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ABSTRACT
 

Differentia!Geometry is the studyofgeometricfigures in space using the
 

methods of Analysisand Linear Algebra. Concepts involving the basis ofa
 

vector space,the differential of mappingsand perhaps, mostimportantly,
 

curvatures,are employed extensively when examining surfaces in three
 

dimensions. These surfaces are given bythe images ofa function f: U—
 

where U is understood to be an open setin IR^. Thefirst portion of my project
 

will be devoted to examining the fundamental ideas underlying Differential
 

Geometry,focusing on the featuresofa specific mapping. Secondly, I will
 

concentrate on a special class ofsurfaces, referred to as minimal surfaces,
 

defined to be anysurfaco having azero mean curvature. Minimal surfacescan
 

be characterized by the quality of having the leastsurface area of all surfaces
 

bounded by thesame Jordan curve.This analysis will establish aframework to
 

understand the Classical Plateau Problem asserting the existence of a minima!
 

surface bounded bya given Jordan curve. This background will lead meto my
 

third goal:to investigate which surface of revolution isa minimal surface. My
 

fourth chapter will highlightthe differences between Euclidian Geometry and
 

the geometry on the surfaces by examining the properties of Parallel
 

Translation and Geodesies. I will then ctonclude my project bysummarizing a
 

practical application ofa minimal surface.
 

Ill
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CHAPTER ONE: THEFOUNDATIONSOFDIFFERENTIALGEOMETRY
 

To understend Differential Geometry,I will begin by investigating the
 

following properties of the continuous mapping f: U —>ll^defined bythe
 

formula,
 

f(u,v)=(u,v,1-u^+v®):
 

(a)Differential mappings
 

(b)Firstand Second Fundamental Forms
 

(c)Gaussand Mean Gurvatureis
 

Generally,U refersto an infinite open set in however,since wewantto
 

examine a surface with boundary for the purpose offinding its area,we will
 

parametrize oursurface bythecompact unit disk B:={we Iwl<1}centered
 

atthe origin. Thatis,Eisthe domain dlt Theimage ofthisfunction,f(Sjf=S,is
 

the set S={(u,v,1 - u^+vf):(u,v)e B^}in ThissetSis defined to bea
 

hyperbolic paraboloid^ a closed surface With boundary. Thisfunction is
 

illustrated in the firstfigure oftheappendix.
 

It will be understood that
 

f =.u ^ r:,-;;?::
 

f=V.
 

f'-1-U^+V^ ■ ' 
3 ■ ■ ■ ^ , 

Thetangent plane ofthis surface isthe infinite setof all vectorstangenttothe
 

surface ataspecific point. From thistangent pointemanatesinfinitely many
 

tangent vectors,which forth aset. Thisset,denoted byTf where u is the point
 



 

 

 

 

oftangencyon the surface,isthe tangent plane toSatthe tangent point u. To
 

find the baasofthisfangent plane,we will explore the differential mapping off
 

given bythe matrix
 

df df 
1 1 

du dv 

df df
 
1
dfa = 2 ,
 

du dv
 

df df
 
3 3
 

du dv
 

in our example,this equals
 

1 0
 

-2u 2v
 

Composing this matrix df„ with e,=(1,0), we will Obtain the first elementin the
 

basis of the tangent plane: (1,0,-2u);similarly,the second element in our
 

basis isfound by composing df„ with e2=(0,1): f„=(0,1,2v). Itisclearthatthe
 

natural basis of is mapped by df^into a basisofTJ. Sincetheset{f^,f^}is
 

the basiis ofour^ngent plane,wecan representthe tangent plane TJ by
 

{af„+bf^l(a,b)e }. Thesurface accompanied by its tangent plane atthe
 

point(0,0,1)is illustrated in figure2ofthe appendix. Notice thatthe point
 

(0,0,1)on the surface was mapped from the origin in the domain W;that is,
 

f(G,0)=(0,0,1) At (0,0,1),wecan find a line /which Is perpendicular to all the
 

tangent vectors:this is referred to asthe normal line orthogonal to the tangent
 

plane. Observe that allthe infinitely many vectors parallelto/are ala)
 

orthogonal to the tangent plane, also shown in figure2In the appendix.
 



However,we are only Interested in the two unit normal vectors parallel to /given
 

by .
 

N(u.v\ = + (^Xf)
 

This definition arisesfrom the factthat the cross product,a X b,oftwo nonzero
 

vectors a and b is orthogonal to both a and b lying in a plane. Forthe mapping
 

./,.f(u,,vy-{u,ViT-u^+'v^,
 

the two unit normalvectors with respecttothe tangent point(0,0,T)are
 

N(u,v)=±(2u/[4u^+2v^+ir®,-2v/[4u^+4v^+1p,[4u^+4>^+1J"^®).
 

Forthe remainder ofthis analysis,let D=[4u^+4v^+1}^®. Forour purposes,we
 

willfocusonlyon the unit normal vector(0,0,1). Wecan recognize from figure2
 

ttiat when wetranslate the unit normal vector(0,0,1)along thez-axissuch that
 

its initial point is at(0,0,1)and its terminal point is at(0,0,2),this is the unit
 

normal vector ofthe tangent plane atthe point(0,0,1).
 

The unit normal vector atan indicated pointservesasan introductiontO
 

the GauSs mapping N:S x e R®:1x1=1}defined byasimilarformula
 

„given earlier: v' ^;
 

: ■ I' ^/If^Xf,!V V 

Wecan perceive the Gauss mapasacompositionOftwofunctions:
 

First,f is ourmapping which will corresponda point inStoa pointon the
 

surfaceS:for(u,v)e f(u,v)=PeS. Secorrdly, h mapsthis pointf(u,\^=Pon
 



 
 

the surface to its unit normal vector in 13®;thatis,
 

N(u,v)=h(f(u,v))=
 

This unit normal vector in S isthen translated to the unit sphere S® such thatthe
 

initial point ofthe unit normal vector{x>incides with the origin and ite terminal
 

point is a pointonthe sphere itself. Theimageofthe Gauss map,therefore, is
 

thesetof unit normal vectorsofthe vartoustangent planesTJtranslated to the
 

sphere S®;that is,the Gau^maptranslatesallthe unit normalvectorsofthe
 

infinitely manytangent planes at all points on the surface to S®. For insfance, if
 

oursurface were a plane parallel to the xy-plane,asillustrated in figure 3,the
 

tangent plane ofour surface is the surface itself having a single unit normal
 

vector protruding from it; when we translate this unit normal vectorto S®,we
 

discover thatthe image ofthe GaUss mapping isa unit vector parallel to the z-


axis,ha^ng as its initial point(0,0,0)and ite terminal point(0,0,1). The image is
 

justa point having zero area. This preceding illustration demonstratesthatthe
 

area ofthe image ofthe Gauss map,a subsetofS®,is a useful indication of the
 

flatnessofoursurface:sinceoursurface isaflat plane,the area oftfieimage of
 

the Gauss map iszero.
 

The unit nomial vector, whicfi was used to understand the mechanicsof
 

the Gauss map,also playsa key role in determining thefundamentalforms.
 

Forthe vectorsX=(x^,x^)and Y=(y,,yg)in 3®,the firstfundamentalform is
 

defined asfollows:
 

l(X,Y)=(x,x,) E F /y;\ ,where
 
F VVa;)
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Forourmapptng f{u,v)=(u,v,1- ),
 

E=1 +4u'
 

F=-4uv
 

G=1 +4v".
 

Therefore,
 

1 +4u^ -4uv
 
l(X.Y)-(x,x^ Yi
 

-4uv
 

This bilinearform equals
 

+4u%y,-4uvx^i -4uvXiy2+x^2+^v®)^y2

Important local geometric propertiesofsurfaces,including length of
 

curvesand surface area can be developed from the first and second
 

fundamentelforms. It isimportantto notethatsincef iscontinuousand our
 

domain is the compactset B,our surface,S=f(B), is also compact,which
 

implies that although S is an infinite set in 1^®, it is bounded;consequently,we
 

can speak ofthe surface area ofSparameterized bythe unit disk§. For
 

example,byatheorem,the area ofa surface in three dimensionsis given by
 

A=//[i+(g/+(g/rdA.
 

To relate the firstfundamentalform with the surface area ofthe map under
 

consideration,we will evaluate the determinantof the matrix whose entries are
 



 

 

 

the coefficients ofthe firstfundamentalform:
 

E F
 

F G
 

This determinantequalsEG-P=(1+4u^(1 +4v^-(-4uv)(-4uv)=1 +4v^+4u^
 

Wecan
 

z=g(u,v)=1-u^+
 

Therefore,we have following partial derivatives oTg^^^^^
 

g'=-2U'
 

"g,=2v.
 

This impliesthat1 +(gjz+(gja=i 4v2-eg-P;consequently,ourarea
 

is V
 

A=//(I +4u'+4v"V®dA.
 

Using methods developed in multivariable calculus,we can compute the area
 

ofoursurface:
 

A-//(1 +4uH4v"y®dA.
 

for vectors X and Y in IR^, the second fundamentalform isdefined to be
 

H(X,Y)={x,.
 
Vi
 

M N
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= - N(u,v)
 

N:=f
' 'w
 

c-="(o.o.-2).
 

''/r - T
 

Therefore, recalling D -[4u^+4v^+1p®
 

L=-2/D
 

N=2/D,and
 

-2/D
 

ii(x,Y)=(x,)a yi
 

2/D vy^
 

lt)2
=(-^y^+2x^J/[4u^+4v^+1f
 

We will now be using the cdefficients L, M,and N ofthe second fundamental
 

form to calculate the minimum and maximum principal curvatures ata given
 

pointon oursurface;this will serve asa basis tofind the Gaussand Mean
 

Curvatures ofoursurface.
 

Before examining these curvatures, however,we need to understand the
 

conceptofa principal direction. LetS„T denotethe unit circle in thetangent
 

plane having as its center the tangent point u,where the tangent plane touGheS
 

the surface;thatis.
 



 

S;f:={XeT,.f:IXI=1},
 

which is the setcomprised of unittangent vectors. Bya proposition given in
 

Wilheim Kiingenberg's A Course in Differential Geometrv.X eSJfisa principai
 

direction if and only if X is an eigenvectorofthe Weingarten map L,,having as
 

entries coefficients ofthe second fundamentalform^:
 

L M -2/D 0
 
L.=
 

M N 0 2/D
 

There will be two unit principai directions,denoted by X^ and X^,which are
 

found asfollows:
 

(a)Solve( )=0for A. Thisequation is equivalentto
 

-2/D 0 A
 

2/D 0 A
 

which reducesto
 

[A+2/(4u^+4v'+1n[A- 2/(4u'+4v'+ 1
 

giving ustwo eigenvalues:
 

A,= 2/(4u"+4v"+1r andA=-2/(4u^+̂ v'+1
 

(b)Tofind the eigenvectorX,corresponding to A,= 2/(4u^+4v^+1)^'^, we need
 

tosubstitute this value ofA into the expression
 

( -Alj)X^=0,obtaining
 

-4/D 0 0
 

0
 0 3 0
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Solving this system yields 

x,=o ■■■ 

^ - x^eR,' .
 

Since X,is unit vector,let X,=(0,1). Similarly,to find the eigenvector X^
 

corresponding to A2=-2/(4u^+4v^+1)^®,we will substitute this value ofA into
 

the expression
 

(L„-AIJX,=0.
 

Solving thissystem of equations yield 

: , ; . ' ■ x^ e R.

■ ■,X2.= 0.' 

Again,since Xjisa unit vector,Xj=(1,0). 

The next step is to find k^(X^)and representing the minimum and 

maximum principal curvatures at a given pointon the surface. It is importent tp 

understand that we do not speak of the curvature ofa surface but rather the 

curvature of a curve on the surface with respect to a given point on this curve. 

This curve is generated by the intersection of the surface and the plane formed 

by the differential of a principal direction vector and its unit normal ypctor ata 

given point. To find these principal curvatures, we again utilize the coefficients 

L, M,and N of the second fundamental form;for our mapping,the minimum 

principal curvature, corresponding to the principal direction vector X2=(1,0),is 

defined to be k2(X2)= IKXg,Xg), which is equivalentto 

-2/D 0 

(1.0) 
0 2/D 

When we evaluate this product, we will have our minimum principal curvature:
 



ic2(XJ=^2/[4u'+2>^+1]^.
 

Similarly, our maximum principal curvature corresponding to the principal
 

direction X,is defined to bek^(XJ=ll(X^,XJ= 2/[4u^+2y^+11'®. Observe that if
 

ie,(X^) had been less than KgPCj), then ic^(X^) would have been the minimum
 

principal curvature. In other words,only when we evaluate ic,(X,)and iCaCXJ and
 

determine their magnitudes can we specify which one denotes the minimum
 

principal curvature and and which one denotes the maximum principal
 

curvature. /
 

We will now examine in detail these two curvatures, beginning with the
 

minimum principal curvature,KgCXJ= +2v^+IF®,in the direction of
 

Xj=(1,0), at the following point which is mapped from the ohigin in B to the 

■surface: ■ . . ; ' ■ : ■ 

f(o,o);:-;(0.0,1 
To locate this curve on the surface having curvature ie2(XJ at the point (0,0,1), 

we will slice the surface in the direction of the principal direction vector 

Xj= (1,0). To achieve this aim we will proceed as follows: 

(a) By regarding Xa as the tangent vector, we mean that df„(XJ= (1,0, -2u) is the 

tangent vector of the curve which we will produce at the point (0^0,1) determined 

by Xa Since we are mapping this point from the origin in §, where u = v = 0, it is 
clear that 

dfXXa) = (1,0,0) and 

Ka(Xa) =-2/[4U^+2v"+ir=-2. 

(b) Find the unit normalvector corresponding to the point (0,0,1). Again, the unit 

normal vector is 

N(u,v)= (2u/[4u^ + 2v®+lF®, -2V/[4u® + 4v^+lF®, {4u^ + 4v^+ir®) 

10 



 

:\=;(0A1).
 

Ourcurve will be product bythe normal intersection ofthe surface and the
 

planeformed bythe vectors df„(XJ=(1,0,0)and N(0,0)=(0,0,1). Notice that
 

thesetwo vectors are the basis ofthe xz-p'ane;since theyspan the plane,they
 

generatethe plane. Noticefrom figure 4,df„(XJ isthetangent vectorofthe
 

curve atthe point(0,0,1);to make this more evident,translate thistangent vector
 

to the point(0,0,1) The normal intersection isa curve resembling an inverted
 

parabola in the xz-plane having(0,0,1)asthe vertex. From the perspective of
 

the unit normal vector(0,0,1),translated up on the z-axis, the curve isconcave
 

down,justifying why our minimum principal curvature is negative.
 

The maximum principalcurvature,k^(XJ= 2/[4u^+2v^+If®,In the
 

direction of X^=(0,1)atthe point(0,0,1),isthe curvature ofthe curve which is
 

created when we slice the surface in the direction ofthe principal direction
 

vectorX^=(0,1). Patterning our workfrom the previous exercise,we proceed
 

accordingly:
 

(a)By regarding X;asthe tangent vector,we mean that df„(XJ=(0,1,2v)isthe
 

tangent vector determined by X, Again, since we are mapping our tangent
 

pointfrom the origin in§,Where u=v=0,it isdear that
 

dfXX,)=(0,1,0)and
 

(b)The unit normal vector correS^ohdingtothe poi^ the sarheone
 

found in the prior case:N(0,0)=(0,0,1). Ourcurve,therefore, will be produced
 

by the normal intersection ofthe surface arid the plane generated bythe vectors
 

df„(Xj)=(0,1,0)and N(0,0)=(0,0,1):the yz-planO: Noticefromfigure5that
 

when we translate df„(X2)=(0,1,0)tothe point(0,0,1),it becomesclearthat
 

11
 



 

df^fXJi istangentto the curve atthe point(0,0,1).This normal intersection is a
 

curve resembling an elongated parabola in the yz-plane. From the perspective
 

ofthe unit normal vector,(0,0,1),translated upon the z-axis, thisojrve is
 

concave up,justifying why our maximum principal curvature is positive.
 

The intermediate curvatures ofthe curvesgenerated by different principal
 

direction vectors atthe point(0,0,1)will vary between the minimum principal
 

curvature,-2,and the maximum principal curvature,2. thesecurvesareformed
 

by slicing the surface along a principal direction vector other than X,or Xj. For
 

instance, to find the principal direction vector X'e S„^f which would produce a
 

curve with 0curvature,we would solve the following equation for X':
 

II(X',X')=k(X')=0.
 

The(X)ordinates of X'assume theform Ix,I-Ixj;without loss of generality, we
 

will let (1,1), (-1,-1), (1,-1) and (-1,1) be our four possible solutions to X'.
 

Regarding each X'asthe tangent vector, we are able to find the corresponding
 

df„(X'),the tangent vector determined byeach X'. In all cases below,u=v=0,
 

and the corresponding unit normal vector is(0,0,1):
 

(i)df„(1.1)=(1,1,-2u+^^
 

(ii)di;.(-1,-1)=(-1,-1,2u -2v) =(-1,-1,0)
 

(iii)df„(1,-1)=(1,-l,2u -2v)=(1,-l,0)
 

(iv)df,,(-1,1)=(-1,1,2u+2v)=(-1,1,0).
 

As illustrated in figure6,when wecutthesurface bythe plane generated by
 

df„(1,1)=(1,1,0)and the unit normal vector N(0,0)=(0,0,1),a line, which can be
 

considered asa curve with0curvature, results; notice thatthis line coincides
 

with theline produced by the intersection ofthe surface and the plane which is
 

formed bydf,(-1,-1)=(-1,-1,0)and N(0,0)=(0,0,1). It isclear thatthis plane,
 

which we can refer to asthe diagonal plane,cutsthe xy plane ata45degree
 

■ . '12 ■ ^
 



 

angle.Thetwo other tangent vectors,dfjl,-1)=(1,-1,0)and df„(-1,1)=(-1,1,0)
 

along with N(0,0)=(0,0,1)also generatesadiagonal plane that,when
 

intersected bythe surface,formsa line. Observefrom thefigure,aswe rotate
 

either diagonal plane closer to the xz-plane, we will produce curves on the
 

surface whose curvaturesapproach -2atthe point(0,0,1);similarly,aswe rotate
 

either diagonal plane Closer to the yz-plane, we will produce curves on the
 

surface whose curvaturesapproach2atthe FM>int(0,0,1).
 

The Gaussand mean curvatures atagiven pointon our surface are
 

defined to bethe product and the average ofthe maximum principal curvature
 

and the minimum principal curvature, respectively:
 

K=k,(X,)k2(XJ
 

H=1/2Ek,(X,)+iMXJ
 

In ourexample,with respectto the point(0,0,1):
 

H=1/2{2/[4u"+2v'+ir-2/t4u"+2v^-i^in=0
 

By definition,a pointon a surfacie is elliptic if and only if K>0;hyperbolic if and
 

only if K<0;parabolic or planar if and only if K=0.Atthe point(0,0,1),the
 

Gausscurvature ofoursurface islessthan 0;consequeriitly,we know thatthe
 

tangent point(0,0,1)is hyperbolic. This meansthat wecan alwaysfind pointe in
 

the neighborhood of(0,0,1)on S which lie on either side ofthe tangent plane.
 

Figure2illustrates this property ofour surface. Considera surface S',the
 

hemisphere,shown in figure 7,with a positive Gausscurvature,K>0,ata given
 

pointP. In this situation,we could find points,in the neighborhood ofP,on S',
 

all lying on oneside ofthe tangent plane at P. Here,P,by definition, is an
 

elliptic point.
 

Forthe case K=0,let usconsiderthe surface given by the image of
 

: \Z
 



j(u,v)=(u,v,1 - u®), delineate in figure 8,accompanied by its tangent plane at
 

the point(0,0,1). Since atleastone ofour principalcurvatures must bezero,we
 

can infer thatoneofourcurves generated bya normal intersection must be a
 

line. Similar to the manner in which we wefound the maximum and minimum
 

curvaturesoff with respectto the pointP=(0,0,1),wecan recognizefrom the
 

figure that when weintersect this surface with tee xz-plane,we will produce a
 

curve with a negative curvature at P;however,intersecting this surface with the
 

yz-plane will generate a straight line having zero curvature. Such a pointP is
 

called parabolic,and is characterized bythe property that near P,there are
 

pointson the surface which lie on thesame side ofthetangent plane.^
 

Since the mean curvature Of our original surfacp given bythe image off
 

atthe point(0,0,1)iszero,pursurtece,!^deflnitipn,isa minitnal surface. ;
 

Minimal surfaces have the leastsurface area of ali surfaces bounded bythe
 

same Jordan curve. Anotherexample,more trivial, pfa minitnalsurfece isa ̂ 
 

disk whose boundary isa circle. Any other ring bounded surface,whether
 

barely wrinkled or strongly bulged,would havea larger area.
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CHAPTER Tl/VO:THEPLATEAUPROBLEM
 

Now thatwe understand theconceptofa minimarsurface,wecanfocus
 

on the Classical Plateau Problem asserting the existence of a minimal surface
 

bounded byaclosed Jordan curve. By definition:
 

Given a closed Jordan curver in Wesaythat
 

X:Br-> isa solution of Plateau's problem forthe
 
boundary contourr(Or:a minimalsurface spanned
 
byF)if it fulfills thefollowing three conditions:
 

(1) X e C°(B,B^n C'(B,
 
This meansthatX is continuouson
 

B:={we :lwrs1}and twice differentiable on
 
■ B:={we B^:lwl<J}.; ''-'V 

(il) Thesurface X sati^lesin Bthe iK^uations
 
(a) A X=S% 4-a(= 0
 

'(b) [.Xui;^=rxv[-^- '
 

(c) <Xu.Xv> ^0
 

(ill) The restriction X|c tothe boundaryCofthe
 

parameter domain B isa homeomorphism ofConto
 
, :[ \:yr-


Fortwo setsto be homeomorphIC,there mustexista bljectlve and continuous
 

mapping between thetwo sete y^ose iri>^rssis also continuous.
 

Before exploring this problem,given In theform ofatheorem In U.
 

DIerkes' Minimal Surfaces I. we rieed to uncterStahd the VprtatioriaLp
 

denoted by P(r),that will enable usto solve the Plateau problem. First, we will
 

define terms and notation which will be used In understanding this problem:
 

(1) Jordan curve:A closed curve,denoted byF,In which Is notself
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intersecting. In topological terms,this curve can be de«;ribed asasubsetof
 

homoemorphicto a circle.
 

(2) B:={wee® :lwl<1}
 

(3)B:={weR® :lwl si}
 

(4) C:={we ;Iwl =1}=SB
 

(5) H\(B,IR®):the setofsurfaces which are continuous and differentiable from B
 

to e®. . '
 

(6) X: this will denote,depending on the context,either acontinuous and
 

differentiable mappingfrom B to R® orthe image ofthis mapping,namelya
 

surface in R®.; ' ■ , ' 

(7) Weakly monotonic:a mapping xy:C —>r is weakly rnonotonic if theimage
 

points xy(w)traverseF in a constant direction when w movesalong C in a
 

constant direction. The image points may remain stationary, but never move
 

backwards if w moves monotonlcally on Cand xy(w)movesonce aroundF if w
 

travelsoncearound C.
 

(8) A mapping X;B—>R®is said to be ofclass <?(F) if Xe H^2(B,R^and if its
 

tra<^ X|c(that is, restricting the domain ofXtoC=SB)can be represented bya
 

weakly,continuous mapping :G —>FofContoF.
 

(9) The Dirichlet integral
 

D(X)= (X):=^/(lXuf+1 XvP)dudv.
 

This integral furnishes a majorantfor the area function given by
 

A3(X):=i3lXuXXvldudv
 

Consequently,we will find that specific X which minimizes the Dirichlet integral.
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and thereby minimizesthe area function. This isthe crux ofthe variational
 

problem. 

The variational problem P(r)associated with the Plateau problem for the
 

Jordan curvefIs defined asthe following task:"minimize Dirichlet's integral
 

D(X)intheclass<?(rp
 

This meansthefollowing:
 

First, define e(r):=inf{D(X):Xe e(T)}, where the expression on the right
 

denotesttie smallest D(X)(some real number)given bya specific surface,say
 

X^. To clarify,{D(X):Xe <?(T)}denotesthe set of all Dirichlet integrals D(X);
 

thus,inf{D(X):Xe e(T)}will give usthe smallest value of D(X)among all the
 

D(X)valuesIn{D(X):Xe (F)}. Note thatthe smallest valueof D(X),which we
 

can denote by D(XJ=inf{D(X):X e <?(r)}, mayor may notbe an elementof
 

theset{D(X):Xe <?(r)}; Secondly,Woareto find that Specificsurface j
 

X^e <?(r)such thatD(XJ=e(r)is satisfied. This latter portion isthe essence
 

of the variational problem P(r):finding the minimalsurface X,^.
 

The Classical Plateau Problem asserting the existence ofa minimal
 

surface bounded by a given Jordan Cuive is given by the followirig theorem
 

from Minimal Surfaces I bv U.Dierkes:
 

If(?(r)is nonempty,then the minimum problem P(r)
 
hasat leastone solution which is continuouson B
 
and harmonic in B. In particular, P(r)hassuch a
 
solution for every rectifiable curve F:®
 

Here, it is myaim to clarify the proofgiven in the above mentioned textbook.
 

The proof proceedsasfollows; We need tofind asolution to P(F),which
 

is the following problem:
 

(1)D(X)—> min in the class C*(F),
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which meansto minimize the Dirichlet integral D(X)in the class ^(F)
 

representsthesetofsurfaces in&(i")satisfying a fixed three-pointcondition:
 

{2)X(w,)=Q,.k
 

Here w„ denotethree disfinct pointsonC=SBand Q,, Q^, arethree
 

different points on the Jordan Curve F. That is,X maps3different pointson0to
 

three different pointson F.
 

We will denote sequence of mappings X„,where X„e(f(F),by{XJ. That
 

is,{XJ,represents X,,X^,...X^. Wechooseasequence{XJ^Of mappingssuch
 

that-v,

. ■..V:(3)Jini::D^ 

Here we are taking the limit of this sequence of mappings (surfaces). Asn 

increases, consecutive surfaws cluster toward the minimal surface, X^, which 

may or may not be included in {XJ. Consequently, lim C)(X^ =D(XJ -e* iF). 
Assume, without loss of generality, that X„ is a surface Of class 

C°(B, B®) n C^ (B, This means that X„ is continuous onBand twice 
differentiable on B. We willalso asSume that X„ is harmonic; that is, 

(4) A X„ = +^ 
■ ■ Su'~ Sv" 

We claim that the boundary values X| of the terms of any minirhizing 

sequence {X„} for P*(F) are equicontinuous on C. This means that for all e >0, 

the Euclidian distance between two image points of X ( , the boundaryvalues, 

which lie on the Jordan curveF,will always be less than e provided that the 

Euclidian distance between the two preimage points, which lie on C, is less 
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than a given S>0. In symbols,we havefor all e> p,IXJw)- XJw')!<e If
 

I w - w'I<5. To prove this, we need to make use ofthe Gourant-Lebesque
 

'lemma:
 

Suppose that)^is ofclass0°(B, n C^(B,R®)(that is,X is
 
continuouson§and once differentiable on B) and satisfies
 
D(X)<M,where0< Then foreveryz,,eCand for
 
every8e(0,1),there existsa number pe(S,8')such that
 
the distance between X(z)and X(z'),the respective images
 
ofzand z'.where{z,z'y=Gr\8B (̂^,
 
can be estimated by®
 

{4Mn"^

log W
 

Seefigure9. Notethat SBp(zjisthecircle with center Zoand radius p. We will
 

apply this lemma asfollows:
 

Sincer isthetopological image of0(thatisFand G are homeomorphic to
 

each Other),there existsfor every e>0,another number,A(e),afunction of e.
 

Which is also greater than0with thefollowing property:
 

Any pair of points FV QeF with
 

(6)0<IP-QI<;^(e)
 

decomposesF into two arcs,F^P,Q)and (P,Q),asshownin figure 10.
 

Thatis,F=F,(P,Q)u F^CP,Q),such that
 

(7)diamF^(P,Q)<e,
 

where diamF^(P,Q)denotesthe length ofthe line segment between Pand Q.
 

..Thus,if' .
 

(8)0<e<Co:= min IQj-QJ,
 

where Q,,Q^eF,thenF,(P,Q)conteinsatmostone ofthe pointsQjappearing
 



in the three point condition: X(Wi)= Q^,asshown in figure 11.
 

Note that min IQj-0^1 denotesthe shortestdistance between Qjand Q„onr.
 

Byexamining0<e<Eq closer, it is evidentfrom prior definitions that
 

0<diam (P,Q)<e < min IQi-QJ,Implying thatdiam r,(P,Q)<min IQj- Q^l.
 
j#k j*k
 

ffr,(P,Q)contained both pointe O^and Q^,we would have the situation
 

illustrated in figure 12;clearly, in thisca^ diam r,(P,Q)> min IQj-Q^I.
 

LetX be an arbitrary mapping in(?*{r)fulfilling the hypothesisofthe
 

Courant- Lebesquelemma and let e(0,1)beafixed number with
 

(9) 25o'< min IWj - w^l, where w^,Wg,Wg eC.
 

Seefigure 13. For an arbitrary e e(0,Eo), we selectsome numberS=8(e)>0
 

suchthat
 

log 1/8> <^(e),and
 

(ii)s<8g ^
 

Now consider an arbitrary pointzjeCand let pe(5,8^)besome numbersuch
 

thattheimages P:=X(z)and Q:=x(z')ofthetwo intersection points,zand z',ofC
 

and 8Bp(Zq)satisfy
 

{4Mn\^

log 1/8>
 

Equations(12)and(10)imply
 

(13)IP-QI<X(e)
 

wherefrom equation(7), diamr^(P,Q)<e. From equations(7)and(8),we
 

20
 



 

know diamF,(P,Q)<e< mini Q,- Q,I. Thissuggeststhe arcF^CP,Q)
 

contains at mostone ofthe points Qj(As before, if the arc contained both points
 

Q.,the prior inequality would not hold). In addition, itfollowsfrom X e (̂F),and
 

from thefacts listed below:
 

(a)X(wJ=Q„k=1,2,3
 

(b) 2Sn'< minlWj - wj
 

(c)
 

thatX(C nBp(Zq)),the image ofthe intersection ofthe circle Cand the disk with
 

centerz„,and radius p,along with the boundaryofthis disk,contains at most
 

one ofthe points Qj. Thus,X mapsthis intersection to the arcr,(P,Q);
 

thatis,X(C nBp(zj)= r,(P,Q).
 

To understand why X(C nB^(Zq))= F,(P,Q),we will carefully analyze the
 

abovefacts along with figure 14.
 

From(b)and(c),we know that S^< 8^^ and minlw.- w,l. So by transitivity,
 

8'<5minlWj- w^i;consequently,8^<minlWj-wj
]*k . . ' j*k
 

In the Courant-Lebesque lemma,wJ were give that pe(8,8^); hence,p< So
 
again by transitivity: 

p<S* ■ . _ 

8^ < minlWj-wJ
 
, [*k
 

p < minlWj-w^l
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Thistells usthatthe radius ofthe disk Bp(z^ will always be lessthan the
 

minimum distance between two arbitrary points, Wjand w^,on the circle G. So
 

forthree arbitrary points, w^,w^,Wg,e0,we know that,oneofthese points,say
 

w^,lies in theset0n
 

From thefactthatX(w^=Q^,k-1,2,3,we know thatX(w,)=Q„ which,
 

without loss of generality, we will assume to bea point in F,(P,Q)since we
 

concluded earlier that Tj(P,Q)contains atmostoneofthe pointsQjappearing
 

in the three pointcondition. Conclusively,the following equalities
 

X(z)=P
 

X{z')=Q:
 

X(w,)=q;.;v,':
 
coupled with thefactthat X isa continuousfunction,rnapping closed setsto '
 

closed sets,we can infer thatthe closed set XJ n B (z^ is mapped to the clpepd
 

set r,(P,Q). Hence,X(0n B^(zj)=r,(P,Q).
 

Consequently,we have IX(w)- X(w')l<diam F,(P,Q)
 

for all w,w'eCn Bp(zj. Thisisdearsince X maps pointefrom0n Bp(z^to
 

poirrte in r,{P,Q). Theimage pointsX{w)and X(w'),flierefore,liesomewhere
 

on (P,Q),ensuring thatthe Euclidian distance between them,denoted by
 

iX(w)- X(w')l is less than the distance between the endpointsofF,(P,Q),
 

denoted by diam F^(P,Q). Seefigure 15. And since diamF,(P,Q)<e,we
 

know,by transitivity,
 

(14) I X(w)- X(w') I <e for all W,w'eG n Bp(zJ.
 

Thisimplies l X(w)- X(w')I <e for all w,w'eG with I w - w'l<SS.
 

That is, when we restrictthe distance ofanytwo pointsonG tolessthan 6/2,
 

where5< p<5^ wecan besure thatthe distance between X(w)and X(w'),
 

which mayor may not lie in F,(P,Q)sine® w and w'are now anytwo pointeon
 



 

 

C(not necessarily lying on C n (zj)islessthan e. This is true because X isa
 

continuous rnapping.
 

Now consider the minimizing sequence{XJ=X,,X2, .X„.
 

Since llm D(X^=e*(r),there is a>tne numberM>0such thatD(X^<M
 
n—>00.,
 

is truefor all n ei. Thatis,the Dirichlet integral, when applied to any)^in{X^,
 

will, when evaluated,produce a different number depending on the chosen X^
 

Each oneofthese numbersis lessthan orequaltosome number M which is
 

greaterthan zero. Therefore,wecan applythefactthat I X(w)- X(w')J <eforall
 

w,w"eG wtth I w - w* I <8/2toX=X^ neN,and <x>nclude thatthefunctions X^,
 

when the domain is restricted to G,is equicontinuous. By definition of
 

equicontinuous, applied to this case,for all e>0,there correspondsa8>0
 

such thatfor alt Xe{X}and for all w,w'e0the following inequalities are true
 

(15)jX,(w)-X,(w')l<e
 

IX2(w)-X2(w7l<e
 

whenever I w - w'I <8/2. That is,only one number8>0allowsthe previous
 

inequalitiesto hold true. In short,this definition essentially assertsthatthe
 

Euclidian distance between )^(w)and X^(wTfor1= 2,...,n will alwaysb© less
 

than 6aslong asweensurethatthe Euclidian distance between w and w',for
 

all w,w'eG,is lessthan 8/2. See figure 16. Note that all the points
 

w,w'e G are Especiallychosen"so that I w - w'I <6/2. Further,although every
 

I hasthesamedomain,G,and irhage,F,each specific Xj^ ^ mapsthe points
| 


onr in a differentorder.
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In addition, wecan conclude from X (C)=Fthatthefunctions X;j are
 
n ^ P , ■ 

uniformly bounded for n=1,2,3 . To understand why this istrue,we need to
 

understand what it meansforafamily offunctions to be uniformly bounded;first,
 

consider the definition of what it meansfora given function ofone variable to be
 

bounded. A setof real numbers issaid to be a bounded set if the set has both
 

an upperand a lower bound. Considerafunctionf:I —>B defined on a given
 

interval I of real numbers. Thefunction is bounded on the interval if the setof all
 

valuesofthefunction isa bounded set;this meansthatfor all x el,there is
 

some real numberA such that I f(x) I <A. Similarly,forafamily offunctions
 

X I i C —>r,i=1,2,...nto be uniformly bounded,meansthat wecan enclose
 

r containing all the image points of all the mappings X;| :0—>F in asphere
 

of radius r>0;wecan denote thissphere,centered atthe origin, by
 

8^={xe(R^l 1x1=r}. Clearly,sinceF is enclosed in the image points X^(w)
 

onF will always be lessthan r unitsfrom the origin. This istrue regardless of
 

where the Jordan curve is located inside 8^in figure 17.
 

Thiscase,as well as all cases whereF is enclosed by8^ weknow IX„(w)|<r
 

for all w eC,n=1,2,...Thatis,the norm ofall X-(w)is alwayslessthan or
 

equalto the radius r ofthe sphere,sothe functions|X are uniformly bounded
 
. d C' ■ ■ 

for n=1,.2,... ■ 

Hence,our sequence of uniformly bounded mappings{X j}satisfy the
 

hypothesisofa version ofthetheorem of Arzela- Ascoti:
 

If{XI}isasequence of harmonicfunctions onCthat
 
n c ■ 

is uniformly bounded on C,then all these mappings
 

in{X I)converge to a specific map :C—>F''
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To understand this theoreiti, let usexamine the image points ofeach X|,X i,...
 

asn —>«>. Asshown in figure 18,asn increases infinitely,each consecutive
 

X„(w),for n=1,2,...convergestoafixed point P-thatis, lim X„(w)=P.
 
n—>00 ■ 

Therefore, bythe theorem of Arzela-Ascoli, all the mappings in thesequence
 

{Xjjconverge uniformly to a specific continuous weakly monontonic map as
 

n—>00,denoted by :C —>r,where9(w)=Pfora given weC. So we have
 

lim Xj^= Moreover,from a resultof harmonicfunction theory,we know
 
.n—>00
 

thatthe uniform limit offunctions(1)continuouson aclosed disk B,(2)
 

harmonic in the interior B,and(3)^ti^ng the three pointcondition isa
 

function having these three properties. Thisfunction X:B -^> is similar to
 

in the sensethatjustaseach consecutive X>[ (w)convergestoaspecific point
 

P on the Jordan curve,each consecutive)^(w)convergestoa specific pointQ
 

on the surface. Again,Justas before,ail the mappingsin thesequence{XJ
 

converge to a specific map XSharing thesame properties of mapsin the
 

sequence. Finally, restricting the domain ofX toC will produce image pointson
 

the boundaryFofthe surface;thus, Moreover,from a result of harmonicfunction
 

theory,we know Xl^=9. Consequently,X meetsthe requirementsfor being of
 

class C*(r),defined earlier,and therefore
 

(16) e*d:')<D(X)
 

This is true given the definition ofe*(r):=inf{D{X)IXe C*(r)}, which will
 

produce the smallest possible value of D(X);this number will always be less
 

than or equal to a given D(X).
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Furthermore/a classical resultfor fiarmoniicfunctions(recall thata 

function X is harmonic if 

A X=5^+6^=0) impliesthat 
5u" -Sv^ , ■ , 

arad X„=SX„i +5X„i tendsto 
5u- Sv 

gradX=Ml+8X| 
8u ; ,,dv-', 

asn—>00 uniformlyon every Asgrad X„approachesgrad X,bythe 

component,we know
 

SX, 
5u'- ■ ■ ■ 

approaches M and 
■."\5u.:; 

SXp 
8v 

approaches SX . as n—><». where 
8v 

(17) 	 = Xn„ 
8u 

SXn = Xn, 
8v 

SX = 	 X. 
u 

6u 

8X = X.
V 

8v 

IXn/ approaches IXuF and 

IXn/ approaches IXvF. 

So we can infer that since, by definition, 

DbCXJ: ( IXn/+ IXn,F)dudv and 
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D,(X):= ( ix,.r + IX/)dudv,
 

- liinDs(XJ,= •dj(X)istru8;:,,;/^ :::;v^
 
n—>00 V y \ ■"• V 

When we restrict the birichlet integral to B', a strict subset of B, the result 

B VVf 

this number is denoted by lim inf Db(X^. As a result 
■ ' n—>00 : ■ 

lini inf Db{XJ> lim D3.{X^ if ^ ^ 
>00 ■ n—>oo" ■ 

B'<c < B. When we replace lim Db.(XJi by P^(X), we will obtain 

(ISt'^im infD,(XJ > 
;'n—>oO' 

Without loss of generality, lim inf Db(X^ = lim Db.(XJ = lim D(XJ. 
■ft—>oo-'' . '. ;■ -n—^jo 

Thus, we finally obtain e*(r) = lim D(XJ>D(X) >e*(r). 
, , n—>» 

The first portion of this expression, e*(r) = lim D{XJ, 
n—>00,' 

was an 

expression ■ ■ , : ; ■ ■■ ■■ , ■ , /.,; . ■■ ■ ■ ■ 

, ■-: - (r9):D(X)^.'rp'^> 
is true by the definition of e*Cr). We can now explain why 

(20) lim D(XJ^b(X) is true, where 
n—>» 

. ' 

■ ■ ■ ■ , ' . ■ ■ ' ' ■ ■■ .n—>00' ■ , ■ ■ ■ ■ " ^ 

By equatidhs (18) and (21), we know e*(r) > Dg (X), where e*(r) is a constant. 

Since B' is a strict subset of B, as B' —> B, Dg (X) approaches Dg (X). By 
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analysis, e*(r)will still be greater than 0^,(X),as we take the limitof Dg.(X),
 

letting B'—> B. Consequently,
 

(22) e*(r)> lim D,.(X)=D,(X)
 
B'->B
 

From our previous work,we also know
 

(23) e*(r)<DB(X)
 

Equations(22)and(23)suggestD(X)=e*(r).
 

Recall that D(X)= (X)by the definition ofthe Dirichlet integral. Therefore,
 

X e <?*(T)isa minimizer ofthe Dirichlet integral D(X)within the class <?(r).
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CHAPTERTHREE:THE MINIMALSURFACEPROBLEM
 

Now that we have established that minimal surfaces do exist, we will now
 

prove thatthe catenoid is the onlysurface of revolution which is also a minimal
 

surface. The problem is stated asfollows:
 

"Consider the surface of revolution f generated by the catenary(h(u),0,k(u)),
 

where
 

h(u)=acosh([k(u)- b]/a)
 

Thissurface is known asthe catenoid. Prove thatthe catenoid is the only
 

surface of revolution which is also a minimal surface."®
 

Solution:
 

First, I will prove thatgiven h(u)=acosh([k(u)- b]/a),then this surface of
 

revolution, which is of theform
 

f(u,v)=(h(u)cosv,h(u)sinv, k(u)),
 

isa minimal surface. To prove this, 1 will show thatthe mean curvature of this
 

surface equalszero. That is,
 

H=1/2[ic,(X,)+^^(X^)]=(EN+GL-2FM)/2(EG-F^=0.
 

Todo this, I will show thatthe numerator,EN+GL-2FM,equalszero. I will
 

begin by computing the first and second partial derivatives with respectto u and
 

v:
 

fy=(h'(u)cosv, h'(u)sinv, k'(u))
 

fuu=(f^"(Li)cosv, h"(u)sinv, k"(u))
 

f„=(-h(u)sinv, h(u)cosv,0)
 

f„=(-h(u)cosv,-h(u)sinv,0)
 

f^=(-h'(u)sinv, h'(u)cosv,0)
 

Next, I will find the unit normal vector N,defined to be
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am
 

The numerator, X equals
 

=e,(-h(u)k'(u)cosv)- e2(h(u)k'(u)sinv)+e3(h(u)h'(u)cos^+ h(u)h'(u)slnV)
 

=(-h(u)k'(u)cosv,-h(u)k'(u)sinv, h(u)h'(u)),and the denominator, I XfJ,Is
 

{h'(u)[k'(u)]^s^+h'(u)[k'(u)]%in^+ h'(u)[h'(u)l^'^
 

={(hMkXu)r+h'(u)lh'(u)lT
 

= h(uKk'(uf+ h'(u)T.
 

Therefore,
 

N =(-h(u)k'(u)cosv, -h(u)k'(u)sinv, h(u)h'(u))/h(u)([k'(u)]'+[h'(u)r Y".
 

=(-kXu)a)sv,-k'(u)sinv, hXu))/([kXu)]^+[hXu)]^)^^
 

Using the above information,wecanfind E,F,G,L,M and N:
 

E:=f,- f„=[h'(u)]^os^/+[h'(u)]^in^^+[k'(u)]"=[k'(u)f+[h'(u)]".
 

F:=f„ t=-h(u)h'(u)cosvsinv+ h(u)h'(u)cosvsinv+0=0.
 

G:=f„ ■ f„= h®(u)sin^+h^(u)cos^^+0=h^u). 

L:=f^ ■ N ==(k"(u)hXu)- kXu)h"(u))/(IkXu)f+[h'(u)]' 

M:=f^-N =h'(u)k'(u)sinvcosv/([k'(u)P+[h'(u)f
 

- hXu)kXu)sinvcosv/([k'(u)f+[h'(u)fr+0=0.
 

N:=f„, ■ N = h(u)k'(u)cosV/(k'(uf+h'(ufr+h(u)k'(u)sinV([k'(u)f+[h'(u)f 

= h(u)k'(u)/(k'(uf+ h'(u)T-


Consequently,EN+GL-2FM equals
 

{[k'(u)f+[h'(u)]^h(u)k'(u)/(k'(uf+ h'(ufn
 

+h2(u){(k"(u)h'(u)- k'(u)h''(u))/([k'(u)]'+[h'(u)]'Y% which equals
 

{h(u)[h'(u)]%'(u)+ h(u)[k'(u)f+ h^(u)h'(u)k''(u) -h'(u)h''(u)k'(u)}/([k'(u)]'+[h'(u)]'
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Again,to show thatthe above expression equalszero, I will show that the
 

numerator
 

h(u)[h'(u)]^'(u)+ h(u)lk'(u)]'+h'(u)h'(u)k"(u)-h"(u)h"(u)k'(u)
 

equalszero. First, I will take the first and second derivatives of
 

h(u)=acosh([k(u)- b]/a);
 

h'(u)= k'(u)sinh([k(u)- b]/a)
 

h'Xu)=k"(u)sinh([k(u)- b]/a)+[kXu)f/acosh([k(^^
 

Also,
 

h'(u)=a^osh^[k(u)- b]/a),and
 

[h'(u)r=[k'(u)]%inh'([k(u)- b]/a)
 

Consequently,letting q =[k(u)- b]/a and substituting the expressionsfor h(u)
 

and h'(u), we will see that
 

h(u)[h'(u)]'k'(u)+ h(u)[k'(u)f+ h'(u)h'(u)k"(u)-h'(u)h"(u)k'(u)
 

= acoshqk'(u)[k'(u)]%inh^+acoshq[k'(u)]®+a®cosh^k"(u)k'(u)sinhq
 

- a^osh^k'(uKk"(u)sinhq +[k'(u)]7acoshq}
 

=acoshq[k'(u)fsinh^q +acoshq[k'(u)f+a^cosh^qk"(u)k'(u)sinhq
 

- k'(u)k"(u)a^cosh^sinhq - a[k'(u)]®cosh®q
 

=acoshq[k'(u)psinh^+acoshq[k'(u)f - a[k'(u)fcosh®q
 

=acoshq[k'{u)f{sinh^+1 -cosh^}
 

=acoshq[k'(u)]®{cosh^q -(X)sh^q}
 

= acoshq[k'(u)f{0}=0.
 

Oursurface of revolution,therefore,defined by
 

f(u,v)=(h(u)cosv, h(u)sinv, k(u))
 

=(acosvcosh[k(u)- b]/a,asinvcosh[k(u)- b]/a, k(u))
 

is, by definition,a minimal surface since its mean curvature equalszero. Figure
 

19 provides an illustration ofa catenoid.
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Given thatthe mean curvature equalszero;that is EN+GL-2FM=0,
 

which is equivalentto
 

[hXu)]^'(u)+[kXu)]^+h(u)hXu)k'Xu)^-^^^
 

we will solve this differential equation for h(u)and k(u). We will begin by
 

making the following substitutions:
 

h(u)=t and k=k(u)=k(t>
 

Consequently, using the chain rule and the product rule for differentiation, we
 

have the following:
 

' ■ 

dt
 

h'(u)=	dh=dh.dt=dt
 
du dt du du
 

h>)=	d%=d /^\=d mW
 
du^ duVduAduVdu/ du^
 

k'(u)=dk=dk . dt
 
du dt du
 

k'Xu) =	tfic=^/dk dLY
 
du" duVdt du/
 

=	d /dkv dt + dk. d A^t V
 
du \dt/ du dt du Vdu/
 

dt . dt + dk .
 
■ df du du dt du" 

= d^k /dLV+^• dli
 
dt" Vdu/ dt du"
 

Substituting these expressions into
 

[h'(u)]"k'(u)+Ik'(u)]"+ h(u)h'(u)k"(u)-h(u)h''(u)k'(u)=0,we have:
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/dt y/dk ■ dt v +/dk . + tdt IVd-k /dt + dk . d^J 
\du/ vdt du/ vdt du/ du |\d^ \du// dt du^J
 

/ td-t vT dk . dt1=0
 
Vdu'lldt duj
 

->/dLY/dk . dtY+/dk,dtY+ .̂tt/dt_Y+
 
^duy duy y6x duj du df y duj
 

■̂ dk . d^j. - ^ =0 
du dt du^ du® dt du
 

->/dLVr^ +/ dky+ td_®k"l =0

Vdu/ Ldt Vdt / dt® J
 

-> dk +/dLV + topjc =0
 
dt \dt/ dt®
 

+ = 0-('•©■)dk 
dt dt® 

Letting k' = k'(t) = dL and k" = k"(t) = #Jc, we have 
dt dt® 

(1+(k')®)k'+ tk" = 0 

Now when we multiply this equation by k', we obtain 

(k')® + (kT+ tk'k" = 0 

Letting y = (k')® and^= 2k'k" our equation becomes 
dt 

y + y® + tdy.= 0, 
2dt 

which is equivalent to 

dy + 2dL = 0 
y(1+y) t 
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When we integrate this equation, we will have
 

Inlyl-Inll +yl+^|nltl=c,
 

forsomeconstantc. Thus,
 

lniy/(1+y)l+ Inlt^l=c,or In /__yf \=c
 

since e">0„wecan lete"=a^,wherea Is another constant. Consequently,
 

This equation Is equivalent to
 

.. . yt^=a^(1 + y).
 

Since y=(k'f=[k'(u)]V
 

(k'ft^=a'(1+(k')').
 

Solving for k', we have
 

■V'--k'='a/(t^-a^^^. ' ■ ..^ 

Integrating will produce the following 

k = acosh'i.+b, 
.a . ■ 

where b Is another constant. When we solve for t we will have 

t = acosh[(k-b)/a]. 

Recalling that t = h(u) and k = k(u), we can rewrite this equation as 

h(u) = acosh[(k(uj-b/a)]. 
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CHAPTER FOUR:PARALLELTRANSLATION AND GEODESICS
 

We will now explore two other properties of Differential Geometry,
 

Parallel Translation and Geodesies,found in Wilhelm Klingenberg's A Course
 

in Differential Geometry,to highlight the differences between Euclidian
 

Geometryand the geometryon the surfaces. First, we will need to develop
 

some background on the following topics:
 

(1)Tangential Vector Fields
 

(2)Orthogonal Projections
 

(3)Covariant Derivatives
 

By definition,a vector field is a mapping which corresponds points in
 

the domain,to vectors in R®. Likewise,atangential vectorfield X:I —> R®,given
 

by the vectorfunction X(t)=au(t)f„+ bv(t)f^=(x(t), y(t),z(t))isa mappingfrom the
 

real numbers in the interval I, which determines points on a surface,to tangent
 

vectors,tangentto the surface at points given asafunction of real numbers in
 

the interval I. Selecting different points t, e I will produce different pointson the
 

surface,and the tangential vectorfield X: I —> R®, will mapthese points to their
 

respective tangent vectors,tangentto the surface atthat point. Observe that
 

there exists an infinite numberoftangentvectors to a surface ata given point.
 

Similarly,thefunction dX/dt:I—> Redefined by dX(t)/dt= X'(t)= (x'(t), y'(t), z'(t))
 

is a mapping assigning vectors to real numbers in the interval I which
 

determinessome pointon 
r' u f(u) 

j
u
f jg defined
 

^ 
the surface. The function pr:T 


asan orthogonal projection in the direction ofthe normal vector n(u) mapping
 

arbitrary vectors oftheform af^+ bf^+cn in T,^„,R®= R® to their corresponding
 

tangent vectors oftheform af^+ bfg lying on the tangentspace TJ. Notice that
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represents the tangent plane of atthe pointf(u), which is itself;this
 

is In short, pr^ projectsa vector in to the tangent plane TJ,as
 

shown in figure 20,where our surface isa hemisphere. Observe that if the
 

vector we are projecting is parallel to the normal vector atthat point,the
 

orthogonal projection will be zero.
 

We are now ready to define the covariant derivative,denoted by AX(t)/dt,
 

asthe composition of pr„and dX/dt;thatis,AX(t)/dt=pr„o{dX/dt)(t):I—>T^,f,
 

where te I, as illustrated in figure 21. In this example,the tangent plane JJ is
 

parallel to the xy-plane. Note that AX(t)/dt:l—>1R^ is, by definition,a tangential
 

vector field and AX(t)/dt=0if dX(t)/dt is parallel to the normal vector ata given
 

point; in figure 21,the normal(unit)vector is the vector(0,0,1), parallel to the
 

z-axis. To clarify,since the orthogonal projection pr„ projectsthe vector dX(t)/dt
 

onto the tangent plane,when dX(t)/dt is parallel to the z-axis,the orthogonal
 

projection will be zero. When the orthogonal projection equalszero,AX(t)/dt
 

also equalszero.
 

Equipped with this background,we can begin our discussion of parallel
 

translation. Covariant differentiation will be used to define what it meansfor
 

vectors to be parallel along a curve on a surface. We will first considertwo
 

cases where our surface is the Euclidian plane LetX^:l—>1R®be a tangential
 

vectorfield. In a plane,the image of this vector field X^t),asetof vectors,along
 

a curve,c(t), is defined to be constant,or parallel, if its value is constant;
 

for all te I, X^(t)=X^=(a,b),where a,b eH. That is, all pointson the plane are
 

sentto a single vector X„,and since X^(t)isa constant,dX^jtj/dt=(a,b)'=(0,0)
 

=0. Forexample,suppose X^ maps all the pointson an interval I to the vector
 

X^,along our"curve"(a line)lying in the surface asdepicted in figure 22.
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Here, ail these vectors along the linelare thesame vector being translated
 

along Iand are all tangentto In the context of Euclidian Geometry,these
 

vectors in the above figure resemble parallel vectors on the plane. Asanother
 

example,suppose were a tangential vectorfield mapping pointe on a curve
 

lying in a plane to their respective tangent vectorson the surface similar to
 

X^, for all te I, XaO)=X„,a constant vector being translated along the curve on
 

the plane,asshown in figure 23. Again,these vectors are all tangentto the
 

plane and in the contextof Euclidian Geometry,these vectors in the above
 

figure resemble parallel vectors on the plane.
 

We will now consider what it meansfor tangent vectors ofa curve lying
 

on a nonplanar surface to be parallel: by definition given a curve
 

c=f0u:I —>B®on asurface f: U —> a vectorfield X along c is parallel
 

along c provided AX(t)/dt =pr„(dX(t)/dt)=0;this occurs when dX(t)/dt is parallel
 

to its normal vector ata given point. As indicated earlier,a surface in space has
 

an infinite number of tangent vectors ata particular point; however,a curve on
 

a surface hasonlyone tangent vector ata particular point. To illustrate such a
 

vector field X, let usexamine the unitsphere given by the equation
 

f(u,v)= (cosucosv,cosusinv,sinu).
 

As before,the unit normal vector ata given pointon the surface is defined to be
 

N(u,v) = aXfi
 

lf„XfJ
 

Forthe unitsphere,wecan find N(u,v)asfollows:
 

Find the partial derivatives off with respectto u and v,
 

f„=(-sinucosv,-sinusinv,cosu)and f„=(-sinvcosu,cosucosv,0).
 

Consequently,
 

f^X f^=(-cos^ucosv)e,-(0-(-cos\isinv)e2+(-sinucosucos^r -sinVcosusinu)e3
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=-cos^ucosve^ - cos\isinve2- sinucosueg
 

= (-cos^ucosv,- cos^usinv,-sinucosu)and
 

lf„ XfJ =[cos^ucos^/+cos\isinV+sln^ucos^u]^®
 

=[cos\i(cosV+sinV)+sln^ucos\if®
 

=[cos\j+sin\jcos\ir®
 

=[cos\i(cos^u+sln\i)]^®
 

=cosu.
 

Therefore,( Xf) Is equalto(-cosucosv,-cosuslnv,-sinu)=-f(u,v).
 

lf„XfJ
 

This tells usthatforatangent vector ofour surface ata given point,we
 

can find its corresponding unit normal vector merely by taking the additive
 

inverse ofthe vector associated with thatgiven point. To illustrate this,we will
 

focuson a specific setof points lying on S^: pointson the the greatcirclec
 

parametrically defined by c(t)=(0,cost,sint);this great circle is the intersection
 

of S^and the yz-plane. Clearly,sincec is a subsetof allthe pointsonc
 

given by c(t)=(0,cost,sint)also lie on the sphere. So by our previous
 

computation,where wefound that N(u,v)=-f(u,v), we know thatthe normal
 

vector ofatangent vector on the greatcircle catthe point c(t)on c isthe additive
 

inverse of c(t):-c(t). Thissurface together with the setof its distincttangent
 

vectors,the image ofthe tangential vectorfield X; I —> ,and its normal
 

vectors along the great circle is illustrated figure 24. We will define this
 

tangential vectorfield by X(t)=c'(t)=(0,-sint,cost). Forexample,the point
 

c{i^)=(0,0,1)on the Curve hasasa(unit)tangent vector c'(™2)=(0,-1,0)
 

and a unit normal vector -c(iraS)=(0,0,-1). Similarly, atthe pointc(0)=(0,1,0),
 

we have thetangent vector c'(0)=(0,0,1)and the unit normal vector
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-c(0)=(0,-1,0).Thesetangent vectors are elements ofthe image of the
 

tangential vectorfield. Notice thatdX(t)/dt= X'(t)=c"(t)=(0,-cost,-sint)=-c(t),
 

which impliesthat dX(t)/dt is parallel to the unit normal vector -c(t). Therefore,
 

AX(t)/dt= prJdX(t)/dt)=0,and so,by definition,the tangential vector field X
 

along the great circle c is parallel along c.
 

Another property of differential geometry,related to parallel translation, is
 

geodesies. To understand the concept of geodesies,we need to comprehend
 

the notion of geodesic curvature on a surface. Before proceeding, however,let
 

us begin by exploring curvature on the Euclidian plane. In this context,
 

curvature isthe measure of how fasta curve on a plane turns ata given point as
 

we move along it. Forexample,considefthe curve c;[a,b]—>R^ in figure 25.
 

Loosely speaking,since there is more ofa bend atD than at point F,we claim
 

thatthe curvature is greater at point D,compared to point F. To makethe notion
 

of curvature more precise, we will now examine the previousfigure
 

accompanied by its urtit tangent vectorsT at various points,asshown in figure
 

26. Observe thatas we move along the curve on the plane,the unittangent
 

vectorsT turns asthe curve bends. On the plane,the mathematical definition of
 

curvature ata given point on the curve is given byk=Idt/dsl, wheresdenotes
 

the arclength and tthe angleformed bythe unittangent vectorT and i =(1,0);
 

therefore dt is the change in the angle tand dsthe change in arc length s.
 

SinceK=Idt/dsl,the curvature is greatest wheretchangesthe most rapidly. It
 

is, therefore,greatest where the tangent vectorchangesthe most rapidly. For
 

Instance,there is a major difference between the tangent vector at point D,and
 

a point near D,say point E. Thus,the curvature at point D is large. Conversely,
 

at pointFand ata point near F,say pointG,there is little difference between the
 

corresponding tangent vectors,suggesting thatthe curvature at point F is small.
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On a straight line,the angle t remainsthesameon each pointon the line.
 

Consequently,since there is no change in angle,the Curvature ofthe line at all
 

points iszero. In addition,the curvature ateach pointon a circle of radius r isa
 

constant 1/r since the unittangent vectorsT turn ata constant rate. Thesetwo
 

figures are illustrated in figure 27.
 

Similar to curvature on a plane,geodesic curvature is the measure of
 

how fastacurve on a surface turns ata given pointaswe move along the curve.
 

Geodesiccurvature,therefore,isa local quality ofacurve ata given point. Let
 

us examine the curve shown in figure 28. Atthe point c(t)on the curve,the
 

geodesic curvature is defined to be iCg(t)=e2(t)-((Ae,(t)/dt)/lc'(t)l. Let usexamine
 

each componentof the equation above:
 

(a)e,(t)=c'(t)/lc'(t)l. This is the unittangentvectorofthe curve atthe pointc(t)
 

(b)e2(t)=e;(t)
 

(c)The covariant derivative,iie,(t)/dt, isformed by projecting e^Ct)onto the
 

tangent plane,obtaining a tangent vector.
 

(d)Tofind the geodesic curvature,we divide the dot productof Ae^Ctj/dtand ejt)
 

and by lc'(t)l. Again,this quantity representsthe amountof bend atthe given
 

pointc(t).
 

By definition,a curve is geodesic when its geodesic curvature ,iCg(t),
 

equalszero at all points on the curve. Thisoccurs when ejt)equals,or is
 

parallel to,the normal vector ofthe tangent vector ata given point. To illustrate
 

such a curve, let us again Consider the unitsphere defined bythe equation
 

f(u,v)= (cosu(X>sv,cosusinv,sinu)
 

and the great circle lying on the xy-plane defined by
 

c(t)=(cost,sint,0).
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We will now calculate the geodesiccurvature atthe point c(t)on|his curve,
 

shown in figure 29, using the steps below;
 

(a)e,(t)=c'(t)/lc'(t)l
 

c'(t)=(-sint,cost,0)and lc'(t)l=[(-sint)^+(cost)^+0^^®=1.
 

Thus,e^(t)=c'(t)= (-sint,cost,0).
 

(b)OgCt)=e/(t)=(-cost,-sint,0).
 

(c)Tofind the covariant derivative,Ae^(t)/dt, we project e2(t)onto the tangent
 

plane atthe pointc(t). Before doing so,however, notice thatsince
 

N(u,v)=-f(u,v),atthe pointc(t),the normal vector equals-c(t)=(-cost,-sint,0)
 

= e2(t). Since e2(t)equals the normal vector,the projection of e2(t)on the
 

tangent plane will yield zero,ensuring thatthe geodesic curvature atthat point
 

is zero. All the points on this circle have this property;consequently,this curve,
 

the great circle, is, by definition,a geodesic. In fact, all the great circleson the
 

sphere are geodesies.
 

However,the non great circles on the sphere,the latitude circles, are not
 

geodesies. For instance,consider the latitude circle of radius r and a unitsfrom
 

the origin,shown in figure 30,given by the equation
 

d(t)=(rcost, rsint, a).
 

The unittangent vector e,(t)equals(-rsint, rcost,0)/(r^+a^^® and e2(t)equals
 

(-rcost,-rsint,0)l{f+a^'®. Since the normal vector,-d(t)=(-rcost,-rsint,-a),
 

does not equal e2(t), the geodesiccurvature is notequal to0;thus,this circle is
 

notageodesic.
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CHAPTER FIVE: AN APPLICATION OFA MINIMALSURFACE
 

The conceptof minimal surfaces is an outgrowth of experiments involving
 

soap films stretched across closed twisted wireframes. In the analysis ofthe
 

Plateau Problem given in the second chapter,the closed Jordan curve F
 

played the role ofthe twisted wireframe. The architect Frei Otto,inspired bythe
 

elegance and economy displayed by these soap films, designed exhibition
 

halls,arenas and stadiums. His goal wasto utilize the leastamountof
 

(X)nstruction material to create strong lightweight structures that were easily
 

erected,dismantled and moved,as well as be able to withstand the destructive
 

forces of nature.
 

To design such alightweight structure,for example,a roof. Otto would
 

begin his task by constructing a plexiglass plate studded with thin rods of
 

varying heights. These rods would have drooping threads defining the edges
 

and ridges ofthe roof. This model would then be immersed into a soap
 

solution, and,when withdrawn, would reveal a tent like shape. The resulting
 

soap film,stretching outonly asfaras it must,pullsthe threads tautto create a
 

spectacular scalloped roof. Similar to the surface defined bythe image of the
 

mapping f(u,v)=(u,v,1 - u^+v^)which we examined in chapter one,every
 

section of this roof isshaped like a horse's saddle. Next,the soap film model is
 

carefully photographed and measured in order to build a solid representative of
 

the structure; this miniature is tested in wind tunnelsto determine the potential
 

impactof wind,rain and snow. If the model paststhese tests. Otto would use it
 

asa basis to design his roof. In the actual construction ofthe roof,sheetsof
 

synthetic material serve the role ofthe soap film and steel cables play the part
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of the threads. This model also enables Otto and his colleagues to study new
 

waysof utilizing minimal surfacesto design structures of optimal shapefor a
 

given contour or boundary.®
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