
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

1999

Neural computation of all eigenpairs of a matrix with real Neural computation of all eigenpairs of a matrix with real

eigenvalues eigenvalues

Serafim Theodore Perlepes

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Perlepes, Serafim Theodore, "Neural computation of all eigenpairs of a matrix with real eigenvalues"
(1999). Theses Digitization Project. 1525.
https://scholarworks.lib.csusb.edu/etd-project/1525

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1525&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1525&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/1525?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1525&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

NEURAL COMPUTATION OF ALL EIGENPAIRS OF A MATRIX WITH REAL

eigenvalues ^

■ A Thesis

. Presented to the '

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Deqree

Master of Science

' in '

Computer Science ' ,

/^by b' iVv'

Serafim Theodore Perlepes

March 1999 ,

NEURAL COMPUTATION OF ALL EIGENPAIRS OF A MATRIX WITH REAL

EIGENVALUES ■ ,

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

Serafim Theodore Perlepes

March 1999

Approved by:

Dr. Owen Murphy

f/f
Dr. George M. Georgiou, Chair Date
Comput'er Science

Dr. Kerstin Voigt

f'' 'ABSTRAGT;v:':i ■

In. thi$ thesis, .new artificiai neural. net^ork\ ^̂ ^ ^ , :

methods, that computh ail.eigenpairs of; a matrix with .real .

eigenvalues: are..introdu.ced .and evaluated.: The basic^ ^

.leairning...,rule: presented.,.is: u to'.f.ind ..eigenpairs t

associated.with both: positive and negative eigenvalues.

The above rule:is extended,to finding all.eigenpairs :

.employing . as' much parallelism as ..pdssible : The algorit.hms .

presented are: Serial: Deflation, ; Se.rial.-pipelined deflation

■and 	Patailel-pipeiinei vThe.. three ^algorithms extract all . . .

eigenpairs in order', and Parallel pipeline p.erfotnis bettef

than' the other two.;; It . computes tesults faster aad has the

'highest degree of parallelism.

Ill

http:presented.,.is

ACKNOWLEDGEMENTS

■ : I would^^ to take the opportunity to acknowledge

the direct and indirect help of many people who made

this thesis possible. First, I wish to express my

appreciation and gratitude to my advisor, Dr. George M.

Georgiou whose constant encouragement and support were

always: present. His expertise and guidance reinforced my

knowledge and made me a better researcher.; Appreciation is

also expressed to the rest of the examining committee

members Dr. Owen Murphy, and Dr. Kerstin Voigt for their

support and guidance. It was a pleasure and a privilege to

collaborate with these special people who contribhted so

much to the successful completion of this thesis.

I am also grateful to many others for help in-one form

orianothef during the course of this work. My sincere and

deepest appreciation goes to my father Theodore, my mother

Zaffie, and my brothef,. Tbm^ i and , support ,

throughout the;. pa;dt, few,; y am thankful to the

rest of my family in Greece for their enduring support and

understanding during., the course of, this research and my ,

program of stuc

: rv

TABLE OF CONTENTS

ABSTRACT 111

ACKNOWLEDGEMENTS . IV

LIST OF TABLES ■ Vll

LIST OF FIGURES Vlll

LIST OF GRAPHS A ,, . . ix

CHAPTER ONE Introduction • L • •1

Computing,eigenpairs: background . .^ . . . ■ 2,

Using neural networks to compute eigenpairs : 7

Review of previous work11

Thesis preview 16

CHAPTER TWO The new learning rules, and, algorithms 18

The modified learning rule 19

Derivation • • 20

Finding all eigenpairs : ,. 22 ,

23.
Serial deflation

Serial-pipelined'deflation. • 24

Parallel-pipeline rule 26

Derivation of parallel-pipeline rule 27

Relating parallel-pipeline and Danger's;

30
rules

CHAPTER THREE Implementation 31

Finding extreme eigenvalues and eigenvectors 32

V

Serial deflation implementation,, 34

Serial-pipelined deflation implementation • • • 36

Parallel-pipeline implementation 38

CHAPTER FOUR Computer siitiulation results and ,

discussion : . t;, . , 40

Sample runs • • : . . 40.

, Simulation runs for the three algorithms

(3x3 matrix) . a • . • • - • a - • .^ ;49;

Simulation runs for.the .three algorithms . . .

Comparing, results • ■ 44

(4 X 4 matrix) : . . .,1.-; 59

. , Simulation results using 250 different matrices . v 65

CHAPTER FIVE Conclusions • • • • ..• * • * . * • • 69

CHAPTER SIX Future.work u . .: • • . 72

APPENDIX A The.first experiments • • •. .• • •.. • * ^.

APPENDIX B Convergence data fpr':2.5.0.'7m . . ■ . ..; .. . 76

REFERENCESA i . . , . ..V .■ 1 .. 80

VI

LIST OF TABLES

Table 1., The serial-pipelined deflation algorithin 25

Table 2. Results A 66

Table 3. Results B, 67

Table 4. Explanation of symbols for table 5 74

Table,5. Early results . ., 75

Table 6. Convergence data, . 76

VI1

LIST OF FIGURES

Figure 1. Simple feedforward neural network 8

Figure 3. Simplified hardware implementation of serial-

Figure 4. Simplified hardware implementation of parallel-,

Figure 2. Architecture , for simple hebbian learning . . 12

pipelined deflation 37

pipelined.method 39

Vlll

LIST OF GRAPHS

Graph 1. The square of the norm of x vs. epochs 41

Graph 2. The square of the norm of x vs. epochs 42

Graph 3. The square of the norm of x vs. epochs 43

. • • ^4

Graph 5. Distance between x and Xa vs. epochs 46

Graph 14. The cos(0.) vs. epochs 55

Graph 4. The square of the norm of x vs. epochs .

Graph 6. The square of the. norm of x vs. epochs ., . . . 47

Graph 7. Distance between x and Xa vs. epochs . , . . . 48

Graph 8. The square of the norm of x vs. epochs 49

Graph 9. The square of the norm of x vs. epochs 50

Graph 10. The square of the norm of x vs. epochs 51

Graph 11. The,square, of the norm of x vs. epochs 52

Graph 12. The cos(0) vs. epochs. 53

Graph 13. The cos(0) vs. epochs . ., 54

• • • • "

Graph 15. Distances between x and Xa vs. epochs 56

Graph 16. Distances between x and Xa vs. epochs '. ,.. .. . 57

Graph 17,. Distances , between x andXa vs. epochs . . ,. . 58

Graph 18. The square of the norm of x vs. epochs 59

Graph 19. The square of the norm of x vs. epochs. . .:: . . 61

Graph 20. The square of the norm of x vs. epochs . . 62

Graph 21. The cos(0) vs. epochs • • • • • • . . 63

IX

Graph 22. The cos(0) vs. epochs t . . . 64

Graph 23. The cos(0) vs. epochs 65

X

CHAPTER ONE Introduction

Computing the eigenvalues and associated eigenvectors

of a given real matrix is necessary in many scientific

disciplines. This computation is important for scientific

and engineering problems such as signal processing, control

theory, and geophysics [21]. The general solutions of

differential equation systems often require knowledge of

the spectral quantities, i.e. the eigenvectors and

eigenvalues. Also, the meaning of the covariance matrix in

statistics is most clear when the eigenpaira are known.

Besides the standard methods for computing eigenvalues and

their eigenvectors, there is a great,interest;in computing

eigenpairs using neural techniques [9]-[10],, [17]-[21].

The word eigenvalue derives from the. German, word

eigenwert; eigen meahs peculiar, characteristic and wert

means value. An eigenvalue is one of those special values

of a parameter .in.a particular equation for which.the

equation has a solution. Specifically, the nontrivial

solutions of the equation Ax = A.x .were introduced by.

Lagrance in 1762 to solve systems of differential, equations

with constant coefficients. . The nonzero solutions are. the,

eigenvalues, and the.term was introduced by Hilbert in 1904

to denote a property of integral equations. Later on,

eigenvalues became attached to matrices [11]. In the case

of a differential equation, a single-valued, finite, and

continuous solution is found only for particular values of

a parameter and these are the proper-values or eigenvalues

of the differential equation. Detailed mathematical

definitions are given in section 1.1.

1.1 Computing eigenpairs: background,

Finding the eigenvalues of a square matrix is a

difficult problem that arises in a wide variety of

scientific applications. The solution of many physical

problems requires the calculation, or at least estimation

of the eigenvalues and corresponding eigenvectors of a

matrix associated with a linear system of equations. A few

definitions are necessary to better understand the problem.

Definition 1 A nonzero vector x e 91" is an eigenvector

(or characteristic vector) of a square matrix A e 91" ̂ " if

there exists a scalar X such that Ax = A,x. Then A, is an

eigenvalue (or characteristic value) of A [1]. .

In other words, a number X is an eigenvalue of the

n X n matrix A if and only,if the homogeneous system

(A - Al)x = 0

has nontrivial-solutions. Furthermore^ the nontrivial

solutions of the above equation are the eigenvectors of A

associated with eigenvalue A,. So, in order to compute the

eigenvalues and eigenvectors of a given n x n matrix A, we

must solve the system Ax - Xx = 0. The matrix form of this

equation is in Definition 1. .

Definition 2 If A is a real n x n matrix, the

polynomial defined by

p(A) = det(A - Al)

is called the characteristic polynomial of A [8].

Definition 3 If A is a real n x n matrix, the equation

defined by

det,(2l - A) = 0

is called the characteristic equation of A [3].

It is known that p is an nth-degree polynomial with

real coefficients and, consequently,.has at most h distinct

roots; some of these roots may be complex [8].

Definition 4 An eigenvalue Xiand the associated non

zero eigenvector Vi = [vn, vn, . . vin]'^ are referred to as

an eigenpair.

Definition 5 The magnitude of a vector

V = [Vi, V2, Vn] is ||v|| = Vv • V = ̂|{vl + Vg + . . . + V^ .

It is also called the norm or length of a vector, where •

•denotes the inner product operator.

Definition 6 The distance between vectors u and v is

defined to be

d(u, v) = ||u - v|| = -^{u^ - v^)^ + (U2 - + . . . + (u„ - v„)^

The distance will be. used as an error.measure between

the Computed eigenvector and the ideal eigenvector.

Definition 7 The largest in magnitude eigenvalue of a

matrix A .is called the dominant eigenvalue . [.8].. .

Definition 8 For two vectors x and y, the cosine of the

angle between them is defined as

cos(0)=

* y

P'lP'

If cos(0) is close to 1, then x and y are close to having

^^oYO^ _1 ^h«n ^ ■! <=the same direction. If cos(0) is cl X is

re: • ::::i;:,::g|S
 ./• ;.':i V:i :.>v

approximately -y.

;;" ■ J ■•' it '' i"'- ■■ ' ■ . ',/■■ ■ - ''ii-", 's t .' ' i.'i.i ; :"i. 't;;
■ •■ivo v'i- ' ■ ■'■"■ ■'""ti- 'wt;,"<■;■; tttS'K'V^itW;f t i'-'i'" ii-i■' • i.>.i 't:. iii •■ ■ ' -if .:i'i- ,.-' ' ■ i':' : ' i ' . ■ ' ■-!; ■ :■ i,:

v- :v-tVt i'e•t-i'-:/■" ,:t' 'i: t ;■ ;■/ / ■'1 Find the eigenvalues and eigenvectors
■ ■•■, ;■ ' 't,.

^ = 1 3
_

•
L- -■

i "■;: ■; ■, 'V:i'-' V ■ •■ 'C1 '; ' • t':' ; ■ ' ' ■■■ ' ' ■:; -■' '•.- ;•' " ' ,'• ■ ' , Til' ■'■1-'.'' ' f'- •■/ i-- ■ I'- 'v I .:vi1; ;^ ^ v-"- ■ "' 'i " ■"i '■ ■ ' -i-' t '-tV ' ' ! '

r, 11 n «n p.i i -]'3. :1'
= i

0 A = 1 3-A

and det{A-Xl)-{3-X) (3-X)-l. Setting det(A-Xl)=0 and solving
*!

for X gives X = 4 and X = 2. To find the eigenvalue for X = 4

: find a nonzero solution to ' ,

(3 - 4)x + y = 0

X + (3 - 4)y = 0
.

■ -• ■ '■■ ■■■■■-,--. ■.' ■ ■■„ • i--: c-.- ■ i.3 /

,

This system just demands that y = x. So an eigenvector for
i tytyi-y , ' i, - t ;;i: Co;-;' - .1 : ■ ^v: -ihAhytiVy^ p ., 1, y_ ■ytiit/V'.t/t-/ ■'■ -i";

the eigenvalue 4 is the vector [1 1] T or any nonzero

multiple of it.

. . • . . y ■ -'o

■;i_i ;.;y ' . '"■ :,\i' , ■ "/Jr-.-v

^ 	x + y - 0: ■ , ■

x' +' y = 0'

This gives the relation y = -x which in turn shows that

[1 	-1] is an,eigenvector for X = 2. .

We 	can summarize our findings hy writing that A = CDC

"4 O'

D = c =

0 2 1 1

where the diagonal entries of D are the eigenvalues of A,

and the column vectors of C are their corresponding

eigenvectors. This example was taken.from [8].

The three types of matrices are mentioned or used in

this thesis are symmetric, positive-definite, and positive

semidefinite..

Definition 9: A sguare matrix is said.to be symmetric

if its elements are symmetric about the diagonal. That is

to say Aij - Aji for all i and j.

, , Definition 10:; A matrix A is positive definite if ,

■ (Av)•,V > 0' ■

for all vectors v^ 0. All Eigenvalues of a positive

definite matrix .are. positive. .

Definition 11: A matrix A is positive.semidefinite if

(Av)•V > 0

for all V ̂ 0.

The eigenvalues from these three kinds of matrices are

real numbers.

1.2 Using neural networks to compute eigenpairs

Artificial neural networks (ANN) are a growing part of

the study of artificial intelligence and are intended to be

a link to true biological machines [16]. In order to build

intelligent machines, the naturally occurring model is the

human brain. For that purpose, one of ..the first things

that.comes to mind is simulating the function of the brain

directly on a computer. Computers today have remarkable

abilities including the ability to store vast quantities of

information and perform extensive arithmetic calculations

without error. Their circuits operate very fast, and

humans cannot approach such capabilities [16]. On the other

hand, computers cannot efficiently perform simple everyday

tasks like walking, talking, natural language processing,

and common.sense reasoning. . Current artificial

intelligence systems cannot do any of these tasks, better

than humans. .

The need for a processor that has the functionality of

the human brain and the speed of a computer attracted and

still attracts many researchers to ANNs [19]. An artificial

neural network is a machine or algorithm modeled after the

design and function of the brain. For the most part, neural

network architectures are not meant to duplicate the

operation of the human brain, but to receive inspiration

from known facts about how the brain works [16].

Figure 1. Simple feedforward neural network

Output layer

weights

Optional

Hidden Layers

Input Layer

t t

In general, a network consists of many simple

processors, also known as nodes or neurons, that are linked

together in layers. There are input and output layers, each

containing any number of nodes. As illustrated in Figure 1,

there can be a number of hidden layers separating the input

from the output, also containing an arbitrary number of .

nodes. Each node' contains some small amount of.data and

each link between,the nodes has a yalue. (weight) assbciated

with it, as shown :in Figure 1. The concept of the

biological JTi3.chine stems from the idea that the input nodes

are equivalent to neurons, and the links are equivalent to

the synapses plus axons.

The network is trained,in a way that the weights are

modified until the ANN, for a. given input, produces the

correct or most,correct output. This training can be done

using either supervised or unsupervised learning. An ANN

■undergoes 	supervised learning when the input vectors and

the corresponding: , output vectors are used. In a way, there

is a teacher to guide the.network to the correct output. .

Learning in supervised networks is often times

achieved by a method called back.propagation. The

difference between the desired and actual network outputs

is observed, then the network is modified, and the.

procedure repeats until correct results are obtained. So,

the neural network minimizes an error function of the

output. Unfortunately, back propagation has problems.

First it is slow, secondly it is difficult to analyze the

actions of the hidden layers, and finally results are not

always produced due to weaknesses of the gradient descent

method, (i.e. local minima can distract from gradient

descent) [10].

In unsupervised learning there is no teacher; rather,

the neural network incorporates local information and

internal rules to associate the different inputs with the

different outputs. This makes it more similar to the

workings of the brain, which does not have an internal

teacher. Unsupervised learning is best suited for

situations where there is a great deal of redundancy in the

input. By repetition, the network organizes itself to

distinguish patterns or features in the data [20].

It is interesting to research and study how parallel

structures, like neural networks, can solve problems like

the computation of eigenvalues and their corresponding

eigenvectors. According to many researchers, neural

computing defined by dynamic systems is a very promising

10

approach for solving.real.time .computational problems [9]

'.[2i:],. ■ ■ '■

1.3 Review of previous work

In unsupervised learning^ a neural network must,„

discover for itself patterns/ regularities, features,

correlations, or categories of the input data and code for

them in the output [10,]. While discovering these, the,

network changes its.parameters, a process called self-

organization [10].

Assuming we have an input vector with components ^.i, and

each component has a weight wi. associated with it. If we

consider the simplest case of a single linear unit, its

scalar output V is

• • ■■ ■ . ■ ^ ■ ■ '

where w is the weight vector. The network; architecture is

shown in Figure 2. Hebbia.n lesbnlng, a fundamental learning

mechanism [10], is represented by this learning rule: ,

Aw^ = (2)

11

where 77 is. the . learning' rate, a amall pbsitive constant.; .

The.product is the standard Hebb rule and is present one

form or, anbther \in":.ffl learning'rules,i;inGluding the one

presented:in .this .thesis (section 2.1).

:Figure .2. Arc,hitecture for simp1p. hebbian ,1earning

V .'"I ■ ■■ V^ '

Wh
Wi

W2

In
51 ■

1 T problem here'::.is tha.t :the weights keep;on growing

without,abound and .learning,never:stops. [10]. To . avoi'd:this,

dja [13] .added 'weight decay proportional to;the pquare;© .,

the output to the;piain'Hebbian rule :' ' '

Aw. - TjV{^^ - Vw^). (3)

)Oja 's.'Xule■ above causes its.;weight,;vectbr to .converge to ^

the . eigenvedtor 'that .(correspohds' to . the; largest .. eigenvalue^

A^ax of; covariance matrix of the data set [13}

12

Several researchers have extended Oja's rule to

raultineuron networks that extract all eigenvectors of the

covariance matrix C of a given input set of vectors

[10],[18]-[19]. Banger's rule [18], for example, projects

the dutputs of an input vector ^ onto the space of the first

M principal components. The updated rule is

t ,

(M

This rule is most often used in applications since it

is robust and also extracts the principal components

individually in order [10].

Georgiou and Tsai approached the problem of finding

the eigehvectors of a symmetric positive definite matrix

(with neural networks) in a novel way [9]. Data having

approximately a specific covariance matrix (the given

matrix) is randomly generated, and then the APEX [12]

neural architecture and algorithm is used to extract the

eigenvectors [20].

In the above studies, learning rules are applied to

the covariance matrix of the data (input) vectors, and the

eigenvalues and eigenvectors extracted are those of the

13

covariance matrix. In this thesis, the direct problem is

investigated: given a matrix A, find, all eigenvalues and

associated eigenvectors of A.,

In [17], a dynamical method that produces estimates of

real eigenvectors and eigenvalues was presented. The

technique proposed is applied to estimate eigens.pectra of

real n-dimensional k-forms. Their approach was based on a

spectral splicing property of the line manifolds often

found in solutions of polynomial differential equations,

[17].

In [21], a dynamical system for computing the ,

eigenvectors associated with the Amax of a positive definite

matrix A is described. They used the rule: ,

dx ,^,

—- = Ax - f(x)x (5)

dt

where x = (x^^, x^,...,x^)^ e 91" and function ^(x) satisfies

certain assumptions [21]. As it is mentioned in the same

paper, the first term on the right-hand side in equation 5

can be considered as the standard,Hebb rule term,(equation

1), and the second term acts to bound the length of vector

X [21]. ,

14

Also, in [21] is mentioned,that researchers hay'e' . ■

looked at the cases . where tf(x) = x'^Ax and -f(x) = x^x, using

positive definite matrices as input.

Samardizija and Waterland in [17] propose, sign,

reversal to obtain negative eigenvalues: use , ;

c?x '
— = Ax -(x'^x)x for positive eigehvalues and
dt ■ "i- ^ ■ ,v ■ 'i

dx ■ , . , ,
^ = -Ax -(x x)x for, negative.; ,.
dt . 	 ;■ -1' ̂ ■ / -i

In this thesis, we find negative eigenvalues andtheir

associated eigenvectors without sign reversal,

S'tatement: of the problem: Use a new neural network

algorithm to compute all eigenpairs^:of a symmetric: matrix

(i.e., with,real eigenvalues) .

1. 	Introduce a new learning rule to find eigenpairs

associated with both positi.ye and ,negative. ,

eigenvalues.

2. 	Introduce algorithms that extend.the new rule above

to be able to find all eigenpairs.employing as much

parallelism as possible. The aigdrithms to be

explored are:,

a. 	Serial Deflation

b. 	Serial-pipelined deflation.

15

http:positi.ye

c. Parallel-pipeline

1.4 Thesis preview

Chapter Two of the thesis presents the theory of the

,	 new.rules , and,,the new neural, algorithms,that solve the

eigenvalue^eigenvector ..problem given a ■matrix,, A. , The

mathematieal foundationsv . theorems,- .and proofs are .

; -pre.sehted and discussed.

To be more specific, equation (5) is used in [21] to

compute the eigenvector corresponding to the largest

. e a positive definite matrix^.A, . i". e> all:

, 1 are positive. In this thesis, equation (5)

; is m^^^ eigenpairs of a real symmetric

.matrix. 	The: only limitation now . is that matrix, A should

have real eigenvalues. Also, besides computing the

eigenvector, corresponding to the largest eigenvaTue,, . the, ,

modified rule can extract the eigenvector associated with

the smallest negative eigenvalue of A. Depending on the

initial value of eigenvector x, convergence can be directed

to find the eigenpair, that belongs, to: the largest positive

or smallest negative eigenvalue. In addition, a serial

deflation technique is used to extract the remaining

eigenpairs [4], [6] . A serial-pipelined deflation algorithm'

16

is introduced to extract all eigenpairs in parallel-like

fashion. Lastly, a third, even more efficient algorithm

(Parallel-pipeline) is used to extract all eigenpairs in

parallel fashion.

In Chapter Three the specifics of the implementation

method and the software simulation aspects are presented.

In Chapter Four the computer simulation results are

presented and discussed. In Chapter Five conclusions are

drawn, and in Chapter Six future studies possibilities are

outlined.

17

CHAPTER TWO The new learning rules and algorithms

This chapter contains the new learning rules and , ,

algorithms of this thesis. The proposed learning rule and

its derivation are presented.in section 2.1. In the

derivation, Lagrange multipliers are used [2]. This method,

is suitable, for solving optimization problems like the one

in section 2.1.

Next, in section 2.2, the three new methods (Serial

Deflation, Serial-Pipelined deflation, and Parallel-

Pipeline) for extracting all eigenpairs and their

derivations are presented and discussed. The deflation^

theorem from numerical analysis in 2.2.1 was taken from ;

[6].

In the Parallel-pipenine. pipeline section (2.2.3),, we

extend Ax = //(Ax -(x''Ax)x) to a rule that extracts all

eigenpairs. Sanger [18] extended Oja's rule (equation 4) :

to extract all eigenpairs of the covariance matrix (which

is always positive semi-definite) of the given data

vectors, whereas we extend Ax = //(Ax -(x''Ax)x) to compute all,

eigenpairs of a symmetric matrix.

Sanger's rule (equation 5) uses the Gram-Schmidt

ortho.gonalization procedure (well known in linear algebra

18

http:presented.in

[1]/[3]) to expand Oja's rule. It is important in that it

uses.only local computations, a characteristic that makes

it 'Attractive for neural networks applications. Also, it

computes all eigenvectors at the same time: during each

iteratioh a , correction to> the.eigenvectors is made,.until . .

all converge to their true values.

Sahgef's rule although related to the deflation

technigue [6] of find successive eigenvectors in that

each eigenvector; depends on the previous■one, it differs in

that computatipn is not done in the serial manner of

deflation, but in a more parallel•one.

2.1 The modified learning rule

A square matrix A is the input to the new learning

rule. The only restriction on A for this rule is that A is

a square matrix with real eigenvalues. The new rule

computes the largest positive or-the smallest negative

eigenvAlue and associated eigenvector according to the

initial .value of the product x'^Ax.

.. Let A,e iRf^ square matrix with real eigenvalues.

The scalars A,minneg and. Xmaxpos denote the smallest negative and

the largest positive eigenvalue of A, respectively (if such

19

values exist). In the case that A does not have any

negative^ eigenvalues then X,minneg does not exist since it is

defined.as the smallest' hegative eigenvalue. Conversely, ■

when A has only.negative ■ eigenvalues, Xmaxpos does ..not .exist..

Define the product

= x^Ax^ (6) ■

and the. learning rule

■ that ca.n .alsd^ ^ as..

Ax = //(x'^Ax)(Ax -(x''Ax)x) (7b)

where r] is the learning rate (in this case, rj is a. small

pbsit.ive real number) and x = (xi,..., Xn)'^ e 91". As the

square of the magnitude of x (||xlp) converges to 1, k

converges, to;eigenvalue Xmaxpos of A if Kq is positive or to

Vinneg if Kg is negative. At the same time, x converges to

the eigenvector associated with the eigenvalue that

Kconverges to (either .'T^maxpos O.r ^■minneg). • ■ :

2.1.1 Derivation

Let A 6 91" ^ be a square matrix with real eigenvalues,

e.g. A can be symmetric. Then the field of values of A is

20

the set {x'^Ax: x e 91", ||x|l =1}. which is an interval on the

real line whose endpoints are eigenvalues. The endpoint

furthest from the origin maximizes the expression (x^Ax)^

under the constraint llx|l = 1. Hence we can obtain an

extreme eigenvalue by solving the constraint optimization

problem ,

max(x'^Ax)^, x'^x = 1.

We can solve such optimization problems using the Lagrange

multiplier method. Let X be a Lagrange multiplier. Then the-

problem is equivalent to maximizing E(x):

E(x) = —(x^Ax)^ - ACx'^x - 1)

2

We can use gradient descent to minimize -E(x). The gradient

of E(x) with respect to x is

Vjj E = -2(x''Ax)Ax + 2/lx.

At equilibrium, E = 0, so

— (x''Ax)Ax + Ax. = 0.

Right multiplying by x'^,

-(x'^AxXx'^Ax) + .^''x = 0

or

A = (x^Ax)^

hence, we write

21

E = -2k'^Ax (Ax - Ax)

The gradient above can be written in'dynamical system form

as:

V(.x = x^'Ax(Ax — (x^Ax),x)

or as the learning rule:

Ax\=. 7(x''Ax)(Ax - (x'^Ax) x).

2.2 Finding all eigenpairs

An n x n matrix A has precisely n, not necessarily

distinct, eigenvalues that are roots of the polynomial

p(A,) = det(A - .A,I). In theory the eigenvalues are obtained

by finding the n roots of. the characteristic polynomial

p(A,). . After this, the associated linear,system must be

solved to; find the corresponding eigenvectors. In

practice, finding eigenpairs is not that simple. The

characteristic polynomial is difficult to obtain, and

finding the roots of an nth-degree polynomial can be

difficult unless we deal with small values of n. , This

leads to the necessity of constructing approximation

techniques and -algorithms to .find eigenvalues and the

associated with them eigehvectors. Many such matrix

algebra iterative methods exist. One of the approximation

. ■ . ■ ' 22' ■ ■ ■ .

techniques that will be used here is the deflation

technique.

2.2.1 Serial deflation

In general, deflation techniques involve forming a

new matrix B from the original matrix A whose eigenvalues

are the same as those of A with the exception that the

dominant eigenvalue of A is replaced by the eigenvalue 0 in

matrix B.

Deflation theorem from nximerical analysis: Suppose

that Xi, X2, ... / are eigenvalues of A with associated

eigenvectors vi, V2, ... , Vn, and that A,i has multiplicity

one. If X is any vector with the property that , then

B = A - (12)

is the matrix with eigenvalues 0, Xzt X3, ... ■, A-n and

associated eigenvectors vi, W2, W3, ... , Wn where vi and wi,

are related by the equation,

Vi = Ui - /li)Wi + ./li(x^Wi)Vi (13)

23

for each i = 2, 3, ..., n.

The idea is to first find A,i and its associated

eigenvector vi using the learning rule of equation 7. Then,

deflate matrix A using equation 12 store the result back to

A, and iterate the rule again to find the X2 - V2 eigenpair

and continue.like that until we extract all eigenpairs. If

the matrix has negative eigenvalues (^minneg exists), we can

also work backwards starting from A.n = A,minneg and by deflating

A and iterating the rule extract the eigenpairs in reverse

order, from A,n to Xi.

2.2.2 Serial-pipelined deflation

Next step of this research is to cast the serial .

deflation process as a neural network. To do that, we need

to construct an algorithm,that extracts all eigenpairs in

parallel fashion.

24

Table 1. The Serial-pipelined defla'tion algoribhia

Declare

Ao,Ai,... ,An : n X n matrices

xo,xi,... ,Xn : n size vectors randomly initialized

fJorVi' • • r Vn • real learning ratss

While not all have converge

■ Begin

^A„ ~ 7o(*Ao'^0*Ap)(■^0*A|, ~ (*Ao;®^0*Ap.)*Ao) .
■^1 ~ '^0. ~ (*Ao^O*Ap) *Ao*i■■An

^*A, = (a,X^/- (x^^A,x^^)x^^)

A2 = A, - (x^^A.x^J x^^xi; '

AXa„_, = - (x^^_^A,^,x^^_^)x^^_J
•An , =

Ax^^ = ;7„(x^^A,x^;)(a,x^; - (x^_^A,x^;)x^J
End , --..c

To introduce parallelism to serial deflation, instead

of deflating matrix A when one of,the.eigenpairs has been

completely computed, we deflate by a small,quantity after

each iteration. We need to iterate as many learning rules

as the number of eigenpairs (n) that we are extracting.

25

For each iteration: after a rule has been updated,

"partial" deflation takes place. Table 1 contains the

algorithm needed to implement serial-pipelined deflation in

pseudo code. According to the size Of the matrix used, the

corresponding number of learning.rules is used to extract

the eigenvalues and eigenvectors.. ,

2.2.3 Parallel-pipeline rule

In this section we propose a new rule that extends the

basic rule:

Ax .= //(Ax -(x^Ax)x) (13),..

that is used for extraction of only one, the dominant,

eigenpair.

The new rule is: ,

i

Ax. = //(Ax. -^(XiAx^^)Xj^) (14)

■ . ■ ■ ■ , k=0

where, // > 0 .is the learning.rate (a small positive

constant), A is a .given n x n positive semi-definite matrix,

and x_j, 1 < i < n, are the eigenvectors,;, as column vectors,

ordered by decreasing importance...Notice that for i = 1 the

new rule collapses to the. basic rule of equation .(13).

26

. The parallel pipeline rule uses only local,;

GQinputations, a charaGteristic that makes.,it attractive for

neural hetwprks .applications. Another characteristic isi

that computes:all eigenvectors:at roughly the.same time., .

A correction .. to the., eigenyectors is made at each iteration,

until;all conyerge to. their true values.

, Still each.eigenvector depends on the previous - one,, :

but:;n.ow: the computation is .done -.in a way more . parallel than

serial-pipelined deflation..,

2.2.3.1 Derivatibn of parallel-pipeline^

. The new rule ■ is deriyed.: usihg^ L multipliers and

mathematical inductidnr This:, fnie ^̂ ^^a the idea.to. use ^

:Lagr.ange multipliers in the .deriyation .are . due to Dri

Georgiou. Supposed that the,.first i-l (most dominant) ;. . .

eigenyectors of A .haye been obtained and are rtbrmalized:

■ x.^, 1^2' • • •'^1-1 • problem now is to find the next

ndrmali;Zed eigenyector. x^)..i; < h .• . ;We cast the problem.; as an

bptimization one and solve it with the. of Lagrange;.

multipliers. The objective function we. would...like

maximize, is. .

, i;.:- k:. .^-.;xJax^ (15) ;

27

and the constraints are:

x^x. =1 (16)

x,"x^ = 0, 1 < k<i (17)

Equation (16) ensures that x is normalized and equation

(17) that X is,orthogonal to all previous eigenvectors.

.Using Lagrange multipliers 1 < k < i for the

constraints, we form a new function that we

would like to maximize:

G{x.,li, ^2/ • • • .^i) = xIAx^ + 2^ + X,{xlx. - 1) (18)

k=l

The gradient of function G with respect to all variables

must equal zero at the extremum:

i-l

= Ax^ + 2]4x^ + X,x. = 0 (19)

k=l

Left multiplying Equation (19) with x^, and using

constrains (16) and (17), we obtain

= -xl^x. (20)

Left multiplying Equation (19) successively by

X2,'X2,. . ., , and again using constraints (16), (17) the

following results:,

X, = -xlAx,, 1 < k < i (21)

28

Substituting the X,'s back to equation (19),.the gradient now

becomes:

i-1

= Axr+^(x^Ax.)Xj^ -(x^Ax.)x.t .(22)

Which can be written more compactly; as

= Ax. +

.k=l - .t. ■■ ■ .; ■ . : . ■

Thus, using gradient ascent^ we write the new learning

rule:

i

Ax. = //(Ax. - ^{xIAx^)x^), . (24)

■k =l , ■ ■ ■ ■ ■ ■/■

which the same as Equation (14) , . ,

We note that for 1=1 equation (24) reduces to the basic

rule of equation (13) , which will converge to, the most

significant eigenvector, and thus the mathematical

induction is complete.

Since less significant eigenvectors depend on the more

significant ones, it is expected that the more significant

ones will converge faster. In practice we. noticed that the

more significant ones converge almost at the same time for

square symmetric matrices of dimension three and four and

faster for higher dimension matrices.

29

2.2.3.2 Relating parallel-pipeline and Sanger's rules

The new rule is analogous the one proposed by Sanger:

Sanger's rule works with data vectors, whereas the new rule

works with a given symmetric matrix.

By applying the expectation operator on Sanger's rule

its relationship to the new rule is illustrated:

(25)
"kj

k=l \PQ

or

(Ax.) = ;7(Ax, - ^(x^Ax,)xJ (26)

k=l

It can be seen from the above equation, the right hand side

is identical to Equation (24). Although this is not a

rigorous argument, since one left hand side has the

expectation operator and the other does not, still the

similarity of the two equations is striking, and the two

rules can be considered analogous. Sanger's ruTe can be

used for finding the eigenvectors of the covariance matrix

of given data vectors and the new rule for■finding the

eigenvectors of a given symmetric matrix.

30

CHAPTER THREE Implementation

Testing the proposed learning rule under different

conditions was very important during the first stages of

the research. The simulation programs use a C++ class

library developed by Laurent Deniau in CERN, Switzerland.

It was downloaded from http://wwwinfo.cern.ch/'-ldeniau/,

and the library was build with g++ compiler version 2.7.2

under the UNIX (System V Release 4.0) operating system.

The matrix class of the library offers the member function

eig0 which is used to calculate the eigenpairs of

symmetric matrices. This function was used in the program

to compare the computed results with ideal ones. The Maple

mathematical package was used to compare results also. To

generate the graphs associated with the simulation results,

gnuplot was used. It should be noted that implementations

of neural algorithms do have many free variables that

usually are. randomly initialized.. When I (via email).asked :

Dr. Terry Sanger why a particular implementation of

Sanger's rule did not converge, he replied "if it's not

converging, the usual problem is a rate that is too high-

i.. try using the rule with just 1 output-eigenvector, find

the fastest rate that gives good convergence."

31

 , Depending on the variables used, initial conditions :

should be adjusted so the algorithm used produces results.

In that fashion, the learning rate that performs best for

the three algorithms used in this thesis was chosen. The

matrices of which the eigenpairs should be computed are

random symmetric to avoid cases of matrices with complex

eigenvalues.

3.1 Finding extreme eigenvalues and eigenvectors

To find the extreme eigenvalues Xninneg ^nd Xmaxposr the

initial value for Kq is checked and when the desired for our

computation Kq is obtained (section 2.1), the learning rule

is applied to the matrix. Since the matrix is constant,

what makes Kq = XqAXq positive or negative is the

initialization value of vector xq. If we want to find Amaxpos

then Ko = XqAXq should be positive. The value of

Ko = XqAXq must be negative if we want the rule to converge

to ?Lminneg. If Vinneg does not exist, then the rule

automatically finds Xmaxpos- Also, if Xmaxpos does not exist

then we find Xminneg instead.

32

The implementation has three steps. First the

declaration of all needed variables and constants (vectors,

matrices, learning rate), second the initialization of;the

variables, and third, the iteration of the learning rule

until convergence is achieved^ i.e., until it converges to

vector X with the square of its length ||x|p« 1. For step

two the random number generator that comes with C language

was used to initialize A and xq. The learning rate was set

to 0.01. After a certain number of iterations, the

learning rate is divided by a constant; the default is 500

iterations, and that way the learning rate becomes smaller

and smaller but not less than 0.001. This technique.is

often.used in Neural Networks to make similar rules

converge faster [10]. When iteration of the rules starts,

division on predefined intervals gradually decreases;the

relatively large learning rate (0.01), i.e., the rate is

divided by 1.01 after every 500 iterations. The rate

should not be decreased too much because learning is slowed

down proportionally to the decrease of the learning ratev

For that reason, the smallest rate used is very close to,

0.001.

33

http:technique.is

When trying to find Xmaxpos/ *o must be initialized to a

value that makes Kqpositive. Function getposinitval() was

implemehted for that reason. On the other hand, xq has to

be initialized to a value that results to a negative Kq for

convergence to Vinneg- Function getneginitval() was

impiemented to do that. Both functions initialize xo with

random values and then compute Kq. If the result is the,

desired one, the xq is returned. Otherwise, Kq is computed

again by trying a new random initialization of xq.^ If there

is no Xq that makes Kq positive then A does not have a

positive eigenvalue. Likewise, if there is no xq that makes

Kq negative then A does not have a negative eigenvalue.

Accordingly, both functions have a limit to how many times

they initialize xq. If the appropriate value has not been

found after a hundred iterations, then the current value of

,Xo 'is returned;

3.2 Serial deflation implementation

Again, to obtain a value for xq that will converge to

either Vaxpos or A^innegf function getposinitval() or

getneginitval() must be used during initialization. As

34

mentioned earlier, if Ko-is negative then the learning rule

converges to the eigenvectOir associated with the smallest

negative eigenvalue, whereas.if Kq is positive it finds

^axpos- It should be noted at this point that Imaxpos and

A-minneg do not have t.o be a dominant eigenvalue to make serial

deflation work.

The actual eigenpairs are calculated using the

included with the c++ library member function eigO of the

matrix class. Because this function works only with

symmetric matrices. Maple was used to compute the ideal

eigenpairs in some early experiments (Appendix A).

The segment of the program that implements serial

deflation extracts the n eigenpairs of an n X n matrix

serially and in,order..

We can either start from Xmaxpos and continue deflating A

and iterating equation (7) until we find A;min and its

associated eigenvector, or we can start from Xminneg and

continue until all eigenpairs are found (in reverse order).

If no A,maxpos oxists then we find Xminneg first and vice-versa.

.35

http:whereas.if

3.3 Serial-pipelined deflation implementation

Since the eigenpairs in this case are computed after

each iteration, we have to initialize all.eigenvalue and

eigenvector variables before the iterations of the rules

start. For example, if we choose A to be a 4 x 4, matrix,

four eigenpairs should be extracted,. For each eigehpair to

be computed, iterating rule (7) is used. The four rules

Will be iterated, each is depending on the previous one,

until all,converge. Thus, all Kis . (ki.= xJax_j) must be

initialized before we start iterating.

As.it was mentioned earlier, if the eigenvalue, of an.

eigenpair to be computed is positive, the initial value for

that eigenvalue (ki) before we start iterating should also

be positive. Conversely, when the eigenvalue of the ,

eigenpair to be extracted is negative, its starting value

should also be negative. If a random symmetric matrix; is

used,, it is impossible to know beforehand how many '

eigenvalues.will be negative and how many will be positive,

in order to initialize them accordingly. To overcome this ..

initialization problem, matrices with, positive eigenvalues

are used for the serial-pipelined deflation algorithm. ,For

36

the rest of the implementation, the serial-pipelined

deflation algorithm of table 1 (section 2.2.2) is used.

The pipeline nature of the,algorithm is illustrated in

figure 3. At each stage, we deflate the matrix and pass it

to the next stage. For example, in the second pipeline

stage matrix Ai is needed, so we deflate Ao using xq

(equation 12 in ,2.2.1) and then we iterate the learning

rule.

Figure 3. Simplified hardware implementation of serial-

pipelined deflation

Xi *2
xo

37

3.4 Parallel-pipeline implementation

For the same reason as with the serial-pipelined

deflation algorithm, xis are initialized to values that make

KiS positive, i.e. the symmetric matrices used have positive

eigenvalues.

For an n X n size matrix, n learning rules are used, to'

compute n eigenpairs. The rules are iterated until they all

converge. Equation (14) on section 2.2.3 is used to compute

each eigenvector. The first rule extracts the largest

eigenvector, the second computes the second, largest, and so

on. Thus, the eigenpairs are extracted in parallel and in

order.

Figure 4 illustrates what we get if we view the

parallel-pipeline algorithm as a pipeline. Matrix A is the

same for all stages since no deflation takes place. Each

stage is an iterating rule. So, all preceding vectors (xi to

Xi-i) are needed to update the rule that computes xi. For

example, in the third stage we need Xi and X2 to iterate the

rule associated with X3.

38

4". Simplified hardware implementation of parallel

.Vpipelined method

:Xi Xl Xl Xl
•••►

*2 X2 X2

X3 X3 X3

X4

39

CHAPTER FOUR Compu'ter simula.'bion results and discussion

Symmetric matrices of different dimensions were used

as input to the simulation programs. When testing the

proposed rule and the three different algorithms,

eigenpairs from.2x2 to 10 x 10 . size symmetric matrices were

successfully computed. For the results presented in this

chapter, symmetric and symmetric positive-definite matrices

of size 3x3 and 4 x 4 were used.. To calculate the actual

eigenvalues and eigenvectors,, the build-in to the C++

library mefnber function eigO is used since all matrices

are symmetric,(function eig() works only with symmetric

matrices using the Jacobi, algorithm,to find eigenpairs).

The computed eigenpairs are almost equal to the actual

eigenpairs (calculated by function eig()) within a . , ,

tolerance of 0.0000001. , There exist,cases where the

eigenvector with opposite sign is computed. This is,

acceptable since a vector with opposite sign is simply an

eigenvector in the opposite direction.,

4.1 Sample runs

Graph 1 shows how the rule converges for matrix

40

-8.4 1.4 -1

1.4 - 6 - 4

-1.8 - 4.8

Graph 1. The square of the norm of x vs. epochs

0.0

0.6

0.4

0.2

0 500 1000 1500 £000 £500 3000 3500 4000

epochs

For this particular run, the .computed Xmaxpos was 7.10624

with associated eigenvector = [-0.139299-0.353633

0.924954]. The value ,of .kq was positive, so the learning rule

converged to Xmaxpos- The number Of Iterations needed for

convergence was 3616. .

The computed X was equal to the actual (Xa) returned from

function eig() within a tolerance of 0.0000001.

41

 ■ Graph 2 ::,depicts^^^ the rule ,coh"terged "for same matrix

A but with differeht uniti'ai x., / ; .

2. The square of the norm of x vs. epochs

0.8

0.6

0.4

0.£

S000 10000 15000 £0000 ;25000 30000 35000 40000

The learning!rate is ■ the same ibr.both,fuhs:.- The!only v t!

parameter that'changed was the ihitial xo.. . The result of,,

this was tO' heed 289 Iterations to.converge^ almost ten

times more .thah the.huiTibef required' duringothe first^run. ;;

Also,. Xo - -Xa which;is.the eigenvector,with opposite

.direction.

:42

^ Graphs 3 and 4 show how the rule converged when

finding XmiimegS^^ associated eigenvector first.

Graph 3. The- square: of the norm of x vs. epochs:

0.8

0.6

0.4

0.£

500 1000 1500 £000 £500 3000 3500

> . epochs

The same A and learning rate were used for graphs 3 and 4:.

As before/ the number of iterations required for the rule

to.converge is different. This indicates that the rule is

sensitive to initra conditions even if the only variable

thdt changes in this case is the initial value of x.

43

Graph 4. The square of the norm of x vs. epochs

0.6

0.4

0.2

6; 1000 2000 3000 4000 5000 6000 7000 8000

epochs

4.2 Comparing results

When the ||x|p converges to 1, that does not necessarily

imply that x converged to an eigenvector. The Euclidean

distanGeiof two vectors is a measure of how close they are

in space. The distance between the computed x and the

actual ideal) Xa provides a good measure of the quality

of the result,

44

; As Mentioned earlier, the learning rule sometimes

converges to Xa and other. times to -Xa.. In the, first, case

the distance goes to zero, and in the second case it goes

to .2 since

.. t- -^dCx,;;^ X)

:: = l|x •(-x)lf =

= t(Xj.-(-X2)) ■ +:..>. + (x„ -(-x„)) =

= ■ •^2"x? +'2^X2 t t *2^Xn';^: ■ i'4

X^'+ X:2 + • • ? ■ ^ ■ . . ■ ■■■■r
. - V4:; - ||x|l ■

Another way to evaluate results is to look at the

cosine of the angle between the computed eigenvector :and:

the actual. . The value. of cos(0) isy used as a measure of how

close the two vectors are.

4.2 - 0.4 8.6

For,matrix . A = -0.4 2.2 14 9.4 , the learning

8.6 -9.4 5.4'

rule converged to Amaxpbs = 16.8988 and its associated

eigenvector x4i= [0. 4867,9.7 0,,.,46i64 9 -0.741555] . The . actual

.eigenvector . in this case is ■

= [-0.486797 -0.461649 0.741555] = -x^.

Thus, the distance .converges . to 2. .Graph 5, demonstrates;

exactly that.

45

Graph 5. Distance between x and Xg vs. epochs

1.5

T:5

0,5

1000 £000 3000 4000 5000 6000

epochs

On the other hand, graph 6 shows how the square, of the norm

of X converges to ,1.

.46

Graph 6. The square of the norm of x vs. epochs

0.8

0.6

0.4

0.2

1000 £000 3000 4000 5000 6000

epochs

For the same A as above when the program found the

extreme negative eigenvalue and associated eigenvector.

The results were, .?^minneg= -8.37147,

= [0.444881 -0.585649 -0.677566]

where the corresponding actual eigenpair was k - -8.37147

and

x^ = [0.444881 -0.585649 -0.677566] =.

47

since we have sign agreement between the actual and

computed eigenvectors, this time the distance converged to

zero. Graph 7 demonstrates exactly that.

Graph 7. Distance between x and Xg vs. epochs

1.4

1.2

fh

0.8

0.6

0.4

0.2

500 1000 1500 2000 2500 3000 3500

epochs

Graph 8 again shows how the||x||^ converges to 1, in the

same experiment as above. .

48

0.8

Sv The square of -the norm x vs. epochs

T. '

0.6

0.8

3000 3500
500 1000 1500 2000 2500

'epochs

4.3 Simula-tibn runs of the three (3 X 3 matrix)

colTaction, oft
The,next run provides;attepresentatrve

graphs that shows, hcDw thetthree/'algorit :perform. The

symmetric matrix used for the. a11 was

3.3,51098/ ^ 0,2,8p94 0,-.;74615,7

A = 0.288294> 303,77987 ,, 0,.356264^ , and graphs 9, 10,

■ 0.746157 ' 0.356264 ■ ' , 4;:. 911105

11 show how the squares of the norms of , the eigehvectprh^^^^

49'

converged for the Parallel-pipeline, Serial-pipelined

deflation, and Serial Deflation algorithms, respectively.

Graph 9 shows how the square of the norms of the

three rules, converged, when the Parallel-pipeline algorithm

was used.

Graph 9. The square of the norm of x vs... epochs

N 0

bLJ

£

0.8

0.6

0.4

0.£

3000
500 1000 1500 £000 £500

epochs

As it can be seen from the graph the rule associated with

the largest eigenvalue converged first (curve N 0), the.

rule computing the eigenpair of second the second largest

eigenvalue converged second (curve N 1), the rule

50

^associated^;with/1he^^amal1e;s11 eigenvalue,;converged:,'thind;;

\(curve ,.N; 2J.v' ; d ^ - . . ■v / ^ '

10. , The square of fhe norm .of' x vs..
' ' . i ■. : ■ ■ 'i ■ ' ' ' . i

. H: 0
■ ■ ■ •' ■ H i

1
N e

0^8

0.6

0^4

0.£

; 0 1000 £000 d 3000 ; 4000 5000 6000 7000 8000 ;

. ■ ■epochs ■■ ■

Graph 10 shows the convergence of ||x|p of the

6a1culated ei : wheh;h Serial-pipeliried def1ation

algorithm was used.

:,Wp: can readily see tha^^ in this case, serial^pip^lined :

deflation was 5,000 iterations slower than Parallel-

pipeline. Also, vthe: rules associated with the; largest and

51

second largest eigenvalues (curves N 0 and N 1) converged

during the first one thousand iterations, but it took

another 6,000 iterations for the rule associated with the

smallest eigenvalue (curve N 2) to converge.

, corresponds to . the same rriatrix with;

serial deflatipn calculating bhe eigenpairs. 1

11. The square of the horm df\

N 0

N 1..

:r-

N £1

0.0

0.&

0.4

0.0

I -1^ I

£000 4000 6000
 8000 10000 1£000

; This algorithm is 'serial, so first it extracts the

dominant eigenpair and -deflates the matrix. Then the

deflated matrix is used to get the :secQhd dominant

52

05

eigenpair, and the matrix is deflated again to extract the

last eigenpair. The number of iterations for this method

for this particular run approximately was 12,000,, i.e

4,000 more than serial-pipelined deflation and 9,000 more

than parallel-pipeline.

The next 3 graphs show,the cosin.e of angle theta

between the ideal and computed, eigenvec.tbrs converges to 1

or -1.

Graph 12. , The cos(0.) vs. epochs

.....-.-p-cys—0

tos 1

Cos £

0.5

CO

o

o

-0.5

£500 3000
500 1000 1500 £000

epochs

53

If COS(0) approaches 1, x has the same sign as the ideal

eigenvector,;,: on the, other, hand, when cos(9) converges, to -1

then the sign of the computed x is opposite to -the sign of

the ideal.

As it is shown from the graph 12 (Parallel Pipeline

algdrithm), the cosine associated with the largest

eigenvalue converged to -1. The cosines of the other two

rules.converged to T. Also,' since we,have convergence of

the ,cosihe tQ: 1 implies that the computed

eigenvectdrs are correct.

Graph 13. cos(0) vs. epochs

Cob S

Cos 1

Cos £

0.5

CO

d:

u ,

-0.5

1000 £000 3000 4000 5000 6000 7000 8000

epochs.

54

Graph 13^ shows how cosine theta for the 3 rules

converged to 1 when serial-pipelined deflation was used.

Again, the cosines for the first and second rule (Cos 0,

Cos 1) converged much earlier than the number of iterations

the lastvr to produce results.

Graph 14. cos(0) vs. epochs

Cos 0

Cos

Cos.-E

1

0.5

, CO

o

o

-0.5

-i

2000 4000 6000 8000 10000 12000

epochs

: ; G 14 is displays how the three cosines converged when

the Serial Deflation algorithm was used. It is interesting

to note that in this case the cosine of the second rule

)S 1) was the one that required the most iterations to

55

converge. This happens because the proposed rule that is

used the Serial Deflation algorithm is very sensitive to

initial conditions. The next three graphs show the

calculation of the- distance between computed and ideal

eigenvectors for the- three -algorithms tested.

Graph 15 shows how the distance converged to 0. or 2

depending on which eigenvector is calculated. In the same

order as before, graph 15 shows the distance between X:and

Xa when parallel-pipeline was used.

Graph 15. Distances between x and Xg vs. epochs . . ^

B-0

D 1

D £

1.5

fO

X

3000
500 1000 1500 £000 £500

56

It is interesting .in . this .case'tonote to ;thatt.a

rules start to .converge,to 0 or .2 roughly . the saitie,, tinie,

The same.was witnessed in most, runs with the Parallel-

pipeline rule. On the other hand, in Parallel and Serial

Deflation the first two rules converge faster, and they

have to "wait" for the,last dn.e ,tp converge; Graph 16, .

iliustrates: just that;. . :Se.r.ial-pipelihed: deflation was

used, and rules, one and two. (D 0 and D ll/...respectively)

converged much.:sooner, thah. rule. 3. (D 2). v .

Gfaph i:6..: Distances, between . X and Xa vs - epochs.: .

D 0

D 1

D £

1.5

fd

X

X

0.5

1000 £000 3000 4000 5000 6000 7000 8000

57

In the next graph, 17, Serial Deflation is used and again 7^

one of, the rules, (the...second one, D l)- look longer than ; the

other 2 rules. Overall, this algorithm takes the biggest

number ;of7iteratiQhs. . 1 1

: Graph 17. Distances between x and Xa vs. epochs

T

D 0

D 1

D 2

1-5

cd

K

0.5

8000 6000 8000 L0000 12000
4000

epochs

The distance calculation for the three learning rules when

serial deflation was used converged to 0 or 2 in the same

way the cos(0) converged to 1 and -1.

58

4.4 Simula'bion iruns of the three algorithms (4 x 4 matrix)

The algorithms perform the same way for higher

dimension itiatriGes, but it takes longer, to produce results.

.There .dxist cases Wherp. .t closer to zero take

more iterations to converge because the learning rate

favors the convergence of the larger eigenvalues.

, The ..next example run^usea a 4 x^4, m and as before

six graphs are used to demonstrate how the three algorithms

carried,.oiit the computatioh this time,f

Graph 18. The square of the norm of x vs. epochs

——:—^ -r— 1 ■ ■■■ 1 ——"... \- 1 v. ■; 1

M 0
N 1 .

j
/

• ■

:
: i:

I. . . ■

^ f N £ —
i N 3 -
}

I i i
0.8 1 j

1 1
0.6 - . .-■■ ■ .■ ;■■■■. ■ - V. . -

'
)
)

i
i
;

i
f
f

i
0.4 — ■ ' ,

f i i
1 ■ }

0.e
i1 i; 11

■ /

1 1 1

500 1000 1500 0000 0500 3000
1 1 '

3500

epochs

59

The symmetric matrix used was

'3.23268 -0.293662 -0.411963 -0.480726

A =

-0.293662

-0.411963

2.4143

-0.0757437

-0.0757437

4.56274

-0.380533:

1.59223

-0.480726 -0.380533 1.59223 3.29027

Besides using the same matrix for all three algorithms, the

same initial xq = [0.005 -0.002 -0.039 0.011] was used for

all also.

Starting from the Parallel-pipeline algorithm, graph

18 presents how ||x|p (one for each of the four rules)

converges to 1. The graph shows that the eigenvector

associated with the largest eigenvalue (line N 0),took less

number of iterations to converge, and then the eigenvector

of the second largest eigenvalue, and so on.

Graph 19 shows |lx||^ of the four eigenvectors when the

Serial-pipelined deflation algorithm was used with the same

A and xq. The four learning rules start to converge

approximately at the same time at about 1700 iterations.

The squared norm of x for the rule extracting the smallest

eigenvalue and associated eigenvector (curve N 3) remained

below 0.4 for almost 5500 iterations (out of 6500), and

then started to converge faster.

60

Graph 19; The square of the norm of :x vs. epochs

—r

N 0

0.8

0.6

0.4

0.£

6000
 7000
1000 2000 3000 4000 : 5000

epochs

Serial-pipelined-deflation in graph 19 produced

.results similar to .Parallel-pipeline,.but .with almost twice

as many iterations needed for convergence.

■Graph 20 draws the norms of the computed eigenvectors

when serial deflation was used. We can easily see the four

different serial computations taking place.

61

Graph 20. The square of the norm of x vs. epochs

N 0

tL. 1

he

H 3

0^8

0.6

0.4

0.£

0 5000 10000 15000 £0000 £5000 30000 35000 40000

epochs.;'.- ' ^ .

Similar'.to the reault we got when, the. .,3 x .3 matrix vwas used

with serial., deflation,; one of the rules (in this case ;the;

last) took longer to compute its corresponding eigenvector.

The third rule (line N 2) took close to 5,000 iterations to

produce results whereas the last took almost 40,000

iterations.

. ;For the same three runs, now we take a look at how the

computation of the eigenvectors,progresses when observing

the cosine theta between the calculated eigenvector and the

62

ideal one. Graph.21 is the cosine calculation for, parallel-

pipeline.

Graph 21. The cos{0) vs. epochs

0

Cos 1

Cos £

Cos 3

/ '

/

. / ' ^

- /

0.5

O

cn

o

u

-0.5

-1

J _L

500 1000 1500 £000 £500 3000 3500

epochs ,

It is noted that all rules converge at almost the same

time,, three out of the four converged to -1 or one

approximately after two thousand iterations (lines Cos 0,

Cos 1, Cos 2).

Graph 22 shows how serial-pipelined deflation behaves.

63

http:Graph.21

Graph 22. The cos(0) vs. epochs

T"

1 - --fCoj 0

; Cos 1

I Cos £

i Cos 3

0.5

0

o

o

-0.5

1000 £000 3000 4000 5000 6000 7000

epochs

Again,, the computation takes a little longer, but still it

performs better.than the serial deflation algorithm cos(0) .

computation that follows (Graph 23). As expected, serial

deflation took longer (more than five times longer),

approximately 7000 Iterations for serial-pipelined , .

deflation compared to the 40.000 Iterations of serial

deflation In graph 23.

64

Group results in the next section portray the

characteristics or the three algorithms using a sample of

250 different matrices.

Graph 23. The cos(0) vs. epochs

1 - Cos 0

Cos 1

Cos £

Cos 3

0.5

o

CO
 0

o

u

-0.5

-i

5000 10000 15000 £0000 £5000 30000 35000 40000

, epochs

4.5 Simulation results using 250 different matrices

To better understand how the three algorithms behave^

250 different random synnmetric positive definite matrices

(dimensions 3x3 and 4x4) were used, and table 2 :

summarizes the results:

65

Table 2. Results A

SD SPD PP

1st 0 52 198

2nd 16 185 49 .

. 3rd 234 13 3

Rows and columns, horizontally and vertically add up

to our sample size, i.e. 250.' Each entry shows how,many .

times the corresponding algorithm converged: first (first

row), second (second row), or third (third row). "First"

means the algorithm needed the least number of iterations

for convergence (section 3.1), "second" is used for the

second smaller and third for the algorithm that, takes the

most iterations to converge and produce results. For

example after a certain run, serial deflation requires 2000

iterations to produce results when for the same run Serial-

pipelined defl.ation takes 1000 and Parallel-pipeline

requires 500 to produce results. In this case, we say that

Parallel-pipeline is first for this particular run. Serial-

pipelined deflation second, and Serial Deflation third.

The column number indicates which algorithm was used.

The first column is for serial deflation (SO), the second

for serial-pipelined deflation (SPD) and the third for the

66

Parallel-pipeline: algorithm;^ :(PP),.: Matrix .R1 below

the resialts qn matrix instead of tabular fbrmat

/. O:; 52: 19B

Ri :iB ;185^ ,49

25:4-13 .3

As .we can see , from . above:. Parallel-pipeline: ;(PP) came fitst:::

(:too.k;,the :leas,t iterations::to qonverge) 198 out of 250

times.whereas- serial deflation .never ;came,.first, ,.3s . .

: If each number:in Rl; is^^^ ^ ^ t to: a. percehtage:

then,we obtain a doubly .stbchastic matrix:[5]

0 20.8 79.2

R2 6.4 74 19.6 and. table 3 below;

93.6 5.2 1.2

Table 3. Results B

■SD SPD PP

1st 0 20.8 79.2

2nd 6.4 74 19.6

3rd 93.6 5.2 1.2

Serial Deflation gets its highest percentage on the third

place, ■ i.e.: it came last (took the most iterations to

converge) 93.6 % of the times. Serial-pipelined deflation

reGeiveS its ^highest percentage. (7 4%.) in .second place,; and

67

Parallel-pipeline gets its highest percentage (79.2%) in

first place. We also note that for the 250 matrices used

in this experiment, serial deflation never came first.

68

CHAPTER FIVE Conclusions

dx , ,
The original — = Ax - f{x)x was extended to a new one

at

Ax = tj(x'^Ax)(Ax -(x''Ax)x) that finds eigenpairs associated

with both positive and negative eigenvalues.

As mentioned in chapter three, the learning rate was

originally set to 0.01 and division on predefined intervals

gradually decreased it to a number not lower than 0.001.

The exit condition was that we iterate the rule until the

square of the length of the extracted eigenvector x

converges to one (||xf « 1). The computer simulation showed

that the new rule computed the desired eigenpairs.

The original rule was extended to find all eigenpairs.

The first algorithm explored was a linear, serial deflation

algorithm. Using the same learning rate and exit condition

as above, the simulations showed that the algorithm

successfully extracted all. The algorithm was equally

successful in first.computing the smallest negative

eigenvalue and associated eigenvector or in computing first

the largest positive eigenvalue and associated eigenvector.

The first attempt to introduce parallelism via

extension of serial deflation was successful. A new

69

serial-pipelihed deflation algorithm was introduced to

extract all eigenpairs.; With serial deflation, in order to

extract an eigenpair we needed the previous one. Serial-

pipelined deflation deflates the matrix and calculates

partial results ■after each iteration of the rules. The

simulation results showed an improvement over serial

deflation. With serial-pipelined deflation the rules

converged much faster, due to the pipelined nature of the

algorithm (Figure 3 shows the.. 'hardware implementation) .

Even though this algorithm converged faster, it was . . .

still ■taking more time to extract, the smaller eigenvalues

and associated eigenvectors,, than the time needed to

extract the eigehpairs associated with the larger

eigenvalues.. ■ V-'. ■ .■! ; ..

A new Parallel,-Pipelined .rule was derived' using

gradient descent and the Lagrance..multipiiers. method. , : ,That

was the final attempt to achreye a higher level of

paralleTism, and as the results show this method was the

best .of the.. three presehte'^ in.this thesiis. Figure 4 shows,

a simplified figure of the Parallel-Pipelined method.

As we conclude from .all.results and especiaily.fpom

table 3 .of the .previous section,. :Parallel-pipel.ine : rule

performs the best .. The feason;;for tha:y . :i^^^^

structure and the way each term is updated. Just as

pipelining is the key. technique used to make faster CPUs

[15], pipelining the iterating rules of the Parallel-

pipeline algorithm speeded up the computation considerably..

In this case, partial results for a rule extracting a

specific eigenpair are computed by using partial results of

all previous eigenpairs. Another advantage of the

Parallel-Pipelined method is that the eigenvectors

converged almost at the same time. In other words, during

each iteration a correction to the eigenvectors is made

until all converge to their true values. In this case, we

did not witness what happened with the serial-deflation

algorithm, i.e. the last eigenvector requiring a larger

number of iterations,to converge witch slowed down the

whole process.

71

CHAPTER SIX Future work

The derivation in Section,2.i - sta,te,s that matrix,A

must, bo symmetric .for the proposed learhing rule (equation ,

7:) . to . work; .Some early experiments; showVcaseS:-where ; the.':

rule worked even when.nd:: re were imposed to A.,

For Table 5 in -iEppehdix- A;,: ten rando.m 4 x 4 matrices were, ,■

used for A,, and xq was ahso .random. ' :Xn, other words, there,

were no restrictions to the value of kq. If Kq was negative

but A did not haire :any negative eigenvalues then - the .rule . ,

diverged. Also, if A.fninneg Xmaxpos were complex, the rule also

diverged.. To, avoid infinite, lobps, a limit to the:,number of

iterations was, imposed. If..after, that; numher of .iterations,

we still.dp not have convergence of; the square of .the nofm: .

of X to 1, within 0.000001, then the program initialized

the variables again to values that produce ;a Ko with an

opposite to the initial sign. After initializing, iteration

of the rule started again. When convergence was not

achieved, the extreme eigenvalues of A were complex. Table

5 in Appendix 1 contains some runs that computed an extreme

eigenvalue of the given A successfully. Again, the number

of iterations needed for convergence varied in each case.

The problem here as mentioned above is the unpredictability

72

http:still.dp

of the existence;of complex eigenvalues for matrix A

because no resirictions are imposed when initializing A.

The actual eigenpairs in this case are computed using the

Maple mathematical package.

Since there,exist cases where the basic rule worked

even if the matrix was not symmetric, maybe there exists'

ahother. class of matrices that we ,can appiy the ■

algorithms presented here to compute eigenpairs.

Researchers in future studies,^shbu.ldvibpk in

Parallel'-pipeline. can. be .expanded,to wprk:with^ d^^

kinds of matrices,, and in,the cpmplex ddmain.' ■

Also, researchers in the .future sh6-u.id looklhow .t

can overcome the initialization problem. When this is

solved, matrices w.ith. hegative eigenvalues can be. used .a- .

^input for Serial-pipelined deflatipn ;ahd IParalieiTpipelin

73

http:sh6-u.id

APPENDIX A The First experiments

Table 4. Explanation of symbols for table 5

A: 	 The matrix of which we try to compute particular

eigenpairs using equation (7)

xq: The random initial value for vector x

Kos: The initial sign of Kq

The eigenvalue of A that was computed by the

iteration of equation (7)

The 	corresponding to k actual eigenvalue of A

X,: 	 computed with the build-in functions of the matrix

library or with the Maple mathematical software

package

x: 	 The computed by our dynamic system eigenvector of

A corresponding to eigenvalue k

The corresponding to x actual eigenvector of A

Xa: computed with the build-in functions of the matrix

library or with the Maple mathematical software

package

i: The number of time the rule was iterated In order

to converge. .

74

Table 5. Early results

A *0 ^os: tc X '' * i - •

"-8 -8 2 4" "-.037" "-.912.164" "-.918775"

1 -4 -7 2 .026
+ 9.92293 9.92293

-.009030 -.009095'
■ • 218.9 ■ . •

1 -5 -9 9 .01 ■ -.2124.47. -.213986

2 3 6 1 " -.035 -.■350344 -.352883.

~-3 6 -8 3 7.2" "-.014" "-.836281" ~ .'818576."

8.

9

2 -3.6

-9.8

7.4

5.2

9.8

7 . 6

-.023

-.042
-8.24791 -8.24790

..028951"

' ..33 6.815'

. -..02'8339

-.329684,
11288 ' .

9. 6 .2 1.2 9.-4 -.04-2 ..4"31685 -.'422545

~ 7 -3 -7 11 "-.027" "-.428017" " .-449168 "

-3

4

' 8 -1.4

3.2 4.11

7.9

.711

-.025

.006
-

-14.8039 -14.8038 .
-.336892.

.116297 :

.353539

.-.122043
3692.

11 7.9 .711 -6.03 .01 ' .830.53;': -.871571 .

■ 9.8 -.8 -9.2 9.8 " "". 047"" " .910939 ^-.905620"

-1 .

-9.2

^9.6

-2.4

-6.6

-7.6

■

■

-4.4

-2.8

.03

.045
+ 13.4 59 13.;4 58

.081901

-.403091

-.814236

.4 00.7 37
712

.6 -8.8 1 -4.8 .013 .031.615. .031430

-4 -7.8 1 ' -•3.6" "-.023" "•.274 427 " "-.265896"

6.8

-4.

8.2 7.6,

1.8 -7.2

;

-

2.2

■0.4'
.042

-.046
-6.74578 -6.7.4578, ,

.'303267

-.659299

-.29'383 9"

. 6.3.8803
3'2 89.

7.6 -4.4 1 •6.6 .013 -.63 0-9 6 7 . 611293

r ̂ 5.6 6.6 -1.6"' "-.033" " .437 648 " "-.433472"

-3'

-3

-1.6

-5.6

2.8 ■

-9.4

9.8

.4

■ .045

,-.027
-8.6099 , ■-8.6098'

-.093078

.-.786702

.092190

.779196
4 3942, ' ■

-8 -8.6 ■ -.4 -3 -.019 .425324. V -.421266 '
"5.6 .8 -4.4 -■8.2" ~ -.02 " "-.-8.970.7.;9" V.892221"

-.4

3.8

-8

5.8

9.6

-9.6

'4.6

-9

-.001

^.'■001
' +' 4.21029 4.21028'

- -;249.703

-.5 6 405 9

-.248351

-,.362 08'7
38904 ■ .

-2. 8 3.2 4.6 ;2.2 -.006 .018952 ' ..018850'

■-4.2 -4.6 2 -6.6" "-.016" ^..536421 ^--.533612"

-9.2

-4.4

-9.2 3.6

2.4 -8.6

5.2

.4

.045-:

-.02 .
-

-13.5984 -13.5983.'
. ..813112

• .•'064 4 4 42:

-.808853

-.064106
18 97 ■

-4 -1.6 4.4 1 .006 .216676. -.215540

-2.4 4.4 . .8 . ■-6.6 r-.oi^' " .330574 ■" "-.329729"

-2.6

-.8

2.6 -9.4

-8 5.2 ■

-.6 .

-7.8

_.011

. -.01
,,10.•4693 10.4 693 ■

: .652.56' .

-.619567

-.650.8 92.

..617 983
15,158' -

_ 2.4 -2.2 8 -9.2, ■ .012 ..-.284645 .',285917
1 -7 6.01 11 "-.027" ^-,,962885^ "-.981164"

2. 1

1

3

8 .03

1.4 '9.1

-:

4,

1.4

.II'

-.032

-.021
-6.65163 -6.65142

-.186521

■ ,.157 811

-.190061

.160806 ■
4346

_i.;3 5.. 3 "5 6 _ .036 _ .1147'.il ■_ _ .116888 _

7 5

APPENDIX B Convergence data for 250 matrices

The first iteration CQluitin for each algorithm shows,

the number of iterations serial deflation took to converge,

the second the number vserial-pipelined deflation reguire.d,

and the third the, number that parallel-pipelined took; The

rank column demonstrates the same as above, but according

to the number of iterations a number is assigned. So, for

the method that takes the most iterations a "3" is

assigned, the one that takes the least is assigned a "1",

and the middle one is assigned a "2".

Table 6. Convergence data

sorted by

parallei-pipeline, ;serial-pipelined deflation, serial deflation

iterations rank iterations rank iterations rank

27178 2300 866 .3 2 1 16155. 1310 1763 3 12 3416 ,2511 1840 3 2 1

30869 3048 929 3 2 1- 29248 1320'1363 3 12 3815 2846 1982 ■3 2 1

15646 3654 944 3 2 1 8097 1428 1716 3 12 4059 2552, 4213 2 1.3

13834 1564 951 3 2 1 18132 1429 7912. - 3 12 4068 1996 1619 3 2 1.

5098 2303 986 3 2 1 857 9 ' 1,47 0 ,1884 3 12 4068 19.96 1619 3 2 1.

8632 17718. 994 ' 2 3 1 17895 1521 1577 3 12 4550-3781 1259 3 2 1

23680 2637 1017 3 2 1 ' 21191 1533 1495' 3 2 1 4821 3960 1028 3 2 1

37394 2202 1027 , 3 2 1 . 11971 ,1543 2086 ' 3 12 4866 4394 3716 3 2 1

4821 3960 1028 3 2 1 13834 1564 951 3 2 1 5098 2303 986 3 2 1

10838 6889 1060 3 2 1 23340 1567 1601 . 3 12 5362 1830 1752 3 2 1

7333 4351 1073 3 2 1 17856 1598 1555 3 2 1 5516 2265 1421 3 2 1

11335 10010 1084 3 2.1 13045 1655 1476 3 2 1 ' 5875 3862 2138 3 2 1

15986 1736- 1127 3 2 1 9297 1655 5481 3 12 5963 2501 2083 3 2 1

8528 2338 1134 3 2 1 14422 1702 1699 3 2 1 5990 3163 1793 3 2 1

8352 2412 1145 3 2 1 15986 1736 1127 3 2 1 6165 5169 5377 3 12

8352 2413 1145 3 2 1 37450 1767 1942 3 1. 2 6334 5294 4808 3 2 1

17564 9858 1146 3 2 1 16442 1772 1573 . 3 2 1 . 6417 1993 1341 3 2 1

16265 1857 1196 3 2 1 . 16754 1811 2891 3 .1 2 6503 4141 4763 3 12

6572 1947 1240 3 2 1' 30547 1823 1607 3 2 1 6547 2681 3199 3 12'

4550 3781,1259 3 2 1 5362 1830 1752 3 2 1 6572 1947 1240 3. 2 1
22415 3001 1282 3 2 1 9664 1845 1544 3 2 1. 6688 2871 2458 , 3 2 1

6417 1993 1341 3 2 1 16265 1857 1196. 3 2 1 6767 5447 1745 3 2 1

52397 3276 1346 3 2 1 8366 1894 1512 ' 3 2 1 6949 5694 2664 3 2 1 ,

27412 3828 1346 3 2 1 11978 .1.933- 1380 3 2 1 7209 3016 2533 3 2 1

2454 3117 3 12

7538 2775 1358 3 2 1 6572 1947 1240 ,3 2 1 7278 3252 1699 3 2 1

29248 1320 1363 3 12 11316 1950 2812 3 12 72,96 6035 1493 3 2 1

11978 1933 1380 3 2 1 20228 1991 11678 . 3 1 2 7333 4351 1073 3 2 1 .

17598 3153 1382 3 2 1 6417 1993 1341 3 1 .7505 3250 1461 3 2 1

10782 3789 1387 3 2 1 4068 1996 1619 3 2 1 7538 2775 1358

33949 8587 1357 3 2 1 33850 1947 3 12 7210 3514

3 2 1

33898 9525 1393 3 2 1 ■ 4068 1996 1619 3 2 1 7561 2724 2216 3 2 1

7 6

29426 7188 1413 3 2 1 8725 2014 1793 3 2 1 7575 10992 1715	 2 3 1

5516 2265 1421 3 2 1 20782 2023 6688 3 12 7925 4674 3885	 3 2 1

23496 21894 1430 3 2 1- 16853 2092 1906 3 2 1 7954 5076 2381	 3 2 1

45311 7497 1439 3 2 1 31539 2131 2701 3 12 8097 1428 1716	 3 12

7505 3250 1461 3 2 1 19928 2176 2084 3 2 1 , 8216 2842 9654	 2 13

13045 1655 1476 3 2 1 37394 2202 1027 3 2 1 8352 2412 1145	 3 2 1

19006 23320 1479 2 3 1 16440 2223 2461 ■ 3 1 2- 8352 2413 1145	 3 2 1

10249 4508 1484 ' 3 2 1 22501 2245 2265 3 12 8366 .1894 1512	 3 2 1

10287 14184 1485 2 3 1 5516 2265 1421 3 21 8409 5870 2052 3 2 1 '

7296 6035 1493 3 2 1 27178 2300 866 3 2 1 8511 3266 3187 3 2 1

21191 1533 1495 3 2 1 5098 2303 986 3 2 1 ■ . 8528 2338 1134 3 2 1.

32672 5957 1502 ' 3 2 1 18813 2307 2072 3 21 8579 1470,1884 3 12

8366 1894 1512 3 2 1 8528 2338 1134 3 2 1 8580 12158 3196 2 3 1

9664 1845 1544 ■ 3 2 1 20783 2364 2687 3 ■ 1 '2 863217718 994	 2 3 1

304963260 1549 3 2 1 20783 2368 2687 3 12 8646 4900 2000	 3 2 1

17856 1598 1555 . 321 28048 2394 2063 3 2 1 . 8725 2014 1793	 3 2 1

16442 1772 15.73 3 2 1 8352 2412 1145 . 321 8764 5344 2476 .
3 2 1

17895 1521 1577 3 12 8352 2413 1145 3 2 1 8798 13818 1748 2 .3 1

23340 1567 1601 3 12 29979 2424 2047 3 2 1 8820 15727 2813 . 231

30547 1823 1607 3 2 1 14461 2445 3602 3 12 9297 .1655 5481
 3 12.

4068 1996 1619 3 2 1 11192 2464 2785 • 3 12 . 9656 24015 3366. 2 3 1

4068 1996'1619. 3,2 1 3 2 1 ■
3 2 1
11798 2479 1763	 9664 1845 1544

25695 2907 1643 3 2 1 14809 2483 1850 3 2 1 9699 4607 3480	 3 2 1

20124 6824 ,1693 3 2 1 31710 2499 2273 3 2 1 9749 3513 18967	 2 13

7278 3252 1699 3 2 1 5963 2501 2083 • 3 2 1 9749 7802 3522	 3 2 1

14422 1702 1699 ■ 3 2 1 ,3416 2511 1840 3 2 1, 9830 5957 2204 .3 2 1

4059 2552 4213	 9858 27219 3588 2 3 1

7575 10992 1715 2 3 1 ■ 9904 3355 4353	 3 1'2
19435 8070 1700 3 2 1	 2 13

•
12634 2617 2813 3 12

8097 1428 1716 3 12 ' 14199 2620 3500' 3 12 - 9982 5776 4622	 3 2 1

37315 4173 1731 3 2 1	 3 2 1
23680 2637 1017 10158 4608 3300 3 2 1 '

6767 5447 1745 ' 3 2 1 6547 2681 3199 ,3 12 10175 5227 2027 3 2 1

8798 13818 1748 2 3 1 7561 2724 2216 ' 3 2 1 ' , ,10249 4508 1484
 3 2 1

5362 1830 1752 3 2 1 31773 2735 1982 3 2 1 10287 14184 1485 , 2 3 1

37738 3485 1757 3 2 1 15403 2745 2073 3 2 1 10499 7128 5226 3 2 1

20296 3759 1758 3 2 1 7538 2775 1358 3 2, 1 10640 3107 2147
 3 2 1

16155 1310 1763 3 12 15995 2786 2149 3 2 1 10740 4031 6215 3 1' 2.

11798.2479 1763 3 2 1 8216 2842 9654 2 13 10782 3789 1387
 3 2 1

8725 2014 1793 3 2 1 14677 2842 3787 • 3 12 10838 6889 1060 3 2 1

5990 3163 1793 3 2 1 3815 2846 1982 ,'3 2 1 11136 4568 2924 3 2 1

27565 3931 1839 3 2 1 17568 2851 1910 ■ 321 . 11192 2464 2785 3 1, 2

3416 2511 1840 3 2 1 14027 2854 2613 3 2 1 11247 3913 3590	 3 2 1

12061 8706 1849 3 2 1 6688 2871 2458 . 321 11316 1950 2812
 3 12

14809 2483 1850 3 2 1 29797 2874 2285 3 2 1 11335 10010 1084 3 2 1

8579 1470 1884 3 12 25695- 2907 1643 ' ■ 321 , 11798 2479 1763 3 2 1

14038 4186 1890 3 2 1 17156 2913 3427 3 12 11971 1543 20.86	 3 12

16853 2092 1906 3 2 1 1-2613 2999 3532 3 12 11978 1933 1380 3 2 1

,17568 2851 1910 3 2 1 22415 3001 1282
 3 2 1 11984 5122 2536 3 2 1

12032 5832 2239 3 2 1

37450 1767 ■ 1942 3 12 7209 3016 2533 3 2 1 12061 8706 1849	 3 2 1

13429 3635 1972 3 2 1 30869 3048 929

12370 4091 1915 3 2 1 16001 3009 2592 3 2 1

3 2 1 12205 15667, 8628 2 3 1

22112 6827 1976 . 3 2 1 24813 3061 2050 3 2 1 12370 4091 1915
 3 2 1

22634 5949 1976 3 2 1 41980 3080 2244 .3 2 1 12567 3422 2967 , ■ 3 2 1^

3815 2846 1982 3 2 1 10640 3107 2147 '321 12613 2999 3532 3 12

31773 2735 1982 . 321 7210 3117 3514 ■ 3 1 ,2 12634 2617 2813 3 12

8646 4900 2000 3 2 1 17598 3153 1382 ', 3 2 1 12921 10136 3326	 3 2 1 ,

20974 9971 2018 3 2 1 ■ 5990 3163 1793 3 2 1 13045 1655 1476 3 2 1

10175 5227 2027 3 2 1 7505 3250 1461 ■ '3 2 1 13140 3365 2206
 3 2 1

3 2 1 7278 3252 1699 3 2 .1 13429 3635 1972 3 2 1
29979 2424.2047

3 2 1 13761 7250 3299 . 321 ■

8409 5870 2052 3 2 1 8511 3266 3187 3 2 1 13834 1564 951

24813 3061 2050 3 2 1 30496 3260 1549

3 2 l'

3 2 1 52397 3276 1346 3 2 1 • 13922 10663 2395 ■ 3 2 128048 2394 2063

3 1. 2' 14027 2854 2673 3 2 .1

15403 2745 2073 3 2 1' 37065 3357 3491 3 12 14038 4186 1890 ■ 3 2 1

30080 7964 2079 3 2 1 13140 3365 2206' 3 2.1 . 14199 2620 3500.

18813 2307 2072 3 2 1 9904 3355 4353

3 1, 2

5963 2501' 2083 3 2 1 29594 3376 2646 3 2 1 14422 1702 1699	 3 2 1

3 12
3 2 1 40070 3399 4140 3 12 14461 2445 3602

11971 1543 2086 3 12 12567 3422.2967 3 2 1 14677 2842 3787 3 12

25406 5001 2099 3 2 1 37738 3485 1757 3 2 1 14809 2483 1850

19928 2176 2084

3 2 1

3 12 14905 5635 2876 3 2 1 •

5875 3862 2138 3 2 1 9749 3513 18967 2 13 14991 6201 3384

15908 8647 2111 3 2 1 35002 3492 5517

•3 2 1

3 2 1 32551 3554 2502 3 2 1 15403 2745 2073 3 2 1

15995 2786 2149 3 2 1 30748 3569 22466 3 12 15631 6206 3396 ■ 3 2 1,

25349 5647 2161 3 2 1 18247 3595 3039 32 1' 15646 3654 944

10640 3107 2147

3 2 1

3 2 1 28281 3613 5321 3 12 . 15908 8647 2111 3 2 1 ,

13140 3365 2206 3 2 1 13429 3635 1972 3 2 1 15986 1736 1127	 3 2 1

7561 2724 2216 3 2 1	 3 2 1.

9830 5957 2204

17825 3647 3390 15995 2786 2149 3 2 1

56339 5086 2233 3 2 1 15646 3654 944 3 2 1 16001 3009 2592 3 2 1

77

12032 5832; 2239;3 2 1 17825"3660 3390,.' 3 2 1 16049 5999,.2332 ■ .. .3-2 T, ..

41980 30.80 2244 ' . 3 '2- 1 .„ 20894 ^lO'S, 2537-; 3 2 1 ■1-6155 1310' 17 63, . .;::d;^' : ■ ;3■■i;2.
22501 2245 22^5- 3 l' 2 • .. .■2.0'2,96 .3759 1758 3 2 1 ■ 16265 .1857- 1196,;. V - - '- ■ ■ ■3- 'B I-;.
31710 2499 2273 .3 2 li. - . . ■4:550' .,3;78l. Vl259' ■'.■ 3 2 1 - .16440 2223. ■2461 ' . :.3 - ■i ' 2 ' 7^
29797 2874 2285v ■ 3. '2-'l; 10782.:37.8:9 ■13;87... . 3 2 1 16442 177.2. ,1573 - . B' 2 ,:i:'^/: ■
35602 4498 :23p6, . ■; • 3 2 11 ■ ', 17181' 3'7 91..■ '2,676,: ■ 3 2 1 16612 7714 ■'■239.1 : ■^.3, ^2.-1,;..: .."

. 18128 4625 2306 . .3 2. .1 .-. '^ 27 412 '3828: 134'6'., - ' 3 2 1 16655 27.'8'72;. -3'8'50' .■ ■■4■ ■ - 2 Bdl-' ' -:r 1 ,
17656 5508 2320 ■ 3 2:;i- ■ ' 23731 3838,.: 24 99: . -3 ■.2:1 :. 16754 18ir -28-91 . ^ .' ' 3' .i. ' .2
24243 3928 ,Z330 ■ ■3 2ll' ■ ■:■ . '.,5875- .38-62i- 2138.1.' ■ ■-.3 2 1 ■ 16808 .3937. -34,77 ' ' 3 did
16049 5999 2332 . . 3: 2';i - . 1124'7,- 3913. 3590 3 2 1 16808- 3921 34-77. ', ■ 3-2-1.

.	 33224 4221.2358 . . 3'2 1- . ^ , 36652 '3919 .7243 ' ■3.1-2. 1 16853 .2092: 1,906 ' .3 2 l', -'- , ,
7954 5076, 2381 3 2 1 .■ 16808 '3821,'3,4'7 7 ■ 3 :2 1 ■ 16947 19154,,2817 ■.^, '■ ' '2,3 I':- .- ;■ ■ ;
16612 7714 2391 ■ 3 ■ 2 ■ 1 ■ ■ ■24243 3928''- ,2330 3 2 1 ..17156 2 91,3,:,.34 27 , • ' ":3 1 2 ;

.	 13922 .10663 ,2395 3 2 1 ■ 27565,3931 1839 3 2 1 17181 3791' 2 67,6" . ■.,;3.-.2- 1'' -I' ' ;
33850 1947.2454 ■ ■ 312 1680.8. .'3.'937. , 347 7 3 2 1 17416 6316;294 8 ;',,■• 3 2 1.

6688 2871 2458 ' 3 2 1 ■ 4 821 3960: 1028- 3 2 1 ■17564 9858 1146 ' . , :■ 3-2 ,1■ ;
16440 2223 2461 3 12 . /256.47 '3988 -,2550 .. 3 2 1, ■175.68 . 285-1 i.9l'0. \ .' : '3. 2., 'i

■ 87 64 534.4, 24 7 6 3 2 1 - ■ 10740 4031 .6215 ■ •' • ■ 3 .'1" 2 ■ .. 17598 3153 1382 .: . 3- 2;.-l :, ■
■ 23731 3838 .24 99 .3 2 1 ' . . . 12370 ,-40'91•.-1915 3 2 1 17656-5508 2320 . ; ■ , 3 .2 1 ■

. 32551. 355.4 2502 ■ 3 2,1 ■ ■ ■ 6503' '4-141 4763 ■ 3 12 .17825 3647 3390■ ■ 3 2 ,1; . ■

.. . 7209 3016 :2533, ; ; . 3 2 1 ■ 37315 -■4173.. 1731 3 2 1 17 825 36.60.,..,3390 - - '3 2, 1"
11984 5122■2536 . ■'■3 2 -1 ■■ ■,14038 '4'fee'18.90 . - 3 2 1 17856 1598 '■:.l-555. , , .' ■ : ' 3 .2. 1 , :
20894 3703 2'537 ■ 3. ,2 1 . , ■26298'' 4216.. 5624 3 12 17895 152;i 1577': .- ■3, 'i":2
25647 3988 2550 . "■ 3, -2' -l ' ■ ' , 3322.4, 4'2:21 ,2358 3 2 1 18128 4625.2306 • 3:;2 ; i,' - -;
16001 3009 2592 ' 3'. 2 1 7333-,4'35.l''"l073 3 2,1 18132 142:9-7912. . .■3--■l.■■■2■ :.■ •' ■
29594 3376 2646 ■ 3,-. 2 .'.-l ■ • 4-8 6,6 4394 . 3716 3 2 1 • 181.4 4. 11543' 27 98 .. . ■■- ■'3' 2 1-7d
6949 5694 ,2664 ■ 3 2 1 35602- 4,.498 ,2306. 3 2 1 18216 135,28 5779 -,; ■■ 3 '.z i-- ■■- . ■

,140,27 2854 ,267.3 , , '. 3 .2 1. .10.24,9 .4308, .1484,. ■ . • 3 2. 1. ■ 18247 3595 3039 . , : , 3-.2'.,i; ;:. - ■ •
17181 -37 91 '267 6 : 3 -2 1-. ■ ■ 1,1136 456.8 .. 2 924 3 2 1 ..18.687 .1.0750 4872. •. ■ •■3 "2'. 'id"- ;
20783 ,2368 2687 ' . ■•■ '3. 1. 2 • 96'99' .4 607' 3.4,80 ■ ■ •3 2-1- ■ 18806 .16617 ' 2871' • ' '■.'3;;2,'i'; ',
20783 2364. 2687 .1 ,'■■■,■, ■.3 .1' ,2 ■ ■ ■ 10158 ,4'6„08„ 33,00.-- ■ ■ , ; 3 2.1 ■- .; ■ ■ 188-1,3 2.307 2072 3. '2 't: ;■ "
20024 4749 2690' , .■3 ' 2. 1.' ■ ...18128 .4 625 2306 ■ •3 2' 1 ' .•190,06-2.3.320 1479 ,. . 2 3 1' . '
31539 2131 2701 ' ■'3'1 2':. - '' "7925 -4674 3885,V . ' 3 -2: 1 ■ ... 1,9055. '9690, 4171 : , - .3 2 1, ^ ,'
43836 8163 2760 V 3 21■ 2002,4- .4149, 269.0 ■ ■ . ^3 ■2; ;.:r.:.. :.; . ;' ',19212,.;58i;9 -5'251. ;■ ;', • 3 21

31522. 11141 2770. - ■■■ - 3.2:1 38546- 4800 ;2'86l" . ■ ■ - .3 'p: 1 ,: ' . ■ 1.929.8 :114"98 '1285'8. ' ■d-.3 .id-z;;;:,,
■25309 5860 ■■2778 ■.1:3 -2 1' ■ 8 64 6'4900 . '2000- ' . 1 :.:v3 :2''"i:,: ;^' - ' .i9435,B670.vl700;, . ;'. '' 3 ' 2

.11192 2464 2785. . . ' . ^..l 2 . . -25406 . ^O'Ol 2099 ■. " - ■ ■.-:3;';d, '.i-";:..- ',' 1992d^"217;d.208;4. -d.;.: ; ■ ' ■37 2-,1'ddd' :
18.1,44, 11543 2798 ' ■■ ,.■,■3 2. 1 . , 7■9.54 507 6 2381 3 ̂ 2' id;- "' ;;'26.024 ,,4.749,.,2690.. - '■3:>2;i ■ ''...7

, ,11316 1950. 2812 . . ". 3, ,1- 2' ■ 5 6339 50.86 2233:3- ■i' .d," 2;,1^ ■'■ ';; ;20i24 75^'24;1693"^ ,.; •. 2 1

■ 	 12634 .2617;2813 ■ ' 3' 1 2 ■ 40063 :5102..305'T - ■ .-3 .'2-- "l, .: ■,•••■;, ■■2022.8 1991 11678 . 3 1. 2.-.

8820 15727 2813 ■2'- 3 ■ 1•. - , ■ •11984 >5'122 i;- ■ ■3 2'^3: :.; ,2029,'6 3'7'59:'17;58■ 3 2 1

16947' 19154 2817 . . 2''3 1' 3.3307. ,'515"2.v3,5,14 ' ■ ., ' ■"• :3- 2' !■ ■; ; .: ■'2.07.82 20.23 ■6688 . . ■ 3 12

38546 4800 2861 ' . 3 2'1 ■ ■ 6I6.5- ■■51'6'9' ■5337 .' 3^ 1...2: 20-78,3 ,236"4, 2687 , ■ ■31. 2 ■ ■ ■■

18806 16617 2871 ,3 2 1- 1Q175 5227 ■2P2'7' ' 321' . 20783 2368-. 2687 -■■ ■" 3-I.B:- - :..;-■ ■
14905 ,5635 2876 ; ■: 3 1 ; , 6334 , 5294■■4-808 3 2 1 ■ .20894 :3703 25,37 , . "■ '3.'.:2;i ■;.-: .7; .
16754 18il.' 2891 3 1^2 . ..■87 64 ' ,5344- 2,476 ■' ■'■ '■ 3'^ 2 i;:'- .20974 9971 20id '■ , -3, - 2 " 1
11136 4568',2 924 . • ■ 3 2' - l" ■ 3,3033'53'70 '3401-;- ■ ■ ■ . .211.91 ■1533 -1495 2 1 ■

17416- 6316 2948 ■ 3 i'l - ■ 6767 5447. .1.7,45 . ' 3 2 1^ 214-39. 8988 7058, . - - 3 - 2 1 ..

. 12567. 3422 2967 ■ 3 2. 1. . ■ ■ ■1763-6 .5508;:,2320 - . . 3 2 1 21538 22156 ,5,213 2 3 1 ■ '

^ 18247.3595 3039, ■ 3 2 ',1 : , , . 1490.5 -5635 287 6' ■ 3 2 1 21662 10004 ■.37-81 ■ , 3 - 2 1 ,

21998 13019 .3048 , ■ 3: 2, l' ■; ., ,: 2534.9 ,-"5 64'7.'. ,"2 -161- 3 2 1 21998 13019 3,048 3 2 1

; . 2 9955 757.9 ■3056;; , : . : ;3 ■ 2' 1■■ . ■ . ■ ■ 694'-9. :.5,6.94; 2 6-64: ■ 3 2 1 22112 6827 1976 3 2 1

35888 7 64 6 .3106' . - . ■■ 3'I-1 . ■ ■ ■ '.9,982' 57 7 6: 4 6-22 ' ' 3 2 1 22415 3001 12..8.2;.' 3 2 1

■	 23197 5.9,65 . 3141. ^ ■ 3 .21 .: '4'92.1-2-,:--:5'819 .5'28;iv,. ■ ■- 3 2 l.\: 22501 2245 2265. ■3 12.- ;

8511 32 66 3187. ■ ■■ ■■ 3 - -2 M , ■" ■ ■ - 12032 5832' 223'9,;-, 3 2 1 ■' -2.2634 ■..-594 9 197 6 . 3 -2 1'

8580 12158- 319-6- :' 2 '3 1 ■ . ;-25309,. 586d,;27 7 8'; '3 2 1 23035 6181 363,4 ; . 3 2 1

6547 2681 3199 ■ ■ ' ■3 1. '2. . ' . 8409. . 5870 .265'2'.-.: ' ; ■ 3 2 1 23197 5965 3141 . . '32 "l..- ■. ■ ■

35421 6,8.36 3249 3,2 1 . ■ . 22634 5949 197 6 ' ■ ■ ■.■3 2; 1 ■:■ ■ 23340. 1567. - .16.01 -- . , : • 3 ■ 1-2 ■. . .

137 61 7,250.32 99 • 321 ■ 32672 ■5957. 1502 • ' ■ 3 2 1 .234-9'6 2-1894 1430 . : ■ . 3 ■2 1 ,-

10158 4608 3300 . 3 -2 1 .. .983Q- ■5957- 2234 ■ 3 2 .. 1- . •. .•23&80 2 637..1017- . ; .': . ■' ■ 3'z-. i,.- - . ■■
12921 10136 ,3326 - .3 2 1 .- . .23197 ,59633141^ . . 321. 23731-: 3838 ^2.499' .;-7- .;, -■.3. -3■; ,■l■,' ■ ' • ■

.965-6 24015 3366 , . 2 3 1 • , 1604'9 ..■5.999- 2332■ 3 2 1 ■"24243. 3928 2330.,, ■ - " . - •' ,3' ,21 .
14991' 6201 338.4 ' 3 2 1 ■ . ., -7296 -.'-6d35:',.14d3 -. ' 3 2 1 24813 3061 2050 :-.,7 '■' '3 ■-2'i 7.; ■
17825 3660 3390 .3 ■:2-l,.-; :/-v;.4''l4:p4'^30.38d595''6;' , ■ 3 2 1 24895..-10594. ■7335,' ', ' • 3 z 1 • : , ■ - ,
17825 3,647 3390- ■...3 I'M.' ■: •' •::23.b'35^ '■6,1,81., ̂ 3.63'4^- 3 2 1 25309 5860 2778 ■ 3 • 2;'i 7.; ,

. 15631 6206.3396- ^. - ■•3 . ,2 1. ■ . ■..•■'-'14 99i: '-6'201; ■3384' - ,: 3 2 1 25349 5647 2161 : 372; 1., '
33033 53,70. ,3401 : ■3 2" 1. - .15631 6206" 3396 .' 3 2 1 25354 22519 4916

17156 2913 .3427, . 3- 1 2 . . "43 938 62.30'.43.9.4:1 3 2 1 25406 5001 2099 ' : • ■ '3,;..-2 id.^ ,
. 16808. 3921 3.477 ; 3 2 1 . . ■ ,,320.9'9 '62599994' ■ 3 12 ■ 25509-'20130^ 3718' -. 7;-.3 ' :2dl ■ ■ :: ■

■ 16808 3.937 . 3477 .3 2 ,1 : ••17416 6316' 294 8 3 2 1 ^ ;■ 25647 3988 -2550 - , ■ • .3 Z 'l ■

. 9699 4 607 3.480 , 3" 2 1 ' : ■29055;; :6437^ :26511- 312 ' 25695 2907 1643 ■ ■' ■-3'.-2 ,1' .
, 37.065' 3357' ,3491 ..,3 1; i: - 7 / '.328,i3' -672;9.V,-5944.- ■ : .\ 3 2;.-'l; - - - :262.98 4216- 5624 . ' 3 1. 2

, 1419,9 3500 ■ ■ , .3- 1,2 - ■20124- ..68,24. 1'693 ' . ;■ ■ ■• 3' ,2,'i ■ ■ ■ ■; ■ ..2.7134. T537 6681 ,■ . ; ■ ■'3- 2"-1"
7210 '3117. ■3514 • . ' • 3-l"2" . 22112 6827 197 8: ' . . ■>■3 '2,.; '1 ■ ' '■■ 2717'8 '-2300 -866' "3'271 - . '

'	 33307.5152 3514 ; 3 21. . ,- . 35421 .6836 .3249- . ■■ : '3- '^2':'l 27324 10874 3.997" 3. 2 '.I ' '■■ - ■ ■
974 9 ,7802 3522. '3 .2' 1 "■ ■1083d .6,889 106,0 • ; ;■ • ■ ' . ; ■ 3, 2.i 27412 3828 134d- '■ • ■ 3, 2 ': 1
12613 2999 3532 312 ■ 104-9.9 ' 7128 5226 ■ . .. ; ■ ; 3.2, 1 ■ 27565 3931 1839 ., .' "- 3 .2 'I,, :-7

'78

http:7,250.32
http:1567.-.16.01
http:694'-9.:.5,6.94
http:�'2.07.82
http:4'fee'18.90
http:91,3,:,.34

9858 27219 3588.. 2 3 1 29426'7188 .1413 . '. 3.-,2 1 ■ ' 28048.2394 2063 3 2 1

11247 3913 3590 3 2 1 34715 7191 5593'' . ■ 3'2 1... ■28195.9152 7067. ■ 3 2 I". „•
14461 2445 3602 3 12- .. 13761 7250 '3299 3 2 1 . ■ 28281.3,613.5321 . ■ 31 2.

2303,5 6181 3634 3 .2 1. . .45311.'7497 1439- . . ■3 '2 1 ■ , .2'9d55 6.437 2 6511 ■■■ ': 3 -l '2 ■ •
4866 4394 3716 ■3 2 .1' ^'27134;;7537: 6681- - ■ 3 2 1 7.29105-; 14916.,-9458, ' . • 3 2 ;.i;^ ,

.25-509 ;20130 37,18 - . 3, 21 . , ,2 9955 ■. 757 9. 30,5 6 . ■, .3 ''2,^1• '. .:,:2 924 8,: '13.20 ,1.363 . ■ . '3' 'l' .2 ' ' ■
58324 7734 3724 , , 3 2 1', ■ .. •.358.8.8. .: •7,64.6"3106 .."3..2''l' . ■: '2.9,'4 2:6 7188 .1413 . . 3 2' l"

'21662 10004 3.781 .. 3'2 1 ■ 1.661.2 ■771"4 2391 . "" ■ 3 2. 1 • • . 2 9545' 9553 ;il722. ., ' ' .3 1^ a: .. ' .■■ ■
14677 2842 3787 . 3 12.58324 .7734 . 3724. ' ■ "■ ■3 . ■' .29594 337.6.2646. '32-1 '
31756 9094 3834 , , 3 2 1 ■ ■ 97'4.9. 7802 ^ 3522 ■; , 3 '2.1'.. , , 29797 2874•2285' 3 2 1. ■• :. .

16655'27872 3850 - 2; 3 1 37570. 7942 9517 " ■ ' -, 3 1 2 " 29802 29519. '6426 .3 2:1. ' .

7925 4674 3885 3 2 1 '30080 7964 ,207 9 . ' • ,. , .3 2 1 ■ 29.955, 7579 30.56 , 3 2, 1- .

27324., 10874. 3997 3 2 1 ■ 194-35..807,0 1700' .■ • 3 •:2 1 ' . ,299.79 2424 2047 3' 2 1 . . . '

32648,12129 4031 3- 2 1 ■43836 8163 2760... ' ■ .3' '2 i'.'"- 30,080 7 964 2d7 9 3 2 1• , .

38199 1118.2 4100 3 2 1 ■ :' 3394 9 ■8587-il357 ' 3 .2..'1 . '30303 9136 4755 . ■3'2'1.

4007.0 .3399. 4140 3 1 .2 .15908'8.647; '2111 . 3 • •2 1^ ..304.96 '3260 . 154 9 . .32 1;.
19055 9690 4.1:71 ■ 3.21 48097. 8.65.5 ,9872: . ' ' .. 3 12 ' ,3,0547, 182.3 1667 . 3 2 ;i . •
4059.2552 4213 . 2 13 . •120'61.8706. '18'4 9.. :' ' .. 3 -2 l - .' . - ■ 30748 .•3569 . '224 66 3 1 2",
9904 335.5. 4353 . .3 1. 2 , • 5'50'0i.:8 966 17651 ■ 3 .1-. .-2, ' . '. .308.69. 3048 .92 9 ■'■ •3 2-. 1' ■ • .

•	 43938 6230 4394 . 3.2 1. •21439 89.88' 7.058 ■ . ' .3 2 1 . 31,522 11141. .2770 • ■ 3 2 1

9982 577 6 .4 622 , ■ ■ • . 3 .'2 ■ 1 31.756-, .9094 , 3834- '. ■ 3' .2„;i 3153:? ..213^1';2701 " .' .3 1... 2 . .
.. 30303 '9136 4755 . 3: "2 1" ' . ■,35951 '■9II8 ;.14240. ■ 3. 1-2. :, . ■ 317i0 •24 99 :22';7,.3, ■ , . . 3 .2 1 ■■- ' .

. 6503 4141 4763 ' 3 1 .2 . 30303- 9136'4755„ - • . 3.2"1■ . •31756 9"a9.4 .-3834 ■ ■. 3' 2' i,.-',
6334 ...5294 4808 ' 3 ,2 1 28195 ■9152 7067 . , .'3 ' 2-ll ; •■; :: 31.773 2735. 1982 • ■-.3 2 i. ^ ; . ' .
49920 1.3977' 4857 . . 3 .2 ,1 ■ ■ 35898 9525, 1393' • • ■ 3 2.1 ■ .•;3.2d99 6259 9994. ■ .•3 1- 2, : '■ .-■ ■ '

. ,18687 10750 4872 3 2 'i -: . 2,9545 ■9553 11722' ^••l 2 - 32551 .3554- 2502■ . 3 2 ,1
25354 22519 4916 - . 3 .2 1 ' " ,"19055 9690 4171 , . ■■ 3. .2' ' 1 3264'8 i.2129' 4031 3' 2 ■ 1'. . .

40063 .5102' 5057 . 3 -2 1 . 38 64 9 9t4.'8' 11091 V 3 l,-,'2. ■ 32672.59.57 1502. ■ '■■"3 2' 1. . . ,
21538' 22156 5213 , 2 '3. -.1' • , 17564 .9858. 1146 . . 3; 2 .-'i;; ■■ 32813 6729-5944 3-21..

10499 7128 .5226- . 3. 2 1 2097.4 .-997.1 2018 ■ ,3 '2 '1 ' .3303,3 5370,.3401 . ' 3 2' 1 ■ ■ . • .
19212 5819. 5281 ' 1 3. 2 1 ■ 21.652 10004,■'37.81 ■ ■ ■ 3 2. ■; 1 , • . ■ ,,3322-4. 4221 2358 3' -2' 1 '
28281 36,13 5321 3. "i- 2,. '.' . " 11335 1,0010. 1084' . . 3' ,2 '1" : ' ,33307 5152 3514 . . ;.3. 2 1 . ■

6165,5169.5.377 3 12 . .. 12921 • 1.0136. 3326 . .. 3 '.2. , 1 : ,3.34 91 16720 6974 ' •3:'2"i:. - . ■
9297 1655 5481 ■ -l - 1 2 • ' . 24.8'95 •:10594- 7335 ' ^ ■ - ^ 2 1,. •:, ■■ : . 33850:'. 1947 2454. - ■ ■ 3-1■- .'2 . .
35002 3492 5517 3 1 .2 ' • ,13922 10663 2395 .' 3' 2: 1, ' ■ : ,338'98 ' 9525 1393 3 2 1 "
34715 7191 5593. .■3;..2i. 18.;6'87 -10750- ■,4872-, 3.. 2 1. .' 33949 . 8587 1357, • . 3 2. 1-t' -'
26298 421-6 5624 3': 12 . . 27324 ,10874 3997 ■ • - ■3: 2-;-.i 34715' 7,191 5593 - '■3' :.2'-;l . : ..d'
18216 13528 5779. ■32 1 , ■.75.75 10992 17l'5' 2^,3.1 . - ' '35002 34 92 .55It' ■ . • . ..3' '1 2;"^
32813 6729 5944 '. 3 ,2 1 • . . ,31522 .111.41 2770 3 2 1 ;35421. '6836 3249 . . . • ■3"-2: 'l ^ '. ' l
414 64. 6038 5956 • • 32 .1 • ■ ;38199 11182. 4100 . ' . ■ . 3' 2 1.. , -35602 44 98. '2306 . . - .3 2' 1': :"t
10.740' 4 031 :6215' . 3 1 .2 . . ■ ■19.298-' .11498: .12858, : ■„ ■3' .1 2' ' : 3,5888 7 6,4 6': 3106 ■. . ■ • ' l-a. 2-..l': '
29802 29519 6426 . : ■ 3 2 1 : '• 1814 4 :115,43 27 98 • . ' ■■ ■ 21' . : 35951 9.118 1424 0 "3"1,2

- 27134. •7537: 668.1. .3,21 . ; ' 32 648 .12129., .4031 ■ ' ' ..3'.2.1 , .366.52 3919 ,7.243, • : -3"l'2t ' •
20782 2023 6688 ' 3 1 .2 . ■ 85'80 ■■•12158 3196 . .' ■ ' • ■ • '•2' '."'3' 1 . ' .37065 3357 34 91 , . 3,1 • ..2 ■

•334 91 167.20.6974 1 . . 3 2 1 21998 13019. 3048 ., .. ;. .. 3.. :-2:1 ' 37315 4173 1731 , . .. 3 ^'.l- ■■■ „'■ •'
21439 8.988., 7058 ' .-s. 2M ■l.8'2l'6. 13528 ' 577 9 . 3 2' 1 ; . ' 37394 .22,02. 1027 . , 3 -2 :1

■	 28195 9152 ■■7067 . ' 3' 2 •I. .. . ' 8798 M381.8 ■17,43 ;. . .2.:3,'1 '• .37 450 17 67 1942. .. . 3 • 1•' 2

36652.' 391:9 7243 . , . 3 1.2 ■ ' . 49.920 .13977,' .4,857 ■ . ..• 3 2 1 3-757 0 7942 ' 9517 ' . 3 l.'2t;;. ..
248 95 10594 7.335'. .. " I., ' : '...10'2.8.7 .1418,4 ■..1485. ■ •■ 2 3 1 ■ ■:,3''7 738'.'3485." 17:57 7 , , 3 2 l'"'; ':
18132 1429 7 912 ,. - 3'. 1'.2 .' ■ .2.9i05:'14.916 .:9458- 3 2 1 . ■38199. 11182' 41Q0' . - ■ ' ":3'"2"''l,, '
12205 . 15667- 8628 ' : ■ '2;3,; i- • ':■■ ' ■122.05 . 1.5667 8628 2 3 1 3854 6 4.800 ^28:61 , .3' 2 'l"'

., 29105 1.4.916 94.58. ' - 3:.;2 .1-'; ': • 88'20': 1572-7 2813 , , • • 2 3 '..i '' . . 3'8'64 9- 97 48 11091' . : , 3. 1v'2'- • ■ •:
. 3757,0 7 942 .9517'. ' 'i . .■■3 ':i 2 ^. . 18806..16617 2871 ..:3. 2 a.- , ■■■ 4.0063 51.02 .5057 . . . ■,.5",2- l. '' .:

.	 8216 2843. 9654, . ■2:1 ;3i, . ■ , .334 91 . ;i6720 •6.974 3 2 1 ■ 4007.0 .3399 .4140 . • 3.-. l"2'' -' '
48097 ,8655 9872' • . -.3 1 2-' 8632' 17718 '994 . 2 3 1 ■41464 . 6038' 5956 ' ■ i:3-'2.'i •

32099 6259 9994 , '' 3 1 2 . • ' ■ 16947 '.'191'5.4- 2817 2 3 1 •'.'4,1980 3080 2'244 , ,■" • . : . '•3' '2 '1- ■ •'•
38649 9748. .11091 . . 3 1 2 ■ . •2550?' 2013d .3718 ■ 3"2 1 ' ■ 43836 8163 '27.60 , t" ■ . ■.3 2-.l

.. 	 20228, 199i.il'678 .3 1; 2 : 234-96 -2'l894'.-14.30 ' .• 3 - 2 1■■ '. 43938 6230 ,43'.94'. : " ■ ' ■-3 : -2- .. 'i ■■ ■:.
29545 .9553. 11722 . . 3 1 2;' ■ . 21538' 2'215 6. 5213 ; . ,2 3 1 : ,453,11 ■7 4 97 1439- . ■. '. ' 3. 2. 1.
19,2 98 114 98 .12858 . ■ 3. 1 2 ' .■.-■ 35354 :.,22519- '4.915 "■ . '3:2 'i:' .". : , 48097 8 655 .98,72 ' ■.. "3 1 '.2''
35951' '9118 14240' ■ 3 ,1'2 ''19006' 3332d.■ 1.47 9 ■1. ' .. . ' . '■2. 3 !•' . - : '49920 13977'"4857 • ' ' 3 .2' ' 1. : l':.^

■	 . . . 55O03 8966 17651 . 3.152 .: 965'6 ,•24015'.; 3366. ■ 2 3 1 ■5239,7 , 3276 1346 ' .. . '3 2 1- . :
9749. '3513 .18967 ■ 2 - l.^ . . • 9858. 27:219 3588 • . ■ 2"3...1'- . . 550d3' 8.966 ,17651'. .' '.3' 1 '2'

' 30748:3569 22466 : ■3. ■1:2 16655 27872 3850 2 3 1 ■ 56339 .508 6"2233.:.. - . ■ ■• 3- 2 .'it;,"'::
3724 , , '". " ■•3"2, "1'.;': 2 9055 6437 •26.511 . • . 3 1' 2 ■ 29802 29519 6426 3 2 1 58324 7'7.34

http:2'l894'.-14.30
http:10004,�'37.81
http:32672.59.57
http:8,:'13.20

REFERENCES

[1] M. B. Allen III and E. L. Isaacson, "Numerical-Analysis

for Applied Science", Wiley-Interscience. Publications, .

1998.

[2] H. Anton, "Calculus with Analytic Geometry", 4*^"^

edition, Wiley and Sons, 1992.

[3] R. Barnett and M. R. Ziegler, "Linear Algebra, An ,

Introduction with Applications", Dellen-Macmillan,

San Francisco, 1987.

[4] E. K. Blum, "Numerical Analysis and Computation -Theory

and Practice", Addison-Wesley Publishing Company,

Massachusetts, 1972.

[5] R. Bronson, "Matrix Methods, An Introduction", Academic

Press, New York, 1969.

[6] R. L. Burden, et al, "Numerical Analysis", 2^^^ edition,

PWS publishers, Massachusetts/ 1981.

[7] F. Chatelin, "Eigenvalues of Matrices", Willey, New

York, 1993.

[8] S. Demko, "Primer for,Linear, Algebra", Harper Collins,

New York, 1989.

[9] G. M. Georgiou and J. Tsai, "Stochastic/neural

computation of the eigenvectors of a symmetric

positive definite matrix,"- In Proceedings of Joint

Conference on Information Sciences, vol. 2, pp.

219-222, 1997.

[10] J. Hertz, A. Krogh and R. Palmer, "Introduction to the

Theory of Neural Computation", Addison-Wesley, ,1991.

[11] D. Hilbert, "Grundzuge einer- allgemeinen Theorie, der

linearen Intergralgleicungen (Foundations of a General

Theory of Linear Integral Equations)", B. G. Teubner,

Berlin, I9I2.

80^

[12] S. Kung,. K. Diamantaras, and J. Taur, "Adaptive

Principal.Component Extraction .(APEX) and

Applications," IEEE transactions on signal processing,

vol. 42, pp. 1202, 1994.

[13] E. Oja, "A simplified neuron model as a principal

components analyzer". Journal of Mathematical Biology,

vol. 15, pp. 267-273, 1982.

[14] L. J. Paige, et al., "Elements of Linear Algebra, 2'''^

edition", Xerox College Publishing,, Massachusetts,,

1974.

[15] D. A. Patterson and J. L. Hennesy, "Computer

Architecture, A Quantitative Approach", Second

edition, Morgan Kaufmann,, San Francisco, 1996.

[16] E. Rich and K. Knight, Artificial , Intelligence, 2""^

edition, McGraw-Hill, New York, 1991.

[17] N. Samardzija and R. L. Waterland, "A neural network

for computing eigenvalues and eigenvectors".

Biological,.Cybernetics, vol. 68, pp. 155-164, 1992.

[18] T. D. Sanger, "Optimal Unsupervised Learning in a

Single-Layer Linear Feedforward Neural Network",

Neural Networks, Vol. 2, pp. 459-473, 1989.

[19] T. D. Sanger, "An Optimality Principle for

Unsupervised Learning", Advances in Neural Information

Processing Systems I, Denver, 1989.

[20] J. Tsai, "Neural Computation of the Eigenvectors of a

symmetric positive definite Matrix",, M.S. Thesis,

Department of Computer Science, CSUSB, May 1996

[21] Q. Zhang and Z. Bao, "Dynamical System for computing,

the eigenvectors associated with the largest

eigenvalue of a positive definite matrix", IEEE

Transactions on Neural Networks, vol. 6, pp. 790,-791,

1995.

81

	Neural computation of all eigenpairs of a matrix with real eigenvalues
	Recommended Citation

