X) IStrue Where T

. n—->b°
o By equatlons (1 8) and (21) we know e*(l" ) > D (X) where e*(I‘ )i is a constant _ |
Smce Blisa strict subset of B as B’ —> B, D, (X) approaches D, (X) By |



analysis, e*(I") will still be greater than D, (X), as we take the limit of D (X),
letting B’ —> B. Consequently,
(22) e*() = lim Dy (X)=D, (X)
B —>B
From our previous work, we also know
(23) e*(') <Dy (X)
Equations (22) and (23) suggest D(X) = e*(T).
Recall that D(X) = D, (X) by the definition of the Dirichlet integral. Therefore,
X e ¢* (I') is a minimizer of the Dirichlet integral D(X) within the class ¢ (I).
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CHAPTER THREE: THE MINIMAL SURFACE PROBLEM

'Now that we have established that minimal surfaces do exist, we will now
prove that(the catenoid is the only surface of revolutie_n which is also a minimal
surface. The problem is stated as follows: ‘

“Consider the surface of revolution f generated by the catenary (h(u), 0, k(u))
where .
h(u) = acosh([k(u) - b}/a)
This surface is known as the catenoid. Prove that the catenoid is the only
surface of revolution which is also a minimal surface.”
Solution: | |
First, | will prove that given h(u) = aoosh([k(u) b]/a) then this surface of
revolutlon which is of the form
_ f(u,v) = ( h(u)cosy, h(u)sinv, k(u) ),
ie a minimal surface. To prove this, | will show that the mean curvature of this
surface equals zero. That s,
H=1/2[ #(X,) + =(X,)] = (EN + GL - 2FM)/2(EG - F) =0.

To do this, | will show that the numerator, EN + GL - 2FM, equals zero. | will
begin by computing the first and second paﬁial derivatives with respect to u and
v | |

f,= (h’(u)cosv, h'(u)sinv, k’(u))

f,,.= (hW(u)cosv, h’(u)sinv, k’(u))

f, = (-h(u)sinv, h(u)cosv, 0)
= (-h(u)cosv, -h(u)sinv, 0)
f, = (-h’(u)sinv, h’(u)cosv, 0)

Next, | will find the unit normal vector N, defined to be
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C(XE)
o I, X1 1
~ The numerator f, X{, equals

= e,(-h(u)k (u)cosv) - e(h(u)k’(u)sinv) + ea(h(u)h (u)coszv + h(u)h’(u)sin®v)
= (-h(u)k’(u)cosy, -h(u)k’(u)sinv, h(u)h’(u)), and the denominator, |f Xf I, is
| {hz(u)[kf(u)]”éoszv+ U)K’ (u)Psin’v + (Ul (u)}? | |
= {(‘hz(u)[k’(u)]2+ hz(li)[h"(u)]"’}"z |
= h(uK'(u)* + h°(u)* ¥ |
Therefore, | . |
N= (-h(u)k’(u)cbsv, -h(u)k'(u)sinv, h(u)h’(u))/h(u)(K’(u)F " [h*(u)F*)™.
= (-k’(u)cosv, '-k"(u)s’inv, h’(u)/([k(W)F + [N ()P )™ |
Using the above inf_ormaition, we can find E,F,G,L,M and N:-
E:=t, -, = [ (u)Fcos’y + [N (u)Fsin + KW = [K(W)F +PUP.
Fi=t. -1, = -h(u)h'(u)cosvsinv + h(u)h'(u)cosvsinv +0=0.
Ge=t, -1, - W(u)sin’y + W (u)cos™v + 0 = ().
L=f,-N = (k'(u)h’(u) - k’(U)h’;(U))/([k’(U)12+ [ (u)P)™
M:=f_- N = h’(u)k’(u)sivnvcosvl([k’(u)]z+ [h(u)P yie
- h’(u)k’ (u)smvcosv/([k (u)]2 + [ (WF)”?+0=0. |
N:=f -N= h(u)k (u)coszvl(k (u)2 + h (u)2 )"2+ h(u)k (u)smzvl([k WP+ [h (u)]2 )”?
= h(u)k (U/(K'(u)? + h’(u)?)™™.
Consequently, EN + GL -2FM equals -

{IKUF + [ (U)]"’}{h(u)k (U)/(k (U + W(u) )3
+ (u)[(k"(u)h’'(u) - K (u)h”(u))/([K’ (u)]2 + [(u)P )‘Q] which equa!s
{h(u)i’ (WFK() + h(u)lk(u)f + h(u)h’(u)k"(u) -h(uh (k' (u)A(K (WP + ()P )'2
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Again, to show that the above expression equals zero, | will show that the
“numerator | | |
h(u)h'(u)Ik(u) + hU)KW)F + h(u)h'(u)k*(u) -hHu)h"(u)k'(u)
equals zero. First, | will take the first and second derivatives of
h(u) = acosh([k(u) - b}/a):
h(u) = K'(u)sinh([k(u) - b}/a)
h"(u) = k"(u)sinh([k(u) - b/a) + [K'(u)]¥acosh([k(u) - b}/a)
Also, | ,
h*¥(u) = a’cosh*([k(u) - b}/a), and
[ (W)= [K'(u)Psinh¥([k(u) - bl/a)
Consequently, letting q = [k(u) - bJ/a and substituting the expressions for h(u)
and h'(u), we will see that |
h(u)[h’ ()]’ (u) + h(U)[K'(U)F + h(u)h’(u)k”(u) -h*(u)h™(u)k’(u)
= acoshqgk’(u)[K’(u)I’sinh’q + aco_s:hq[k’(u)]3 + a’cosh’qk”(u)k’(u)sinhq
- a*cosh’qk’(uf{k’(u)sinhqg + [k’(d)]"-lacoshq} |
= acoshq[k’(u)]3sinh2q + acoshq[k’(u)[+ a’cosh’qk”(u)k’(u)sinhq
- K'(u)k”(u)a*cosh’gsinhq - a[k’(u)]’cosh’q
= acoshq[k'(u)J'sinh?q + acoshq[k'(u)f - a[K'(u)f'coshq
= acoshq[k’(u)]Xsinh’q + 1 - cosh®q}
= acoshq[k’(u)]¥ cosh®q - cosh’q}
= acoshq[k’(u)]¥0} = 0.
Our surface of revolution, therefore, defined by

f(u,v) = ( h(u)cosv, h(u)sinv, k(u) )
= (acosvcosh [k(u) - bl/a, asinvcosh [k(u) - bl/a, k(u))
is, by definition, a minimal surface since its mean curvature equals zero. Figure

19 provides an illustration of a catenoid.
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leen that the mean curvature equals zero; that rs EN + GL 2FM = 0

o whrch is equlvalent to |

[h (WPK(W) + K (U)l3 + h(U)h (U)k”(U) h(U)h”(U)k (U) 0 _

- we will solve this dlfferentlal equatron for h(u) and k(u) We wrll begln by
| 'makmg the followmg substltutlons , o

-  h)= t and k= k(u) k(t) | |
Consequently, usmg the charn rule and the product rule for d|fferent|atton we
" have the followmg | | ' |

dh=1

Q.

Wu)=dh=dh.dt=dt
: du dt du du
h”(u) dgh d dt 2-t
o du ( ) du(d

k’(u) dk = dk . dt
“du dt du

- ‘k”(u) = d—k d dk dt
o dw

4@ z:, ———)

- dt2 du du dt du TR

g ',.—dak( +dk &t
dt2 \du/ A

Substltutlng these expressrons mto :

[h (u)]2k’(u) + [k (u)]3 + h(u)h (u)k”(u) -h(u)h”(u)k’(u) O we have
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) (dk dt)

)6 ¢ )

‘ gt |
du

—_>

. dt
, du

)[;[t‘ 2]

| ))+dk'.

+ tdt dt
du ( du)
dk . d?t -td’t.dk.dt =0
dt du® du® dt du
—>(dt dk +f dk\°+ td k} =0
) o (@ 2]
dk + ( 4 td2 =0
—>(1+(glg g)_(1!_(_ +tdk =0
‘ dt dt dt?

Letting k' = k’(t) =dk_ and k” = k”(t) = d®k , we have
at

dt

(1 +(K)?)K +1K” =

0

Now when we multiply this equation by k’, we obtain

Lettingy = (K)’and dy =

dt

which is equivalent to

(K)? + (K)* + tk'k” = 0

Y+Y+

dy =
2dt

2k’k” our equation becomes

dy +2dt =0

y(1+y)

t
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When we mtegrate thls equatlon we W||| have |

Inlyl lnl1 + yl + 2In|tl

- for some constantc Thus

| Inly/(1+y)|+|n|t2| c, orln( )
B , ‘ 1+Y

-~ . Since €° >0,, we can Iete a’, wherea is another constant Consequently, - |

yt2/(1 + y) a’

- This equ,atiOn is 'equii)alent to
L | ‘yvtz’»-az(1'+y) |
| Slnce y= (k)= [k’(U)12 ‘
KPE=a (1 +(K)).
Solving fof_k’; we have e -
= al(f"- )"
Integrating will produce the following |

k =acosh”’ t+b,
a .

where b is another constant. When we solve for t we ‘Will have -
t acosh[(k b)/a]

Recalling that t = h(u) and k= k(u) we can rewnte this equatlon as |
h(u) = acosh[(k(u) - b/a)].
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CHAPTER FOUR: PARALLEL TRANSLATION AND GEODESICS

We will now explore two other properties of Differential Geometry,
Parallel Translation and Geodesics, found in Wilhelm Klingenberg’s A Course
in Differential Geometry, to highlight the differences between Euclidian
Geometry and the geometry on the surfaces. First, we will need to develop
some background on the following topics:

(1) Tangential Vector Fields
(2) Orthogonal Projections
(3) Covariant Derivatives

By defmrtron a vector field is a mapprng which corresponds pomts in Rz
the domain, to vectors in R®. erewrse a tangentral vector freld Xil—> F’ﬁ“’, given
by the vector function X(t) = au(t)f + bv(t)f = (x(t), y(t) z(t)) is a mapping from the
real numbers in the mterval I, whrch determmes points on a surface, to tangent
vectors, tangent to the surface at points given as a function of real numbers in
the interval I. Selecting different points t, & I will produce different points on the
surface, and the tangential vector fie!d' X: 1 —> R®, will map these points to their
respective tangent vectors, tangent to the surface at that point. Observe that |
there exists an infinite number of tangent vectors to a surface at a given point.
Similarly, the function dX/dt: l—> R3deflned by dX(t)/dt X'(t) = (X(t), y'(t), Z'(t))
isa mappmg assigning vectors to real numbers in the mterval | which
determines some point on the surface. The function pr: T, R*— >Tuf is defined
as an‘orthogonal' projection in the direction of the normal vector n(u) mapping

arbitrary vectors of the form af, + bf,+ cn in T R°= R to their corresponding

tangent vectors of the form af, + bf, lying on the tangent space T f. Notice that
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T, [’ represents the tangent plane of R°at the point f(u), which is Reitself; this

iswhy T, R°= R®. In short, pr, projects a vector in R®to the tangent plane Tf as
shown in figure 20, where our surface is a hemlsphere. Observe that if the
vector we are projecting is parallel to the normal vector at that point, the
'orthogonal projection will be zero. , |

We are now ready to define the covariant denvatlve denoted by AX(t)/dt,
as the composmon of pr,and dX/dt, that is, AX(t)/dt = pr, o (dX/dt)(t): I—>Tf,-
where t £ |, as illustrated in figure 21. In this example, the tangent plane T fis
parallel to the xy-plané. Note that AX(t)/dt:1—>R?, is, »by definition, a tangential
vector field énd ﬁX(t)/dté 0 if dX(t)/dt is parallel to the normal vector at a given
point; in figure 21, the normal (unit) vector is the vector (0,0,1), parallel to the
z-axis. To clarify, since the orthogonal projection pr, projects the vector dX(t)/dt
onto the ‘tangent plane, when dX(t)/dt is parallél to the z-axis, the orthogonal
projection will be zero. When the orthogonallr projec;ﬁon equals zero, AX(t)/dt
also equals zero. | | - |

Equipped with this background, we can begin our discussion of parallel
translation. Covariant differentiation will be used to define what it means for .
vectors to be parallel along a curve ona surface We will first consnder two
‘cases where our surface is the Euclldlan plane Fﬁz Let X I—>F’33be a tangentlal
vector field. In a plane, the image of this vector field X (t), a set of vectors, along
a curve, c(t), is defined o be constant, or barallel,*‘ if its value is constant:
foralite ], X,() =X =(a,b), where ab e R. That is, all points on the plane are
sent to a single vector X, and since X (t) is a constant, dX,(t)/dt = (a,b)’ = (0,0)
=0. For example, suppose X, maps all the points on an interval | td the vector

X, along our “curve” (a Iihe) lying in the surface R?, as depicted in figure 22.
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Here,“ all thésé. védtdrs along the _Iihe Y aire the same vectdr X, béi'ng translated
aldng-vt and are all tangent to B2, In the context of Euclidian Geometry, these
vectors ih the above figure resemblé "pérallei VeCtors on the plane. As another
example, suppose X, were a tangential. vector field mapping points on a curve
~lyingina plane' to their respectivé tan'gentHVector's on the surface R? similar to
X, forallte I, X, () = X, a constant vector being translatedvalong the curve on
the plane, as shown in figure 23. Again, these vectors are all tangent to the
plane and in the context bf Euclidian Geometry, these véctors in the above
figure resemble parallel vectors on the plane.

We will now consider what it means for tangent veétors of a curve lying |
ona nonplanai' surface to be parallel: by definition given a curve
c=fou: | —>R*on a surface f: U —> R?, a vector field X along c is parallel
along c provided AX(ty/dt = pru(dX(t)/dt) = 0; this occurs when dX(t)/dtis parallel
to its normal vector at a given point. As indicated earlier, a surface in space has
an infinite number of tangent vectors at a paﬁicular point; however, a curve on
a surface has only one tangent vector at a particular poiht. To illustrate such a
vector field X, let us eXamine thé unit sphere S? given by the equation |

f(u,v) = (cosdcos,v, cosusinv, sinu).

As before, the unit normal vector at a given point on the '3urfa‘ce is defined to be -

N(uyv) = ({ X{f)
| Hf, X1,
For the unit sphere, we can find N(u,v) as follows:

Find the partial derivatives of f with respect' touandv.
f, = (-sinucosyv, -sinusinv, cosu) and f, = (-sinvcosu, cosucosyv, 0).
Consequently,

f, X{, = (-cos?ucosv)e, - (0-(-cos’usinv)e, + (-sinucosucos® - sin’vcosusinu)e,
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= -oc)s"’ucosve1 - cos‘usinve, - sinuc':osue3
= (-cos’ucosv, - cos‘usinv, -sinucosu) and
If, X1, = [cos'ucos’v + cos'usinv+sinucosu]”
= [cos‘u(cosV + sin’v)+sin‘ucosu]™?
= [cos‘u+sin‘ucos’u]
= [co'szu(cos'}"'u+sin2u)]‘v’2v

= COSU.

Therefore, (f Xf) is equal to (-cosucosv -cosusinv, -sinu) = -f(u V).
I, X1
This tells us that for a tangent vector of our surface at a given point, we

can fmd its oorrespondmg unit normal vector merely by taklng the addltlve ,
inverse of the vector assocrated with that given pomt To |ilustrate this, we will
focus on a specific set of pomts lying on S points on the the great circle c
parametncally defined by c(t) = (0, cost, smt), this great circle is the mtersection
of S*and the yz-plane. Clearly, since c is a subset of S?, all' the points on ¢
givenvby} c(t) = (O, cost, sint) also lie on the sphere. So by our previous
computation where we found that N(u,v) ='-f(u v), we know that the normal
vector of a tangent vector on the great circle c at the point c(t) on ¢ is the additive
inverse of c(t): -c(t). This surface together with the set of its dlstinct tangent

vectors, the image of the tangentialtvector field X: | —>R®, and its normal

vectors along the'great circle is illustrated figure 24 We will define this
_tangentlal vector field by X(t) = ¢ (t) (0 smt cost). For example the point
c(nf2) = (0, D 1} on the curve has as a (unit) tangent vector c (mi2) =(0,-1,0)
and a unit normal vector -c(n/2) = (0,0,-1). Slmllarly, ‘atthe point ¢(0) = (0,1,0),

we have the ta'ngent vector ¢'(0) = (0,0,1) and the unit normal vector
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-c(IJ} = {0, -1,0}. These tangent vectors are elements of the image of the
tangential vector field. Notice that dX(t)/dt =X =c"(t) = (0, -cost, -sint) = -c(t),
~ which |mpl|es that dX(t)/dt is parallel to the unit normal vector -c(t). Therefore,
AX(t)/dt = pr, (dX(t/dt) = 0, and so, by defmltlon the tangential vector field X
along the great circle ¢ |s parallel along C.

Another property of dlfferentlal geometry, related to parallel translatlon is
geodesrcs. To understand the concept of geodesics, we need- to comprehend
the notion of geodesic curvature on a surface. Before proceeding., hovvever, let
us begin by exploring curVature.on the Euclidian plane. In this (c'o»ntext,
_cUrvature is the measure of 'how’fast a curve ‘onv a plane turns at a given pointas
we move along it. For example consrder the curve c: [a b]—>F’t2 in flgure 25. |

Loosely speakmg, since there is more of a bend atD than at pornt F we clalm :
: that the curvature is greater at ponnt D, compared to point F. To make the notion
of curvature more precnse we will now examlne the prevnous ﬂgure _
" accompanied by its unit tangent vectors T at various points, as shown in frgure
26. Observe that as we move along the curve on the plane, the unit tangent |
: vectors T turns as the curve bends. ,On the plane, the mathematical definition of
curvature at a given point on the curve 'is given by k = Idt/dsl, where s denotes
the arc length and t the angle formed by the unit tangent vector T and i = (1,0);
therefore dt is the change in the angle t and ds the change in arc length s. |
Since ¥ = ldt/dsl the curvature is greatest where t changes the most rapidly. | '
| _is, therefore, greatest where the tangent vector changes the most rapidly. For

' mstance there isa ma]or difference between the tangent vector at point D, and

- apoint near D, say point E. Thus, the curvature at point D is large. Conversely,

at point F and at a point near F, say point G, there is little difference betvveen’ the

‘corresponding tangent vectors, suggesting that the curvature at point F is small.
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On a straight line, the angle t remains the same on each point on the line.
Consequently, since there is no change in angle, the curvature of the line at all
points is zero. In addition, thé curvature at each point on a circle of radius ris a
constant 1/r ‘since the unit tangent vectors T turn at a constant rate. These two
figures are illustrated in figure 27.

Similar to curvature on a plane, geodesic curvature is'the measure of
how fast a curve on a surface turns at a given point as we move along the curve.
Geodesic curvature, therefore, is a local quality of a éurve at a given point. Let

| ‘US examine the curve shown in figure 28. At the point c(t) on the curve, the
geodesic curvature is defined to be x () = e,(t)- (e (t/dt)/Ic(t)l. Let us examine

each component of the equation above:
(@) e,(t) = c'(t)ic’(t)l. This is the unit tangent vector of the curve at the point c(t)
(b) et) =€,V
(c) The covariant derivative, Ae (t)/dt, is formed by projecting e,(t) onto the
tangent plane, obtaining a tangent vector. | |
(d) To find the geodesic curvature, we divide the dot product of Ae (t)/dt and e.(t)
and by Ic’(t)l. Again, this quantity represents the amount of bend at the given
point c(t). |

By'definitiOn, a curve isgéddesicwhen its geodesic curvature )
equals zero at all points on the curve. This occurs when e(t) equals,‘or is
parallel to, the \normal vector of the tangehi vector at a given point. To illustrate
such a curve, let us again c‘o‘nsider the unit s'phére"S2 defined by the equation

f(u,v) = (cosucosv, cosusinv, sinu)

and the great circle lying on the xy-plane defined by

c(t) = (cost, sint, 0).
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We will now calculate the geodesic curvature at the point c(t) on this curve,
shown in flgure 29, usmg the steps below |
@) eft) =cOicH)l
¢'(t) = (-sint, cost, 0) and Ic’(H)l = [(-sint)* + (cost)® + 072 = 1.
Thus, e,(t) =c'(t) = (-sint, cost, 0).
(b) et) =e,’(t) = (-cost, -sint, 0). |
(c) To find the covariant derivative, Ae (t)/dt, we project eé(t) onto the tangent
plane at the point c(t). Before doing so, however, notice that since
N(u,v) = -f(u,v), at the point c(t), the normal vector‘equals -C(t) = (-cost, -sint, 0)
= e,t). Since ez(t) equals the norrhal vector, the prdjection of e,(t) on the
tangent plane will yield zero, ehsuring that the geodesic curvature at that point
is zero. All the points on this circle have this property; consequently, this curve,
the great circle, is, by definition, a geodesic. In fact, all the great circles on the
sphere‘ are geodesics. |

- However, the non great circles on the sphere, the latitude circles, are not
geodesncs For instance, consider the Iatltude circle of radius r and a units from
the origin, shown in figure 30, given by the equation

| d(t) = (rcost, rsint, a).

The unit tengent vector e,(t) equals (-rsint, rcost, 0)/(r* + a%)'"* and e,(t) equals
(-rcost, -rsint, 0)/(r* + a"')‘”. Sincke”th‘e normal vector, -d(t) = (-rcost, -fsini, -a), |
does not equal ez(t)}, the geodesic curvature is not equal to 0; thus, this circle is

not a geodesic.
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CHAPTER FIVE: AN APPLICATION OF A MINIMAL SURFACE

The concept" of minimal 3urfaces is an outgrowth of experiments involving
soap films stretched across closed tWISted wire frames. In the analysns of the
Plateau Problem given in the second chapter, the closed Jordan curve T
~ played the role of the twisted wire frame The architect Frei Otto, msp:red by the

elegance and economy displayed by these soap films, designed exhibition
halls, arenas and_stadlums. His goal was to utilize the least amount of
construcﬁon material to create strong lightweight structures that were easily |
-erected, dismantled énd moved, as well as be able to withstand the destructive
forces of nature. | |
- To design such a lightweight structure, forvexample, a roof, Otto w_ould ,
- begin his vtask by construoting a pIeXiglass plate studded with‘ thin rods of
| varying‘ heights. These rods would have drooping threads defining the edges
~and ridges of the roof. This model would then be immersed into a soap
solution, and, when,withdrawn, WOuld reveal a tent like shape. The resuiting
soap film, stretching out only as far-_as it ‘muét, pulls the threads taut to create a
slpectacular‘ scalloped roof. Similar to the s_urface defined by the image of the
mapping f(u,v)=(u, v, 1 ; v+ v’) which we examined in chapter one, every
section of this roof is shaped like a horse’s saddle; | Next, the soap film m»odell ie
carefully phdtogfaphed and meaeured in order»'to bnild a solid reofesentative-of
the _structufe; this miniature is tes’ted, in windtunn_e!_s to detefminef the potential |
impact of wind, rain ahd snow. I the model pasts these tests, Otto would use it
as a basis to design hIS roof. In the actual construction of the roof, sheets of

synthet:c material serve the role of the soap film and steel cables play the part
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of the threads. This model also enables Otto and his colleagues to study new
ways of utilizing minimal surfaces to design structures of optimal shape for a

given contour or boundary.®
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