
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

1997

Spider: An overview of an object-oriented distributed computing Spider: An overview of an object-oriented distributed computing

system system

Han-Sheng Yuh

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Yuh, Han-Sheng, "Spider: An overview of an object-oriented distributed computing system" (1997). Theses
Digitization Project. 1417.
https://scholarworks.lib.csusb.edu/etd-project/1417

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1417&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1417&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/1417?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1417&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

SPIDER: AN OVERVIEW OF AN OBJECT-ORIENTED DISTRIBUTED

COMPUTING SYSTEM

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Han-Sheng YUh

June 1997

SPIDER: AN OVERVIEW OF AN OBJECT-ORIENTED DISTRIBUTED

COMPUTING SYSTEM

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

Han-Sheng Yuh

June 1997

Approved by:

Dr. Arturo I. Concepcioil/, Chair, Computer Science Date

Dr. Zemoiideh.

Dr. Tong^/ Yu u

ABSTRACT

Parallel and distributed computing on networks of

workstations has been gaining more attention in recent

years. Clusters of workstations connected with high-speed,

networks can have computational speed approaching that of

supercomputers. The Spider Project is an object-oriented

distributed,system which provides a testbed for researchers

in the Department of Computer Science, CSUSB, to conduct

research on distributed systems. The object-oriented

approach was used because of easy maintenance, modification,

and simplicity in adding more features and functionalities

to Spider in the future.

In this thesis we have derived the specification and

design of the Spider distributed system by studying well

knoVn distributed systems: Sun's Spring Project, OSF's DCE,

Oak Ridge National Laboratory's PVM, and University of

Wisconsin-Madison's Condor Project. We identified the

functionalities of the Spider system which are: distributed

file system, security, clock synchronization, scheduling

management and distributed computation. To illustrate the

validity of the specification and design of Spider, the

functionality of distributed computation was implemented and

the performance of this implementation was analyzed and

compared with Parallel Virtual Machine (PVM) and SGI

111

Challenge supercomputer. A graphics user interface was also

implemented using Java applets, so that Spider can be

accessed on the Internet.

IV

ACKNOWLEDGEMENTS

I would like to thank Dr.. A. I. Concepcion, Dr. Tong L.

Yu, and Dr. Kay Zemoudeh for the very helpful knowledge of

the distributed and parallel systems. Al Geist, the manager

of the PVM team, for his help in answering all questions

about PVM. Associated Students Incorporated at CSUSB

provides an AST research fund for my thesis research.

V

TABLE OF CONTENTS

ABSTRACT iii

ACKNOWLEDGMENTS V

LIST OF FIGURES X

CHAPTER 1 Introduction

1.1 Introduction ^ 1

1.2 Motivations ' 4

1.3 Thesis Goals 5

1.4 Organization of Thesis 8

CHAPTER 2 Related Works

2.1 The Spring Distributed Operating System 10

2.1.1 The Overview of the Spring System 10

2.1.2 The Spring Nucleus 11

2.1.2.1 Components of a Nucleus 11

2.1.2.2 Inter-process Communication 13

2.1.3 Subcontract 13

2.1.4 File System 16

2.1.5 Security in Spring . . . 17

2.1.6 Conclusions of the Spring Project 18

2.2 Distributed Computing Environment 19

2.2.1 The Overview of DCE 20

2.2.2 Remote Procedure Call 21

2.2.3 Security Service . . . 22

VI

2.2;4 Distributed File System .

2.2.5 Conclusions of DOE . .

2.3, 'Parallel Virtual Machine .

,2.3i 1 Communication in PVM

,2.3.2 Conclusions of PVM . .

, , 2.4 Condor Scheduling;System

2.4.1 Conclusions of Condor

.CHAPTER 3 The Spider System

3.1 Goals for the Spider System

3.1.1 Portability .

3.1.2 Heterogeneity

3.1.3 Transparency . .

3.1.4 Flexibility . .

3.1.5 Extensibility

3.1.6 Fault Tolerance

3.1.7 The Limitation of the Spider System

„ 3.2 An Overview of the Spider System

3.2.1 Microkernel

3.2.2 Communication in Spider

3.2.2.1 Remote Procedure Call

3.2.2.2 Berkeley Sockets . .

3.2.3 Object Service Broker . .

3.2.4 Functionality Server . .

24

26

26

28

29

30

32

33

33

34

35

36

36

37

37

38

41

43

43

45

46

48

Vll

3,3 Functionalities, of the Spider System ,, . . 53

3.3.1 Distributed: File System . .. • * • * •; *

3.3.1,,.1.DireGtory and Naming Servers , 54

3.3.,;1.2 Caching Server ,. :. . .1 . 56

,3.3.2 Security,. , . . .,, ., • • r • • - 5,7

1 3.3.,2.1 Authehtication: Server . . y 58

, .3.3.2.2 Access Contrdl List Server i . 58

3.3.3 Clock Synchronization I .,, 61

,3,'3.3.1 Park's. Clock,Rate Synchroniza.tion

■ i;, ^Algor,ithm:• . ■ .r. ,7; .■	 . 61,

, 3.3.3^2 ,;D,uVall's Simulated Global Clock . 63

3.3.4 	Scheduling Server . . 64

, 3;.3.4.1 scheduling. Manager - - . ,' 65:

3.3.4.2 Pooling Manager 	 65

■ 3.4 Conclusions of the Spider i . . ., . ■ 67

CHAPTER 4, Implementation of Distributed Computation Service

4.1 Implementation of Distributed Computation-Service. 69

4.,1.1 Object Service Broker' . ,. . . 72

: ,4,1.2 Registry'Seryer , 72

4.1.3 Task Manager Server , ,. . . , . i . . 73,

4.1.4 Java Graphical,User Interface 73

'4.i.5 Communicatioh in, ,DCS: ,. .; 77

——^ 4-. 2 Overvisw pf ; the Distributed Computing Service , . . 80

V'lll

4.2.1 Distributed Quicksort . . ■ 	 81

4.2.2 Distributed Matrix.Multiplication 	 84

4.2.3 Distributed Vector Addition 	 85

4.3 Performance and Analysis 	 86

4.3.1 Comparison with PVM 	 86

4.3.2 Performance Results 	 88

4.3.2.1 Matrix Multiplication 	 89

4.3.2.2 Vector Addition 	 90

4.3.2.3 Distributed Quicksort ■. 	 91

4.3.3 Analysis 	 93

4.3.3.1 	Analysis of Distributed Quicksort . . . 95

4.3.3.2 	Analysis of Distributed Matrix

Multiplication 98

4.4 Conclusions of the Implementation 100

CHAPTER 5 Conclusions and Future Directions

5.1 Conclusions of the Specification and Design of the

Spider Project 102

5.2 Conclusions of the Distributed Computation Service

. ■ 104

5.3 Future Directions ' 	 107

REFERENCES 	 109

IX

LIST OF FIGURES

1.1 A distributed system as a virtual machine 2

2.1 Major system components of a Spring node 11

2.2 Doors and door tables 12

2.3 Invoking a method on a server-based object . . . 15

2.4 Spring SFS 16

2.5 A client accessing a secure object 18

2.6 OSF DCE Architecture 20

2.7 Client-to-server binding in DCE 22

2.8 The logical view of an application running on PYM . 27

2.9 The. Condor Scheduling structure, .31

3.1 Different kinds of transparency in.a distributed system

■ . . :. ■. ' . . . ' .. . ' . •. '. . : ■ 35.

3.2 The.overview of the CS network at CSUSB 38

3.3 The architectural overview of the Spider System in OSI

model. 39 .

3.4 Remote Procedure Call 44

3.5 Comparison of TCP and UDP protocols 45

3.6 Invoking a method on a server-based object 47

3.7 The structure of OSB • . 48

3.8 A sort interface • • . . • • • • • • 49

3.9 New FS registers to the Registry Server • • • * .

3.10 The interaction of the clients and.Functionality

Servers • 52

X

3.11 Directory lookup . .. , • • 55

3.12 The overview of the security model , . . • . • . • • ,

3.13 Glock Rate . Synchronization : . . ,. 62

67
3;.14 Job migration via scheduiing server ,

4.1 Overview of■Distributed,Computation Service: • • 71

74
4.2 State Diagram of Java GUI . • .• • • • • • , * •

75
4.3 A snapshot of the Distributed Quicksort window

,4.4 A snapshot Of the Distributed Matrix Multiplication . 76

4.5 The hierarchy of GUI Java classes 77

4.6 The protocol table • 78

4.7 The protocols of. the Distributed Computation. Service. 7,9

4.8 Object, model of Distributed: Computation Service ,. . . 80

4. 9. Distributed Quicksort free • 83

4.10 Distributed Matrix Multiplication .y. 84

4.11 .Distributed Vector Addition 85

4.12 Comparison of the control messages . 87

4.13 Comparison./of Matrix.Multiplication in real time . 89

4.14: Comparison of Matrix Multiplication in user time. . . 89

4,15 Comparison of Vector Addition in real time . . 90

4..16 Comparison of Vector Addition in user time . . 91

4.17 Comparison of Distributed Quicksort in real time 92'

4.18 Comparison of Distributed Quicksort in user time 92

4.19 Performance analysis, table. 94

XI

CHAPTER 1 Introduction

1.1 Introduction

Parallel and distributed computation on networks of

workstations has been gaining itiore attention in recent

years. Most current commercial workstations offer better

price and performance, and high-speed switch-based networks

have higher bandwidths than before' and have significant

improvements in reliability. Such advantages provide the

necessary environment for developing distributed systems. A

distributed system is a system that is a collection of

computers which run their own operating systems or

distributed operating system without having a global memory

or a single clock, and computers communicate with each other

by exchanging messages over a network. A distributed system

not only can provide sharing of expensive resources, such as

laser printers and disk drives, but also offer users

powerful computation capability.

A distributed, system can include distributed operating

system, distributed file system, distributed scheduling,

distributed shared memory, etc. These functionalities

support transparency where users do not need to worry about

the location of resources. To achieve distributed computing

on a distributed system, users do not need to know how the

program will be executed and where it will take place. The,

system will.take responsibility to handle jobs distribution

and migration, if necessary. Nowadays, most organizations

have high-speed local area networks (LAN) interconnecting

many general-purpose workstations, the combined

computational resources may exceed the power of a single

high-performance computer or supercomputer. Thus, a

distributed system is able,to combine the computational

power of all workstations into one huge virtual coinputer

(see. Figure 1.1.) A,user can make use of all resources in

the whole distributed system.

Virtual Machine

Workstation

File Servers

Print

m

Supercom pute

User Workstati i User Workstation

User Workstation

Figure 1.1 A distributed system as a virtual machine.

The following are issues which are important in the

design of a distributed system:

• Transparency is the major advantage of a distributed

system. Users should not be aware of the location of

service/data because it is invisible (transparent) to ,

them [23]. The user will receive the result displayed

on his/her workstation where the program is launched.

It is also possible that the program is executed in the

local machine but this is hidden from the user. A

distributed system must provide an efficient way to

deliver the services to users.

■ •Coherence. Since there is no global clock and global

memory in a distributed system, a process can obtain a

coherent but partial view of the system or a complete

but incoherent view of the system [21]. A distributed

system must provide a consistent global state for the

system.

• Fault Tolerance. A distributed system must provide a

way to recover whole or partial process if one

processor is failed during program execution, the user

does not need to know this situation happened.

• Concurrency Control is another main problem dealing

with database and file systems. A distributed system

must provide a protocol (e.g., single-writer/multiple

readers) for users accessing consistent data, whether

timestamp or lock algorithms [21, 23} may be applied.

• Heterogeneity. There are a variety of hardware

platforms in the market. A distributed system must

provide the same service to every kind of platform.

The above issues are necessary to be considered and

discussed before developing a distributed system, and also

they are the goals for a distributed system.

1.2 Motivations

Powerful workstations and higher network bandwidths

have provided a crucial environment for researching and

developing distributed and parallel systems. This new

development gave us the motivations for undertaking this

study.

The motivations for the Spider Project are:

a) To conduct research in distributed and parallel

systems.

b) To provide a testbed for students and faculty to do

related research on distributed systems.

c) To build a distributed system, which will be able to

make full use of the workstations in the Department

of computer Science, at California State University

at San Bernardino (CSUSB).

The overview of the Spider Project will be explained in

this thesis. Why do we call this project Spider! We imagine

the distributed operating system as a spider and the whole

networked distributed system as a web. A spider on the web

can move to any place quickly (transparency), and it won't

affect the whole web if a part of web is broken (fault

tolerance). •

1.3 Thesis Goals

The Spider Project is the first distributed system

study in the Department of Computer Science at CSUSB. The

Spider Project'will be an object-oriented distributed system

which will provide a testbed for users to conduct research

on distributed and parallel systems. Currently, there are 24

Data General Aviion workstations, 40 Sun SparcClassic

workstations, 30 Silicon Graphics Iris Indigo advanced

graphics workstations, 24 X-terminal workstations, 30 IBM

compatible PCs in the Department of Computer Science at

CSUSB. Furthermore, there are two supercomputers, a Silicon

Graphics Power Challenge XL with 1.2 GFLOP peak performance

and an Intel iPSC 860 16-node hypercube. In order to support

real graphics, the Challenge XL is connected to 10 Indigo

workstations using a Fore ATM ASX-200 switch. Thus, the

computing power of the Department of Computer Science at

CSUSB will be greatly enhanced if there is a distributed

system. i

Why should the Spider Project be built and design in an

object-oriented approach? Object orientation technology has

emerged in the last few years and became a good methodology

for software and systems from design to. implementation to

maintenance. The object-oriented approach (OCA) has the

ability to provide modularity, abstraction, and information

hiding. The idea of abstraction in OOA is to distill the

essence of a problem to understand it better. Furthermore,

future work will be made easy to modify or to add

functionalities to this system,. Therefore, the Spider

Project will be designed in an object-oriented approach. The

C++, a popular object-oriented language, will be the primary

programming language' for'all implementations.

One of the main benefits of object-oriented system

development is maintainability. System developers can easily

modify, upgrade, and expand services of the system by

changing the characteristics of an object(s), or replacing a

new object without affecting other components (objects). All

external objects will communicate with objects. Internal

data and structures can be refined without impacting other

parts of the system. Since each object has a set of methods,

objects can be reused to enhance -developer productivity. The

Spider Project will adopt the object-oriented approach

methodology to develop an object-oriented distributed

system.

The goals of this thesis for the Spider Project are the

following:

a) Study Spring [14], DCE [17], PVM [7], and Condor [13,

24]. The first two are distributed systems, the third

one is a distributed computing system, and the last

one is a scheduling system. They will be examined and

studied in order to provide the background for

specifying and designing the Spider System.

b) Specify and design the structure and functionalities

of the Spider System. The functionalities must render

service to a user in a transparent and distributed ,

manner. The functionalities will be identified in this

thesis.

c) Implement one of the identified functionalities. In

order to show that the specification and design are

valid, one of the identified functionalities will be

implemented.

d) The implementation of the selected functionality in

(c) must ,be highly maintainable in order to extend or

add more services into this functionality.

As mentioned earlier, there are many powerful

workstations in the Department of Computer Science at CSUSB,

but all of them are traditional time-sharing systems. The

Spider Project will harness all of these powerful resources

into a single virtual machine. Each physical machine will,be

fully utilized under the Spider object-oriented distributed

system. With the Spider, every user can access all the

resources in the,system locally or remotely.

1.4 Organization of Thesis

This thesis is organized into five chapters. In Chapter

1, the introduction and motivation of the Spider Project are

mentioned. In Chapter 2, the Sun's Spring, OSF's DCE, Oak

Ridge National Laboratory's PVM, and Condor System will be

discussed and explained in a survey for specifying and

designing the Spider distributed system. In Chapter 3,. the

functionalities of the Spider System will be specified and

designed in detail. In Chapter 4, the.implementation of one

of the functionalities,, which is Distributed Computation

Service, for Spider will be discussed. The last chapter will

discuss future works and directions.

CHAPTER 2 Related Works

To define the structure and functionality for the

Spider system, we need to survey existing systems and learn

from their strengths and weaknesses. The Sun Microsystems'

Spring distributed operating system [14] and the Open

Software Foundation's Distributed Computing Environment

(OSF's DCE) [17] are two distributed systems designed in

object-oriented approach. They provided good references for

the design of the Spider system. The Parallel Virtual

Machine system (PVM)[7] is a software system that provides a

virtual machine to a single user by collecting "a set of

heterogeneous UNIX computers and the user's programs can be

executed in a distributed and/or parallel manner. The Condor

scheduling system [13, 24] is designed for a workstation

environment so that users can make full utilization of any

available workstation for their processing needs. The Spider

system will be based on concepts from these latter two

examples in regards to distributed computation. The

implementation of the distributed computation will relate

closely to the design of PVM. The Condor system will be the

background .for the scheduling server of the Spider system.

This chapter will discuss major design structures of

Spring, DCE, PVM, and Condor.

2.1 The Spring Dishribuhed Operating System

The Spring Project [14] at Sun Microsystems Inc. is

developing new technologies for constructing operating

systems and for simplifying distributed programming. The

Spring distributed operating system is constructed and

applied to this project. The main design methodology of the

Spring Project is in object-oriented approach because they

want to build a highly modular, object-oriented operating

system, which is focused around a uniform interface

definition language (IDL) [16, 17]. They also want to

innovate the current operating systems to be more open,

extensible and flexible.

Sun -decided that the Spring system should have a strong

and explicit architecture: one that would pay attention to

the interfaces between software components, which are really

how a system's structure is expressed, but the interfaces do

not provide much information on how they are implemented

[14].

2.1.1 The Overview of the Spring System

The Spring system is a microkernel-based system. The

microkernel consists of the nucleus and the virtual memory

manager. The nucleus manages all inter-process communication

and the virtual memory manager controls the memory

10

management [14]. All other services are defined as

objects in the user level and they are replaceable and

substitutable,/Figure shows the major system components

of.the Spring system.

X11 Server csh Spring

Applieation
libue libue

V J .

Unix process
N /■ ■

r dynamic linker
N

)
(
V

tty server
' • -

J
y

server J

cTGP/UDP/IP3
authentication

manager
^ caching fs ^

Spring
network proxy machine

name server 3 file system

virtual memory

c nucleus
manager

kernel

Figure 2.1 Major system components of a Spring node [14]

2.1.2 	The Spring Nucleus

The microkernel of the Spring system is called nucleus.

To reduce the performance loss by being split into different

address spaces, the Spring nucleus is designed to provide a

fast •inter-process' .communication (IPC) 11 supports three ,

basic abstractions: domains, • threads, and doors [9] .

2.1.2.1 Components of a Nucleus

. : a.) Domains: .Domains has the same . form as processes in

U tasks .in 3Madh^:^r^ provide an address

11

space to execute and keep all resources information

for each application, such as threads and doors, for

applications. ;

b) 	Threads: Each,domain can have multiple threads

executed within it. All threads are accessible via

cross-domain calls.

c) 	Doors: Doors can support calls between domains. It

is similar to the ports in Mach [1]. A door is a

particular entry point to a domain, represented by

both a program counter and unique identifier

assigned by the domain.

Each domain has a table of doors to which the domain

has access. The user application uses door identifiers to

reference doors. Door identifiers,are mapped through the

domain's door table into actual doors. In Spring, a door may

be referenced by several different door identifiers in

several different domains .(see Figure 2.2).

User mode Kernel mode User mode

Server
Client

application

►
»

1
application

Client server

application ^ ^ application

Door Door tables Doors

identifiers

Figure 2.2 Doors and door tables [9]

12

2.1.2.2 Inter-Process Communication

To provide a fast-efficient IPG, Spring supports three

different ways of door invocation and door returns [9].

a) 	Fast-path: When the door arguments are simple data

values and size is less than 16 bytes, the fast-path

calls and returns will be applied to achieve

performance.

b) 	Vanilla-path: When the data is less than 5 Kbytes

and some moderate number of doors are being passed

as arguments or results, it will trap into the

nucleus to copy data argument to the target domain.

c) 	Bulk-path: When the arguments or results contain

large amount of data, the nucleus will use virtual

memory manager re-mapping to transmit the data.

2.1.3 Subcon'trac't

Subcontract is a flexible and extensible mechanism for

plugging in different kinds of object runtime machinery

which allows control over how object invocation is

implemented, over how object references are transmitted and

released, and similar object runtime operations [10].

It has become common to provide remote procedure calls

(RFC) facilities that extend the semantics of local

procedure calls to distributed systems. In an object

13

oriented approach, RPC becomes the form of remote object

invocation [14]. Due to the various RPC systems that each

provides different application requirements, the Spring

project uses subcontracts, which are replaceable modules, to

.give- Gbhtrol of the.basic mechanisms of,object invocation ■

and argument passing.

Subcontracts are separated from object implementations

and object interfaces. It is easy for object implementers to

either select and use an existing subcontract or to

:iraplement a new subcontract.

■A Spring object is noticed by.a.client as consisting of

three things [10] : 1.) a method table, which contains an .

entry for each operation implied by the object's type

definition; 2) a subcontract' operations vector, which

specifies the baaic subcontract operations; 3) object's

representation, which is some client-local private state.

V Spring's components and: objects are defined by strong

interfaces that use the IDL [14] . By using IDL to define

interfaces, developers won't be tied for any single

programming language. An IDL interface can be compiled into

three parts: client side stub, server side stub, and header

file for the interface. Stubs generated from an IDL

interface description can hide- the object. invocation, .from

clients to deliver a transparent service.

14

The code of stubs can transform the method invocation

into calls on either the object's regular method table or on

its subcontract operation vector. Figure 2.3 shows the

logical progression of a call to a server-based Spring

object.

€lient application Server application

Ak

Clientstubs Server stubs

subcontract subcontract

Figure 2.3 Invoking a method on a server-based object [10].

Different objects may need different subcontracts, but

the basic principles of subcontracts are the same. The

client-side subcontract has five basic operations: marshal,

invoke, unmarshal, marshal_copy, and invoke_preamble. The

server-side subcontract operations are creating a Spring

object, processing incoming calls, and revoking an object

' The Spider system will.use similar mechanisms for

object invocation, which will be discussed in Chapter 3 and

the implementation will be explained in Chapter 4.

15

2.1.4 File System

Spring file system [15] defines file objects, which

inherit from the memory object and io interfaces, tkat are

implemented by file servers. Thus, file objects can be

memory mapped and accessed using read/write operations of

the I/O interfaces. Spring file system uses the Spring

security and naming architectures to provide access control

and directory services.

The implementations of Spring file server consist of

two systems: Spring Storage File System (SFS) and Caching

File System (CFS). SFS is implemented using two layers, disk

layer and coherency layer [15] (see Figure 2.4). The disk

layer implements an on-disk UNIX compatible file system. The

coherency layer is stacked on the disk layer and implements

a per-block multiple-reader/single-writer coherency

protocol. Also, the coherency layer keeps track of the state

of each file object and of each cache object that holds the

block at any point in time.

All files are
SFS

Coherency layer
 "^exported by

coherency layer

Disk layer
C^^Diskdr^e^

Figure 2.4 Spring SFS [15]

16

2.1.5 Security in Spring

To provide secure access to'objects. Spring supports .

two basic mechanisms in security: Access Control Lists (ACL)

and software capabilities.

An ACL defines which users of groups are allowed access

to the particular objects. These ACL can be checked at

runtime to determine whether a given client is really

allowed to access a given object [14].

An object reference is created by the object's server,

when the client proves that it is allowed to access that

given object,^ that ■acts like: a-: software capability. , This ■

object reference contains a .nucleus door that points to a

front object inside the object's server [14] . An object's

server may create many different front objects,

encapsulating different access rights, all pointing to the

same underlying object. Thus, when the client assigns an

object invocation on the object:reference, the reguest can

be. securely.: transmitted to- the front, object. : The .front

object checks the client's . ; access.:right, if it is

permissible then forwards the request into the server.

Figure 2.5 shows the diagram of a client accessing a secure

object.

17

Client
Underlying

object
ACL

Domain

Object Front object

reference access=rw

?1 —

Nucleus
Door

Figure 2.5 A client accessing a secure object [14].

'When a client is given the object reference from the .

object's server, client can pass, that reference to other

clients. These other clients are able to have, the sarae

access rights as the original client and use the object,

reference freely.

2.1.6 Conclusions of the Spring Project

The Spring operating system is still an on-going

project at Sun Microsystems Inc., but they have innovated

the traditional operating systems to build one. based on

strong interfaces with openness and extensibility in an

object-oriented approach. Sun hopes that the Spring system

will replace Solaris in the future as a step toward a

18

distributed system environment. So far, the Spring operating

system can only work on machines using Sun's architectures.

2.2 Dls'trxbu'bed Compu1:ing Environment:

The Open Software Foundation's (OSF) Distributed

Computing Environment (DCE)' is not like any other

microkernel-based distributed systems, which are constructed

from scratch. DCE is built on top of current operating

systems. Since most environments (operating systems) today

include technologies from a variety of vendor's, DCE provides

a common infrastructure for all kinds of systems [17].

Providing this common, multi-vendor infrastructure is

the goal of the OSF's DCE. DCE provides the key services

required for supporting distributed applications, including:.

• support for remote procedure call (RFC) between

clients and servers;

• a directory service to let clients find servers;

• security services to ensure access between clients

and servers;

• a time service to synchronize the system clocks

throughout the network;

• a threads service to provide multiple threads of

execution capability; and

19

distributed file services to provide access to files

across a network.

2.2.1 The Overview of DCE

DCE supports the, construction and integration of

client/server applications in.heterogeneous distributed

environraents. DCE has been designed to inter-work with

existing standards in a number of areas. For example, a

group of DCE machines can communicate with each, other and

with the outside world using either TCP/IP or the ,OSI

protocols [21, 23]. User processes, act as clients to access

services provided by server processes, which can be local or

remote.. Figure 2.6 shows the various components of the DCE

architecture.

Distributed Applications

Distributed File

Service

Time Directory Security

Service Service Service

DCERFCand Authentication

DCE Threads Service

Hostoperating system and networking

Hardware

Figure 2.6 OSF DCE Architecture [23]

20

According to the four factors (purpose, security,

overhead, and administration), users, machines, and other

resources in a DCE system are grouped together to form cells

[17]. All the DCE services are based upon these cells.

The following sections will discuss DCE's RFC, security

service, and distributed file service.

2.2.2 Remote Procedure Call

DCE is based on the client/server model to provide a

distributed computing environment. RFC dominates the

communication in DCE. When requesting a service. Client

makes an RFC to a remote server process. Before,a client

connects to a server's process via RFC, DCE handles all

internal tasks, such as locating the server, binding to it

and performing the call [23].

DCE RFC system hides all details of complex data

transformations and communications from the user. The client

only needs to make a local procedure call to receive a

remote service. The intermediate procedures can be generated

from an interface definition language (IDL) that is similar

to the Spring's objects. A unique identifier is given when a

IDL file is compiled. This identifier is for a client's

process to locate a correct server, then the client is able

21

to receive correct^information or services. Figure 2.7 shows

the steps involved in binding client and server.

Cell Directory Server

1.Register endpoint

2.Register service

3.Look up server

5.DoRFC

Server

RFC

daemon

Client

4.Ask for endpoint

endpoint

Figure 2.7 Client-tb-server binding in DCE [23]•

The endpoint, likes Spring's doors and Mach's ports, is

a numerical address on the server's machine to, which network

connection can be attached and messages sent [23]. More

discussions on RFC will be in Chapter 3.

2.2.3 Security Service

.Security is always.:a major concern in a networked

environment. In DCE,.every user and process has its own

principal when it.needs to communicate securely;[23]. DCE

security can assign proper resources to,each principal and

22

provide a secure cryptography for transmitting all

information in an insecure network.

The major components of DCE security and their duties

are the following [17, 23]:

a) Registry Server: the registry server manages the

security data base, the registry, which contains the

names of all principals, groups, and organizations.

b) Authentication Server: the authentication server

verifies the claimed identity of the principal and

grants a proper ticket that allows this principal to

do other subsequent authentication without having to

provide the password again.

c) 	Privilege Server: the privilege server issues PACs

(Privilege Attribute Certificates) to authenticated

user. The PAG is an encrypted information that has

the principal's identity, group, and organization

information, such that all servers can be instantly

convinced without need for providing any additional

information.

d) 	Login Facility: the login facility is a program

using the authentication and privilege servers to

provide all the necessary tickets and PACs when

users are logging in.

23

Once a user is logged in a DCE system, the user can use

a client program to access remote server process via

authenticated RFC. In DCE, every resource has an ACL (Access

Control List), which tells security who may access the

resource. On the server side, when the application server

receives the incoming request, the server verifies the

requester's identity using the PAC and checks its ACL to see

if the requester has the right to use the service or

resource.

2.2.4 Distribu-ted File System

The distributed file system (DES) of DCE is to provide

lisers and processes access to all files within a DCE system

they are authorized to use. DFS has two main parts: local

part and wide-area part. The local part is a single-node

file system called Episode, which is similar to a standard

UNIX file system on a stand-alone machine. The wide-area

part is to collect all these individual file systems

together to form a wide-area file system.

The DFS in DCE is just like an application, and uses

all facilities of DCE. The DCE threads provides the ability

to allow users access multiple files simultaneously, RFC

offers a bridge for communication between clients and

servers. Distributed Time Service (DTS) synchronizes server

24

cloGk/ the;directory;; service .allow servers to be

located, and the security server protects the files by

unauthorized accesses.

Each file and directory in DFS is protected by ACLs, :

which contain a list of entries. Beside the read, write, and,

execute s-operations can be assigned ;'td users ahalogous to the-

standard UNIX;.;flie .systems., ACL. also, allo^w insert,.delete :

and control.. Th.d: Insert and delete, operations, are. for .

directories, and control operation is for I/O devices

subject to the lOCTL system call [23].

: .DCE's DFS also supports data replications, load ;

balancing and fault tolerance [17, 23]. The replication

server keeps tracks of all.;replicas p;f filesets up to date.

There is only one master copy of the"data that, is allowed to

be Written and read,: and one or more replicas for read only..

If one replica is changed by a user.or process, the

replication::server will detect the difference,by scanhing

all replicas.. The fileset server manages all filesets in the

. oeE ;system:. it one disk partition is fully loaded by

filesets,■ wbile bther disks still .have plenty.of space, the

fileset server will move some filesets from disk to disk to

balance the load. .The; overseer seryer -Is to make sure that

all other machines are;;still alive. ^

25

http:plenty.of

2.2.5 Gonclusions of DCE

At the early stage of design, the main purpose of DCE

is to provide a robust distributed computing environment,

such that the DCE wasn't designed in any object-oriented

approach. The tendency of using object technology has forced

DCE toward distributed object technology. The latest DCE

1.22 leads to interoperability Of different object-

strategies because DCE provides a foundation for ,

distributed, object-oriented computing without precluding,

use of other approaches such as CORBA [16]. Thus, we learn

advanced distributed computing technologies in DCE.

2.3 Parallel Virtual Machine

Parallel Virtual Machine (PVM) is the mainstay of the ,

heterogeneous network computing research project [7], a

collaborative venture between Oak Ridge National Laboratory,

the University of Tennessee, Emory University, and Carnegie

Mellon University. The PVM project began in 1989 at the Oak

-Ridge National Laboratory.- The main design for PVM is to

link computing resources and provide users with a parallel

platform for executing their applications,, irrespective of

-the number of different ,workstations they use and where the

workstations are located.

26

PVM uses the message^passing model to allow programmers

to exploit distributed computing across a, wide variety of

computer types, which include most Unix systems and,PCs, The

PVM system.supports heterogeneity in, terms of machines, ,

networks, and applications [7]. With,this,feature a large

parallel virtual machine is possible to be built by using ,

PVM system. PVM consists of two parts,: a daemon process on

each host (pvmd)and a set of library routines(libpvra). The

usual way for two user processes on different hosts to

communicate with each other is via their local daemons. The

logical view ,of an application running on PVM is shown in

Figure 2.8.

Task Task
Task Task

T 7
V V

libpvm libpvm

IT

PVMDaemon PVM Daemon

Opermng System

Operati ig System

Network

Figure 2.8 The logical view of an application running on PVM.

The following sections will discuss some internal

designs and mechanisms used in the PVM system.

27

2.3.1 Communication in PVM

When a virtual machine is created, by PVM, all :

interconnected machines,need to exchange messages over the

network for their communication. Since there is no global

shared memory:in a virtual machine, the message-passing

model.is adopted ,by PVM.

In order to support heterogeneity in PVM, the message- ,

passing/model needs to be built by using standard ,

communication protocols. PVM'uses,Transmission Control

Protocol (TCP) and User Datagram Protocol (UDP), for the

intercommunication, and Unix-Domain sockets mechanism, is

used to apply on TCP and UDP., Because majority of platforms

for PVM are Unix systems, PVM^adopts the most prevalent

application program interface (API), Berkeley sockets, to be

the communication medium for daemons and tasks.

TCP provides a connection-oriented communication

service on Internet Protocol (IP). By using TCP, messages

can be delivered reliably, but there is overhead to build

TCP connections if the need of connections is large. UDP is

a connectionless, transport protocol which does not re.quire,

two hosts to set -Up specific connection route before sending

message. However, the messages delivered by UDP are,

unreliable because the Sender can send messages without the

28

reeeiver's aeceptance.:Thus, the. adknowledgment:and retry

meGhanisi^ - Ahe reti^^

:To .make' ef,f±c^^^ :edmffiunication in./PVM, TCP and:UDP are

.used/in different categqries -.i ^ •

a) Pvmd-Pvmd. The communication within pvmds are across

; the netwo^r^^ -to avoid/the. network: traffic and, .

. ./Overhead'of setting;:up connections.,; daemons

dortmiunicates' with one another:hhrdugh UDP. sockets •■. .

, ; b) . .Pvmd-Ta.sk and .Tas'^vT.ask.: /Since . tasks .perform / . '

. computing and I/O, they can not be interrupted. If

UDP is used: for commuhicatiorij. a task might be .,: . /

' , interrupted^.tb give, a/retryv fbr a; lost packet during.

. computing-:: Thus, TCP sockets are used in Pvmd-Task

To p^'^'ovide .f tolerance,. ;a .pvmd .:..wiil rego

the/ loss of: any- foreign' pVmd by preparing a..copy of.. task

beforesending to:' the .:o%her pvmd.: the PVM Will not

. migrate. the exeGuted task tO/Ieripther/ host.,, . sihGe -it:'^ not

have checkpoint. ,

2.3.2 Conclusions of PVM

: . ■ T system is not- a complete distribufed system/in . ,

general. The goai: of pVM/iS.. td offer a distiibuted and ■ *

heterogeneous network computing environment to. use.rs to be

29

http:interrupted^.tb

able to solve large computations. Users can collect all; ; ■

^ayailabie machines tp;be'his^,her- virtual mabhine, ;•

use ;6:f this -huge computing:;powersto . solve prpblems-^,^^,! ; :

efficiently. Indeed,:;PVM achieves;the heterogeneity in terms

of machines (about, 40:different Unix, machines ,[7])r-:1

networks, and applications. : ■ ,

■ PVM research group continues to:;.do; d dpment:of. new

.features and improving the .functionali.t^ .,,pyM..;T:he main

milestone for . the .:next..versio of..PVM..ia to have /t.h© -u'

capability of collectin.g Unix ..systems./ Microsoft.Windows 95.,.

and...Windows N.T rtiachines,. Users will have the chance to

experience the hybrid computing power.of MPPs and Pentium.

More and more research groups are cooperating with the

.\PyM:, gm^^^ distributed cofiaputaticn.. Hetefogeneous;^:;

Gotipnt is.-one of the. go.als.for .the. S.pid.er^

v.therefore, PVM is chosen:as. an example, for:pur study.

2.4 Condor Scheduiing System

The Condor scheduling system [13, 24], developed at the

University of Wisconsin-Madison, is designed for a

workstation environment so that users can make full

utilization of any available workstation for their

processing needs. In general, the resources of networks of

workstations are under utilized or often idle. When users

http:S.pid.er
http:power.of

face the problem that the ability, of .their workstation is

too small to meet their application, needs, the Condor, system

can schedule,users' jobs at idle workstations. Figure 2.9

illustrates the Condor scheduling structure [13]. Each

workstation has a local scheduler and a background job

queue..One workstation holds,the central coordinator in

addition to;a local scheduler and a background.job queue.

The central coordinatof polls the workstations to know the

status for each station .(available to serve,and background

jobs waitii

Idle machines

rs.

HUD

ScMer

Fi^re 2.9 The Condor Scheduling Structure.

The main advantage of COndor is fault tolerance. When a

user'S program,is migrated to an idle machine by Condor, the

Condor central manager will, checkpoint the program

periodically. If the machine is running the migrated Condor

user program.and another user sits down to use this machine.

Condor will terminate the Condor user job and save all the

31

inforrftatlon oE: running, job to a checkpoint file. Thenf the

Condor .central rnanager w look .for another idle machine

and transfers the job there..The job will' restart by reading.

the checkpoint .file, and inanipulating its^ .s so as. to

emulate asvaccuraGy as possible the state of the previous

job at:checkpoiht:timei Thus, . the. Condor user job does not

need to restart:; at the beginning. This scheme ;also .applies

to the. situatibn:.when a machine fails.

. . . The checkpointing,of a:prograria in Condbb . scheduling

system is the saving of the state of the program. In order

to restart the prpgram and.. continue the execution on another.

machine,' Condor saves the state df .the prbgram including:

text,, any initialized .and un.initialize'd d.ata/ Stack areas, ..

the status of opeh files and file descriptdrs:, and any .

special handling reguested for various sighals [13, 24].

Thus, the removed prpgram can :b.e restartdd on . anothet idle .

machine without losing any information of program execution.

2.4.1 Conclusions of Condpr

The Condor scheduling system: is able, to give us a good

example on how to provide.a fault-tolerant computing

environment.. The Spider System should be^ .t by use.rs to

execute, their.,jpbS; and expect their jobs to terminate

■ :'nor-mally'.

. ,t ̂ ^ 't'. ■ ■ ■ . ' "■ ■ ■; : ■

CHAPTER 3 The Spider System

This chapter will discuss the specification and design

of architecture and functionalities of the Spider system.

The main design goal for the Spider system is to design a

distributed system in object-oriented approach, in order to

provide a flexible and easily extensible testbed environment

for research on distributed and parallel computing in the

■ Department of Computer Science/ : Cadiforhig:: University,

San Bernardino.

3.1 Goals for the Spider System

: T distributed system will include all the ,

various available machines in our department. Before

/designing^ system, we need to specify the system's

..goals that ate applicable to our department. In general, the

Spider system will achieve .the following . specific.: goals: _

portability, heterogeneity, transparency, flexibility,

extensibility, and fault tolerance.

3.1.1 Portability

The labs in our. ■ department, include different kinds pf ,

workstations, which run on .spversi implementations of UNIX^^ ;

operating bysterns ■ (GSi. and Microsoft Windows 95.'vTlie .Spider;

33

system will need to run on different hardware platforms and

operati:n,g ;s To conquer and achieve the portability

-for different machine architectures, the Spider system will

.need aimicrbkernel ;QS/^ whiGh will minimize the , size of basic

system. Thus, the system can be easily ported to other

machines by reconfiguration.

3.1.2 Heterogeneity

. In a dist.rito system, heterogeneity is one of the ' .

main..charactef.istics. Different; architeGture.s of machines,

IRISC, eupercompufers, IBM compatible PC, etc.), operating

systems (UNIX and Windows 95),, and network protocols are,,,

rippssible hindrance in, the,,,construction of a dis,;t:ributed.;v-

system. Fof;, ekample,; the , PC rmechines, use the! .little endiari:

byte, sequencing of integers, and , the .Sun SPARC, uses the . big, ,,

endiau: format. Any data transmitted between.these two :

machines without conversion will definitely cause an

incorrect data received by one machine. The Spider system

will have the ability to - handle all..different:. data formats

'transmitted,between different platforms. Thus., . users can

make full advantage of all resources in a heterogeneous

environmenf in our department.

34

3.1.3 Transparency

The main concept of transparency is to hide the

distribution of resources from the users. The users are not

aware of where the resources are located, how the program is

executed by parallel or distributed manner, and how the

requested object is implemented. Tanenbaum [23] classified

transparency into five aspects of a distributed system, as

shown in Figure 3.1.

Kind .Meaning

Location transparency The users cannot tell where resources are located

.Migration transparency Resources can move at will without changing their
names

Replication transparency The users cannot tell how many copies exist

Concurrency transparency Multiple users can share resources automatically

Parallelism transparency Activities can happen in parallel without users,
knowing

Figure 3.1 Different kinds of transparency in a distributed system.

The Spider system's different functionalities will need

to have different kinds of transparency. These

functionalities will be discussed in Section 3.3 which are:

distributed file system (replication and location

transparency), scheduling service (migration transparency),

clock synchronization (concurrency transparency), and

distributed computation (parallelism transparency).

35

3.1.4 Flexibility

Users can easily plug in their research implementations

into the system and test their algorithms. Furthermore, The

Spider system will be able to provide an efficient way for

users to submit their jobs. For example, when a user wants

to execute a computation, the Spider system can migrate this

job to an idle machine to do the computation. If the Silicon

Graphics Power Challenge machine is available, the Spider

system will set it as a primary choice to achieve a better

computing performance. By providing a flexible and

intelligent system,.users , can focuS:. on their research .and .

results from the system.

3.1.5 Ex'benslbxli'by

The Spider system* will not only provide flexibility,

but also extensibility. The object orientation is able to

support a distributed system to be extensible. Any new

object (functionality) can be added onto the system to

extend the system's functionalities. Also when there are new

machines connected to the Spider system, the Spider will

have the ability to scale up by including these new

machines.

36

3.1.6 Fault Tolerance

In a distributed system environment, it is possible

that one machine may crash or fail due to a fault in some

components, such as processor, I/O device, cable, or

software- [23]. In such a condition, the users are not

necessarily informed of the event, but the Spider system

needs to provide a recovery algorithm to rebuild the ongoing

activities on the crashed machine. By achieving fault

tolerance, the system can minimize the loss of information

and be more reliable to execute users' jobs.

3.1.7 The Limitation of the Spider System

The Spider distributed system is designed to be built

within the CSnet (Computer Science Network at CSUSB), which

includes the local area network (LAN), ATM backbone network,

and Windows NT network (see Figure 3.2). However, the design

of the Spider System should be able to apply in the-

metropolitan area network (MAN) and the wide area network

(WAN) in the future. The specification and design of the

Spider System will only concern the computing environment at

CSUSB, which will cover the current available'machines. This

thesis will only implement one of the functionalities

defined, and that is the distributed computing functionality

of Spider.

37

Hyp^Cube

File Servers

Power Challenge

SGI

MS Windows NT

Servers

ATM CSnet

ASX-200

Windows 95 Workstations

UNIX Workstations
SGI Workstations

Figure 3.2 The overview of the CS network at CSUSB

3.2 An Overview of the Spider System

Due to the fact that different machines running on

various Unix operating systems in our department, the first

prototype of the Spider system will be built on top of

current Unix OS to achieve portability. Figure 3.3 depicts

the architectural overview of Spider and its corresponding

equivalence to the OSI model (Open Systems Interconnection

Reference Model).

38

Server(local/remote machine)

Client(local machine)

Scheduling i Distributed

Service , Computation

Application i . di.
L _

Distributed Security Clock Sync
Client's

File System Service hronization

process

OSB
Presentation OSB

Session

Spider's Mierokerhel Spider's Microkernel

Transport

Network; OSand TransportServices OSand TransportServices

DataLink

Hardware
 Hardware

Figure 3.3 The architectural overview of the Spider system in OSI model.

. Since we are using object-oriented approach (OOA), we

need to treat each service as an object. In OOA, we can

provide a testbed environment for researchers to be:able to

test their work by replacing existing objects and adding on

their new objects.; V;. ■ i- , -• - •

Examples of objects in the Spider system are:

distributed file system, security service, clock

:synchronization, scheduling service, and distributed

computation service.

39

In Figure 3.3, the basic architecture of the Spider,

system consists of a set of clients (processes), a set of

services, an Object Service Broker (OSB), and a Microkernel.

Clients may use the OSB via Microkernel to access

remote/locai services, or directly use any existing OS

services. OSB responds by contacting providers of a service

and establishing a connection between the client and the

service provider. The provider of a.service is referred to

in the Spider system as a. Functionality Server (FS). A

service can be defined by an object-oriented interface and

implemented in C++. For example, a simple FS may only

provide a basic service. Such as sorting arrays. A complex

FS may provide a more sophisticated service such as file

system.

Each FS is an object or provides a group of objects to

offer service that is encapsulated and hidden from the

clients. The clients are only, interested in the behavior of

a service, not in its internals. Thus, clients don't know

what kind of sorting algorithm is iiftplemerited in the FS.

It is important to support the idempotency in a

distributed system..The Spider System,needs to support

idempotent operations to eliminate any redundant reguest.

For a sequence of same requests from a user. Spider must

treat these requests as a single request and provides the

40

same result to the user. A transaction number can be'

assigned to a user request, in order for Spider to determine

that the user's request is repeated or not. The idempotency

can reduce any unnecessary or redundant access to the Spider

system.

The following sections will discuss the components of

the Spider system in more detail.

3.2.1 Microkernel

The Spider distributed system will be a kernel-based

operating system. This system will be structured as a

collection of cooperating servers running on top of a

minimal kernel. Structuring systems in this manner offers a

number of potential benefits.including, ease of ,•distribution,

reconfigurability, extensibility,• portability/ protectipn,

and correctness [6/ 8]. Like other microkernel; operating

systems (e.g., the Spring's nucleus [9], and the Mach's

microkernel [1]), the Spider's•microkernel has four primary

abstractions:

a) Process and thread management

The processes are the same as processes in the Unix

systems. Each process has an address space. A process

. consists of one. or.more threadsjAll- the:thrasds . in a

process share the address space and execute in a

41

timeshared manner on a single CPU machine. On a

multiprocessor, several threads can be active at the

same time. ■

b) Memory management

The microkernel will provide memory management to

handle the allocation and deallocation of memory,

paging, and.swapping.

c) Inter-process communication (IPG)

The Spider microkernel will provide facilities for

the IPG, including pipes, sockets, RPG (Remote

Procedure ..Gall), and shared memory.

d) I/O management

All low-level I/O is handled by the kernel.

We want to minimize the size.of the kernel, so other

basic, services will be implemented in user level.

Since constructing a.microkernel depends on the

machine's hardware architecture, it causes its complexity to

increase when implementation is from scratch. The Spider's

microkernel will have to deal with three^major architectures

(SGI, Sun SPARG, .and Data General) in our GSUSB

Laboratories. In the future., the Spider's microkernel will,

run on every, machine, and those Unix services will be moved

up to the service objects level.

42

3.2.2 Communica'bion in Spider

i;' ^ ^ Spider system will be based on the client/server

model. The basic Gommunication paradigms will be the..remote,

^procedure- call (RPG) mechanism [3.] and the BSD spcket. . v

3.2.2.i Remote Procedure Call

The RFC mechanism providesltr^ and efficiency

for user programs and applications in the distributed

'■systems.^^'^ conversibn .of data representation, the

. a.ddress vof - the. .remote .,machihe.>. and communication and system

.failure . ftoiri prbgramjte ..

: . ; ; l\n RFC system pro.yi.des the ; ExteJ-nal Data . Repre-sentatipn ;

l(XDR)- : library, and ■defines the ■RFGunessage-passing protocol.

.: The XDR in . RPb 'system is able to hide all IPG . details and

offer the ease of developing networked applications. The RPG

model provides two communication interfaces, client stub and

server stub, which are generated by the RPG compiler. The

stubs use the RPG protocol to construct and exchange

messages between client and server. The client stub, a dummy

procedure, is an intermediate for the client to call the

particular functions, where the actual implementations of

the functions are on the server side. The client stub

delivers the client's request to the server stub and waits

for the reply. The.server stub unpacks the messages and

invokes the real procedures, then packs and sends the result

back to the client stub. The client then receives the result

from the client stub as the execution is performed locally.

Figure 3.4 describes a basic RFC model.

Server

calling procedure called procedure

Client

results
arguments
 arguments
results

Server Stub
Client Stub

reply request
request reply

messages messages
 messages messages

Network

Figure 3.4 Remote Procedure Call.

The communication facility used by the RFC model is

provided by the underlying network to deliver messages to

the remote machines. The Spider system will use both TCF and

UDF protocols for the RFC corrununication model. To obtain

maximum throughput for a bulk data transfer, the TCF

protocol can provide a reliable delivery and buffers

messages to immediately return control to the user. The

buffered messages are flushed when the buffer is full.

Thus, the RFC model can be asynchronous and users can make

more calls. For low-latency calls, the UDF protocol can be

44

used and the buffer is flushed immediately, but the user can

be blocked. Figure 3.5 shows the comparison of TCP and UDP

protocols.

Protocol Type Data Type Transmission

Stream reliable
TCP Connection -oriented

UDP Connectionless Datagram unreliable

Figure 3.5 Comparison of TCP and UDP protocols.

To use a remote procedure call in the Spider system,

the communication protocols can be system-defined or user-

defined depending on the application. The structure of the

Spider system is based on the RPC-like model to provide a

transparent and object-oriented distributed computing

environment.

3.2.2.2 Berkeley Sockets

To use the Berkeley Sockets interface, programmers need

to handle all the details of communication in the programs.

Although using socket interface will be more difficult for

programmers to debug and produce programs, programmers can

have more control on the data transmission.

45

The basic concept of the socket communication is based

on establishing a phone-like line between client and server

programs. Once the connection has been established, the

client and server can exchange information through this

particular line.

Since the socket interface can directly talk to the

network without any other interface, it is much easier for

programmers to use this mechanism to provide more efficient

services. In the Spider system, some functionalities will

need to provide broadcasting message ability, which will be

implemented using socket interface. Furthermore, for a

cross-platform connection, the RFC mechanism may have

difficulty to apply on different platforms because most RFC

compilers are system-dependent.

In Chapter 4, the socket interface will be used for

implementing the distributed computation for the Spider

system.

3.2.3 Object Service Broker

Object service broker (OSB) is the central component of

the Spider system, handling the communication between all

objects in the system, regardless of their location,

platform or implementation. The main idea of OSB is similar

to the subcontract of the Spring operating system [10], the

46

DCE's Cell Directory Server [17] and OMG Object Request

Broker (ORB) [16].

OSB manages the interaction between client and server

objects. This includes "marshaling" and "unmarshaling" of

requested parameters and results. The marshaling operation

of OSB is to transform the request and object into marshaled

form and send to server. The unmarshaling operation is to

receive the incoming object from the server, extract

information from the object, and send result back to the

client. Figure 3.6 depicts the client requesting server

object through OSB.

Server Object

Client
 Object

Implementation

Object Service Broker

Figure 3.6 Invoking a method on a server-based object

When a client wishes to perform an operation on a

server object, OSB is responsible to find the object

implementation for the request by contacting the Registry

Server, to prepare a server object to receive the request,

and to make connection for client,and server [16].

47

The invoking .operations,on server- objects Gan.be

perfbrmed in:a staM which works very -much like ,. Remote

Procedure Call (RFC).. An object defines its interface using i

Interface-.Definition.Language (IDL) [16, ,17]^. The . IDL

.definition ;is:,,then compiled tfcp . produce a[client st^ : : .

■aerver ̂ skeleto,n,: code- that typically [gets iihked into, the [; .

ciieht and server objects, [respectively [Che' client stub rahd.

server skeleton are.[.p.art ,0f .[tlie OSB ..(see Fignre [3 ..7.) . TO ■ [[

invoke a method in., t.he. SeEvep .bbj^^e^ client .calls[a [[

: 	function,[(a. request [thata via;:(7SB -is [cbnveyed.; .tb[and. /

executed dn.the destination object.[At .the same time/., the [:

client is blocked'until: the ,functiOn[returhs[.:[. [. [,./

Client Server

Stub OSB Skeleton

Figure 3.7 Ihe structure of OSB. ;

The implementation of, a . simple OSB will be ; discussed in.

3.2.4 E^anctionality Server

- Functionaiity:setyers can be. simple or ^complex, but

.provide .bhly • Each functionality server is . .

implemented as a'^ bbject .and can. be [accessed: , via. the object

48

oriented::interface..::Thus Ihdse functtonality servers:can he .

rised , as distributed: objects and ;providai'^cjr.;t:herr:y

- transparent interaction within ̂ a distributed systerti. :.

The object-orlented interface used by fuhcfionality .

jservers: and clients; is; daacribed in IDL;. [16,, 17.] ipLy'^

provides a standird,',, •ianguage-neutral:nieans of d®scripinp . ..

the public interface;bf an;object. Figure 3.8 describes:;a

-Simple IDf;interface from the specification., of OMG's,IDL : -:

[uuid(7:0ff8-220-6ela-ilcc--89ee-t8002b2albGa)Tj- : ■

:' ; 'iinterfa.ce^-Sbrt.'f f;i-.: tv-;;: l - l ' f'

. void sorting i .,[int °'^'t]:. ai^y:varra:y,-;^[in short -flag);

■ "-■ ''Figure ,3■.'8:.-'A'Sor'-t"-Interface

All data types ttsed in an IDL - interface -definition (an

operation's return typeS; and: parameter types.) , must ..be either

the IDL basic types (short, long, floal:, boolean...) , IDL .

template types (sequence, strings, arrays) , or IDL

constructed types (sbructs, unions, envims) . In Figure 3.8,

the sorting operation takes a pass-by-reference any and a '

pass-by-value short to sort any kind of array and does not

return a value, but the sorted array will be passed back to

the client. The in indicates that the parameter is passed

from client to server, and but indicates that the parameter

is passed from server to client.

49

Since every object must, be unique to the whole

distributed, system, each interface can be assigned a

universal unique identifier (UUID) [16]/The unique UUID

identifies an IDL interface and give information to the OSB

for object invocation. Every FS needs to provide an endpoint

[17] for. clients to. make a connection. Thus,, ea.ch FS must

register its service in the registry Server,, where the OSB

will, look up the location of the server,by contacting the

registry server. A registry server is also one of FSs that

exists on every machine and maintains an endpoint table of

all servers' objects. Figure 3.9 depicts the steps to create

a new FS in the Spider system.

There are, three basic steps: , ,, ,

• Register: the new FS needs to register , its service with

the UUID and endpoint to the Registry Server.

.	 • Update table: Registry Server updates its registry

table by recording down new. FS's UUID and endpoint.

• Broadcast: Registry Server broadcasts the new

infprmation to all other Registry Servers.

After the above three, steps are don©/ the new service is

available to the users. Users can, access this FS at any

workstation.

50

Request object^ Registry Registry

endpoi] Server Server

OSB

Reply endpoint 3.Update

endpoint
all registry New FS

with UUID
L server

1. Registerto

Registry Server the Registry

endpoint table

pnHpoint
 2.put into table

Figure 3.9 New FS registers to the Registiry Server.

A single IDL interface may have many implementations,

but must contain the operations described.by the IDL

interface ih the public section of the implementation class,.

The implementation of an obgect is encapsulated and hidden,

from the client. Functions on the server side are , referred

to as skeletons [16, 17], with a skeleton function

corresponding to each operation declared in the IDL

interface. The skeleton receives invocation requests sent

from the client stubs. The skeleton will.unmarshal a request

and invoke the corresponding member function Of the FS. When

the member function returns, the skeleton will marshal the

return parameters and, with the help, of the OSB, send them

back to the client side stub.

51

http:described.by

On the other hand, the member functions declared for

the client side class are the same as those declared for the

functionality server implementation class. The member

functions of the client side class are referred to as stubs.

Stubs are invoked by the client program when client sends a

request of an operation. They marshal the invocation request

and its arguments, send it to the server side with the help

of the OSB and then wait for a response. If a response has

been received, the stub unmarshals the return parameters and

returns to the client program. The inter-process

communication necessary for an operation invocation is

transparent to the client. Figure 3.10 depicts the

interaction of clients and functionality servers. First, the

client uses the OSB to request access to services. Second,

the OSB responds by contacting FSs of a service and

establishing a connection between the client and the FS.

OSB

2.Response

1. Requests

3.Connection

Client J FS

Functionality
Servers

3.Connection
Client

FS

Figure 3.10 The interaction of the clients and Functionality Servers.

52

3.3 Functionalities of the Spider System

The previous section defines the overview of the Spider

system; this section discusses several functionalities

which will be developed on the Spider system. The basic

mechanisms of each functionality will be defined. These

functionalities will include distributed file system,

distributed computing, security, and clock synchronization.

Each functionality can be implemented as an object in

the Spider system and become a functionality server. Some

functionality servers may become clients of other

functionality servers. For example, a file object needs to

send requests to the security object to get the

authentication in order to verify the user's privilege to

access the file object.

3.3.1 Distributed File System

The distributed file system (DFS) is an important

component of any distributed system. In a distributed

system, clients do not need to or should not know that the

file system is distributed. Since most of the machines are

workstations in our laboratories at CSUSB, files can be

stored at any machine.

: DFS is one of the functionality servers:in,the,Spider

system. In general, this file system uses threads to allow

53

multiple file accesses simultaneously, RPC and OSB for

communication between clients and servers, the security

server to protect files, and the clock synchronization

server to synchronize seryer clocks.

Traditional file systems are designed as a central

server model, such as Network File Systems [20]. These

central server file systems will have performance bottleneck

when the system grows large. Examples of file systems, such

as xFS [2] and the Spring File System [15], are designed in

contrast with traditional file systems. These two

specifications give a direction to the design of the

distributed file system for the Spider System.

The Spider System is an object-oriented and distributed

system that is structured around objects. Therefore, a file

or a directory is an object in the Spider system. The basic

services for the distributed file system will be discussed

in the following sections.

3.3.1.1 Directory and Naming Servers

The naming server will provide file transparency to

clients. The clients do not need to know where the file is

located. Furthermore, a distributed file system not only

needs to have location transparency, but also location

independence [23], such that, any file can reside at any

54.

machine. However, the location independence is not easy to

achieve, but it is a desired property to have in:a

distributed system.

The directory server is able to provide the creation

and deletion of directories, using naming server to name and

rename files, and moving location of directories. The global

root directory, should be viewed the same way in all clients.

The directory server maintains the directory path table in

every machine, but not for all the,directory paths..For

example, if a user looks up the path /A/B/C, the user sends

a message to the directory server, which will find the

location of A. According to the directory path table, the

server having A will provide information of B. Then the same

for C, the user will be able to.get the information of files

under C directory [23] (see Figure 3.11).

/A

Server 1

Look up

/A/B/C

Client

Server2

Reply to client 'A Servers

c

with C

Files

Figure 3.11 Pireetory lookup.

55

The naming server allows any file object to be

associated with any name. This association of name and

object is called a name binding [15]. Each name binding is

stored in a directory object, such that every file name is

unique in this directory object.

Both directory server and naming server is secured by

an access control list (ACL). An ACL can protect every file

object and directory object. Only authorized clients can be

allowed to access the particular objects in DFS.•ACL will be

discussed in the security section.

3.3.1.2 Caching Server

The DFS of the Spider system should be stateful [23].

Although a stateless file server tends to have fault

tolerance, the systems that keeps, less-client's state

information force Glients,to communicate with the;.server

more frequently, which will -cause more network traffic. In

the Spider system, each;file, server has . to keep track of. :

which clients have cached copies of the file objects.

However, the caching server of the client side has the duty

to report to the file se,rver, .if-the-cache file obj.ect has

been modified. Because the file server tracks all the cached

file objects, it will notify ,(invalidate) all .other clients

56

holding a copy of the cached file object. This will ensure

that all clients will be able to access the latest data.

The main responsibility of the caching server is to

keep data consistency of all cached objects in the Spider

system. The DFS of the Spider system will use the write-

invalidate protocol [21] to keep cache consistency. It will

use the single writer and multiple readers'semantic. By

using file locking, all files are kept consistent. The

locking server can be elected by the file object's server

initially. Every client must request file lock before

reading or writing a filei.Because the ,file object is cached

on the client's machine, the original file object must be

updated and all other copies are invalidated, once the

client modifies the cache file object.

. Using the caching server, each object can be

xeplicated and sent to clients. The caching -server also.^

needs to interact with the microkernel's virtual memory

manager in order to provide an efficient file .service.. . ■ : ■

3.3.2 Security

Security is a major concern.in a distributed system. We

want .to avoid any unauthorized use- and access ho the.. Spider.. .

■ system. Thus, the security of the Spider system wi.hl.cohs.ist

57

http:concern.in

of two servers -- authentication server and Access Control

List (ACL) server.

3.3.2.1 Authentication Server

In a timesharing system, a user logs on a machine by

typing the user's name and password. If a user logs in

successfully, the kernel keeps track of the user's idehtity

and permits or refuses access to files and some other

resources based on it [23]. In the Spider system, once a

user logs in and gets authenticated by the security server,

it's not necessary to keep track of the user. Thus, the

security service must provide the authentication.

A well known authentication server is Kerberos [22].

The user receives a ticket from the Kerberos authentication

server after exchanging encrypted message. The ticket will

allow the user to access the network services, which

specifies the limitations of user's access, then the ticket

can be sent over the network in the distributed system

without sending the user's password. The Spider system will

use Kerberos as part of the security service.

3.3.2.2 Access Control List Server

The Access Control Lists (ACLs), [14, 21] allow a user

to receive from the file server permission to operate on the

58

. particular file objects or dlrectbry , pbjepts 	 stbr.ed ..

in the: file^ server. - The AGLs::give the/authorizatioh to ; , ,

■ 	 clients and inform which usereiahd.groups; may access the . i,:

resources. Therefore, each .object i^n the Spider system is, . .

proteoted.by . an ACL:. When a user requests hp invocatibn .pn.;'

an object; service, :the AGL server will issue;:an ACL to. the

... object dependihg dh the user's .ticket. .

there is no. central. AGL ; server in the,Spider :system,;

; but .each .file .object, is' assQ.ciated,,with its AGL server; ; :

. /depending:on its. location^ .To .modify the; access.; rights..of!

i tha objects, only 'the:::object'.s' owne.f has the; ability ^/to: .. :^;^/^

; performV a hiorarehica:!/pohtrdl .[21],,.v which . allows the owpe,r ■

/do. modify, tha AGL of the object and all the objects below it

''l:in tha/hierarchyv./-' -/./■■ ■/: /..•■ ■::' jc/,

The basic steps for . a user to Ipg" in thio. Sp.dder, system

// and :usa . the system .: s.prvices can be described as fdllows . .(sea

: Figure 3.12) :

. .: al Log in the system. The user types the username .. and , .

b). Get a :ticket. The . Kerberos authentication server

authenticates the user and.grants, the ticket to the. .

user.

cj, Raquest. seryioe. 'The user, sends: t.he request to the .OSB,

•59

1

d) Issue the AGL. The OSB contacts the ACL server to issue

a proper, ACL to the user.

e) Give ACL to the object. The ACL server assigns the

capability for the user to access the object.

f) Reply to the user. The object performs the requested

services according to the ACL and gives the results to

the user.

Kerberos

1.Logs in

2. Grants ticket

5. Gives ACL

User

Object ACL

6.Replies to user
 Server

3.Requests service

4.Issues ACL

OSB

Figure 3.12 The overview of the security model.

The security in Spider should be stateful;- . but we

choose it to be stateless. Spider is designed, as a .

distributed object system, and every server object invoked

by a user has an ACL to accompany with it. Because a user

receives, a ticket from the authentication server and this

ticket gives the certain privilege of accessing server

60

objects, the security in Spider does not need to record all

information of user's activities.

3.3.3 Clock Synchronization

In a distributed system, the...absence ,of.a global .cloc.k ., .

[21, 23] may cause the system to be in an inconsistent state

because all workstatidns' clock are not synchronized. There ,

are some algorithms discussed in [21, 23] on how to

synchronize clocks in a distributed system. However, most of

these algorithms, use a single time server to,.be..responsible

for the clock synchronization, which is not suited in a

distributed .system. Park [18] proposed an optimistic

.cdncurrency control mechanism based on-a clock :

synchronization, which provides a flexible and efficient way

to synchronize the global:clock in a distributed .systei^*

DuVall's simulated global clock algorithm [5] represented an

improvement over Park's clock synchronization. These two

algorithms will be adopted by the Spider system.

3.3.3.1 Park's Clock Rate Synchronization Algorithm

In Park's algorithm, the clock rate server (Pcks)is

chosen randomly to adjust the clock rate of the requested

machine (P±). During the clock rate synchronization, another

coordinator machine (Pc)- is chosen randomly to be the

61

intermediate for these two machines. The algorithm has the

limitation that all machines run on the same LAN because the

constant message transmission is assumed. The clock rate

synchronization is illustrated in Figure 3.13.

Thalt(P±)

Ta.(Pc) Tb(Pc)

Tc(Pc) Td(Pc)

•CRS I

Thalt(Pcrs)

Figure 3.13 Clock Rate Synchronization [181

The relations between; these machines.; can,be.dete.rmined. by ,

the following equations [18]:

Ttrans(PcRSr Pc) — [Tb(Pc) ~ Ta(Pc) ~ Thalt(Pcrs)]/2

Ttrans(P±f Pc) ̂ [Td,(Pc) — To(Pc) ~ Tjmj,T(P±)1/^

Clock Ratio(PcRs, Pi) = [Tb(Pc) - Ta(Pc)]/[Td(Pc) - Tc(Pc)]

Park proposed a clock rate.synchronizatio.n, where the

clock rate server can be chosen randomly. This algorithm is

suitable for a real distributed system. The clock

synchronization only need to be done once initially. Since

the Spider system is designed for the Department of Computer

62

Science at CSUSB, Park's algorithm is applicable to the

Spider system.

3.3.3.2 DuVall's Simulated Global Clock

DuVall's simulated global clock [5] presents a more

efficient algorithm for clock synchronization which combines

the features of Cristian [4] and Park [18] to be a hybrid

clock synchronization algorithm. DuVall refined Park's

algorithm to be able to. synchronize system clock with the

Universal Coordinated Time.(UTC) rate, and DuVall's

algorithm does not need periodical.re-runs for clock

synchronization.

DuVall's algorithm adopts the transmission time

estimation from Cristian and offset to local time from Park

.[5]. Periodically, at least with each configuration change,

this algorithm will need to be run or re-run. If the

coordinator has accessed to the UTC source, the physical

global time can be maintained in the system.

In. the Spider distributed system, the clock

synchronization server will adopt DuVall's algorithm to

provide a consistent global clock. The clock synchronization

will apply when the system start up. If any machine has

crashed and then boots up again, only that particular

63

machine will perform the^ q •SYhchrbhization,:^::n all

machines . In';t need;fo;re-sy^ again.

3.3.4 Scheduling Server

The scheduling service alms to maximize the utilization

of workstations^ .so that a;, user Is able to.use'Idle or under

utilized .workstations:. The main,gqal^ e a ■distributed system

Is that .a; user^^"^ full use of ell avallabie: resorirces..

Including . .coni^ptitlhg power of workstatlohs.. Hdweverv ..we don.'t :

want users to Interfere with other users' work; so, only

' Idle and 'Undereut.l11zed workstatlo.n.s^ ape available for users;

lh;the Spider system.:

The Condor scheduling system [24] presented a

. successful; litplem;entatl.on: of process scheduling. The Condor

. system;.provides 'a sdheduling mechanism fb . schedule' lpn:g

runnlng..backgrbund . jbba at Idle . workstations .. It; .also; ha.s

. the. checkpoint and mlgratlbn facilities In order f o; ; suppbrt; •

the;-fault folerance. If .an. Idle machine; Is logged. In by a

user or . .cfashed, the . migrated, job will be Stopped and be

mlgrafed ;.tb ahpther..Idle machines. That .jbb will restart at

; the . point where the program stopped;; according to Its

. . Since the checkpoint . mechanism. Is; us:ed. . f.or t^^^^

scheduling service. It Is- necessary for the .scheduling

http:litplem;entatl.on

server of Spider to be stateful. The main components of the

scheduling service are scheduling manager and pooling

server.

3.3.4.1 Scheduling Manager

In the Spider system, the scheduling server will exist

on every machine, which is different from a central manager

in the Condor system. When a user executes a long running

background job, the local scheduling server will call its

pooling server to get the information ̂ of idle,,.machines.. Then.,

a scheduling manager will be elected randomly from the pool

to monitor all the scheduling activities for the user's

task. The local scheduling server will be the shadow of the

scheduling manager to keep the most current state of the

task execution. Therefore, if the remote machine crashed or

becomes busy, where the scheduling manager and pooling

server are running on, the local scheduling server is able

to re-elect another idle machine to be the new scheduling

manager.

3.3.4.2 Pooling Server

When a user wants the scheduling service, the pooling

server will collect all idle and under utilized workstations

in its pool. Each,machine will be assigned a priority number

65

according to the machine's performance. For example, the

highest priority can be the Power Challenge machine, and the

lowest priority can be the PC. This will guarantee to

provide users with the most efficient computation for their

applications.

During execution, if a user attempts to log on the

machine which is executing a migrated job, the Spider system

will prompt a message to warn the user. The user may choose

another machine, or still log on this machine if the user

does not mind to experience a degraded performance. This

mechanism will reduce the risk of too much job migration and

the complexity of checkpoint.

Condor system is not capable of migrating jobs using a

central manager because if the central manager goes down,

all the information on migrated jobs will be lost. The

scheduling algorithm for the Spider system may involve more

messages sent over the network, but it is more suitable and

reliable for a distributed system. The scheduling algorithm

is illustrated in Figure 3.14.

66

Migratejob
esults

Submit

Scheduling

Server
Migrate]^

Idle

Workstations

User's
Results

job

Pooling
Results

Server Electscheduling
manager Tobe the

c—X
scheduling
manager

Fi^re 3.14 Job migration via scheduling server.

3.4 	Gonqlusions of the Spider

In this chapter, the structure of the Spider is

specrfred and:designed'.. To achieve .the object orientation ;

for Spider, OSB offers a transparent object invocation for

user - applications' and. FSs provide .an object-oriented and

distfibuted service environment.. Because of. the .

heterogeneous computing environment in CSnet, the Spider's

microkernel is needed to implement a suitable infrast^-ucture,

for the Spider distributed system.'The functionalities of

the Spider Project are also defined. These functionalities'

act as FSs in Spider. They are all specified and designed as

objects ..which .facilitates ease . of continuing the ^research on

implementing the functionalities of Spider.

67

In Chapter 4, the Distributed Computation Service in^

Spider is implemented. To prove the validity of.the design,

OSB, Registry Server, and Task Manager are implemented in

object-oriented approach and then tested for correct

execution.

CHAPTER 4 Implementation of Distributed Computation

Service

The concept of distributed computation is to distribute

jobs to several remote machines. Each machine may perform a

different function, for example, I/O, problem setup,

solution, output, and display. All the machines can also

perform the same function, to solve a small part of the

data. This is referred to as the SPMD (single-program

multiple-data) model of computing [7].

In this thesis, one of the Functionality Server, the

Distributed Computation Service (DCS), for the Spider

Project is implemented, and only three services: sorting,

matrix multiplication, and vector addition are supported by

this implementation. The implementation is described in the

following sections.

4.1 Implemen'ta'blon of Disfribu'ted Compu'ta'blon Service

The implementation of DCS is designed in an object-

oriented approach and written in C++ and Java programming

language. The Distributed Computation Service has the

following components: OSB, Registry Server (RS), Task

Manager (TM), and Java Graphical User Interface (GUI).

69

To, design, in object-orientation, we, must provide

dbjects to have three characteristics [19]: encapsulation,

.inheritance,, and polymorphism, .:

. •	Encapsulation means that an object's data, and methods

aren't accessible by the object's users except via

its .methods'. In C++ programming language, we can use,

private to encapsulate the data and methods from the

outside world,

• Inheritance offers objects to be reusable. Child

objects do not need to implement code, but can

instead directly use and build.upon the code that is

in the parent,

• Polymorphism of object-Orientation is the most

,	 complex,to describe. Put simply, polymorphism means

that the user of two different objects can, in some

ways at least, treat them, as if they were the same.

For example,, two objects, one representing your

checking account and.another your saving account.

These two accounts almost have the same; ,

characteristics : for your bank activity, both of them

offer deposit and withdraw methods. However, the

saving account object's withdraw method may probably

just 	check the ;amount to be withdrawn against the

account balance. The transaction either succeeds or

fails which is depending on the requested amount

: e the balance-or not. For the checking

:	 accdunt^: the requested withdrawn amount may exceed

the balance., if the exceeding amount is within the

limit of an automatic loan, which can protect against

overdrafts.

These important object-orientation characteristics are

appiied t objects in this implementation. Figure 4.1

shows the overview of the Distributed Computation.Service.

Task	 Server

Manager	 Object

OSB

Registry

Server

ava GUIDaemon

Client

Application

Java GUI

Figure 4.1 Overview of Distributed Computation Service.

71

4.1.1 Object Service Broker (OSB)

,OS.B plays an important role in the. Spider Project. The ,

main^functions of an OSB 6bject are: .

:• 	to locate the registetad server Regrstry^, .

Server (RS) accdrding'to^ client's .request;:• / ;

• to submit the job to ,the^'^^T

for the TM to monitor the execution;

. . • 	to activate the remote:server object, and convey the:

client's request to that server object; and

• to notify TM that the job is finished ahd.deactiya

the server object.

When a server object needs to request., ior.ahother

server object(s), it also requires the OSB to locate and

activate the remote pbjdctls). OSB simply.talfcs .to TM

requesting .for any available server, then activates the :

server object on the remote machine.

4.1.2 Registry Server

The responsibility of the Registry Server, which

manages a service data base, is to provide an available

registered servers list by verifying the request from OSB.

The assumption for the Distributed Computing Service is that

every machine is independent and may or may not share the

72

same file system with others. Figure 3.9 depicts the actions

taken when the new Functionality Server (FS) is registering

to the - Registry Server and the OSB is requesting servers

from the Registry Server.

4.1.3 Task Manager Server

To manage the available servers for each task during

computation, TM needs to keep track of all tasks'

activities. In a distributed system, we don't want the Task

Manager to be centralized and provide fault tolerance for

DCS. Thus, a mirror TM object is created and keeps the same

information as TM, in order to take over the TM's job when

TM goes down. TM and mirror TM are running on different

machines and updating data periodically.

OSB has two options for contacting with the TM. First,

OSB tries to contact the Task Manager server, if TM is down

or no response, OSB will try to contact the mirror TM. If

both Task Manager servers are down, then the operation is

aborted because the server object can not operate properly

without the TM.

4.1.4 Java Graphical User Interface

In order to provide a friendly GUI to users, we choose

the Java programming language to implement the GUI for the

73

DCS. Java applets are able to.run on any platforms where .

there is a web browser (e.g., Netscape and Microsoft.

Internet Explorer). Therefore, anyone is able to access the

Spider's DCS through Internet,.if they are authorized users.

Because■of the.Internet security issue, users can't

send files to the original web servers, or open the,servers

side files via Java applets. Thus, this GUI can only show

simple - demonstrations to,users how the distributed,

computation is being done. If users want to use these

services, they must login in the CSnet and create their own.

client programs and access the.. DCS in text mode. Figure 4.2

shows the state 'diagram of the Java program.

Mam Help
Choose S Applet

Sorting Help

Exit WindowWindow

hoose Vector
Choose Matrix V Addition
Multiplicatioi^

Exi

xit

;MM V. Add

Window Window

Figure 4;2 State diagram of Java GUI.

1:^:

Each window (Sorting, Matrix Multiplication, and Vector

Addition) uses TCP sockets to communicate to a C++ daemon

located in the same machine, where the Java program is

downloaded. The daemon provides the most current execution

information to the Java applet, and the Java program

displays the graphical diagram to users (see Figure 4.3 and

Figure 4.4).

I

sgi

SQi sgi 1

Figure 4.3 A snapshot of the Distributed Quicksort window.

75

 JA'" '''"/:'' ''"f/T^
, f , ,/„ „,,,„)r/',, -^,^fS.:''\:Kf:',/'-^,- --'y

'•".^gt^rBy<.«l

r'-''""

Figure 4.4 A snapshot of the Distributed Matrix Multiplication.

The GUI contains applet, frame, panel, ■and d

objeats. . Since Java already :provides hierarchies .of.common

classes, we create these objects by inheriting existing ■ : ■ .

classes. Figure 4.5 shows the hierarchy of classes used for

this implementation. The hierarchy shows two categories, one

is Java classes library, and the other are user-defined

classes. The GUI implementation is based on these objects to

display graphical diagrams to users.

76

Object

Component

Coiitalner

Window Panel

Graph_base Applet
Frame

Matrix Distributed

Display Help Dialog SPIDER

Multiplication

Java defined classes Classes not listed

User defined classes

Figure 4.5 The hierarchy of GUI Java classes.

4.1.5 Conununica-tion in DCS

RPC and BSD socket interface are used for the

implementation's communication mediums. There are three

77

interfaces that are defined as interface definitions for

these service objects: distributed quicksort, matrix v

multiplication, and vector addition..Because the IDL

compiler for the Spider Pro.ject is not implemented, the O.NC

RFCs RPCGEN compiler is used to generate all client and

server stubs. These stubs provide the proper data

conversions for clients and server,objects.

For the implementations of; server objects,, the BSD

socket interface is used for communication. TCP and UDP

protocols, are employed to suit for different needs in this

implementation. The table of Figure■ 4.6 describes the

protocols Used for communication in this implementation.

Type Protocol

client-server RFC

OSB-Registry UDP

OSB-Tas.k Manager TCP' ■ . ,

task-Task.Manager TCP,,

task-task , T.CP

: SVR OSB-Task Manager TCP .

task-Java Daemon UDP

Figure 4.6 The protocol table.

To understand the procedure of the distributed

computation in the Spider system. Figure 4.7 illustrates the

steps of the distributed computation.

78

Registry Server

Mirror site

Task
Update

\i >f Task
Registry

Manager Manager

4.Notify the Tas

Manager y/

2.Requesttor 9. Reply to
registered server OSB

3.Reply to

5. AssignOSB

TaskID

1.Send request 8. Deliver tl

Client ►>	 request
OSB

Client OSB
6. Activate the remote SVR OSB
vV server object 7. Request for

Server OSBchildreiK^

13. Reply the results to Client
10. Send to

Server Server Object
Object

n.Spawn children 1. Spawn children

12.Send
results back

Child Child

Server Server

Object Object

Figure 4.7 The protocols of the Distributed Computation Service.

To illustrate the implementation in object-oriented

approach, the object diagram of Distributed Computation

Service is shown in Figure 4.8.

79

Client Class Server Class

Client Program

RPC Server-stub

OSB Class

Class
 Class

1+

Server

RPC Client-Stub
 Task Manager InLplementation

Class
 Class
Class

Registry Server

Class

OSB Class

Figure 4.8 Object model of Distributed Computation Service

4.2 Overview of the Distributed Computation Service

DCS is designed to solve large and complex computations

in a distributed and parallel manner, which are sometimes

difficult to be executed within a single machine. If the

computation is done on the user's machine, the user may

experience the degradation of performance because most CPU

usage is used on this computation. In a distributed

computing environment, once the users submit jobs to the

distributed system, they can continue doing other work.

Users are not aware of knowing how the job ds done and where

80

the job is executed, they just need to receive the correct

results.

Sorting, matrix multiplication, and vector addition are

common computations. How these three problems solved in a

distributed computation is discussed in the following

sections.

4.2.1 Distribu-ted Quicksort

The quicksort algorithm provides a fast and efficient

way to sort data by recursively calling itself ^

algorithm is expressed as follow:

Array A[1 . . . N] is to be sorted.

^ ̂ lo, hi)

/* sort array A from the lo to:hi into ascending order on

■ key P. Key Pm is arbitrarily.chosen-as the control key.

■. Position I and j are used to , paftitiph. the-: subfile so that;
at any time K. < K, 1 < i and K: > K, 1 > j. It is assumed
that K^< Khi+i. */
if lo < hi

then [i <— lo; j <— hi+1; K <— K„, '
loop

repeat i <— i+1 until Ki > K;
repeat j <— j-1 until Kj > K;
if i < j ■

then swap(A[i], A[j])
else exit

forever
swap(A[m], A[j])
call QSORT(lo, m-1)
call QSORT(m+1, hi)]

end QSORT

The average computing time for quicksort is 0{Nlog2N)

81

.	 of distributed quicksort"isiVto; define a

maximum 	number of data size that can perform quicksort in

one machine/: Ifithe size'of data is lai(5er than the defined

sizei'ffdh •the/::data is:pjdrtition into tWp parts,and g:iydn

to two children which in turn apply distributed quicksort

recursively. The alqorithm is given as follows:

sArray A|l. . N]> minimal data, count is M ,

procedure Distributed_Qsort(B,.lo, hi)

::/* :B ::is either part.:or. entire of array A-. The ,16 ;a is

the lowest and highest position of array B, respectively. p

is the pivot point of B after partition. */

if::(I • have;parent) ^

. then [/*.. I. am the child */

. . receive data from parent . .

if ((hi - lo +1) < M)

■ 	 then [..call. Q.SORT

send the result back .to:parent]
'else ;["

. . partition B into two .parts , ;
. .: sehd ;two;parts,.:t two. childfen:

-.wait. for results from children ;

send results back to.parent 1

else [/* I am the parent */

if ((hi - lo +1) < M)

then [call QSORT

, . display , result . .]

else [

: . , . partition B to two parts

send two parts to two children :

- . wait for results from.children.

display result]

]

end Distributed Qsort

The average computing time for the distributed

quicksort is still in the form 0(Nlog2N), but N may vary and

82

http:Distributed_Qsort(B,.lo

depends on the defined minimal data size M. If N is much

greater than M, then the resulting sorting tree's depth is

increased. That means more children are created during

computation, and these leaf nodes will only sort at most

(N/2'^~^) of data, where d is the depth of the binary tree.

Thus, the average computing time for distributed quicksort

will be 0({N/2'^"^)loga (N/2'^"^)). Figure 4.9 depicts this

computation..

* Assume the partitioned data is always halved.

Array size=N
 Level

Root 1

N/2 N/2

Child! Child!

N/2 N/2 N/2 N/2

Child! Child 4 Ch Id5 Child6

0[(N/4)log2(N/4)]for each node

Figure 4.9 Dls'tribu'bed Quicksort tree.

On the other hand, the transmission time may be the

main factor that affects the total computing time, and we

will discuss this issue in Section 4.3.

83

4.2.2 Distributed Matrix Muitiplication

The average computing time of two NxN matrices is

O(N^), which is relatively higher than quicksort. The

algorithm for distributed,matrix multiplication is to

distribute the data to several machines and every machine

performs the computation,for the portion.of the matrix,

multiplication in parallel,

. Assume that we use M machines to perform the .

computation. The multiplier is separated into (N/M) sub-

matrices, and each child only computes (N^/M).

Therefore, the . total average,computing time is O(N^/M).

Figure 4.1,0 ̂ depicts the distributed matrix multiplication.

xN >— xN, ■^NxN

Child 1 Child 2 Child3 Child 4

Matrix size is NxN.
0(N^/M) for each nodeSub-matrix size is MxN.

M<-N

Figure 4.10 Distributed Matrix Multiplication.

http:portion.of

Also, we need to consider the transmission time spent

in the distributed matrix multiplication which will be

discussed in section 4.3.

4.2.3 Distributed Vector Addition

The computing time for the addition of two vectors

(arrays) is 0(N) where N is the size of the array. If we

can fragment the arrays and distribute them to M machines,

we can reduce the computing time by-computing in parallel.

The improved total average computing time will be 0(N/M).

Figure 4.11 depicts the distributed vector addition.

A

B

Child 4
Child 1 Child 2 Child3

Add
Add Add Add

r ■ ■ ■ ■

0(N/M)

Result

Figure 4.11 Distributed Vector Addition.

85

The transmission time is a major issue during

computation, and we will-discuss this in Section 4>3.: ,

4.3 Performance and Analysis

The main purpose of the distributed computation in the

Spider System is to provide a facility for submitting ,

computing jobs without worrying about resources on how the

job is going to be executed. The entire implementation is

done in user level; therefore, there are unavoidable

.overheads in communication and data transmishibriV

: ,::performande of the distributed ̂ computation will.;be

analyzed and Gompared with Parallel .Virtual, Kachine (PVM)

[7], the SGI Power Challenge, and a single SGI workstation.

^4.■3.vl^:Cpn^a,ris6h witii^PVM

■The toajor costs in the implementation, of .Distributed ;

Computation Service are the time of data transmission in the,

network, setting up remote server objects (OSB and server

object activate the- remote .objects) , and talking .to TM,. We

compare the control messages needed to be exchanged in the

Distributed Computing Service with PVM system. The control

messages are for tasks and objects (daemons in PVM) to set

up all required information before sending data. Figure 4^.12

86

in
shows the comparison"of the control messages exchanged

these\two systems. ̂ i' - i/i-, ^

Distributed Computation Service in Spider

/'Where send and recv

OSB-Registry ■/ 's"

OSB-Task Manager 6 ■/ ;■ ■ ■ ■ ■ ■ ■/ ".

S'VR_OSB-Task Manager UN

Total 9+llN

* N is the number of server objects that request for children from TM.

(a)

parallelVirtualMachine

■" Where : send and recv

Task-Task

Task-pvmd 2

pvmd-pvmd 2N

'/(t"-;)!;;'; ; Total i- 2N + 2

* N is the total nxunber machines running pvmd.

(b)

Figure 4.12 Comparison of the control messages.

According to the tables in the Figure 4.12(a) , every

time; a user;submits a job to the Distributed Computation

Service, there are 9 control messages to be exchanged before

starting the execution. PVM needs to exchange 2N control

messages when there are N machines are added to the PVM

system, and each spawned task needs to contact its local

87

pvmd via the libpvm library in order to register the task

into PVM (see Figure 4.12.(b)). After PVM finishes the

initialization, the master pvmd will send a message to each

slave pvmd periodically to check its status.

The major difference between PVM and the Distributed

Computation Service in the Spider System is that PVM is not

in object-orientation, but the DCS is. Thus, DCS is more

flexible and intelligent that DCS is able to locate the

available servers dynamically and choose the most

appropriate machines for the users application. Whereas in

PVM, the user must specify which machines will be included

in the PVM system, and PVM activates slave pvmd daemons on

all the machines specified by the user.

4.3.2 Perfoxrmance Results

In this implementation, we test and collect the

execution time for different size of data. All tested data

are generated from random numbers. The following comparisons

are divided into two categories: real time and user time.

The real time is the wall clock time. The user time is the'

CPU time of a program execution in the local machine.

One of the SGI workstations and the SGI Power Challenge

machine are chosen to test the performance on a single

machine. DCS and PVM running on SGI workstations are tested.

88

4.3.2.1 Matrix Multiplication

The maximum size of matrix tested is 300 (300x300 of a

matrix).

Real Time of Matrix Multiplicatio Execution

60 n- SGI

CHALLENGE
50

SPIDER

40

PVM

E 30

20

10

50 100 150 200 250 300

Matrix Size

Figure 4.13 Comparison of Matrix Multiplication in real time i

User Time of Matrix Multiplication Execution

♦—SGI
60 ■—CHALLENGE
50 SPIDER

40
 PVM
o

E 30

h"

20

10

0

0 50 100 150 200 250 300

Matrix Size

Figure 4.14 Comparison of Matrix Multiplication in user time.

In Figures 4.13 and 4.14, the average total execution

time (real time) for a program submitted to the Spider DCS

89

is higher than the program executed on a single machine (SGI

workstation and Power Challenge), but the average user time

for both DCS and PVM are much smaller than a single SGI

workstation.;

4.3.2.2 Vector Addition

The maximum array size tested was 100/000 in the vector

addition.. Figures 4.15 and 4.16 show the comparisons of the

average real time and user time for different systems.

Real Time ofVector Addition Execution

-SGI

25
 -CHALLENGE

-SPIDER

20

-PVM

15

10

10,000 30,000 40,000 50,000 100,000

VectorSize

Figure 4.15 Comparison of Vect;or Addition in real time.

90

User Time of Vector Addition Execution
—^SGI

4.5 y -IKCHALLENGE

4- —^SPIDER

3.5 - -KK-PVM
3 -

® 25 -

I
1.5-

1 -

0.5 -

0 II

Vector Size

Figure 4.16 Comparison of Vector Addition in user time.

In this test, the performance of programs executed on a

single machine has a shorter average real time than DCS and

PVM. For the average user time, DCS has better performance

than PVM and a single S.Gl workstation.

4.3.2.3 Distributed Quicksort

The maximum data size tested was 100,000 in the

distributed quicksort.

91

Real Time of Distributed Quicksort Execution

30

25 -

20 - -SGI

-CHALLENGE

E 15
-SPIDER

-PVM
10

5 -

*

1,000 5,000 10,000 20,000 50,000 100,000

Array Size

Figure 4.17 Comparison of Distributed Quicksort in real time.

User Time of Distributed Quicksort Execution

-.♦^SGI
3^

-^1—CHALLENGE
2.5 -- SPIDER

-X—PVM
2

E 1.5

0.5

0 1,000 5,000 10,000 20,000 50,000 100,000

Array Size

Figure 4.18 Comparison of Distributed Quicksort in user time.

92

in Figure 4.17, DCS failed to provide a good

performance for real time test, where DCS had the highest

real time than the other three systems. On the other hand,

DCS and PVM have a very competitive performance in user

time, see Figure 4.18.

4.3.3 Analysis

Figure 4.19 shows who has the best performance in the

group. The Silicon Graphics Power Challenge XL has surpassed

Spider, PVM, and a SGI workstation in most, performance

tests. When those test programs were executed on the Power

Challenge machine, each program was partitioned and running

on four CPUs in a true parallelism; therefore. Power

Challenge showed the best performance in the,overall test.

PVM has an impressive result in the matrix multiplication.

.Although the Spider's DCS fails to improve the program

execution time, DCS still, improves the user time in all

three tests.

93

Matrix Vector Distributed

Test Multiplication Addition Quicksort

Machine Real TimeUser TimeReal TimeUser TimeReal TimeUser Tim«

DCS

PVM X X

X X X
CHALLENGE X

SGIWorkstation

X: indicates the system that has the best average time among the

group.

Figure 4.19 Performance analysis table.

The major costs of the performance in the DCS are data

transmission on network, remote object activation, and

waiting for TM's services. Current network configuration in

the CSnet (see Figure 2.1) relies on the Ethernet, which can

only provide 10 Mbps bandwidth.,To activate.the remote

server object, the rsh function call is used which contain

some overhead when invoking a Unix system call. Furthermore,

the time spent on waiting and talking to Task Manager,

especially in. distributed quicksort computation where a

number of children accessing the TM simultaneously, is the

main factor of the slow performance.

To predict the estimated overhead in the Distributed

Computation Service, we analyze the time spent in each

94

computation service and generate equations to express the

overhead of our implementation. The following sections

explain the estimation of overhead in DCS.

4.3.3.1 Analysis of Distributed Quicksort

In the distributed quicksort implementation of DCS, we

estimated the overhead in its execution. The following

explains the meaning of each symbol used in this analysis:

Tq: the average time to start a remote object.

Tdi the average time for a node to pack and unpack data.

Tp! the average time for transmitting one packet of message.

Tv,: the average waiting time to get the service from TM

N: the data size of integers.

M: the maximum number of elements* that can be performed using

quicksort in one node.

P: the number of elements of each packet (maximal elements to be

transmitted at a time).

C: the maximum number of leaf nodes.

L: the level of the link.

Lt : total levels of the links in the tree.

*Note: each element of the data is an integer and has 4 bytes

representation in Unix systems.

Lt = |'log2(N/M) + 1] C = 2^'-^

Each link between two nodes has the following approximate

number of data transmission:

2*(N/(2^"^*P)) + 5

(N/2^~^) is the size of data given to the child node and 5 is

the number of messages exchanged for other information. The

total transmission time for a link from start to finish is

95

{2*(N/(2^"^*P)^) +

Each parent- Spends; heeds children fby, talfcing'

to.TM. ;ThuS;; ,.the . estirnated transmitting ;timciof all links :> •

can be expressed as . . follow:

i=LT-' ■ i—hj—2

+5)* Tp) + Tp :+ 1^]-+ - X

■■ .1=2'" -v' i=o- ■■ ■ ■ ■- ■ ■ ■ I.

The. control messages for the execution ;is 9+..lln, . where

the H :.is the number of parent nodes. The transmission time' .

'for the Gontrbl ■ messages is.: . . ; .v^

. [9 +-i-i * 2^-^-1)] * Tp ■ (2);

. According to the equation (1) . arid (2) ., we can find the

estimjated tite: of "Overhead; for a; pfogram; in. the .DCS as:

.Ttotai'- ;r9;.+:ili *"Tp + To +
■,i=Lr, "■ ■ ■ • . i=LT-2 -:

r
p>̂

 X2'*T„* ((N / +5)* Tp) + T„ + TJ +
i=0 1

where (;9+ll.*'{ 2^'^.-l)) is the number : of control messages

exchanged, and the To is for the first server object. For

example, giving the following measured values:

Tdis 0.02 second To is 0.84 second
Tp. is , 0 .018 secdnd T„. is 0.79 seegnds
;n = ;20ooo i ; t m = 5ooo .
"p'i=.''250 ' : .V:-' ■i.; V .

96

then, Lt =v[lDg2(N/,M) +

■ ThUSv;''-t h ■;■ ■ /A/': ' - ' ':

Ttotai = ■|9+ll*3)*Tp^ + :'-C' -:+v^
■■ - , ■ ■. . , ■ ■ ■ i=Lj ■'■■ ■ ■ ■•. ■ '• i=Lj-2

r r^) +;t„ + t,] + £2' *t^: ■
. . • . >=2'- ■ ■ '■t ■ ■ ,: ■ i=0 ■ '

= 11.99 seconds.

:T total estimated oyerhead during :

exeGution, If we add this to the time that a program spends

in initialization, computation, and prihtingVmessage to. the-

terminal, the ::totai exeGUtion, time will he: about 13-15

seconds. The average time for initialization, computation,

and printing messages during execution is 2.48 seconds.

.Thus, the estimated time; 14:. 47 seconds.,,. The., actual execution

time of the same data size in the test is 17.81 seconds. The

estimated execution time is smaller than the actual time

because we assume the network load is steady (the data

transmission is a constant) and data is always partitioned

into two same size of data. Therefore, the estimated time is

approaching the best case of the computing time of

Distributed Quicksort and is smaller than the actual

measured time from the test. From this analysis, we are

:able to know that the main cost for distributed quicksort is

data transmission, which takes over 80% of total execution

time. ..t:: , --.:.: ;- ' 'I: - " ': ■ ■l"' . . ■■ ■ '

97

; :,w the data size increases, we can expect that the

estimated overhead will increase exponentially. In addition,

we also need to consider the latency of the network load and

the object's machine load during the execution. These

factors::alsQ catf^^ the slow performance of DCS.

4.3.3.2 Analysis of Distributed Matrix Multiplication

} Sihc the^ basic computing model of .distributed matrix,

multiplicatidn and vector addition are similar to each

other, we present the analysis of estimated overhead of .

distributed matrix multiplication in this section.

. The;,: meanings, of symbols .in the .ahalys.is , are.^explained . ..

,as-'follow: '1 -i.v;

To} the average time to; start a remote"dbject.

Td: the average, time; for: a. nbde,..to pack and uhpa'ck .data. .

Tp:..the average., time, for transmittihg packet of messag.e.. ,

. T„: the average waiting time to get the .service from ;tm

N: the , size ot a matrix (NxN);;; . .

:Nmin> the minimum si.ze of ,a. matrix, that the multiplication,is

■ perfQrmed;'.:lpcaiiyv ; ■ ' ■ V . i.::

M: the size .o.f . a,: sub-matrix'

P: the. number of elements.of... a packet (maximal , integers to be

; ■ ■ transmitted:at:-a time,),.;r

Ci ; the maximum number:of • ehildreh.^^^ \

. *NQte: .each ; element in a . matrix and a packet is. an integer;and ;

: ;::::-h^ 4 byteS representation in' Unix .systems;.

When we calculate the multiplication of two matrices,

for example, Anxn • Enxn? A is going to be partitioned into

sub-matrices.,, if .N is greater than. If N :> Nroin, then

98

there will be C = fu/M] children to:^

between parent and child has the following number of data

transmission:

+;v5 ' ■; ^

Because^ each child only. calculate: the muitiplicatioh of/ vi

A' mxn ,size. t:f iAs.:product -is MxN.' „

Thus., the: tdtai.cstimatedvtransmission tii^e fob theit

distributed matrix multiplication can be expressed as

■ -followr ' V': ' - ■ !■' ■ -"i.

.vc r ?[:(+ N^) /p:+ /

The cohtrol. messages for: the..executidn is ;2P.,: because

.in the comp.uting: model; of mattix ;multiplication, and : yectpr

addition thdre; is . only. One parent, during execution> .The: :i

transmissioh; tinie for the. cont message -is 2.0 * Tp-

Therefore, ' the. estimated Oyerhead; for

multiplication program executed in .the . DCS; is^:

. Ttotai = 20*Tp + To + T„ + C* [((2*M*N + N^) /P + 5) *Tp + To t Td] . :

For example, giving the following measured values:

Td is 0.02 second To is 0.84 second
Tp is 0.016 second T„ is 0.3 second
N = 200 M = 40
P = 250 = 50

then, G = 5.

Thus,

Ttotai = 20*Tp + To + T„ + C* [((2*M*N + N^) /P + ,5) *Tp + To + Td]

24.08 seconds

99

This Ttotai is the total estimated overhead during

execution. If we add this to the time that a program spends

in initialization, coitiputation, and I/O , which is 1.04

seconds as an average, the total estimated execution time is

25.12 seconds. This estimated result is close to the actual

average execution time of 21.07 seconds.

When the matrix size increases, we can expect that the :

estimated overhead will increase linearly. The overhead for

distributed vector addition also has, the same estimated

overhead tendency as the distributed matrix multiplication.

4.4 	Conclusions of the Implementation

The Distributed Computation Service for the Spider

Project is designed and implemented. This implementation

shows that the DCS.provides a transparent computation for

user applications. The performance of the DCS may not show

good results, but the performance is not the main concern of

this implementation. The. DCS is able to reduce the CPU usage.,

of the user's local machine by distributing jobs to other

machines. Furthermore, this computation.model.can be.used to

solve other complex problems In parallel and distributed

manner, such as NP-complete problems (e.g., the Traveling

Salesman Problem and finding Hamiltonian cycle).

100

PVM is a daemon-based software application, every

machines in a parallel virtual machine are inter-Connected:

by its local pvmd that speeds up the tasks' execution. Also,

all data,transformation and representation are built in the

libpvm library, which offers the ease for users in

programming. The prototype of the DCS in Spider can be

optimized and improved by the following suggestions:

a) optimize the amount of messages exchanged during

execution by using packet-oriented methodology;

b) provide an application program interface for the

ease of porting users programs to use DCS; and

c) reduce the costs of data transmission by using the

FORE ATM backbone network which can transmit data at

155 Mbps.

101

CHAPTER 5 Conclusions and Future Directions

We have shown the specification and design of the

Spider System and the,;defined functionalities,^^ f Spider

in an ;6hjeet-ori®'^ted:'̂ ^a^^ (OOA).'We idehtified five, ,

.funGtidhaiitiea"for theV.Spider ■ System'.and ;.they d.re:

distributed file system, security, clock synchronization,;f^^;^^:;^^^

scheduling service, and distributed computation Service

impleirtehtation- of the , Distributed ■Computation .Service (DCS) ;

has shown a reasonable, performance; from our performahce

resultsi lhis chapter will conclude the work for t

and give future directions.

5.1 	Conclusions for the Specification and Design of the

Spider Project

In this thesis, the basic structure and main components

(Microkernel, OSB, and Functionality Server) of the Spider

System are designed and given the specification of five

functionalities. All the components and functionalities

the Spider must be in object-orientation, in order to

integrate a truly object-oriented distributed system. Using

OOA, Spider facilitates easy maintenance, modification, and

. simplicity in adding more features in: the future.

102

 , ,v From the. survey of; .[14], OSF's DCE [17,

23], PVM [7], and Condor [24], we are able to adopt their

strengths for our design. The Spider Project and the

implementation of DCS will provide a testbed for people to

do related research on parallel and distributed computation.

The derivations:of those functionalities defined for Spider

are described as follow:

a).-The^ D File System (DFS) of Spider is

designed to provide a distributed file storage which

is differeht ,than.monp.lithi^ systems (e.g., Ul^IX).

The Naming Server, Directory Server, and Caching

Server of DFS are defined to provide a transparent

and coherent file accessing for users. The strengths

of Spring File System [15] and DCE's distributed

file service [17, 23] are adopted^for designing the

DFS of Spider.

b) 	Security in Spider is designed to protect the whole

Spider System from any unauthorized and

inappropriate access'of objects.'The Authentication

Server and Access Control List Server are defined

for users to access any object that they are

permitted to use. Also, we adopted the strengths :

from Spring's,: security [14j .and DCE..'.s . security

103

service [17, 23] for the design of the security in

. c);	Scheduling service, in Spider; ̂ designed to offer, .

intelligent services for user applications. The

Scheduling Manager and Pooling Server are designed

to migrate user's application on one or more idle

and/or low-utilization workstations. Users are able

to utilize as many workstations as their

applications needed for computation from available

machines. The concept from the Condor scheduling

system and the scheduling algorithm [13, 14] are

■	 adopted to design the Scheduling service of the . . .

Spider System,

d) Distributed Computation Service adopts the basic

. design of PVM [7] to provide a transparent and'

distributed computation for user applications.

5.2 	Conclusions for the Distributed Computation Service

By using the specification and design of the Spider

System, we implemented the Distributed Computation Service

for Spider. In the current implementation of DCS, the three

services are provided -- distributed.quicksort, distributed

matrix multiplication, and distributed vector addition.

These services employed the conceptual object-oriented

104

design of, the Spider.Project,.which includes Object Service:

Broker, Task Manager^ and Registry Server to assist the

Distributed Computation Service. :

PVM [7] shows an excellent work for programs executing

in a heterogeneous computing environment which is able to

collect from single-CPU machine to multiprocessors as part

of, virtual machine. A,set of programming interfaces and

libraries are provided for user applications. To'provide

fault tolerance, PVM allows .user program to delete or add

machines during operation. However,; users, need to configure

each machine's environment variables for PVM daemon and

libraries, and users may.need to add all machines to be

included by the PVM or submit a host, file to PVM when

starting up PVM. After the virtual machine is configured^

users may run their, PVM programs,in a distributed and

parallel manner .,,, - , . ,

The major difference of DCS, and PVM is that DCS does,,

not. require users to specify that which machines are going

to be included in the DCS. The local Registry Server and

Task Manager can handle.all available resources for user

applications. dSB is able to locate the remote machines and

activates remote: server object to perform computation. Users

have no knowledge of knowing which machines will be used for

the program computation. To avoid increasing a machine's

105

workload, DCS does not assign any workstation to be used

more than once. This can ensure to get a faster computation

by limiting each machine's workload. In PVM, it is possible

for a machine to be spawned more than once, during

computation.

. . . DCS also provides the fault tolerance. A mirror Task

Manager server backups all task activities from the Task

Manager server in order to continue monitoring program

execution, if the Task Manager server fails.

Figure 4.19 shows the performance comparisons of DCS.

■Since the major costs of slow performance in DCS are data

communication and network transmission, .DCS may not show a

faster computing performance. However, it reached the

objective of reducing the user time in computation and

provided a testbed for users to do research on distributed

and parallel computation. Furthermore, the DCS is able to

provide a transparency for user applications and fault

tolerance for computations.

The technology of networking is improving every year.

If the network used in the DCS implementation is replaced by

ATM (0C-3cj or OC-12 [23], the overhead of data

communication and transmission will be reduced to a minimum

of time and the performance for the DCS will be greatly

improved. ■

106

5.3 Future Directions

The Spider Project is at its initial,state, only the ,

Distributed Computation Service,is implemented. We hope that

other researchers continue the work and implement, the rest,

of 	the. defined.functionalities. There are several directions

needed to be pursued in the future:

a). The microkernel is the heart of the Spider Project;

however, it is. also the most complex component of

the.Spider. The. major concern of constructing the

microkernel is.how to include the various system .

. architectures in the CSnet.

b) 	To support a distributed object system, the IDL for

Spider should be defined and implemented in order to

provide a strong interface for all objects. We can

adopt the specifications of DCE's IDL [17] or OMG's

IDL [15] and implement Spider's IDL in the future.

c) 	Each, defined functionality in the Spider Project

gives a direction for future research. There maybe

new methodology and technology in the future. How to

adopt the new methodology and technology for the

Spider system and determine the needs of our

department become the most important directions in

the future.

107

d) 	Improve the Distributed Computation Service by

implementing a programming interface whereby a given

program can be partitioned into components so that

they can be executed transparently in a parallel and

distributed manner. Furthermore, a graphical

application tool can be implemented in order to

provide easy manipulation and transformation tools

^' 	for original programs into the equivalent

distributed computing programs.

108

REFERENCES:

[1] 	 M. Accetta, R. Baron,;D.. Golub, R. Rashid, A. Tevanian,

and M. Young. Mach: A Kernel Foundation for Unix

Development. Free. Summer 1986 USENIX Conference,

USENIX., pp. 93-112, 1986.

[2] 	 T. E. Anderson, M. Dahlin, J. Neefe, D. Patterson, D.

Roselli, and R. Wang. Severless Network File Systems.

ACM Trans. On Computer Systems, Vol. 14, No. 1,

February 1996, pp. 41-79.

[3] 	 A. Birrel and B. J. Nelson.. Implementing Remote

Procedure Calls. ACM Transactions on Computer Systems,

vol. 2, no. 1, Feb. 1984, pp. 39-59.

[4] 	 F, Cristian. Probabilistic Clock Synchronization.

Distributed Computing, vol.3, pp. 146-158, 1989.

[5] 	 R. DuVall. DuVall's Simulated Global Clock: A Messaging

Approach for a Distributed System. Research paper of

, CS624 at CSUSB, Fall, 1996.

[6] 	 M. Gien. Micro-Kernel Design. UNIX REVIEW, 8(11): pp.

58-63, November 199G.

[7] 	 A. Geist, A. Beguelim, J. Dongarra, W. Jiang, R.

Manchek, and V. Sunderam. PVM: Parallel Virtual

Machine. The MIT Press, Cambridge, 1994. ,

[8] 	 D. Golub, R. Dean,.A. Forin, and R. Rashid. Unix as an

Application Program. Proc. 1986 Summer USENIX

Conference,,pp. 87-95, Anaheim, California, 1986.

[9] 	 G. Hamilton and P. Kougiouris. The Spring Nucleus: A

Microkernel for,Objects. Proc. 1993 Summer USENIX

Conference, pp. 147-16,0,, June 1993.

[10] 	 G. Hamiliton, M. L. Powell, and J. G. Mitchell.

Subcontract: A Flexible Base for Distributed

Programming. Proc. 14th„ACM Symposium on Operating

Systems Principles. Pp. ,69-79, December 1993.

109

[11] 	 J. Howard, M. Kazar, S. Menees, D. Nichols, S.

Satyanarayanan, R. Sidebotham, and M. West. Scale and

Performance in a Distributed File System. ACM Trans. On

Computer Systems, 6(1):51-81, Feburary 1988.

[12] 	L. Lann. Distributed System—Towards a Formal Approach,

Information Processing Letter, North-Holland, vol. 77,

1977, pp. 155-160.

[13] 	M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - A
Hunter of Idle Workstations.■ Proc. the 8th

•	 International Conference on Distributed Computing
Systems, June 1988, pp. 104-111.

[14] 	 J. G. Mitchell, J. J. Gibbons, G. Hamilton, P. B.
Kessler, Y. A. Khalidi, P. Kougiouris, P. W. Madany, M.
N. Nelson, M. L. Powell, and S. R. Radia. An Overview
of the Spring System, Proceedings _of Compcon Spring
1994, February 1994.

[15] 	 M. Nelson, Y. Khalidi, and P. Mandany. The Spring File
System. Sun Microsystems Laboratories, Technical Report
SMLl TR-93-10, February 1993.

[16] 	 OBJECT MANAGEMENT GROUP. The Common Object Request

Broker: Architecture and Specification, Revision 2.0.

Tech. Rep. OMG TC Document 93-03-04, The Object

Management Group, Framingham, MA, 1995.

[17] 	 OSF. Introduction to OSF DOE. Englewood Cliffs, NJ:

Prentice Hall, 1992. , ^

[18] 	 M. J. Park. An Optimistic Concurrency Control Based on
Clock Synchronization. Master's Thesis, CSUSB, 1996.

[19] 	 J. Rumbaugh, M. Balha, W. Premerlani, F. Eddy, and W,

Lorensen. Object-Oriented Modeling and Design.

Prentice-Hall, Inc., Englewood Cliffs, New Jersey,

1991.

[20] 	 R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B.
Lyori. Design and Implementation of the Sun Network
Filesystem, Proc. Of the Summer USENIX Conference,
1985, pp. 119-130.

110

[21] 	 M. Singhal and N. G. Shivaratri. Advanced Concepts in

Operating Systenjs. Mc-Graw-Hill, Inc. New York, 1994.

[22] 	 J. Steiner, B. Neuman,, and. J. Schiller. Kerberos: An

Authentication Service for Open Network Systems. Proc.

1988 .USENIX Conference, Win.ter 1988. .

[23] 	 A. S. Tanenba:um. Distributed Operating.Systems.

Prentice-Hall, Inc., Upper Saddle River, New Jersey,

1995.

[24] 	 T. Tannenbaum and M. Litzkow. .The Condor Distributed

Processing System. Dr. Dobb's Journal, February 1995,

. pp. 40-48,.

Ill

	Spider: An overview of an object-oriented distributed computing system
	Recommended Citation

