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ABSTRACT

Parallel and distributed computing on networks of
workstations has been gaining more attention in recent
years. Clusters of workstations connected With high- speed
networks can ‘have computational speed approaching that of
supercomputers. The Spider PrOJect is an object- oriented
distributed.System which provides a testbed for researchers
in the Department of;Computer Science, CSUSB, to conduct}
research on distributed systems. The object—oriented
approach was used because of easy maintenance, modification,
and simplicity in adding more features and functionalities
to Spider in the future. |

’_ 'In this thesis we have derived the specification and
design of the Spider distributed system by studying weil
known distributed systemsﬁvSun’s‘Spring Project, OSF’s DCE,
Oak Ridge National Laboratory’s PVM, and University of
Wisconsin—Madison’s Condor Project. We identified the
functionalities of the Spider system which are: distributed
fileisystem, security, clock synchronization, scheduling
management and distributed computation. To illustrate the
validity of the specification and design of Spider, the
functionality of distributed computation was implemented and
the performance of this‘implementation was analyzed and

compared with Parallel Virtual Machine (PVM) and SGI

iii



Challenge superéomputer. A graphiés user interface was also
implemented using Java applets, so that Spider can be

accessed on the Internet.
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programFWill be exééutéd‘and whére:it'Wiii ﬁéke.plaéé, The,
:éystem will,téke’résﬁénSibility to‘héﬁdle jogs diétfibution»nﬁ
’ ahd migratioh;‘if’nédesséfy;'Nowadéysi mdstjdfganiZations
have‘high4speéd locai afeaingtwofks_(LAN)'interConnecting'
many'géneralépﬁrpose erkstétions, thé‘combined :
gomputational resourCes may exceéd the power'of‘é‘single
high—perf§fmancé cbmputér §r>SUpechmpﬁter. fhus, a
.‘distributédVéystém is abievtb Combiné the'coﬁputational o
pQWer‘of‘all: workstatibn$~int§ oné huge virtual coﬁquér
-nge:FiQU?e 1.i;);A‘usér‘can‘makevuse of all resoufceé in~”

the whole diStribdtéd systémQ1‘_

Virtual Machine -

User Workstation S - [ User Workstation

" User Workstation

- Figure 1.1 a distributed system as a virtual machine.



system ;Users should notjbe awar_

fserv1ce/data because 1t 1s 1nv1s1ble'”7ransparentv§

sThewuser'W1llvrece1ve~thg result dlsplayedfi,f“”’f

prnih’s/her workstatlon where the program lS 1aunched

ffIt 1s also poss1ble that thh;program isbexecuted 1n thefs'fo;.v,
'"‘jh;dden from the user. A.;Q ;ff”
'Tjd1Str1buted system must prov1de an, eff1c1ent way to fff&

'hdellver the serv1ces to users ff7ff[535

3365CohereHCe Slnce there 1s no global clock and global ;r.jgeff"

'i;fmemory 1n a. dlstrlbuted=system, a p‘ocess can obtaln af“ S

': oherent but par ial v1ewlof the system or a complete>;_r_;
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As mentioned earlier, there are many powerful
HworkstationS'in‘the Department’of Computerchience at CSUSB,
but all of them are traditional tlme sharing systems. The
Splder PrOJect will harness all of ‘these powerful resources
into a 31nglevv1rtual machine. Each physical machlne w1ll be
fully utlllzed under the Splder object oriented dlstrlbuted
system. With the Spider, every user can access all the

resources in the system locally or remotely.

1.4 Organization of Thesisv
This thesis is ordanized into fiye chapters. In Chapter'
1, the introduction and motiVation‘of the<Spider Project are
- mentioned. In Chapter 2, the sun’s Spring, OSF’ s DCE, Oak
"Ridge National Laboratory’s PVM, and'Condor System will be-a
dlscussed and explalned in a survey for specifying and |
de51gn1ng the Splder dlstrlbuted system In Chapter 3,,the
functlonalltles of the Splder System w1ll ‘be spec1f1ed and
designed in'detall. In~Chapter 4, the,lmplementatlon of one -
of the functlonalltles, Wthh 1s Dlstrlbuted Computatlon )
Serv1ce, for Splder w1ll be dlscussed The last chapter will -

discussyfuture workSvand dlrectlons.



| the design of the
'f;;Mééﬁiﬁ§7$?S£émi(?VM
virtual machine to s

. executed in a distributed ar

' available workst
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‘Retmanagement hardwar "I14]. All other serilces are deflned aS:[fff

hhobjects 1n the user level and‘theyfare replaceable and

e substltutable._Flgure 2 lﬁshows the major System COmponents;r Lo

Hvoﬁgthe‘Sprlng‘syStemﬁ“vwm

Spnng

N Appllcatlon ] IRRCUENE

} ’fcécmngfs:}: ; »;.1€H': ‘w; o

‘ Spri:nQ" .,: R R .‘ »
o filesystem o [l

‘machine. - -
name server

- (network proxy

“nucleus: o

_ kemnel

. Figure 2.1 Major system components of a Spr

:r;2 1 2 The Sprlng Nucleu

As; The mlcrokerielsof th Sprlng»system 1s called nuCleus

!threads,

and»doorsy[9"

21 COmPOnentsof a Nuc us FEy

) DomalnS"Domalns has the same form as processes 1n

Uan and'tasks 1n Mach [1] "hey prov1de an address' .




space to execute and keep allﬂrésdurcés informétionw
for each application; such as;thfeads and doors,ﬂfbr
‘applications,,: | | -
b) Threads: Each domaiﬁ can.havé”multiple,ﬁhreads
exeCuted‘within it. Ail threadé afe-écgessibie.via
cross-domain calls. |

c) Doors: Doors canvsuppért callS'betwéén dbmains.lit

is similaf‘to £he'PortS in Mach tl]? A door is a
particular entrproint ﬁo-a doméiﬁ} represeﬁted by
both a programucountef‘and uniqﬁe_identifier |
assigned by the domain.

Each domain has a tabléiof'déofs to which the domain‘
has acéésé.ﬁThe uSef:appliCation,usés dodr'ideﬂtifiers'td"‘
réferencé doors. Door identifiers are mapped thrOughvthe
domain’s door table‘intb aétﬁai doors. IﬁrSpﬁing, a[dbér may -
bé‘referencedvby several different door idéhtifiers in

several different domains (see Figure 2.2).

User mode Kernel mode - ~ User rhode; ’
ST : Server -
C!len!: “application
application. -
Client server -
- application “application "

) Dor Door tables - Doors.
identifiers S '

. Figure 2.2 Doors and door tables [9].
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2.1.4 File System

Spring file system [15] defines file objects, which
inherit from the memory object and io interfaces, that are
implemented by file servers. Thus, file objects can be
memory mapped and accessed using read/write operations of
the I/O interfaces. Spring file system uses the Spring
security and naming architectures to provide access control
and directory services.

The implementations of Spring file server consist of
two systems: Spring Storage File System (SFS) and Caching
File System (CFS). SFS is implemented using two layers, disk
layer and coherency layer [15] (see Figure 2.4). The disk
layer implements an on-disk UNIX compatible file system. The
coherency layer is stacked on the disk layer and implements
a per-block multiple-reader/single-writer coherency
protocol. Also, the coherency layer keeps track of the state
of each file object and of each cache object that holds the

block at any point in time.

SFS

All files are
r Coherency layer l‘_——'exported by
coherency layer
4__——> [ Disklayer |

Figure 2.4 Spring SFS [15].
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ceencapsulaflncidlff £ent“access:reghts, all p01nt1ng
'atcsameunderlylhg;ep cth“Thus, hhen‘the~cllent assmgnbgiif
f;object 1nvocat1cn if.ee e1ii1i£efefehce,‘the‘requesf cahﬂﬁiw

,be securely ﬁrens; tted to the'front object Theuﬁront;ékﬁ:s'ﬁsz
“_ﬁ:object checks th c‘ient’s access rlght, 1fzﬁtfisif
'fhpe‘m1381ble thenvfofwardvhfhe;geQuest 1ntoV£he”serv r

'5th1gure 2 5 shows the dlagram of a‘cllent acces51ng




5 ' Underlying '
- Cllen‘t_ object ACL_
Domain "T
Object | Front object
reference - _ access = rw
| p

N s

Figure 2.5 A client aocessing a secure object [14].

h”When‘a'client is given the object reference from then
object’sdserver; client can ‘pass. that reference to other
- clients. These other cllents are able to have the same
baccess rlghts as the orlglnal cllent and use the object

reference,freely,

2.1.6 Conclusions of the SpringvProject

The Spring operatlng system is Stlll an on-going
project-at Sun Mlcrosystems Inc., but they have 1nnovated
the tradltronal operatlng systems to bUlld one, based on
strong 1nterfaces w1th openness and exten51blllty 1n ‘an
object—orlented approach. Sun hopes that the Sprlng system

Will replaoeySolaris in the future as a step toward a

18






e distributed file services to provide access to files

across a network.

2.2.1 The Overview of DCE"

DCE supports the construotlon and 1utegratlon of
‘cllent/server appllcatrons 1n heterogeneous dlstrlbuted
env1ronments. DCE has been de81gned to 1nter -work w1th .

' ex1st1ng standards 1n a number of areas. For example,ga
group of DCE machines can communlcate with each other and
with the outside‘world using either TCP/IP or the OSI
protocols [21, 237. Ueer processes. act as clients to access
services provided by»servervprocesees, whioh can’be,looal or
‘remoteerigure 2.6 shows the variouevoomponents of the DCE ,

architecture.

Distributed Applications

 Distributed File
Service

Time | Directory | Security
.|Service | Service | Service

- DCE RPC and Authentication

- DCE Threads Service

Host 6pei‘éting system and networking

Hardware

Figure 2.6 OSF DCE Architecture [23].
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to receive correct information or services. Figure 2.7 shows

the steps involved in binding client and server.

" Cell Directory Server

: s 1. Register endpoint
2. Register service K

3. Loo,k“up sérvér'

4. Ask for endpoint = \>

~ RPC
~daemon

- .
- - endpoint

‘Figure 2.7 Client-to-server binding in DCE [231.

The endpoint, llkes Sprlng s doors and Mach’s ports, is
a numerlcal address on the server S machlne to whlch networkf
rconnection'can be attached'andrmessages sent‘[23].‘More

’disoussions on RPC will be'in Chapter 3.

2.2.3 Security Service

Securlty 1s always a major ooncern in abnetworked
iefivlronment In DCE every user and process hasllts own
'prlnc1pal when 1t needs to communlcate securely [23]‘ DCEa ,f”

;security can a531gn proper,resources to.each pr1nc1pal and'f”



provide a secure cryptography for transmitting all
information in an insecure network.

The major components of DCE security and their duties

are the following [17, 23]:

a) Registry Server: the registry server manages the
security data base, the registry, which contains the
names of all principals, groups, and organizations.

b) Authentication Server: the authentication server
verifies the claimed identity of the principal and
grants a proper ticket that allows this principal to
do other subsequent authentication without having to
provide the password again.

c) Privilege Server: the privilege server issues PACs
(Privilege Attribute Certificates) to authenticated
user. The PAC is an encrypted information that has
the principal’s identity, group, and organization
information, such that all servers can be instantly
convinced without need for providing any additional
information.

d) Login Facility: the login facility is a program
using the authentication and privilege servers to
provide all the necessary tickets and PACs when

users are logging in.

23



Once a user is logged in a DCE system, the user can use
a client program to access remote server process via
authenticated RPC. In DCE, every resource has an ACL (Access
Control List), which tells security who may access the
resource. On the server side, when the application server
receives the incoming request, the server verifies the
requester’s identity using the PAC and checks its ACL to see
if the requester has the right to use the service or

resource’,

2.2.4 Distributed File System

. The distributed file system (DFS) of DCE is to provide
Users and processes access to all files within a DCE system
they are authorized to use. DFS has two main parts: local
part and wide-area part. The local part is a single-node
file system called Episode, which is similar to a standard
UNIX file system on a stand-alone machine. The wide-area
part is to collect all these individual file systems
together to form a wide-area file system.

The DFS in DCE is just like an application, and uses
all facilities of DCE. The DCE threads provides the ability
to allow users access multiple files simultaneously, RPC
offers a bridge for communication between clients and

servers, Distributed Time Service (DTS) synchronizes server

24



"‘clock the dlrectory serv1ce allows flle servers to be

-located and the sncurlty server protects the flles by

unauthorlzed accesses

Each flle and dlrectory in DFStls protected by ACLS,;r:
{Wthh contaln a llSt of entrles Be81de the read 3wr1te,vand:
:execute operatlons can be ass1gned to-users analogous to thef
,standard UNIX flle systems;‘ACL also‘allows 1nsert deletej
»and control The 1nsert and delete operatlons are for _
dlrectorles, and control operatlon 1s for I/O devlces

“subject to the IOCTL system call [23]_i'l

DCE's DFS also supports data repllcatlons, load

_ balanc1ng and faUlt tolerance [l? 23] The repllcatlon
server keeps tracksyof all repllcas of‘fllesets up to date
T'There 1s only bne‘master’copy of the data that‘ls allowed to
"vbe wrltten‘and read 'and‘one Oor more replrcas for read only
T”If one repllca is changed by a user or process,/the'
‘»repllcatlonlserver w1ll detect the dlfference by scannlng

all repllcas The flleset server manages all fllesets 1n theﬁ

sfxDCE=system va one dlSk partltlon 1s fully loaded by ‘

»bzfllesets, whlle Other dlSkS Stlll have plenty of space, the
Ftbflleset‘serveryw1ll move.some.fllesets'from.dlsketo-drsk_to;i -
balance thepload;jTheﬂoverseerlserver}isfto'makefsure that_;

" all other machines are still alive.

‘f25fsb
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2.2.5 ConcluSions of DCE

At the early stage of deSign, the main purpose of DCE
‘is‘to provide a robust distributed computing enVironment,
such that the DCE wasn’t designed in any object—oriented
bapproach The tendency of uSing object technology has forced
VDCE toward distributed object technology ‘The latest DCE
S 1.22 leads to interoperability of different object
.strategies because DCE prOVides a foundation for»
distributed, object oriented computing Without precluding
use of other approaches such as CORBA [16] Thus, we‘learn

advanced distributed computing technologies in DCE

2.3 Parallel Virtual Machine
Parallel Virtual Machine (PVM) is the'mainstay of the‘.

heterogeneous network computing research'project~[7], a
collaborative venture between_Qak;RidgefNational Laboratory,
the UniverSity of Tennessee,_Emory University, and‘Carnegie
- Mellon UniverSity The PVM prOJect began in 1989 at the Oak
hRidge National Laboratory The main deSign for PVM is to
link computing resources and prOVide users With a parallel
platform for executing their;applications,‘irrespective»of
the number of differentHWQrkstations.they:use and;uhere the

workstations are located. -

26



PVM uses the mesSage—passingtmOdel to allovarOgrammerstr‘
to exp101t dlstrlbuted computlng across a. w1de varlety of
computer types, whlch 1nclude most Uan systems and PCs. Then
PVM system supports heterogenelty in. terms of machlnes,o
networks, and appllcatlons [7] Wlth thlS feature a large"'1
',paraiiel virtual_machine’is possible to:be built by‘using
éVMysystem,‘PVM consists of.two parts:ya_daemon process on
“each host (med)and a‘set_of lrprary,routines(libpvm).’The
usuai way‘for two'nser proce3sesfon‘oifferent nosts to
,communicate with eachvotheris via their’local daemonstiThe
‘logrcal view.of an appiication running on PVM is shown in

Figure 2.8.

Task Task ‘}e.va o  |Task fask
libpym. | B : libpvm
T || OT

PVM Daemon o ‘ o PVM Daemon

Opérat System ‘ | |

Figure 2.8 The logical view of an application running on PVM.

The following Sections7will‘discnssysome internai'

designs and mechanisms used,in‘the PVM system.

27



.2.3.1 Commuhicétion in PVM |

‘When a Virtnal macbine;ls:createdmby PVM, all
interConnecﬁed‘maChines,need’to egcbande‘messages.oyer the_
network for'tneir-commUnication. élnceathere isbno global.
shared memory:in_agyirtualjmacbine,‘tbe messade4passing
-model,is‘adoptedkbybPVM. | |

Iniorder'tovsupport.Heterogeneity in PVM the message;A_
pa551ng model needs to be bUllt by u81ng standard | |
_communlcatlon protocols PVM‘uses Transm1581on Control
vProtocol‘(TCP) and User Datagram Protocol (UDE)vfor the
intercommunication;band Unix—Domain sockets mechanlsm is
used to apply on TCP and UDP Because majorlty of platforms
for PVM are Uan systems, PVM - adopts the most prevalent
aappllcatlon program lnterface (API)Y Berkeley sockets, to be
‘the communlcatlon medlum forvdaemons and tasks |

TCP provides a‘connectioneoriented'communicationt
service:on Internet Protocol (IP).'By-dsing TCP; messagesd
'can bebdeliVered‘reliably, but‘tbere is overheadlto build B
TCPiconnections.if the needdofvconnectlons is largel»UDP is
a connectionlesSjtransport'protocol_which does'not require;
two h0sts to'setAupwspeciflclconneCtion route‘before sending
"».message{'Howeyer;'the]messages delivered by'pr areﬂ“l

unreliable‘becauselthebSenderocan send messages without the

28



‘recelver s-acceptance Thus; the.acknowledgment and retry
mechanlsm can 1mprove the rellablllty of UDP | -

‘To make eff1c1ent communlcatlon 1n‘PVM TCPvand UDP aree
:}d\used in dlfferent categorles (s B | |
| v‘)'Pymd Pvmd; The communlcatlon w1th1nnpvmds.are aérbésf”’*

¢;ﬂ‘the network ‘Thus, to av01d the network trafflc and

ﬁﬁ:overhead of settfng up connectlons, daemonsti
i‘kacommunlcatesvw1th one another through Ubévsockets” ?ﬂ}lkfh:;
plh),Pvmd Task and Task Task Slnce tasks perform | Ry
. pcomputlng and I/O they canrnot be 1nterrupted ftci
‘t‘UDP is used for communlcatlon, a task mlght be}'flh
lpylnterrupted to glveva retry for a lost packet durlng;;qifha
rhlcomputlng Thus, TCP sockets are used 1n Pvmd Task

dfand Task Task

To prov1de fault tolerance,;a”pvmd w1ll recover from
:7rflthe loss of any forelgn pvmd by preparlng a copy of task
v”.before sendlng to the other pvmd But the PVM w1ll not

.rmlgrate the executed task to another host 31nce 1t does not

»'haV¢b¢heCkp9;nt; ;;,-‘

| .h2 3 2 Conclus1ons of PVM |

| The PVM system 1s not a complete dlstrlbuted system 1nﬂé}gfl”"
j general The goal of PVM 1s to offer a dlstrlbuted and

Ir»heterogeneous network computlng env1ronment to users to be,.’



http:interrupted^.tb

'"7able to solve large computat ons. ﬂserh 6anicollect"all7'ﬁ"}:
”ﬁfavallable machlnes to be hls/her v1rtual machlne and make jgﬁff;i
‘,;use of thlS huge computlng power to solve problems

”feff1c1ently Indeed PVM achleves the heterogenelty in termsef?g;j

“wfof machlnes (about 40 dlfferent Uan machlnes [7])

'°'networks,‘andfappllcatlons

PVM research group contlnues to,do development of new‘ii

“tfeatureS“an__ymprov1ng the functlonalltles for PVM The malnﬁ7~"‘
'ﬂﬁ;lelestone for the next ver31on of PVM is to have thel]}fffk;Vnﬁ:"7 ’
f{capablllty of collectlng Uan systems, Mlcrosoft Wlndows 95 f“

!jand Wlndows NT machlnes Users w1ll have the chance to

"erxperlence the hybrld computlng power of MPPs and Pentlum

,,4g,_’More and more research groups are cooperatlng w1th the NERE
’TﬁPVM gr ups to study dlstrlbuted computatlon Heterogeneousjyvau~5ﬂl‘

v‘ffcomputlng 1s one of theﬁgoals for the Splder PrOJect,yb

'Tpdtherefore, PVM 1 jdhosen as an example for our study

1€52 4 Condor Schedullng System

.heACondor schedullng system [13 24], developed at theliﬂ5"

f*W1scons1n Madllon,lls des1gned fo,f'

f“processrng needs,‘ln general the resources of networks Of

:fgworkstatlons are under4u_1llzed or often 1dle When users e



http:S.pid.er
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| face the problem that the ablllty of . thelr workstatlon 1s‘
;too small to meet thelr appllcatlon needs,‘the Condor system
canvschedule users’ jObS at 1dle workstatlons.' Flgure 2.9
1llustrates the ‘Condor schedullng structure [13],‘Each-
1w0rkstation haS»a local scheduler and a backgroundajob
queue One morkstatlon holds thercentral coordlnator in
addltlon to a local scheduler‘and a background jOb queue.

The central’coordlnator polls the workstatlonsvto know.the"'
status{for each station‘(auailable to serve,and background
jobs waltlng);_ | |

Idle machmes

Ed

A

==,

‘vi (=N T
!ﬁ@l . | [sdot |

'Figureh2.9 The Condor Scheduling»structure.‘

o

l[[[f“}Eﬂ
: iy
l

‘Thexmain advantage'of-Condor-rs.fault tolerance.‘Whenva
uSerfsiprogram‘ls migrated'to‘an‘idle machine'by Condor, the
.:Condor central manager Will checkpoint the.program
'vperlodlcally If thetmachine is running the migrated Condor“
user program and another user sits down to use thlS machlne,

Condor will terminate the Condor user job and save all the
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1nformatron of runnlng job to a:checkp01nt-flle Then, the
: cCondor central manager w1ll look for another 1dle machlne
‘vand transfers the job there The jOb w1ll restart by readlng:1
the checkp01nt flle and manlpulatlng 1ts state so as to
":‘emulate as accuracy as p0531ble the state of the prev1ous
'-fjob atfcheckp01nt tlme Thus, the Condor user job does not-*
~need to restart at the beglnnlng ThlS scheme also applles
to the181tuatlon when a machlne falls L | | |
| The‘checkp01nt1ng of a.programvln Condor schedullng

”hfsystem is the sav1ng of the state of the program In order

to restart the program and contlnue the executlon on another?].7

: machlne, Condor saves the state of the program 1nclud1ng
’text any 1n1t1alrred and unrnltlallzed data, stack areas,'
the status of open flles and‘flle‘descrrptors; and any
spec1al handllng requested for varlous 51gnals [13 24];3d
yThus, the removed program can‘be restarted on another 1dle

‘machlne w1thout 1081ng any 1nformatlon of program executlon

i2;4.1 ConciuSions OffCondorn‘

The”Condor schedullng system 1s able to glvetus a-good
'jexample on how to prov1de a fault tolerant computlng
“'env1ronment The Splder System should be trusted by users ‘to
_‘esecute thelr jObS and expect thelr jobs to termlnate

fnormally
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”’fof archltecture‘and functlonalltles of the:Splder system'

SR ﬁThe maln de31gn goal for the Splder system 1s to des1gn a'

*h:“varlous avallable‘machlnes i

‘?‘ydes1gn1ng the Splder system,

"ijiportablllty, heterogenelty;

"ﬂ;dﬂextenslb‘;jt"f

CHAPTER;; The Splder System

ThlS chapter w1ll dlscuss thefspec1f1catlon and des1gn

'ﬁfdlstrlbuted system 1n object orlented approach 1n order to 5mﬁﬂﬁ

“f%prov1de a flex1ble and eas1ly extens;ble testbed env1ronment»ggffjfﬂ'

vhfu{for research on dlstrlbutedxand parallel computlng 1n the

w@fDepartment*Of1computergSc1ence; Cal1ﬁorn1”*8tate Un1vers1ty;ff R

' Ssan Bernardino. . =

,Ei3 1 Goals for the Splder System

The Splder dlstrlbutddfsystem w1ll‘1nclude all the,«gif." o

our department Before

we’need to spec1fy the system s[hﬁ

N ﬂgoals that are appllcable to our department In general the'czﬁ3nﬁ7

“fLSplder system w1ll achlevevthe follow1ng spec1ficwgoalsi

transparency, flexlblllty,.

g 1'3 1.1 Portab:l.l:l.ty |

'iﬁ The labs in our department 1nclude dlfferent “f'y

fhworkstatlons, Wthh run on”several 1mplementatlons of UNIX

‘?operatlng systems (OS) anq,"fcrosoft Wlndows 95 The Splderlfjfﬂ37f 




'”u?__system Thus, the system can be ea51ly ported to other

vsdnj3 1 2 Heterogenelty

WSystem w1ll need to run on dlfferent hardware platforms andfx

;_operatlng systems To conquer and achleve th

"ﬂfor dlfferent machlne archltectures,-the'Splder system w1l,‘

fl;need a mlcrokernel OS Wthh w1ll mlulmlze the 51ze of ba Li

.'machlnes by reconflguratlon

'; In a dlstrlbuted system, heterogenelty 1s one of the
'U.gmain,characterlstlcs leferent archltectures of machlnesv;*'“
‘,(RISC supercomputers) IBM compatlble PC, etc )ud operatlngd*fll

:lsystems (UNIX and Wlndows 95)‘ and network protocols are ‘f;ff

“gfposs1ble hlndrance 1n the constructlon of a dlstrlbuted
':”system For example, the PC machlnes use the llttle endlan o

ﬂbyte sequenc1ng of 1ntegers, and the Sun SPARC uses the blg;hﬂhh

'flendlan format Any data transmltted between these two

'}ﬁmachlnes w1thout conver81on w1ll deflnltely cause an

”11ncorrect data recelved by one machlnev The Splder system

“f.make full advantage of all resources 1n a heterogeneous ,;:“‘

'ffenvlronmentwln'our department;;,y




3.1.3 Traﬁsparency'

| iThe‘main Concept of rransparency is to hide the
distributien of resources from the gsers.vThe ueers’are not
aWare'of where the resources are loeated, how rhe program is
executed by parallel‘or distributed manner, and th the
requested object is implemented. Tanenbaum [23j classified
tranSparehCy into fiVe aspeets of a distributed system, as

shown in Figurevé.l.

Kind ’ S ' ~Meaning

Location transparency "] The users cannot tell where resources are located

Migration transparency Resources can move at will without changing their
names

Replication transparency The users cannot tell how many copies exist

Concurrency transparency Multiple users can share resources automatically

Parallelism transparency Activities can happen in parallel without users
knowing .

Figure 3.1 Different kinds of transparency in a distributed syétem.

The Spider system’s different funcfionalities‘will need
to have difrerent kinds of rranspareHCy. These
functionalities will be discussed in Section 3.3 which are:
distributedifile systemv(replication and,locetion
traﬁsparency), echeduling éerVice (migretion_transparency),
clock,synehrenizatien (cdncurreﬁcy transparency), and

distributed computation (parallelism transparehey).

35



34 .;4' _,'_.Eléx'i‘bility.

earch 1mplementatlonsﬂ,§.ja*

Users can ea31ly plugvln thel

sme

For example, when'a user wants“} ‘

'efusersito submit thelr jObS

“ fgﬁsystem w1ll set 1t as
B }computlng performanc

1_1ntelllgent system,

_iresults from the sﬁ

1.5 Extensibility

;:Q;jobject

(functlonal

. machines.”






SGI ’ ~ File Servers
Power Challenge

MS Windows NT
Servers

[—
[S—]

ATM
ASX-200

Windows 95 Workstations

SGI Workstations UNIX Workstations

Figure 3.2 The overview of the CS network at CSUSB

3.2 An Overview of the Splder Systemb

Due to the fact that dlfferent machines running on
various Unix operating systems in our department, the first 
prototype of the Splder system will be built on top of
current Uan 0OS to achieve portablllty Flgure 3.3 depicts
the architectural overview of’Spider and 1ts}correspond1ng
equivalence to the OSI model (Open Systems Interconnectien

Reference Model).
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il RIS S l al/ tma h e
~ Client (local machine) Server (ool meine)

Scheduling |- | Distributed | R
“Service | "] Computation | .-

App]iéati_‘on; S

[Distributed Security |- Clock.Sync-
‘File System ‘| | | Service | - hronization - |,

_OsB |

| Spider’s Microkernel

i Client’s
_process

' ‘ ‘S}pider?’s‘M‘iiéi'olv(verhei‘

Lo o e , — - RN

< ' OS and Transport Services | . .| ' OS and Transport Services
Data Link | - EETE. el e

Ut 'Hardware ‘ »,Hardvfs‘?are‘:_ e e

Figure 3.3 The architectural -.cve:rv:i‘;,ew‘f of . the Sp:.der y,sys‘ten; in O'S:»I‘ ’model_. : |

Slnce we are u81ng object orlented approach (OOA);”We

'fneed to treat each servrce an object In OOA we can

';prov1de a testbed env1ronment for researchers to be able to?;h

’atest thelr work by replac1ng ex1st1ng objects and addlng onf7

tmthelr new objects.;fﬂ’

Examples of objects 1n the Splder system are.d;?m

dlstrlbuted flle system, securlty servrce, cloCk

¢

‘synchronlzatlon,vschedullng serv1ce, and dlstrlbuted

,computatiOn servicer'




In Figure“3;3, the basic ar¢hitectdre of_the Spidér.:
System consists of-a_set”of ciiehts (processéé),’a set of
services, an Object Service Broker (OSB), and a Microkernel.
Clients may’use the OSB via,Microkerﬁelvtdiaccess
reméte/local‘serVices,'or directly use any exiSting'OS
services. 0SB rééponds by contéctiﬁg pfoviders of a service
and establishing a cdnnectionrbetween the client and the
Service’provider.:The provider'of a serVi¢é is'référred to
in the‘Spider system as avFuncfionality Server (FS). A
service can be‘defined‘by an-object—ériented‘interface and
vimplémented in C++. For éxample, a simple FS may only
provide a basic service, such as sorting arrays. A compleﬁ
FS may provide a more sophisticatedvservice such as file
system.

"Each FS is an objéct or proﬁides a group of objects to
offér servicé that:ié enéapsulated‘énd‘hidden from‘tﬁe
clients. Therclienﬁé are only-intefested in the behéﬁiordpf
a serﬁice, nbt‘in its“internals.:Thus, clients donft know
what kind of sorting algorithm is iﬁplemehted‘in the FS.

It is important to'Support‘tHe idempptency in a
distributed system;‘The‘Spidef System needs té support
idempotent operations to’eiiminate any redundant request.
For a sequence of same requests from a user, Spider must

_treat these requests as a single request and'provides the
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' ,V""_sam‘e"’*re’suklt'.tO»-rth'-eif.‘u:s"er.. A:t-r'a'r_i,"s:ajct»:_L__ 1 number. can be:

"ﬂ,can reduce any unnefessary or redundant access to the Splderu

;system

The follow1ng sectlons 'i11~diséﬁ§s;th¢§¢6mpéheht§.aﬁ»,i,&+f“

“fthe Splder system 1n'more detall

‘h;3 271 Mlcrokernel

‘bfmlnlmal kernel Structur;ng;systems i

1dsystems Each process has an. address space

threads All the threads

“5“cons1sts of one or more,

o :'th";’"PcheS;sish'are "‘*th.e., a-dd'ress _space: r,.l.d .:e,xe.cu:te ina




timeshared;mannef on a single CPU:machine. On'a
ﬂmulti?rocessor;.seﬁeral'thréads can bebactive at thé
éame‘time. | | |
b)Mémory management
| The microkernel will pro?ide‘memory management to
‘bhandlebthe alioéatibh and deallocationvof memer,
paging, and swapping. | | =
c)InterfprocesS communicatidn (IfC)

The Spider microkernel will provide‘fé¢ilities,for‘
the.IPC, inciuding pipes,vsocketé,bRPC-(Remote‘ |
Procedure,Cali), and'shared memory .

d)I/O_managemeht. ’

All low—leVel 1/0 is handled by the kernel.

We want to minimize the éize,of thé kernei, SO'Othér

basic services will be implemented in user level.

Since constructing afmicrokernél'depends on:thé
~machine’s hérdware‘architéctufeh it‘causesvits compleiity‘to
increase when implementatioh'is;frOm‘scratch.bThe Spider;s
micrOkernel.will have to déaiWith‘thrée major architeétures
(SGI, Sun SPARC,‘and Data Geﬁerai) in ouf'CSUSB’v
Labb;atories. In ﬁherfuﬁure; thekspidér’s mi¢rokerﬁel will

. run on éveryvmachine, and those Unix sérvices will be m@ved

‘up to the service objects level.
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"€7,£ﬂ3 2 2 1 Remote Procedure Call

T.lg3 2 2 Communlcatlon 1n.Sp1der

The Splder system w1llvbe baseddon he cllent/server B

”lbmodel The bas1c communlcatlon paradlgms w1ll be the remotei

'7Q;procedur¢;¢aTLQ(RPC) mechanlsm [3] and the BSD socket

The RPC mechanlsm prov1desitransparency and eff1c1enCYhf;itfr-,

;}ffor user programs and appllcatlons 1n the dlstrlbuted

f*Systems RPC hldes conver31on of data representatlon, the f,v ‘

”leaddress“oféthe‘remoteVmachlne, and communlcatlon and system

‘v.jﬁfallure from programmers [23]

=rigéstubs use the RPC protocol to. construct and exchange

An RPC system prov1des the External Data Representatlongﬂisik
']i(XDR) llbrary and deflnes the RPC message pa881ng protocol

”‘mThe XDR 1n RPC system 1s*able to hlde all IPC detalls and

Lhoffer the ease oF developlng networked appllcatlons The RPCfghl”

f_model prov1des two communlcatlon 1nterfaces, cllent sv

‘yserver stub Wthh are generated by the RPC Compller spzus

“:ﬁmessﬁgesﬂbetwee.TCll°nt,§nd_seIVe¥ vThe Cllent StUb a dumthft

7,particularffunctb,-_,Qwhere the actual 1mplementatlons of

“:the functlons are on the server 51de The cllent stub

gdellvers the cllent’s request to the server stub and wa1ts-?%§{fflq

Efor the reply The}server stub unpacks the‘messages and fy




invokes the real procedures, then packs and sends the result
back to the client stub. The client then receives the result
from the client stub as the execution is performed locally.

Figure 3.4 describes a basic RPC model.

Client Server
calling procedure called procedure
arguments results
results arguments
Client Stub Server Stub

request
messages

request
messages

reply reply
messages messages

Figure 3.4 Remote Procedure Call.

The communication facility used by the RPC model is
provided by the underlying network to deliver messages to
the remote machines. The Spider system will use both TCP and
UDP protocols for the RPC communication model. To obtain
maximum throughput for a bulk data transfer, the TCP
protocol can provide a reliable delivery and buffers
messages to immediately return control to the user. The
buffered messages are flushed when the buffer is full.

Thus, the RPC model can be asynchronous and users can make

more calls. For low-latency calls, the UDP protocol can be
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used and the buffer is flushed immediately, but the user can

be blocked. Figure 3.5 shows the comparison of TCP and UDP

protocols.
Protocol Type Data Type Transmission
TCP Connection -oriented Stream reliable
UDP Connectionless Datagram unreliable

Figure 3.5 Comparison of TCP and UDP protocols.

To use a remote procedure call in the Spider system,
the communication protocols can be system-defined or user-
defined depending on the application. The structure of the
Spider system is based on the RPC-like model to provide a
transparent and object-oriented distributed computing

environment.

3.2.2.2 Berkeley Sockets

To use the Berkeley Sockets interface, programmers need
to handle all the details of communication in the programs.
Although using socket interface will be more difficult for
programmers to debug and produce programs, programmers can

have more control on the data transmission.
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The basic concept of the socket communication is based
on establishing a phone-like line between client and server
programs. Once the connection has been established, the
client and server can exchange information through this
particular line.

Since the socket interface can directly talk to the
network without any other interface, it is much easier for
programmers to use this mechanism to provide more efficient
services. In the Spider system, some functionalities will
need to provide broadcasting message ability, which will be
implemented using socket interface. Furthermore, for a
cross-platform connection, the RPC mechanism may have
difficulty to apply on different platforms because most RPC
compilers are system-dependent.

In Chapter 4, the socket interface will be used for
implementing the distributed computation for the Spider

system.

3.2.3 Object Service Broker

Object service broker (OSB) is the central component of
the Spider system, handling the communication between all
objects in the system, regardless of their location,
platform or implementation. The main idea of OSB is similar

to the subcontract of the Spring operating system [10], the
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he incoming objec
" information frem the object

~ ‘client. Figure :

e
- |Implementation | -




The 1nvok1ng operatlons on server objects can be.

?yperformed in a statlc way, Wthh works Very much llke Remote”fh"

QProcedure Call (RPC“'?An object deflnes 1ts 1nterface ﬁsing7ff

:yﬂInterface Deflnltlon Language (IDL) [16,;l7l. The IDLngT“'“"“5”
"~deflnltlon 1s then complled to produce a cllent stub and a.

'fserver skeleton,\code that typlcally gets llnked 1nto the

‘-tj9cllent and server objects,,respectlvely The cllent stub and

‘“;;server ske7eton are part of the OSB (see Flgure 3 7) 57ff‘”"

'"rlnvoke a. method 1n the server object a cllent calls a

' *wffunctlon, a request that v1a OSB 1s conveyed to and

"ffexecuted in the destlnatlon object At the same tlme, the L

n';fcllent is. blocked untll the functlon returns j;f"'h

| Server: |

[ client | ver |
| Skeleton | -

©o | sb [T

F:.gure 3 7 The structure of OSB
The 1mplementatlon of a731mple OSB Wlll be dlscussed 1n

h:»ffChapter 4

‘*__'1;35.’.'2".4 , tfu:ri&i-;‘i"ariaiity ,f”séri_r‘ér: S

o Functlonallty servers can be s1mple or"comple,,,

f;prov1de only one serv1ce Each functlonallty server 1s R T

"ilmplemented as an object and can be accessed v1a the object—' R



_;orlented 1nterface Thus, these functlonallty servers can be

.”Jf7used as dlstrlbuted objects and prov1de for thelr

“?transparent 1nteractlon w1th1n a dlstrlbuted system
The ob]ect orlented 1nterface used by functlonallty oh'

Vy;servers and cllents is descrlbed in IDL [16 l7J,iIDL47fUL

~{prov1des a standard language neutral means of descrlblnghﬂamffi

ll,the publlc 1nterface of an object Flgure 3, 8 descrlbes afV'i

‘Ls1mple IDL 1nterface from the spec1f1catlon of OMG’S IDL ?{itf5"‘:

‘7»g[16]

‘;l[uuld 70ff8220 6ela llcc 89ee 08002b2albca)]
‘:fﬂlnterface Sort (- T e

. v01d sortlng [1n,,outl any array, [1n] short flag).
Flgure 3. S‘A.Sort Interfaoe hl :

uyAll data types used 1n an IDL 1nterfacebdeflnltlon.(aﬁhV
1ﬁoperatlon s return types and parametervtypeslimust be elther

ip‘the IDL baSlC types (short 1ong,hfloat boolean.;fhiDLha
ftemplate;typeS'(sequence,.strlngs,_arraysl..aryIDLypr;,V
ljconstructed types:(structs;dunlons;;enums), iﬁ?fiéﬁgesggé;
vfthe sortlng‘operatlon‘takes a passfby reference any and a'{j"“.

' ,-pass by value short to sort any klnd of array and does not-"

‘”b_freturn a value, but the sorted array w1ll be passed back. tofo o

'7lf”the cllent The 1n 1ndlcates that the parameter 1s passed

"fromyolient to.server; and out 1ndlcates that the parameter»pl

- is pa3sed“from“serverdt0‘Client,‘@‘““

h :49h.ttv49d::



Sihce-every‘object‘must[be uniéue te the.whoie-
vdistributedlsystem, each 1nterface can be- ass1gned a .
universal'unique'identlfler'(UUID) [16] “The unlque UUID
.ldentlfles an - IDL 1nterface.and glve 1nformatlon to the OSB
for object3tnvocat;env Every FS needs to prov1de an endp01nt
[17]-for.cliehts toﬁmake,a~connectlon{ Thus,,each FS nust
reglster its serv1ce 1n the reglstry server,bwhere the OSB
w1ll look up the locatlon of the server. by contactlng the
vregistry serVer.vA reglstry server ls‘alSO‘one.of FSs that
exists on every machine and malntalns an endp01nt table of
'all servers’ objects Flgure 3.9 deplcts the steps to create
- a new FS in the Splder system
There areithree be8103steps:
e jReg‘isterﬁ the’hewaS>heedsvtovfegister‘its,serviceuwith'
the UUID and e-ndprei.nt' t'ov the 'Re'gistty Servér».‘ |
o Update tablé:‘RegiStry.servef Updates itsrtegistry
_fteble by reeofdihg down newast:UﬁID and ehdpoint.
e Broadcast:hRegistry Servet broadCasts'the“heQ.
vihformatioh_te‘all*cher Registry Servets.
,After_the ebeye threeysteps,areydone; the new service ish
'available tevthe hsersthUSers'can.aCCess’this.FS at any

workstation.
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.v ‘Request object’s Registry | Registry .
eijfi;”;/)/;,,/f__Sg:ver , ’§erver_

OSB

3. Update

Reply endpoint S '
. all registry endpoint [+ New FS
with UUID

"\ server

1. Regisfe,r to
the Registry

__Registry Server

endpoint table

unid &

2. put ¥ to table

"~ .Figure 3.9 New FS registers to the Registry Server.

A singlé'IDL iﬁterfacé‘méy have many implementéﬁions,
“but must contain the:opérations describéd by the IDL
interface ih"thé‘public Séction of the implementation class.‘
The impleméﬁtation of>an object‘is encapsulated and hidden
- from the client.»FunctiQﬁé on-fhe server side are referred
vto as skeletonsf[16, 17], with évSkeleton funcﬁioh |
cqrrespdndihg to each bpération decl§red in the iDL.
interface. The skelétbn.reCeiVes invéCation requests sent
from the client.stubs. The skeietdn will unmarshal a request»
and invoke the cbrrespohding‘membér fﬁnction‘of,the FS. When
the member function returns, the'skéléton‘will mérshal the;
return parameters‘and,‘with the héip_ofvthe 0SB, send them

back to the client Side stub.
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On the other hand, the member functions declared for
the client side class are the same as those declared for the
functionality server implementation class. The member
functions of the client side class are referred to as stubs.
Stubs are invoked by the client program when client sends a
request of an operation. They marshal the invocation request
and its arguments, send it to the server side with the help
of the 0SB and then wait for a response. If a response has
been received, the stub unmarshals the return parameters and
returns to the client program. The inter-process
communication necessary for an operation invocation is
transparent to the client. Figure 3.10 depicts the
interaction of clients and functionality servers. First, the
client uses the OSB to request access to services. Second,
the OSB responds by contacting FSs of a service and

establishing a connection between the client and the FS.

2. Response
1. Requests 3

3. Connection
Client |« / \ FS
FS

Functionality
Servers

s i ti
Client Connection

” >
>

Figure 3.10 The interaction of the clients and Functionality Servers.
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I ff 3 3 Functlonalltles the SplderKSystem

The prev1ous sectlon deflnes the overv1ew of{the Splder,

o system,

,thlS sectlov 

‘;idlstrlbuted computlng, securlty,

For example,

”functlonallty servers



multiple file accesses éimultaneously, RPC and OSBEfor
communication betWeen clients éndvservers, the security
server tqprotectifiles,'and the:clock synéhronization
server to synchronize server clocks.

Traditionai file‘systems.are designed'as a central
serverrmodei, such»és Network File Systems [20]. These
central sérver file systems will have perfbrmance bottieneck
when the system grows large. Exampléé-of file systéms, such
as xFS [2] and the Spring Fiié Syétem [15], are designed in
contrast withftféditional fiie éystems. Theée two
specifications give a direction to the design of the
vdistribﬁted file sysﬁem for the Spider System.

The Spider System 1is an object-oriented and distributed
system that is structqred>a£ound objects.>Therefore, a filé
or a directory is an objeCt iﬁ the Spider system. The basic
services for the‘distributed file system will be discussed

in the following sections.

3.3.1.1 Directory and Naming Servers

The naming server will providé filé transparency to
ciiehts. The'clients do nét,need to know where the file is
located. Furthermore, a diStributed file‘system not only’
needs to have locationktransparency, but alsb location

independence [23], such that, any file can reside at any
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~machine. However, the location independence is riot easy to
achieve, but it'is‘a-desired.property to'have'in}ai
distrihuted system. | '

The directory server is able to provide the,creation
‘and deletion of directories, uSind naming server to nameiand
~rename files, and mOVing location of directories The global‘
root directory should be'vieWed the same way in‘all clients:
The directory server maintains the directory pathvtable in
every machine, but not for all the directory paths For
example, if a user looks up the path /A/B/C the user sendsy
a message to the directory server,vwhich Will find the
location of A. According to the directory path table,‘the
server haVing A will prOVide information of B. Then the.same
for C, the user will be: able to get the information of files

under C directory [23] (see Figure 3;11).

o /A’ Server 1
Look up —
/A/B/C
- Client : ‘
B ‘Server2 .
. Reply to client _ “\ - Server 3
withc ~ \ [ |

‘lFiles |

Figure 3.11 Directory lookup.
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the securlty,

"'ffsystem;;Thus H?the Splder system w1ll con51stf
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of two servers -- authentication server and Access Control -

List (ACL) server.

3.3L2.1 Authentication Server

In a timeSharing system, a user logs on a machine by
typing the user’s name and password. If‘a'user logs in
- successfully, the kernel‘keeps track of the user’s identity
and permits or refusea access to files and some othet
resonrces based on it [23].‘In the Spider system, once a
user logs in and gets authenticated by the security server,
it’s‘not necessary.to keep track of the user. Thus, the
security service must‘provide the authentication.

A well known‘authentication'server is‘Kerberos [227.
The user receives a ticket from the Kerberos authentication
server after exchanging encrypted message. The'ticket‘will
allow the user to access the networkvservices, which
specifies the limitations of user’s access, then the ticket
can be sentbover the network in the distributed system
without'aending the user’s password. The Spider system will

use Kerberos as part of the security service.

3.3.2.2 Acceés Control List‘Server
The Access Control Lists (ACLs) [14, 21] allow a user

to receive from the file server permission to operate on the
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wapartlcular flle objects or dlrectory objects that are storedi‘,;

: vln the flle server The ACLs glve the authorlzatlon to

h-cllents and 1nform whlch users and groups may access the

:'iresources Therefore, each object 1n the Splder system 1sff> T

"{f‘protected by an ACL When a user requests an 1nvocatlon on

San object serv1ce, the ACL server w1ll 1ssue an ACL to theif;ffab

robject dependlng on the user s tlcket

There is no. central ACL server 1n the Splder system, ‘

'.,fwbut each flle object 1s assoc1ated w1th 1ts ACL server e

'",fdependlng on 1ts locatlon To modlfy the access rlghts of

-uﬁ;the objects,‘only the object's owner has the ablllty to

,gﬁsperform a hlerarchlcal control [21], whlch allows the owner ﬁg;ffl

3Vto modlfy the ACL of the object and all the objects below 1tsf

1“fln the hlerarchy

The ba51c steps for a user to log 1n the Splder system

'“ﬁand use the system serv1ces can be descrlbed as follows (see

bfiFlgure 3 12)

e joa) Log 1n the system The user types the username and

*a,;password‘

'1kﬁéﬁﬁhéﬁti¢aﬁés the,user" rants the thket to the

Cuser.

_ c) Request service. The user sends the request

i R P

The Kerberos authentlcatlon server'y7**"’ff“ﬁu”




Issue the ACL. The OSB contacts the ACL server to issue
a proper ACL to the user.

Give ACL tO'the_object; The ACL server assigns the

capability for the user td‘aécess thevobject.

Reply to the user. The object performs théuréqUested

services according to the ACL and gives'the results to

the user.

. “Kerberos
1. Logs in

2. Grants ticket , .
User 5. Gives ACL.

6. Replies to uéer

3. Requests service ‘
: 4. Issues ACL.

Figure 3.12 The overview of the security model.

The security in Spider should be stateful, but we

choose it to be stateless. Spider is designed as a

distributed object system, and:every server object invoked

by a

user has an ACL to accompany with it. Because a user

receives a ticket from the authentication server and this

ticket gives the certain privilégétof accessing server
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':fobjects, the securlty 1n Splder does not'need to

flnformatlon of user s act1v1t1es s

~V[3 3 3 Clock Synchron;zatlon”;j]]f;,;

In a dlstrlbuteelsystem, the absence of a global clocwityﬁp

'f;[Zl 23] may causenthe'system to be in. a '1nconslstentvsta efffitw;ﬁb

’ "fgjfbecause all workstatlons clock*are not synch‘onized T



THALT (Pcas)

F:.gure 3 13 Clock Rate Synchronlzatlon [18] i

‘t;.The relatlons between_these machlnes can be determlned by.}fy

, 7ffthe follow1ng equatlons [18

TTRANS(PC!RS/ Pc) [Tb(Pc"‘ Ta(Pc) = VTHALT(PCRS)]/Z

rmus (Pl, Pc) = [Td (Pc) - (Pc)f- --THALT (91)1/2

_,‘Tai_l_(Pé) ] / [ Td (PC)? - Tc (pc ) ] %

_synchronlzatlon,

. the Spider s

where the “‘fef



Science at CSUSB, Park’s algorithm is applicable to the

’Spider system.

3.3.3.2 DuVall’s Simulated Global Clock

DuvVall’s simulated global clock [5] presents a more
efficient algorithm for clock synchronization which combines
the features of Cristian [4] and Park [18] toibe a hybrid
ciock synchroniZation algorithm. Duvall refined Park’s
algorithm to be able to synchronizevsysten clook with‘the-
Universal CoordinatedvTime (UTC) rate, and:Duvallfs
algorithm dOes not_need periodical_re-runs for clock
'synchronization. -

Duvall’s algorithm adopts the transmission time
estimation from Cristian and offset to localvtime’from Park
[5]. Periodically, at least with each configuration ohange,
thia algorithm willineed to be run or re-run. If the
coordinator has accessed to the UTC source, the physical
global time can be maintained in the system.

In the Spider diétributed system, the clock
synchronization Servér.will adoot DuVall’s algorithm to
provide a consistent'global clock. The clock synchronization
will appiy.when the system start up. If any machine has

crashed and then boots up again, only that particular
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'Lﬁg_ln the Splder system

;f%[machlne w1ll perform the clock synchronlzatlon,,not aﬁlffif

".machlnesgl"'he system need to re synchronlze agaln

| 3.3.4 Scheduling Server

.‘-iof workstatlons, so that a user 1s able to us ‘

%TheﬁScheduling-serVice_alms to max1mlze the utlllzatlonyzf"

*1dleuor«under;f”‘

f‘utlllzed workstatlons The maln goal of a dlstrlbuted systemlﬁf*"

Jf 1s that a user can make full use of all avallable resources,_f:”f'””'

}fkjflncludlng computlng power of,workstatlons HOWever, we don t{i@fgf;*

”»ﬁwant users to 1nterfere w1th,ot'er users work, so,_only

'“byldle and under”utlllbed workstatlons are avallable for usersf‘fggV"*

jThe Condor sf '

:f;f‘successful 1mplementatlon of process schedullng The Condor

f;system prov1des a scwedullng mechanlsm to schedule long

~7frunn1ng background jObS at 1dle workstations T“Talso has

hf;the checkp01nt and mlgratlon fac1llt1es 1n order to support-f

"'{lthe fault tolerance If an 1dle machlne 1s logged in by a

'ffgcheckp01nt

v27;user or crashed the mlgrated jOb w1ll be stopped and be

bmlgrated to another 1dle‘machynes That job w1ll restart ‘at f-‘f

-the p01nt where the program‘stopped accordlng to 1ts

Slnce the checkp01nt mechanlsm 1s used for the}l}f

‘schedulrng servlce,vlt 1s necessary for the schedullng
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}ftask executlon,

7nfbecomes busy,

R 31;1-;14.“2;-1:'paai-inggséfvér;1 -

N'} When a»user wan's.the sche»‘llng serv1ce,.the poollng fﬂbi n;'”

"jserver w1ll?collect allfldle and under utlllzedfwor statlons [:i””

o, :1n-j 1t 'S'._j;p.O..Ol. S






':,-"‘legrate_]ob

g Mlgrate "ob, -

'Workstatlons' " R

h:f.IHectscheduhng)ygf5*~*5»"

In thlS chapter, the stj

user appllcatlons and FSs prov1d
ff_dlstrlbuted serv1ce env1ronment

“*'fhetercgeneous computlng”

”"ﬂ-mlcrokernel is needed tow

1““3fﬁfforwthe Splder dlsiﬁjmy

. manager -

" Figure 3.14 Job migration via scheduling server.

3.4 *cbnelusionsfof.tﬁe?sﬁiaérmf];g:?*”“'

‘hdspec1f1ed and des‘gned Toﬁachleve the object orlentatlonQQf'”dt“’

dw*ffor Splder,_OSB offers'a transparent object 1nvocatlon for M.j]{;h

gcture of the Splder 1svff

an object orlented and

Because of theiciﬁfﬂiﬁg
“‘n CSnet the Splder s

nfrastructureg‘;

'f 1system The functlonall 1”s_of‘.




"In Chaptéi 4;‘the‘Dis£ributed Cémputatibn Service in
Spidef is implemehtéd. To proVe the‘validiﬁy of.thevdesign, )
OSB,‘Registry Server, and Task Manager arevimpiemented in
bbjeCtéoriented approach and then tested for Qofreét

execution.
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,p‘To desi§niiﬁ object;orientatiOh, Wejmusﬁ previde‘
- i"ebjeetsbtevhai{e‘'th’.reecharac“f_‘er";istfi‘"es tié]g eheapSQiatien,p
1inﬁeritanee; and poiymerphism.p"°r' |
';”EﬁcapSUIatiQﬁ means‘thafiaﬁtobjecpfe'dateendvﬁephode
 aren’£‘ecceseible by,the‘objectfepueere exCept“Vief
*its,meﬁhodsqlln C++ progfemmingplanguage, we can.uee
pfiﬁetebto eneapsulate phe deta»and‘methods fromithe
outside wald.* | | ’

- e Inheritance offers.ebjecﬁs‘te bevfeﬁseble. Child
objeCts‘dovhof need to‘implemeﬁtycdee; bﬁt can'.
insteed directly’USe and build:uponlfhe code that’ie
in the perent. | |

ofPolymerphiem of objecthrieﬁtatien ie'thevmost
.eemplex.te describe.ePupvsimply, polymorphism means
- that the‘qSerVOf two‘different objects can, in some
Vweye at’ieast, tfeet them as if they wefe the saﬁe.
For example?efwe objects, one representing your
cﬁecking aecount and aﬁothef your savihg acceunt.f
These two‘accouhts aimOSt have the sameh'
pcharacteristics~fer yeﬁr’baﬁk activity, both of them
offeﬁ'depositand‘withdraw methods. Hewever, the
saving acceuhf ebject’eiwithdraw‘mefhod may probably’
just check theyamouhtﬁto‘be'withdraWn aéainst,the

account balance. The transaction‘either‘succeeds'or
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| P fmfa1ls Wthh 1s dependlng on the*reques_ed amoun

fexceedlng the balanc’ ‘r*not For the checklng

fnaccount the requested withdrawn amount may exceedf

'lthe balance,vlf the exceedlng amount 1s w1th1n the

L;imltfofian;automat;Cﬁloan, Wthh can protech}‘

:z;oeérdrafts,f,.j;;e,;

These 1mportant object or_enta o1

‘7,ﬁapp11ed to those objects 1n thlS 1mplementatlon.,F1gure 4 1*‘5:

“'hsshows the overv1ew of the Dlstrlbuted Computatlon Serv1ce.f

ééUiDaembn’" o | ) WL
.. Application /

g FJ.gure 41 Overv:.ewof D:|.st 1buted Computat:.on Serv:l.ce




“*&j 4 1 1 Object Serv;ce Broker (OSB)‘

OSB plays an 1mportant role 1n’the Splder PrOJect The,aifﬁy‘

L maln‘functlons of an OSB object are:

to locate the reglstered servers from Reglstry

;S@:Ver (RS) accordlng‘to%the-cllent’Surequest;}[TTT”"

:f”ob to the Task Manager (TM)qinporderf’l

V“f;ffor the ™ to monltor the executlon,‘:

'v"sﬁ‘,to actlvate the remote, erver object‘and conveyythe:,,_'g

,gf'qcllent’s request to that server object,'and

Vfdilxto notlfy TM that the jOb is flnlshed and deactlvate‘“*Vt'

the server object

:_When’@.SerVerv“

yject needs to request for another

lserver object( )/blt also requlres the OSB to locate and

“lactlvate the remote object( ) OSB 81mply talks to TM

lbrequestlng fo_iany avallable server, then actlvates the s

"'server object on the remote machlne RS

'nt4 1 2 Reglstry Server

The respon81blllty’of the Reglstry Server, which
*fmanages a serv1ce data base,:ls to prov1de an . avallable

~¢w¥reglstered servers llSt by verlfylng the request from OSB

”-dThe assumptlon for the thrlbut\deomputlng Serilce 1s that

: every machlne 1s 1ndependent and may or may not share the .




‘.'DCS Thus}, a mlrror TM' objec

© 4.1.4 Java Graphical User Interface




DCS. Java“aépléfs'are able to rﬁﬁ‘oﬁ any piatforms'whére,
 »there‘is,§AWéb,browser’(é;g./Netécape andeicrosoft 
Ihtérﬁet ﬁ§pIof¢r). Therefére; ahyone’is able‘tQ écéésé the
ispiderFsvDCS through Iﬁterﬁét(,ifjthey aré'éuthoriZéd users.
Bécause:of:fhé InternetfsécﬁritY‘issﬁe, uSe£$ can’t

send fiieS‘tO'theiorigihal web servers, oOr open thévsérvéfsa»
side,filés'viavJaVa applets. Thﬁs;vthis GUI.éaﬁ onlyvshbw
‘simplédemonstrétions to[uéé£s how_the distribﬁted.i |
‘computationiis beihg done. If‘users»want to use theée
‘sérvicesj-thgy ﬁust loginvin the CSnet and create their éwn
client'programs and access £he;bCS in text modé}-Figure 4.2

shows the state diagram of the Java'prdgram.

‘
Exit

"SOrﬁng
Window,

hoose Vector -
\Addition

Choose Matrix
Multiplicatiol

Figure 4 .2 State dia’cjram of Java GUI.
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frame, panel, and dialog

rovides hierarchies of common

objects. Since Java already p

we create these objects by imheriting existing

classes. Figure 4.5 shows the hierarchy of classes used for -

‘this implementation. The hi

classes.’




“““ - ‘ ‘ Graph_base

A

Matrix Distributed ‘
Multiplication SPIDER -

Display Help Dialog

Java deﬁn‘_ed classes } [— - Classes nbt listed

User defined classes

Figure 4.5 The _hierérchy of GUI Java classes.

4.1.5 Communication in DCS
RPC and BSD socket interface are used for the

implementation’s communication mediums. There are three
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interfacesithat are defined as*interface definitions:for fh
;'thesepservice objects% dlstrlbuted qulcksort matrlx’“i
multiplication, and uector addltloh Because the IDL
compller for the Splder PrOJect is not 1mplemented the ONC»I
‘RPC’s RPCGEN compller is used to generate all cllent and T?hh
server stubs. These stubs prov1de the proper datab‘v |
conversionS'for cllents and serverfobjects.

“For thellmplementatlons of server objects, the BSD
socket interface>is'used fOr-communlcatlon. TCP-andiUDP
»uprOtocolsvare empioyed to Suitjforvdifferent,needs in‘this
<implementation The table of Flgure 4 6 descrlbes thev

protocols used for communlcatlon in- thlS 1mplementatlon

Type'” |~ Protocol

,cllent server : . . . RPC

0SB- Reglstry — | wpop

‘OSB Task Manager : ) — TCP
task-Task Manager L - TCP.
Task-task —Tcp
‘ .SVR_OSB—Task’Manager ‘ e ‘ o TCP
‘ :task—Java Daemon } - o | :._UDP

. pFigure'4.6 The.prOtocoi_tabie.
To understand the procedure of the distributed
computation in the Spider system, Figure 4.7 illustrates the

steps of the distributed computation.
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Client cla's,'sj{;

RPC Server—stub
. c1ass ”

RPC Céient'st‘ﬂ’ e " Task Manager " Tmplementation = | -
: : ass o ! R

Reg:.stry Server

L) 48 Object : iﬁo@e_l 'Iv:of‘ DJ.str:.butedComputat:Lon Serv:.ce 2

'v:-'iﬁ’fa’;_d' st‘ribi-i’t-éds a'ndi-»spé‘ra'lflre‘l‘ ma he“-‘r, whlch ar‘e




.f:gresults =

";d_sectlons.ﬁ"g?l_

‘lﬂd:4 2 1 Dlstrlbuted Qulcksort

'the jOb is executed :they jast~need to

receive the correc

b Sortlng matrlx mult'pllcatlon, ahdfﬁeotOr"additronfarefﬁl

‘common computatlons HOW?'hese,three problems solved in’a

‘:”tdlstrlbuted computatlon is dlsoussed 1n"‘ :

algorlthm‘prov1des a fast and eff1c1ent5i

“way to sort data by recur51velyucalllng 1tself The,frdﬂ'f

}“algorlthm 1s expressed as’ follow

']Array A[l s N] is to be sorted

v ]procedure QSORI( lo, hi) - ' S : SO R

. /* sort array A’ from the louto hl 1nto ascendlng order on.'

fffkey P. "Key Pp 1s arbltrarlly chosen -as “the’ control key
-\Pos1tlon I and j are ‘used to partltlon ‘the" subflle SO that}u”
f‘at any- tlme Kl < K l < i and K 2 Kvﬂl_>“j It is- assumed "
~that" mn_;K . - S DT E

lef lo < hi-

" forever . -

aswap(A[m] A[j
‘call QSORT(lo,V
\call QSORT

erage compu




The algorlthm of dlstrlbuted qulcksort 1s to deflne a

max1mum number of data Slze that can perform qulcksort 1n

m'one machlne If the 81ze of data 1s larger than the deflnedlf'ﬁ .

s1ze,_then the data 1s partltloned lnto two parts and glvenf”

to two chlldren Wthh 1n turn apply dlstrlbuted qul“ksort

recur51vely The algorlthm 1s flven as follows

'lﬁArray A[l ‘;‘N], mlnimal data count”is M- o
fjprocedure Dlstrlbuted Qsort(B lo, h1)

~/* B 'is '‘either part or entire’ of array A The lo and hl 1s}f3”
althe lowest and. hlghest p031tlon of array B, respectlvely p L

is the prOt p01nt of B after partltlon ' /
if - (I have parent) ' :
then I e /* I am the Chlld */
recelve data from parent s
'?JN;f ((hi - lo +1) < M)
 then [ call QSORT ' =
: ﬂ, send the result back to parent ]

else I : S L i

o ~_«part1t10n B 1nto two parts Lo

fﬂfsend two parts. to two chlldren.'
o wait’ for results from chlldren
“=jp‘send results back to parent ]

"else [ fﬁ “*H-d /* I am the parent */
| ‘1f ((hi - lo 1) <M.
) . then [ call QSORT
- - dlsplay result ]

,.ppartltlon B to two parts BRI
'wgsend ‘two parts to two chlldren;fvmt9
‘wait for results. from chlldren
l'fdlsplay result ] '

“f;endefstributed;Qso; o

The average computlng tlme for the dlstrlbuted

;quICKsortVLsfstllly;nﬁtheuformyO' 3;but N may vary.and ;fQ
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4.2.2 Diétribﬁted Mé.i;:’;ix 'Muitipl?ifcation
"Thefaveragejcomputihé time of £wo NXN;matfiéeé is_
_ O(Njf/'which ié reiétivélyhigher.than éﬁiéksort; The
,aiéofithﬁ for:disﬁributed,matrig multiélicatién is to
diStribgte‘the data to se?efal_machines and evefy machine
"pérfbfms the‘combutatioh‘for the porfiqn,of the matrix 
mulﬁiﬁlic&tioﬁ-in‘parallel. o | |

,-Assumé that weluse'M machiﬁeé to perform the
computation.fThe‘mulfiplier'is’separaﬁéd intov(N/M) sub—
ﬁatficés; and each child only computes (N3/M) .
‘ Therefo£e, the,tbtal avéragefcomputing fime is‘O(N3/M);
figﬁfé 4;107depi¢ts_the distfibuﬁéd'matrix mﬁltiplicétion,
 A {w“;;;Qm;T , B,é@};/.mvmfl .....

Matrix size is NxN. - LRl :
Sub-matrix size is MXxN. O(N°/M) for each node
‘M<=N C ,

Figure 4.10 Distributed Matrix Multiplication; '
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"3;€d5n1

The transm1581on?t1m‘ s a major 1ssue durlng

'rgjcomputatlon, and we: w1l dlscuss thls in Sectlon 4 3 ﬁf

4. 3 Performance and Analy51s fﬁpdr*f:‘fg‘ﬁ'

The maln purpose of the dlstrlbuted computatlon 1n the

"T;Splder System 1s to prov1de a faC1llty for submlttlng

_dhcomputlng jObS w1thout worrylng about resources on -ow‘the

rffjob 1s@go.ng to be executed The entlre 1mplementatlon 1s.h?

,therefore, there are unav01dable 5"”7

ﬂoverheads 1n communl atlon and data transmlss1on-gi

2 The performance of the dlstrlbuted computatlon w1ll be_tf i

“?hvanalyzed and compared w1th Parallel Vlrtual Machlnef(PVM) foﬁ“‘>'i

'ﬁ;,the SGI Power Challenge,»and”a 31ngle SGI WorkStatlon :

'j4 3 1 Comparlson w1th PVM

The major costs 1n the 1mplementatlon of Dlstrlbuted fft” o

,7Computatlon Serv;ce,are the't;mebofbdata transm1ss1on 1n the, vf.f

:erver objects (OSB and server_iif?f”




”n'showsgthe cQﬁParison7cffthehccntrQifnessagesiékchangeddinfﬂTﬁvf.f

- tﬁésé,tWO‘sysfems.

i Dlstrlbuted Computatlon Servnce in Splder

Where ~~ | send and recv | -

0sB- Reglstry .~f-~5'f1 T3

OSB Task Manager o 6

SVR OSB—Task Manager @g#tjfﬁv;1;n§[7:f

Total jf'f)ﬂ;fﬁﬁf :?ﬂ»29+11N?7¥,fﬂfwfc;'5

x N is.,tlie,number of serve'r o‘bjécts"t_‘l'néi.trl‘eqn,é'stv for chlldren from TM :

@

Parallel Vlrtual Machlne

Where .~ | send and recv |

: ‘Task Task_f--

- Task-pvmd =

~pwmdpwmd

“TfiiJTOtait; if;flﬁvrﬁ | 2N + 2

S & N :LS the total number mach:l.nes runnlng pvmd

F:.gure 4 f,1_’2v'C;':cn'lil"':ar:i,.’sor‘i of the egn_tﬁrelt,. nesisades.’” S e

VIAcccrdin§7tcfthe:ﬁable

"V‘the‘D ,trlbuted COmputatlon FA

;tlme a user submlts a jo’

s”to be exchanged before

PVM

Fgf:startlng the executlon’ needs to exchange'ZN control‘ zif

‘dﬁmessages when there are N machln s;fre added to the PVM

hsystem,.and each spawned task needs to contact 1ts local e




 one of the 50T vorkst

' machine are chosen to te




2 1Ma rix ;;;Mu;lt:,.plléat'ion
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is higher than the program executed on a'single machinev(SGI
workstation and Power Challenge), but‘the‘averagevuser time -
for both DCS and PVM are much smaller than a single SGI

workstatidn;

4.3.2.2 Vector Addition
The maximum array size tested was 100,000 in the vector
addition. Figures 4.15 and 4;l6ishow the comparisons of the

‘average reél‘time and. user time for different'systems}

Real Time of Vector Addition Execution - ,
S ' - ' —e—SGl o
%7 | —m—CHALLENGE |
gl —a—SPIDER -~ |
: o —%—PVM
o 151
£
10
s ‘
0 ———— & * —
o 10,000 30,000 © 40,000 50,000 100,000
' © - Vector Size ‘

Figure 4.15 Comparison of Vector Addition in real time.
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User Time of Vector‘Addyitio’n Execution

. —e—SGl
45 — ] ’ : ) . —l— CHALLENGE
4 ' ‘ —A—SPIDER
3'2 T —%—PVM
@ 25+
£
= 2+
1.5 +
14
0.5 +
0 f — . !
Lo o o o o o
o o o o o
S S S S S
o o o o o
~— (2] ) < [Te} 8
Vector Size -

Figure 4.16 Comparison of Vector Addition in user time.

In this test, the performance of programs executed on a
single machine has a shorter average real time than DCS and
PVM. For the average user time, DCS has better performance

than PVM and a single SGI workstation.

©4.3.2.3 Distributed Quicksort

The maximum data size tested was 100,000 in the

distributed quicksort.
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Time:

Real Time of Distributed Quicksort Execution

30 T

25 1

20 - —e—SGl

15 - —m— CHALLENGE
] —4A—SPIDER
0l ——PVM

0 —i— : ,
0 - 1,000 5,000 10,000 20,000 = 50,000 100,000
' Array Size

1
1

Figure 4.17 Comparison of Distributed Quicksort in real time.

User Time of Distributed Quicksort Execution

3 T —e—SGl
—m— CHALLENGE
25+ —a— SPIDER
) —%—PVM
(]
E 15+
'—
14
0.5+
0 W= L S : 4 :
0 1,000 ~ 5000 10,000 20,000 50,000 100,000

Array Size

Figure 4.18 Comparisoh of Distributed Quicksort in user time.
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In Figure.4.;7,“DCS faiied fovprgvidé,a‘édoé '
‘perfo:maﬁcé férvreélutimevtest;mwhere DCS héa'the:ﬁighéét;_
- real.time than the other’threé systems; On‘thé éther‘hand;
DCS andIPVM_have_a very competitive pérformanéevinwuser

time, see Figure 4.18.

4.3.3 Analysis

Figuré 4.19 shows who has the best pérformance in thé
group. The Silicon Graphics;Power Challengé XL»has sufpasSed‘
Spider, PVM, and a SGI woikstation in\qut performance
tests. When those test programs wére exeéutéd*on the Power
Challenge machihe, each‘program was pértitioned and running
on four CPUs in a true paréileliém;'therefore, Power
Challenge showed’tﬁe best performance in the.overall test.
PVM has‘an impressive result in the matrix multiplicétion.
Although the Spidér’s DCS fails to improvetthe program
executioh‘time, DCS still improves the user timé in all

three tests.
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N Matrix Vector Distributed
Test |  Multiplication Addition Quicksort
Machine Real TimgUser TiméReal TimeUser Tim¢Real Tim@User Timg
'DCS
PVM . X | X
- CHALLENGE X | X | X | X
v SGI Workstation

X: indicates the system that has the best average time among the
group. '

Figure 4.19'Performancé analysis table.

" The major éosts of the performance in‘the DCS arevdatar
transmiSSién-on network,*remote‘Object écti&atiqn, and
waitiﬁg'for ™' s serviceS;ICurrenf neﬁwork éonfiguration in
the CSnét’(see Figuré 2.1)'relies on the Ethernet, which-can
only peride 10 Mbps bandwidth,_Tévactivate_the remote
server ijeét, the rsh function call ié used which contain
some ovérhead when invoking a Uhix‘system call. Furthermore,
the time Spéntvon waiting,and talking to Task_Manager,
espeéially ihjdistribuf%ﬁ quicksort eomputation where a
numbef,of éhildren aCceééing thé TM:simultaﬁedusly;‘is the
‘main'faqtor of the'slbw‘peﬁformance;'

Téfpféaiét the esﬁiﬁatéd‘évefheaaiih the_DistribUtea v

Computation Service, we analyze the time spent in each
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| thotal >= [9 -+ 11 R (;2LT_1'—1‘-)’.1:1‘]"4;’ * Tp -l- To :

2*(N/(2L'1*P)) + 5) * Tp

Each parent spends}T7‘when 1t needs chlldren by talklngi?f__fl‘x

7fto TM. Thus, the estlmated fransmlttlng tlme of all llnks

'can be expressed as follow R
‘:_’lLT » : ~“I‘1L'1‘2>

2[2“*«N/(2‘2*P) +5)* T) T, 4 T] + ZzlééT @

12 ‘ R ‘ :A_‘>'10

':‘Thefcontrolvmessagesffor;the3exeCQtidhaisf9+lln)jWhéfeh,‘

_the n is the number of parent nodes The;tranSmissionitime;‘

*for the control messages 1s, 2
[9 +11 *,, (2“—1)] *Tp o @
Accordlng to the equatlon (l) and (2) lwe canefindfthel

sestlmated tlme of overhead for a program 1n the DCS as:

b LT . o . s 1 LT_2 o ‘ _‘ LU

2! . i=0.

'l“‘where‘(9+ll*(2“ ))1s the number of control messages j‘;;,?
"gfexchanged and the To is. for the flrst server object 'ff:fiF

_ dexample, g1v1ng the follow1fglmeasured values

.,;’l T 1s 0 84 second L
T, is O. 79 seconds-; e
M 5000 ' .

“f;Tdis;0,0Z second i
o Tp'is 0.018 second e
']N= 20000 o




. approachlng the best

then, LT = |_10g2(N/M) _| 3 and C 4 |
Thus,uluv . S
" Tiotal = (9+11*3) *T + To

S e S
Z[2”*((N/(2*2*P) +'5.‘,)1* T) + T + T] + Zz'*T

‘12

11 99 seconds

'IjThls Tunﬂ_ls the total-estlmated overhead durlng
vexecution If we add thls.to the tlme that‘a program spends]d
in 1n1t1allzatlon,‘computatlon, and prlntlng message to the,*
termlnal the total executlon tlme w1ll be about 13- 15

B seconds hThe average tlme forylnltlallzatlon; computatlon;hv
'lrand prlntlng messages dnrlng executlon rs 2 48 secondsit -
'_‘Thus, the estlmated tlme 14 47 seconds The actual executloniffv“
tlme of the same data‘slze ln the.test 1s 17‘81 seconds Thei

estlmated executlon tlme 1s smaller than the actual tlme'

becausenwe aSsume;the“‘ t)ork load is steady (theidata*

N transmisslon ié’a;cg ant) and data 1s always partltloned

":1nto two same 51ze of data Therefore, the estlmated tlme 1s{7v?v7y

“aSefoffthe,chputrngttlme_of

’Dlstrlbuted‘Qulcksortfandf fsmaller,thanftheféctﬁal

'measured tlme from the'test;‘fFrombthisfanalyslsgﬁwe are.ia e
llable to know that the maln cost for dlstrlbuted qulcksort 1s'
'_data'transmrsslon, Wthh takes over 80 ofjtotal executlon




:’the object’s machlne load durlng the executlon.vThese*

'factors also can affect th‘sslow performan“efof DCS

‘1354 3 3 2 Ana1y51s of Dlstrlbuted Matrlx Mh.tlpllcatlon o

Slnce'the ba81c computlng model of 1str1buted matrlx[ Lf'

gmultlpllcatlon and vector addltlon-areHS1m:lar to each

ij;other, we present the analys1s of estlmated overhead of

&pdlstrlbuted matrlx multlpllcatlon 1n thls sectlon

The meanlngs of symbols 1n the analy81s are . explalnedifgf}l'

pas7followpﬁf”57b

’Tgi:thevaverage tlme to start a- remote object o .
- Ty the average. tlme for a ‘node to pack and unpack data T ‘
© Ty: the average time’ for transmitting one packet of message.uingm.'
© T,: the average’waltlng tlme “to get the serv1ce from TM L,v_V‘

'N: the- 31ze of a matrlxv(NxN) e S R
" Npin: the’ mlnlmum size of a matrlx that the multlpllcatlon 15‘
- performed locally. - o A :

M: the size of a sub—matrlx (MxN) : o ST

'P: the number of ‘élements. of afpacket (maXimallintegers,tO'bef
ST transmltted at-a time).: . e T
. C:'the maximum number of . chlldren L R : ~
*Note: each- element in a. matrlx and a packet is an- 1nteger and

L, aS”4 bytes represent‘tlon in Unlx s stems.‘ ' -

‘fsubjmatriCes; 1f N 1s’ reaﬁérjthah;Nﬁﬁ;Lif;N“>;&ﬁmﬁfﬁénﬁ_,’"




' *ttA'Mﬁ;dﬁBmm,,the s1ze of the product 1s MxN

:VfoThus, the total estlmated transm1ss1on tlme for the f_nf‘-

li»there wlll”be‘c fN/Ml chlldren to be spawned Each llnk

’7between p”rent and Chlld has the follow1ng number of data'7vlu

f;transm1s31on
(2*M*N + NZ)/P + 5

Because each Chlld only calculate the multlpllcatlon of

dlstrlbuted matrlx multlpllcatlon can be expressed as _d;‘
follow

':og*f[((24m*Nf4.N2f/é¢+is)*ifﬁ%,T°AJT5]

The control messages for the executlon is 20 because ’l,lﬁ7

‘mﬁln the computlng model of matrlx multlpllcatlon and vectorrpg e

addltlon there 1s only one parent durlng executlon The

transm1881on tlme for the control message 1s 20 d T

’f -Therefore, the estlmated overhead for a matrlx f'ﬁ

lvmultlpllcatlon program executed 1n the DCS 1s

| ;Tumﬂ_— 20*T ”"”+-T +-C*[((2*M*N + N )/P & 5)*T ¥ T°+-Td] |

'*“For&examplei 'ngxthe follow1ng measured values -

;T is 0484 second
fTw}S 0. 3 second

’,lftTdis 0 02 secondbz

i B th'en_,",{f‘
_'."I'_“husv',‘ ’

! Pegpat = 2 + o [ ¢ <,2%M*N N /P 5) R+ To+ Tal

' 24 08 seconds -




" This Tugﬂ_is theltoteliestimated overhead during
execution. If We add this_to the time that a program spendsn
in initiaiiéation, computation, and I/0 , which is 1.04 |
seconds as an average, the total estimated execntion time is
25.12 seconds. This estimeted result ie oiose to the actual
avetage execution-time of 21.07 seconds;

When‘the‘matrix size increases, we can expect that the
estimated ovefhead wiil‘inctease linearly.iThe overhead for
distributedtvectorvaddition elso has,the same estimated

overhead tendency as the distributed matrixvmnltiplication.

4.4‘1Conclusions of.the‘Implementation

‘The Distributed Computetion Service for the Spider
Project i1s designed and implemented. This implementation
shows:that the DCS provides a transparent-computation for‘
user applications. The performance of thekbCS‘may not shom
good‘resnlte,'butathe perfOrmance‘is not tne mainiconcern’of
this implementation. The DCS is‘ablevtovredUCe the CPU usage.
of the user’s local machine by distributing jobe to other'
machines. Furthermore, this oompntation‘model can be used to
solve other;oompleX’probleme‘invparallel,and distributed
manner, such ae‘NP—complete problemsv(efg;; the'Traveling

Salesman Problem and finding Hamiltonian}cycle).

100



PVM is a daemon—baSéd software applicatidn, every
machines in a parallel virtual machine are inteffConnectedf
by its local pvmd that speedsvup the tasks’ exécution. Also,
all data_trénsformation and‘representation are~built in the
libpvm library, which offers the ease for users in
pngramming. The prototype of the DCS in'Spider can be
optimized énd‘improved by the followihg'suggéstions:

a)optimize the amount‘of,messages exchanged during

execution by using pécket—oriented methodology;.

b) provide én application program interface for the

ease of porting uéers programs to use DCS; and
c)reducé the costs of data transmission by using the
FORE ATM backbone network which can transmit daté‘ét

155 Mbps.
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CHAPTER 5 Conclus:.ons and Futur D:Lrect:.ons.':

We:havevshown the spec1f1catlon any»de31gn of the

USplder System and the deflned functlonalltles for the Splder"f_f"

('.‘1n an object orlented approach (OOA) We 1dent1f1ed flve‘ T

‘vfunctronallt;eSndrr:the Splder System and they are

f*securlty, clock synchronlzatlon,-Tuﬂ’N*

'{fschedullng serv1ce,,and dlstrlbuted computatlon serv1ce The:fV,f:'
:;mplementatlon of the Dlstrlbuted Computatlon Serv1ce (DCS)‘
"yhas shown a reasonable performance from our performance

"yjresults ThlS chapter w1ll conclude the work for thlS the51si

andﬁgrv }future dlrectlons

d5;1’fé‘hc1u§iénsifortthejépecification;and Designfof_the 53:]

Splder Pro;ect

In thlS thes1s, the baSrc structure and maln components )

.'fY(Mlcrokernel-=OSB' andﬁF:nctlonallty Server) of the Splder

:System are de31gnedfyf: 1ven the spec1flcatlon of flve

:functlonallﬁ;es All the components and functlonalltles 1n

fthe Spl_er must be 1n object oplentatlon,;-niorder to #f9f

' 51mpllc1ty in'addlng more features 1n the future ﬂf




'flmplementatlon of DCS w1ll prov1de a tes

LT } From the survey of Sun s Sprlng [14],2'SF’s DCE [l7

jf;23], PVM [7] fand Condor [24],-we are able to adopt thelr “Tf,

fstrengths for our des1gn The Splder Pro ect and the

ed»for people tomw'"m
'do related research on parallel and dlstrlbuted computatlon

vThe derlvatlons of those functlonalltles deflned for Splder

'iufare descrlbed as follow

) The Dlstrlbuted Flle System (DFS

‘ﬁflskdlfferent than monollthlc systems (e g ,.UNIX)

ThevNamlng Server, Dlrectory Server,7and Cachlng ﬁgd‘e!p&ﬂ“*

"m”Server of DFS arefdeflned to prov1de a transparent

| ﬁ%and coherent flleyacce551ng for users“ The strengthsflﬁ'

:of Sprlng Flle System [l5] and DCE's dlstrlbuted

h'd*;flle Seerce [17"33] are adopted for de81gn1ng the :?ff

“ilbeecurlty 1n_Sp1der 1s‘des1gned to. protect the whole 1T

,romuany'unauthorlzediand

3;‘3inapprdpriat .access of objects “The Authentlcatlonf*?iyﬁ_;f“

dferver and Access Con" l{Llst Server are deflned@: ,p{};lﬂps

?for users to access any oyject that they are




' 'd“seryice {17, 23]'for,the?designnofhtheﬂsecurityIinf;_v
‘skfsplder
?cYSchedullng serv1ce 1n Splder 1s des1gned to offer:iﬁr‘

o 1ntelllgent serv1ces for user appllcatlons The

’-‘ffSchedullng Manager and Poollng Server are de51gnedi5_3?r1

»]to mlgrate user s appllcatlon on one or more 1dle""'
ff-and/or‘low—utlllzatlonwworkstatlons. Users are ablei"°

;fto utlllze as many workstatlons as thelr

h’appllcatlons needed for Computatlon from avallable ff,.v

3Amach1nes The concept.from the Condor schedullngtd
z;system and the schedullng algorlthm [13 14] arél;;_f
':adopted to des1gn the Schedullng serv1ce of the ~_?ta
Splder System : )
dyDlstrlbuted Comoutatlon Servioe adopts the bas1c
d_de51gn of PVM [7] to prov1de an transparent and

“,dlstrlbuted computatlon for user appllcatlons o

5.2 Coﬁciusions.for thefDistributéd'Computation:Servioe}fg'

By’ u31ng the soecrflcatlon and”desrgn of the Solder
System, we 1mplemented‘the Dlstrlbuted Computatlon Serv1ce
:for Splder In the current‘lmplementatlon of DCS the three
',serv1ces are proylded _; dlstrlbuted qulcksort‘ dlstrlbuted
matrlx multlpllcatlon,‘and‘dlstrlbuted vector addltlon

.These serv1ces employed the conceptual object orlented



des1gn of the Spider PrOJect which inciudes Object Service
Broker, Task Manager,_and Registry Server to a581st the
Distributed Computation SerVice o

PVM [7] shows,an eXCellent work.for programs'executing
in. a heterogeneous computing enVironment which is able to
collect from Single CPU machine to multiprocessors as -part
vof,virtual machine. Avset of prograﬁming interfaces and
'libraries‘areiprorided_for user-appiicationsiiTofprovide
fault toierance}bPVM’allows,user program to delete’or»add
machines during operation; However,:usersfneedvto configure
each'machinefs enﬁironment variablesifor'PVM daemon and |
flibraries,‘andauserS'may need”to add all machines to be
included by the PVM or submit a host flle ‘to PVM when
starting up PVM After the Virtual machlne is configured
susers may run their PVM brograms in a distributed and
iparallel mannermkéi |
The majorvdifterence of DCS,and:PVMhiS-that DCS,doesb
. not require‘users to specify that which machines are going
to be.inCluded'in the’DCS;,The local Registry Server and
_Task»Manager‘cankhaﬁdlehall avaiiablevresources for user
Uappllcations OSBxis able toulocate,the remote machines and
activates remote server object to perform computation Users
‘have no knowledgehof knowing whichvmachines will be used for

the program computation. To avoid increasing a machine’s
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workload, DCS does ﬁot aSSign‘ahy workstatioh‘to'be used
more thaﬁ on¢e; This can ensure to gef anéstér computation~
by limiting éach ﬁachine's workload. In PVM, ittis'pdssible'
forsa machine-to.be spawnedzmofe £han onéé.during
computation; | |

 {g.DCS also provides,thé fault tolérance. A mirror Task
Manager’server backups all task éétivitiéé_fromrﬁhe-Task j
Managér sérvef,in order to continue monitoring prograﬁ
execution, if the Task Manager serVervfails.

Figure 4.19 shows‘fhe performance éomparisons of DCS.
,Sincé the major cdsts of slow_performancé in DCS ére data
communiéatidn and netWotk.transmission,,DCS may not show a
faster’cdmputing performaﬁc¢. However) it reached the
objectiVe of ﬁeducing the user timé in coﬁputation andv
_provided a testbed*fof~usérs to»do reséarch on'distribufed
and parallél computation}.Furthermore, thé DCS is ablé to
provide a.transparency for'ﬁéér appliéations and fault
tolerance for computations.\>

| The technology of networking is improving every‘year.*
If the ﬁetwork used in tﬂe DCS implémentation is reélaéed‘by
ATM (OC-3c) or 0C-12 [23],:£he overhéadfof-data |
communication aﬁd traﬁsmiésion will‘be redﬁced to a.minimumi
of time and the performange for the DCS will be gréatly |

improved.
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5.3 Future Directions'

The Splder PrOJect 1s at 1ts 1n1t1al state, only the,

Dlstrlbuted Computatlon Serv1ce is 1mplemented We hope that

other researchers continue the work and 1mplement the rest

of the’defined,functionalltles. There are several dlrectlons

needed to be- pursued in the future:

)

The mlcrokernel is the heart of the Splder PrOJect,

however, it,ls_also the most complex component of

- the Spider. The major concern of constructing the

microkernel is how to include the various system

architectures in the CSnet.

To support a distributed object system, the IDL for

‘Spider should be defined and implemented in order to

provide a strong interface for all objects. We can

- adopt the specifications of DCE’s IDL [17] or OMG’ s

a'lDL [16] and implement Spider’s IDL in the future.

Each.defined'runCtionallty in the Spider Project

gives a direction for future researCh..There maybey

- o.new methodology and technology in the future. How to

vadopt the new methodology and technology for the

Spider system and determlne the needs of our

‘department become the most important dlrectlons'in_

the future;

107



‘ .d)Improve the DlS “1buted Computatlon Serv1ce by

inmplementlng a'programmlng 1nterf ;whereby a glven}
“uhprogram can . be partltlonedllnto components so that '
‘ Tcdfthey can be executed transparently 1n a parallel andfiﬁﬁf:

'”fQ d1str1buted=manner Furthermore, a graphlcal

“dfappllcatlon too‘ can be 1mplemen “in- order to

’T;iprov1de easy manlpulatlon and transformatlon tools

ﬂwﬁfor orlglnal programs 1nto the equlvalent fff; Bl

‘“?n;fjdlstrlbuted computlng programs f}f@f‘h
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