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ABSTRACT
 

Parallel and distributed computing on networks of
 

workstations has been gaining more attention in recent
 

years. Clusters of workstations connected with high-speed,
 

networks can have computational speed approaching that of
 

supercomputers. The Spider Project is an object-oriented
 

distributed,system which provides a testbed for researchers
 

in the Department of Computer Science, CSUSB, to conduct
 

research on distributed systems. The object-oriented
 

approach was used because of easy maintenance, modification,
 

and simplicity in adding more features and functionalities
 

to Spider in the future.
 

In this thesis we have derived the specification and
 

design of the Spider distributed system by studying well
 

knoVn distributed systems: Sun's Spring Project, OSF's DCE,
 

Oak Ridge National Laboratory's PVM, and University of
 

Wisconsin-Madison's Condor Project. We identified the
 

functionalities of the Spider system which are: distributed
 

file system, security, clock synchronization, scheduling
 

management and distributed computation. To illustrate the
 

validity of the specification and design of Spider, the
 

functionality of distributed computation was implemented and
 

the performance of this implementation was analyzed and
 

compared with Parallel Virtual Machine (PVM) and SGI
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Challenge supercomputer. A graphics user interface was also
 

implemented using Java applets, so that Spider can be
 

accessed on the Internet.
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CHAPTER 1 Introduction
 

1.1 Introduction
 

Parallel and distributed computation on networks of
 

workstations has been gaining itiore attention in recent
 

years. Most current commercial workstations offer better
 

price and performance, and high-speed switch-based networks
 

have higher bandwidths than before' and have significant
 

improvements in reliability. Such advantages provide the
 

necessary environment for developing distributed systems. A
 

distributed system is a system that is a collection of
 

computers which run their own operating systems or
 

distributed operating system without having a global memory
 

or a single clock, and computers communicate with each other
 

by exchanging messages over a network. A distributed system
 

not only can provide sharing of expensive resources, such as
 

laser printers and disk drives, but also offer users
 

powerful computation capability.
 

A distributed, system can include distributed operating
 

system, distributed file system, distributed scheduling,
 

distributed shared memory, etc. These functionalities
 

support transparency where users do not need to worry about
 

the location of resources. To achieve distributed computing
 

on a distributed system, users do not need to know how the
 



program will be executed and where it will take place. The,
 

system will.take responsibility to handle jobs distribution
 

and migration, if necessary. Nowadays, most organizations
 

have high-speed local area networks (LAN) interconnecting
 

many general-purpose workstations, the combined
 

computational resources may exceed the power of a single
 

high-performance computer or supercomputer. Thus, a
 

distributed system is able,to combine the computational
 

power of all workstations into one huge virtual coinputer
 

(see. Figure 1.1.) A,user can make use of all resources in
 

the whole distributed system.
 

Virtual Machine
 

Workstation
 

File Servers
 

Print
 

m
 

Supercom pute
 

User Workstati i User Workstation
 

User Workstation
 

Figure 1.1 A distributed system as a virtual machine.
 



 

The following are issues which are important in the
 

design of a distributed system:
 

• Transparency is the major advantage of a distributed
 

system. Users should not be aware of the location of
 

service/data because it is invisible (transparent) to ,
 

them [23]. The user will receive the result displayed
 

on his/her workstation where the program is launched.
 

It is also possible that the program is executed in the
 

local machine but this is hidden from the user. A
 

distributed system must provide an efficient way to
 

deliver the services to users.
 

■ •Coherence. Since there is no global clock and global 

memory in a distributed system, a process can obtain a 

coherent but partial view of the system or a complete 

but incoherent view of the system [21]. A distributed 

system must provide a consistent global state for the 

system.
 

• Fault Tolerance. A distributed system must provide a
 

way to recover whole or partial process if one
 

processor is failed during program execution, the user
 

does not need to know this situation happened.
 

• Concurrency Control is another main problem dealing
 

with database and file systems. A distributed system
 

must provide a protocol (e.g., single-writer/multiple



readers) for users accessing consistent data, whether
 

timestamp or lock algorithms [21, 23} may be applied.
 

• Heterogeneity. There are a variety of hardware
 

platforms in the market. A distributed system must
 

provide the same service to every kind of platform.
 

The above issues are necessary to be considered and
 

discussed before developing a distributed system, and also
 

they are the goals for a distributed system.
 

1.2 Motivations
 

Powerful workstations and higher network bandwidths
 

have provided a crucial environment for researching and
 

developing distributed and parallel systems. This new
 

development gave us the motivations for undertaking this
 

study.
 

The motivations for the Spider Project are:
 

a) To conduct research in distributed and parallel
 

systems.
 

b) To provide a testbed for students and faculty to do
 

related research on distributed systems.
 

c) To build a distributed system, which will be able to
 

make full use of the workstations in the Department
 

of computer Science, at California State University
 

at San Bernardino (CSUSB).
 



The overview of the Spider Project will be explained in
 

this thesis. Why do we call this project Spider! We imagine
 

the distributed operating system as a spider and the whole
 

networked distributed system as a web. A spider on the web
 

can move to any place quickly (transparency), and it won't
 

affect the whole web if a part of web is broken (fault
 

tolerance). •
 

1.3 Thesis Goals
 

The Spider Project is the first distributed system
 

study in the Department of Computer Science at CSUSB. The
 

Spider Project'will be an object-oriented distributed system
 

which will provide a testbed for users to conduct research
 

on distributed and parallel systems. Currently, there are 24
 

Data General Aviion workstations, 40 Sun SparcClassic
 

workstations, 30 Silicon Graphics Iris Indigo advanced
 

graphics workstations, 24 X-terminal workstations, 30 IBM
 

compatible PCs in the Department of Computer Science at
 

CSUSB. Furthermore, there are two supercomputers, a Silicon
 

Graphics Power Challenge XL with 1.2 GFLOP peak performance
 

and an Intel iPSC 860 16-node hypercube. In order to support
 

real graphics, the Challenge XL is connected to 10 Indigo
 

workstations using a Fore ATM ASX-200 switch. Thus, the
 

computing power of the Department of Computer Science at
 



CSUSB will be greatly enhanced if there is a distributed
 

system. i
 

Why should the Spider Project be built and design in an

object-oriented approach? Object orientation technology has
 

emerged in the last few years and became a good methodology
 

for software and systems from design to. implementation to
 

maintenance. The object-oriented approach (OCA) has the
 

ability to provide modularity, abstraction, and information
 

hiding. The idea of abstraction in OOA is to distill the
 

essence of a problem to understand it better. Furthermore,
 

future work will be made easy to modify or to add
 

functionalities to this system,. Therefore, the Spider
 

Project will be designed in an object-oriented approach. The
 

C++, a popular object-oriented language, will be the primary
 

programming language' for'all implementations.
 

One of the main benefits of object-oriented system
 

development is maintainability. System developers can easily
 

modify, upgrade, and expand services of the system by
 

changing the characteristics of an object(s), or replacing a
 

new object without affecting other components (objects). All
 

external objects will communicate with objects. Internal
 

data and structures can be refined without impacting other
 

parts of the system. Since each object has a set of methods,
 

objects can be reused to enhance -developer productivity. The
 



Spider Project will adopt the object-oriented approach
 

methodology to develop an object-oriented distributed
 

system.
 

The goals of this thesis for the Spider Project are the
 

following:
 

a) Study Spring [14], DCE [17], PVM [7], and Condor [13,
 

24]. The first two are distributed systems, the third
 

one is a distributed computing system, and the last
 

one is a scheduling system. They will be examined and
 

studied in order to provide the background for
 

specifying and designing the Spider System.
 

b) Specify and design the structure and functionalities
 

of the Spider System. The functionalities must render
 

service to a user in a transparent and distributed ,
 

manner. The functionalities will be identified in this
 

thesis.
 

c) Implement one of the identified functionalities. In
 

order to show that the specification and design are
 

valid, one of the identified functionalities will be
 

implemented.
 

d) The implementation of the selected functionality in
 

(c) must ,be highly maintainable in order to extend or
 

add more services into this functionality.
 



As mentioned earlier, there are many powerful
 

workstations in the Department of Computer Science at CSUSB,
 

but all of them are traditional time-sharing systems. The
 

Spider Project will harness all of these powerful resources
 

into a single virtual machine. Each physical machine will,be
 

fully utilized under the Spider object-oriented distributed
 

system. With the Spider, every user can access all the
 

resources in the,system locally or remotely.
 

1.4 Organization of Thesis
 

This thesis is organized into five chapters. In Chapter
 

1, the introduction and motivation of the Spider Project are
 

mentioned. In Chapter 2, the Sun's Spring, OSF's DCE, Oak
 

Ridge National Laboratory's PVM, and Condor System will be
 

discussed and explained in a survey for specifying and
 

designing the Spider distributed system. In Chapter 3,. the
 

functionalities of the Spider System will be specified and
 

designed in detail. In Chapter 4, the.implementation of one
 

of the functionalities,, which is Distributed Computation
 

Service, for Spider will be discussed. The last chapter will
 

discuss future works and directions.
 



CHAPTER 2 Related Works
 

To define the structure and functionality for the
 

Spider system, we need to survey existing systems and learn
 

from their strengths and weaknesses. The Sun Microsystems'
 

Spring distributed operating system [14] and the Open
 

Software Foundation's Distributed Computing Environment
 

(OSF's DCE) [17] are two distributed systems designed in
 

object-oriented approach. They provided good references for
 

the design of the Spider system. The Parallel Virtual
 

Machine system (PVM)[7] is a software system that provides a
 

virtual machine to a single user by collecting "a set of
 

heterogeneous UNIX computers and the user's programs can be
 

executed in a distributed and/or parallel manner. The Condor
 

scheduling system [13, 24] is designed for a workstation
 

environment so that users can make full utilization of any
 

available workstation for their processing needs. The Spider
 

system will be based on concepts from these latter two
 

examples in regards to distributed computation. The
 

implementation of the distributed computation will relate
 

closely to the design of PVM. The Condor system will be the
 

background .for the scheduling server of the Spider system.
 

This chapter will discuss major design structures of
 

Spring, DCE, PVM, and Condor.
 



2.1 The Spring Dishribuhed Operating System
 

The Spring Project [14] at Sun Microsystems Inc. is
 

developing new technologies for constructing operating
 

systems and for simplifying distributed programming. The
 

Spring distributed operating system is constructed and
 

applied to this project. The main design methodology of the
 

Spring Project is in object-oriented approach because they
 

want to build a highly modular, object-oriented operating
 

system, which is focused around a uniform interface
 

definition language (IDL) [16, 17]. They also want to
 

innovate the current operating systems to be more open,
 

extensible and flexible.
 

Sun -decided that the Spring system should have a strong
 

and explicit architecture: one that would pay attention to
 

the interfaces between software components, which are really
 

how a system's structure is expressed, but the interfaces do
 

not provide much information on how they are implemented
 

[14].
 

2.1.1 The Overview of the Spring System
 

The Spring system is a microkernel-based system. The
 

microkernel consists of the nucleus and the virtual memory
 

manager. The nucleus manages all inter-process communication
 

and the virtual memory manager controls the memory
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management [14]. All other services are defined as
 

objects in the user level and they are replaceable and
 

substitutable,/Figure shows the major system components
 

of.the Spring system.
 

X11 Server csh Spring 

Applieation 
libue libue 

V .. . . . J . 

Unix process 
N /■ ■ 

r dynamic linker 
N

) 
(
V 

tty server
' • -

J 
y 

server J 

cTGP/UDP/IP3 
authentication 

manager 
^ caching fs ^ 

Spring 
network proxy machine 

name server 3 file system 

virtual memory 

c nucleus 
manager 

kernel 

Figure 2.1 Major system components of a Spring node [14] 

2.1.2 	The Spring Nucleus 

The microkernel of the Spring system is called nucleus. 

To reduce the performance loss by being split into different 

address spaces, the Spring nucleus is designed to provide a 

fast •inter-process' .communication (IPC) 11 supports three , 

basic abstractions: domains, • threads, and doors [9] . 

2.1.2.1 Components of a Nucleus 

. : a.) Domains: .Domains has the same . form as processes in 

U tasks .in 3Madh^:^r^ provide an address 
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space to execute and keep all resources information
 

for each application, such as threads and doors, for
 

applications. ;
 

b) 	Threads: Each,domain can have multiple threads
 

executed within it. All threads are accessible via
 

cross-domain calls.
 

c) 	Doors: Doors can support calls between domains. It
 

is similar to the ports in Mach [1]. A door is a
 

particular entry point to a domain, represented by
 

both a program counter and unique identifier
 

assigned by the domain.
 

Each domain has a table of doors to which the domain
 

has access. The user application uses door identifiers to
 

reference doors. Door identifiers,are mapped through the
 

domain's door table into actual doors. In Spring, a door may
 

be referenced by several different door identifiers in
 

several different domains .(see Figure 2.2).
 

User mode Kernel mode User mode 

Server 
Client 

application 

► 
» 

1
application 

Client server 

application ^ ^ application 

Door Door tables Doors 

identifiers 

Figure 2.2 Doors and door tables [9] 
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2.1.2.2 Inter-Process Communication
 

To provide a fast-efficient IPG, Spring supports three
 

different ways of door invocation and door returns [9].
 

a) 	Fast-path: When the door arguments are simple data
 

values and size is less than 16 bytes, the fast-path
 

calls and returns will be applied to achieve
 

performance.
 

b) 	Vanilla-path: When the data is less than 5 Kbytes
 

and some moderate number of doors are being passed
 

as arguments or results, it will trap into the
 

nucleus to copy data argument to the target domain.
 

c) 	Bulk-path: When the arguments or results contain
 

large amount of data, the nucleus will use virtual
 

memory manager re-mapping to transmit the data.
 

2.1.3 Subcon'trac't
 

Subcontract is a flexible and extensible mechanism for
 

plugging in different kinds of object runtime machinery
 

which allows control over how object invocation is
 

implemented, over how object references are transmitted and
 

released, and similar object runtime operations [10].
 

It has become common to provide remote procedure calls
 

(RFC) facilities that extend the semantics of local
 

procedure calls to distributed systems. In an object
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oriented approach, RPC becomes the form of remote object
 

invocation [14]. Due to the various RPC systems that each
 

provides different application requirements, the Spring
 

project uses subcontracts, which are replaceable modules, to 

.give- Gbhtrol of the.basic mechanisms of,object invocation ■ 

and argument passing.
 

Subcontracts are separated from object implementations
 

and object interfaces. It is easy for object implementers to
 

either select and use an existing subcontract or to
 

:iraplement a new subcontract.
 

■A Spring object is noticed by.a.client as consisting of 

three things [10] : 1.) a method table, which contains an . 

entry for each operation implied by the object's type 

definition; 2) a subcontract' operations vector, which 

specifies the baaic subcontract operations; 3) object's 

representation, which is some client-local private state. 

V Spring's components and: objects are defined by strong 

interfaces that use the IDL [14] . By using IDL to define 

interfaces, developers won't be tied for any single 

programming language. An IDL interface can be compiled into 

three parts: client side stub, server side stub, and header 

file for the interface. Stubs generated from an IDL 

interface description can hide- the object. invocation, .from 

clients to deliver a transparent service. 

14 



The code of stubs can transform the method invocation
 

into calls on either the object's regular method table or on
 

its subcontract operation vector. Figure 2.3 shows the
 

logical progression of a call to a server-based Spring
 

object.
 

€lient application Server application
 
Ak
 

Clientstubs Server stubs
 

subcontract subcontract
 

Figure 2.3 Invoking a method on a server-based object [10].
 

Different objects may need different subcontracts, but
 

the basic principles of subcontracts are the same. The
 

client-side subcontract has five basic operations: marshal,
 

invoke, unmarshal, marshal_copy, and invoke_preamble. The
 

server-side subcontract operations are creating a Spring
 

object, processing incoming calls, and revoking an object
 

' The Spider system will.use similar mechanisms for
 

object invocation, which will be discussed in Chapter 3 and
 

the implementation will be explained in Chapter 4.
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2.1.4 File System
 

Spring file system [15] defines file objects, which
 

inherit from the memory object and io interfaces, tkat are
 

implemented by file servers. Thus, file objects can be
 

memory mapped and accessed using read/write operations of
 

the I/O interfaces. Spring file system uses the Spring
 

security and naming architectures to provide access control
 

and directory services.
 

The implementations of Spring file server consist of
 

two systems: Spring Storage File System (SFS) and Caching
 

File System (CFS). SFS is implemented using two layers, disk
 

layer and coherency layer [15] (see Figure 2.4). The disk
 

layer implements an on-disk UNIX compatible file system. The
 

coherency layer is stacked on the disk layer and implements
 

a per-block multiple-reader/single-writer coherency
 

protocol. Also, the coherency layer keeps track of the state
 

of each file object and of each cache object that holds the
 

block at any point in time.
 

All files are
SFS
 
Coherency layer
 "^exported by
 

coherency layer
 

Disk layer
C^^Diskdr^e^
 

Figure 2.4 Spring SFS [15]
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2.1.5 Security in Spring
 

To provide secure access to'objects. Spring supports .
 

two basic mechanisms in security: Access Control Lists (ACL)
 

and software capabilities.
 

An ACL defines which users of groups are allowed access
 

to the particular objects. These ACL can be checked at
 

runtime to determine whether a given client is really
 

allowed to access a given object [14].
 

An object reference is created by the object's server, 

when the client proves that it is allowed to access that 

given object,^ that ■acts like: a-: software capability. , This ■ 

object reference contains a .nucleus door that points to a 

front object inside the object's server [14] . An object's 

server may create many different front objects, 

encapsulating different access rights, all pointing to the 

same underlying object. Thus, when the client assigns an 

object invocation on the object:reference, the reguest can 

be. securely.: transmitted to- the front, object. : The .front 

object checks the client's . ; access.:right, if it is 

permissible then forwards the request into the server. 

Figure 2.5 shows the diagram of a client accessing a secure 

object. 
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Figure 2.5 A client accessing a secure object [14].
 

'When a client is given the object reference from the .
 

object's server, client can pass, that reference to other
 

clients. These other clients are able to have, the sarae
 

access rights as the original client and use the object,
 

reference freely.
 

2.1.6 Conclusions of the Spring Project
 

The Spring operating system is still an on-going
 

project at Sun Microsystems Inc., but they have innovated
 

the traditional operating systems to build one. based on
 

strong interfaces with openness and extensibility in an
 

object-oriented approach. Sun hopes that the Spring system
 

will replace Solaris in the future as a step toward a
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distributed system environment. So far, the Spring operating
 

system can only work on machines using Sun's architectures.
 

2.2 Dls'trxbu'bed Compu1:ing Environment:
 

The Open Software Foundation's (OSF) Distributed
 

Computing Environment (DCE)' is not like any other
 

microkernel-based distributed systems, which are constructed
 

from scratch. DCE is built on top of current operating
 

systems. Since most environments (operating systems) today
 

include technologies from a variety of vendor's, DCE provides
 

a common infrastructure for all kinds of systems [17].
 

Providing this common, multi-vendor infrastructure is
 

the goal of the OSF's DCE. DCE provides the key services
 

required for supporting distributed applications, including:.
 

• support for remote procedure call (RFC) between
 

clients and servers;
 

• a directory service to let clients find servers;
 

• security services to ensure access between clients
 

and servers;
 

• a time service to synchronize the system clocks
 

throughout the network;
 

• a threads service to provide multiple threads of
 

execution capability; and
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distributed file services to provide access to files
 

across a network.
 

2.2.1 The Overview of DCE
 

DCE supports the, construction and integration of
 

client/server applications in.heterogeneous distributed
 

environraents. DCE has been designed to inter-work with
 

existing standards in a number of areas. For example, a
 

group of DCE machines can communicate with each, other and
 

with the outside world using either TCP/IP or the ,OSI
 

protocols [21, 23]. User processes, act as clients to access
 

services provided by server processes, which can be local or
 

remote.. Figure 2.6 shows the various components of the DCE
 

architecture.
 

Distributed Applications
 

Distributed File
 

Service
 

Time Directory Security
 

Service Service Service
 

DCERFCand Authentication
 

DCE Threads Service
 

Hostoperating system and networking
 

Hardware
 

Figure 2.6 OSF DCE Architecture [23]
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According to the four factors (purpose, security,
 

overhead, and administration), users, machines, and other
 

resources in a DCE system are grouped together to form cells
 

[17]. All the DCE services are based upon these cells.
 

The following sections will discuss DCE's RFC, security
 

service, and distributed file service.
 

2.2.2 Remote Procedure Call
 

DCE is based on the client/server model to provide a
 

distributed computing environment. RFC dominates the
 

communication in DCE. When requesting a service. Client
 

makes an RFC to a remote server process. Before,a client
 

connects to a server's process via RFC, DCE handles all
 

internal tasks, such as locating the server, binding to it
 

and performing the call [23].
 

DCE RFC system hides all details of complex data
 

transformations and communications from the user. The client
 

only needs to make a local procedure call to receive a
 

remote service. The intermediate procedures can be generated
 

from an interface definition language (IDL) that is similar
 

to the Spring's objects. A unique identifier is given when a
 

IDL file is compiled. This identifier is for a client's
 

process to locate a correct server, then the client is able
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to receive correct^information or services. Figure 2.7 shows
 

the steps involved in binding client and server.
 

Cell Directory Server
 

1.Register endpoint

2.Register service
 

3.Look up server
 

5.DoRFC
 
Server
 

RFC
 

daemon
 

Client
 

4.Ask for endpoint
 

endpoint
 

Figure 2.7 Client-tb-server binding in DCE [23]•
 

The endpoint, likes Spring's doors and Mach's ports, is
 

a numerical address on the server's machine to, which network
 

connection can be attached and messages sent [23]. More
 

discussions on RFC will be in Chapter 3.
 

2.2.3 Security Service
 

.Security is always.:a major concern in a networked
 

environment. In DCE,.every user and process has its own
 

principal when it.needs to communicate securely;[23]. DCE
 

security can assign proper resources to,each principal and
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provide a secure cryptography for transmitting all
 

information in an insecure network.
 

The major components of DCE security and their duties
 

are the following [17, 23]:
 

a) Registry Server: the registry server manages the
 

security data base, the registry, which contains the
 

names of all principals, groups, and organizations.
 

b) Authentication Server: the authentication server
 

verifies the claimed identity of the principal and
 

grants a proper ticket that allows this principal to
 

do other subsequent authentication without having to
 

provide the password again.
 

c) 	Privilege Server: the privilege server issues PACs
 

(Privilege Attribute Certificates) to authenticated
 

user. The PAG is an encrypted information that has
 

the principal's identity, group, and organization
 

information, such that all servers can be instantly
 

convinced without need for providing any additional
 

information.
 

d) 	Login Facility: the login facility is a program
 

using the authentication and privilege servers to
 

provide all the necessary tickets and PACs when
 

users are logging in.
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Once a user is logged in a DCE system, the user can use
 

a client program to access remote server process via
 

authenticated RFC. In DCE, every resource has an ACL (Access
 

Control List), which tells security who may access the
 

resource. On the server side, when the application server
 

receives the incoming request, the server verifies the
 

requester's identity using the PAC and checks its ACL to see
 

if the requester has the right to use the service or
 

resource.
 

2.2.4 Distribu-ted File System
 

The distributed file system (DES) of DCE is to provide
 

lisers and processes access to all files within a DCE system
 

they are authorized to use. DFS has two main parts: local
 

part and wide-area part. The local part is a single-node
 

file system called Episode, which is similar to a standard
 

UNIX file system on a stand-alone machine. The wide-area
 

part is to collect all these individual file systems
 

together to form a wide-area file system.
 

The DFS in DCE is just like an application, and uses
 

all facilities of DCE. The DCE threads provides the ability
 

to allow users access multiple files simultaneously, RFC
 

offers a bridge for communication between clients and
 

servers. Distributed Time Service (DTS) synchronizes server
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cloGk/ the;directory;; service .allow servers to be
 

located, and the security server protects the files by
 

unauthorized accesses.
 

Each file and directory in DFS is protected by ACLs, :
 

which contain a list of entries. Beside the read, write, and,
 

execute s-operations can be assigned ;'td users ahalogous to the-


standard UNIX;.;flie .systems., ACL. also, allo^w insert,.delete :
 

and control.. Th.d: Insert and delete, operations, are. for .
 

directories, and control operation is for I/O devices
 

subject to the lOCTL system call [23].
 

: .DCE's DFS also supports data replications, load ;
 

balancing and fault tolerance [17, 23]. The replication
 

server keeps tracks of all.;replicas p;f filesets up to date.
 

There is only one master copy of the"data that, is allowed to
 

be Written and read,: and one or more replicas for read only..
 

If one replica is changed by a user.or process, the
 

replication::server will detect the difference,by scanhing
 

all replicas.. The fileset server manages all filesets in the
 

. oeE ;system:. it one disk partition is fully loaded by
 

filesets,■ wbile bther disks still .have plenty.of space, the 

fileset server will move some filesets from disk to disk to 

balance the load. .The; overseer seryer -Is to make sure that 

all other machines are;;still alive. ^ 
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2.2.5 Gonclusions of DCE
 

At the early stage of design, the main purpose of DCE
 

is to provide a robust distributed computing environment,
 

such that the DCE wasn't designed in any object-oriented
 

approach. The tendency of using object technology has forced
 

DCE toward distributed object technology. The latest DCE
 

1.22 leads to interoperability Of different object-


strategies because DCE provides a foundation for ,
 

distributed, object-oriented computing without precluding,
 

use of other approaches such as CORBA [16]. Thus, we learn
 

advanced distributed computing technologies in DCE.
 

2.3 Parallel Virtual Machine
 

Parallel Virtual Machine (PVM) is the mainstay of the ,
 

heterogeneous network computing research project [7], a
 

collaborative venture between Oak Ridge National Laboratory,
 

the University of Tennessee, Emory University, and Carnegie
 

Mellon University. The PVM project began in 1989 at the Oak
 

-Ridge National Laboratory.- The main design for PVM is to
 

link computing resources and provide users with a parallel
 

platform for executing their applications,, irrespective of
 

-the number of different ,workstations they use and where the
 

workstations are located.
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PVM uses the message^passing model to allow programmers
 

to exploit distributed computing across a, wide variety of
 

computer types, which include most Unix systems and,PCs, The
 

PVM system.supports heterogeneity in, terms of machines, ,
 

networks, and applications [7]. With,this,feature a large
 

parallel virtual machine is possible to be built by using ,
 

PVM system. PVM consists of two parts,: a daemon process on
 

each host (pvmd)and a set of library routines(libpvra). The
 

usual way for two user processes on different hosts to
 

communicate with each other is via their local daemons. The
 

logical view ,of an application running on PVM is shown in
 

Figure 2.8.
 

Task Task
Task Task
 

T 7
V V
 
libpvm libpvm
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PVMDaemon PVM Daemon
 

Opermng System

Operati ig System
 

Network
 

Figure 2.8 The logical view of an application running on PVM.
 

The following sections will discuss some internal
 

designs and mechanisms used in the PVM system.
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2.3.1 Communication in PVM
 

When a virtual machine is created, by PVM, all :
 

interconnected machines,need to exchange messages over the
 

network for their communication. Since there is no global
 

shared memory:in a virtual machine, the message-passing
 

model.is adopted ,by PVM.
 

In order to support heterogeneity in PVM, the message- ,
 

passing/model needs to be built by using standard ,
 

communication protocols. PVM'uses,Transmission Control
 

Protocol (TCP) and User Datagram Protocol (UDP), for the
 

intercommunication, and Unix-Domain sockets mechanism, is
 

used to apply on TCP and UDP., Because majority of platforms
 

for PVM are Unix systems, PVM^adopts the most prevalent
 

application program interface (API), Berkeley sockets, to be
 

the communication medium for daemons and tasks.
 

TCP provides a connection-oriented communication
 

service on Internet Protocol (IP). By using TCP, messages
 

can be delivered reliably, but there is overhead to build
 

TCP connections if the need of connections is large. UDP is
 

a connectionless, transport protocol which does not re.quire,
 

two hosts to set -Up specific connection route before sending
 

message. However, the messages delivered by UDP are,
 

unreliable because the Sender can send messages without the
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reeeiver's aeceptance.:Thus, the. adknowledgment:and retry 

meGhanisi^ - Ahe reti^^ 

:To .make' ef,f±c^^^ :edmffiunication in./PVM, TCP and:UDP are 

.used/in different categqries -.i ^ • 

a) Pvmd-Pvmd. The communication within pvmds are across 

; the netwo^r^^ -to avoid/the. network: traffic and, . 

. ./Overhead'of setting;:up connections.,; daemons 

dortmiunicates' with one another:hhrdugh UDP. sockets •■. . 

, ; b) . .Pvmd-Ta.sk and .Tas'^vT.ask.: /Since . tasks .perform / . ' 

. computing and I/O, they can not be interrupted. If 

UDP is used: for commuhicatiorij. a task might be .,: . / 

' , interrupted^.tb give, a/retryv fbr a; lost packet during. 

. computing-:: Thus, TCP sockets are used in Pvmd-Task 

To p^'^'ovide .f tolerance,. ;a .pvmd .:..wiil rego
 

the/ loss of: any- foreign' pVmd by preparing a..copy of.. task
 

beforesending to:' the .:o%her pvmd.: the PVM Will not
 

. migrate. the exeGuted task tO/Ieripther/ host.,, . sihGe -it:'^ not 

have checkpoint. , 

2.3.2 Conclusions of PVM 

: . ■ T system is not- a complete distribufed system/in . , 

general. The goai: of pVM/iS.. td offer a distiibuted and ■ * 

heterogeneous network computing environment to. use.rs to be 
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able to solve large computations. Users can collect all; ; ■ 

^ayailabie machines tp;be'his^,her- virtual mabhine, ;• 

use ;6:f this -huge computing:;powersto . solve prpblems-^,^^,! ; : 

efficiently. Indeed,:;PVM achieves;the heterogeneity in terms 

of machines (about, 40:different Unix, machines ,[7])r-:1 

networks, and applications. : ■ , 

■ PVM research group continues to:;.do; d dpment:of. new 

.features and improving the .functionali.t^ .,,pyM..;T:he main
 

milestone for . the .:next..versio of..PVM..ia to have /t.h© -u'
 

capability of collectin.g Unix ..systems./ Microsoft.Windows 95.,.
 

and...Windows N.T rtiachines,. Users will have the chance to
 

experience the hybrid computing power.of MPPs and Pentium.
 

More and more research groups are cooperating with the
 

.\PyM:, gm^^^ distributed cofiaputaticn.. Hetefogeneous;^:;
 

Gotipnt is.-one of the. go.als.for .the. S.pid.er^
 

v.therefore, PVM is chosen:as. an example, for:pur study.
 

2.4 Condor Scheduiing System
 

The Condor scheduling system [13, 24], developed at the
 

University of Wisconsin-Madison, is designed for a
 

workstation environment so that users can make full
 

utilization of any available workstation for their
 

processing needs. In general, the resources of networks of
 

workstations are under utilized or often idle. When users
 

http:S.pid.er
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face the problem that the ability, of .their workstation is
 

too small to meet their application, needs, the Condor, system
 

can schedule,users' jobs at idle workstations. Figure 2.9
 

illustrates the Condor scheduling structure [13]. Each
 

workstation has a local scheduler and a background job
 

queue..One workstation holds,the central coordinator in
 

addition to;a local scheduler and a background.job queue.
 

The central coordinatof polls the workstations to know the
 

status for each station .(available to serve,and background
 

jobs waitii
 

Idle machines
 

rs.
 

HUD
 

ScMer
 

Fi^re 2.9 The Condor Scheduling Structure.
 

The main advantage of COndor is fault tolerance. When a
 

user'S program,is migrated to an idle machine by Condor, the
 

Condor central manager will, checkpoint the program
 

periodically. If the machine is running the migrated Condor
 

user program.and another user sits down to use this machine.
 

Condor will terminate the Condor user job and save all the
 

31
 



 

inforrftatlon oE: running, job to a checkpoint file. Thenf the
 

Condor .central rnanager w look .for another idle machine
 

and transfers the job there..The job will' restart by reading.
 

the checkpoint .file, and inanipulating its^ .s so as. to
 

emulate asvaccuraGy as possible the state of the previous
 

job at:checkpoiht:timei Thus, . the. Condor user job does not
 

need to restart:; at the beginning. This scheme ;also .applies
 

to the. situatibn:.when a machine fails.
 

. . . The checkpointing,of a:prograria in Condbb . scheduling
 

system is the saving of the state of the program. In order
 

to restart the prpgram and.. continue the execution on another.
 

machine,' Condor saves the state df .the prbgram including:
 

text,, any initialized .and un.initialize'd d.ata/ Stack areas, ..
 

the status of opeh files and file descriptdrs:, and any .
 

special handling reguested for various sighals [13, 24].
 

Thus, the removed prpgram can :b.e restartdd on . anothet idle .
 

machine without losing any information of program execution.
 

2.4.1 Conclusions of Condpr
 

The Condor scheduling system: is able, to give us a good
 

example on how to provide.a fault-tolerant computing
 

environment.. The Spider System should be^ .t by use.rs to
 

execute, their.,jpbS; and expect their jobs to terminate
 

■ :'nor-mally'. 
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CHAPTER 3 The Spider System
 

This chapter will discuss the specification and design
 

of architecture and functionalities of the Spider system.
 

The main design goal for the Spider system is to design a
 

distributed system in object-oriented approach, in order to
 

provide a flexible and easily extensible testbed environment
 

for research on distributed and parallel computing in the
 

■ Department of Computer Science/ : Cadiforhig:: University, 

San Bernardino.
 

3.1 Goals for the Spider System
 

: T distributed system will include all the ,
 

various available machines in our department. Before
 

/designing^ system, we need to specify the system's
 

..goals that ate applicable to our department. In general, the
 

Spider system will achieve .the following . specific.: goals: _
 

portability, heterogeneity, transparency, flexibility,
 

extensibility, and fault tolerance.
 

3.1.1 Portability
 

The labs in our. ■ department, include different kinds pf , 

workstations, which run on .spversi implementations of UNIX^^ ; 

operating bysterns ■ (GSi. and Microsoft Windows 95.'vTlie .Spider; 
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system will need to run on different hardware platforms and
 

operati:n,g ;s To conquer and achieve the portability
 

-for different machine architectures, the Spider system will
 

.need aimicrbkernel ;QS/^ whiGh will minimize the , size of basic
 

system. Thus, the system can be easily ported to other
 

machines by reconfiguration.
 

3.1.2 Heterogeneity
 

. In a dist.rito system, heterogeneity is one of the ' .
 

main..charactef.istics. Different; architeGture.s of machines,
 

IRISC, eupercompufers, IBM compatible PC, etc.), operating
 

systems (UNIX and Windows 95),, and network protocols are,,,
 

rippssible hindrance in, the,,,construction of a dis,;t:ributed.;v-


system. Fof;, ekample,; the , PC rmechines, use the! .little endiari:
 

byte, sequencing of integers, and , the .Sun SPARC, uses the . big, ,,
 

endiau: format. Any data transmitted between.these two :
 

machines without conversion will definitely cause an
 

incorrect data received by one machine. The Spider system
 

will have the ability to - handle all..different:. data formats
 

'transmitted,between different platforms. Thus., . users can
 

make full advantage of all resources in a heterogeneous
 

environmenf in our department.
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3.1.3 Transparency
 

The main concept of transparency is to hide the
 

distribution of resources from the users. The users are not
 

aware of where the resources are located, how the program is
 

executed by parallel or distributed manner, and how the
 

requested object is implemented. Tanenbaum [23] classified
 

transparency into five aspects of a distributed system, as
 

shown in Figure 3.1.
 

Kind .Meaning 

Location transparency The users cannot tell where resources are located 

.Migration transparency Resources can move at will without changing their 
names 

Replication transparency The users cannot tell how many copies exist 

Concurrency transparency Multiple users can share resources automatically 

Parallelism transparency Activities can happen in parallel without users, 
knowing 

Figure 3.1 Different kinds of transparency in a distributed system.
 

The Spider system's different functionalities will need
 

to have different kinds of transparency. These
 

functionalities will be discussed in Section 3.3 which are:
 

distributed file system (replication and location
 

transparency), scheduling service (migration transparency),
 

clock synchronization (concurrency transparency), and
 

distributed computation (parallelism transparency).
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3.1.4 Flexibility
 

Users can easily plug in their research implementations
 

into the system and test their algorithms. Furthermore, The
 

Spider system will be able to provide an efficient way for
 

users to submit their jobs. For example, when a user wants
 

to execute a computation, the Spider system can migrate this
 

job to an idle machine to do the computation. If the Silicon
 

Graphics Power Challenge machine is available, the Spider
 

system will set it as a primary choice to achieve a better
 

computing performance. By providing a flexible and
 

intelligent system,.users , can focuS:. on their research .and .
 

results from the system.
 

3.1.5 Ex'benslbxli'by
 

The Spider system* will not only provide flexibility,
 

but also extensibility. The object orientation is able to
 

support a distributed system to be extensible. Any new
 

object (functionality) can be added onto the system to
 

extend the system's functionalities. Also when there are new
 

machines connected to the Spider system, the Spider will
 

have the ability to scale up by including these new
 

machines.
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3.1.6 Fault Tolerance
 

In a distributed system environment, it is possible
 

that one machine may crash or fail due to a fault in some
 

components, such as processor, I/O device, cable, or
 

software- [23]. In such a condition, the users are not
 

necessarily informed of the event, but the Spider system
 

needs to provide a recovery algorithm to rebuild the ongoing
 

activities on the crashed machine. By achieving fault
 

tolerance, the system can minimize the loss of information
 

and be more reliable to execute users' jobs.
 

3.1.7 The Limitation of the Spider System
 

The Spider distributed system is designed to be built
 

within the CSnet (Computer Science Network at CSUSB), which
 

includes the local area network (LAN), ATM backbone network,
 

and Windows NT network (see Figure 3.2). However, the design
 

of the Spider System should be able to apply in the-


metropolitan area network (MAN) and the wide area network
 

(WAN) in the future. The specification and design of the
 

Spider System will only concern the computing environment at
 

CSUSB, which will cover the current available'machines. This
 

thesis will only implement one of the functionalities
 

defined, and that is the distributed computing functionality
 

of Spider.
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Figure 3.2 The overview of the CS network at CSUSB
 

3.2 An Overview of the Spider System
 

Due to the fact that different machines running on
 

various Unix operating systems in our department, the first
 

prototype of the Spider system will be built on top of
 

current Unix OS to achieve portability. Figure 3.3 depicts
 

the architectural overview of Spider and its corresponding
 

equivalence to the OSI model (Open Systems Interconnection
 

Reference Model).
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Figure 3.3 The architectural overview of the Spider system in OSI model.
 

. Since we are using object-oriented approach (OOA), we 

need to treat each service as an object. In OOA, we can 

provide a testbed environment for researchers to be:able to 

test their work by replacing existing objects and adding on 

their new objects.; V;. ■ i- , -• - • 

Examples of objects in the Spider system are:
 

distributed file system, security service, clock
 

:synchronization, scheduling service, and distributed
 

computation service.
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In Figure 3.3, the basic architecture of the Spider,
 

system consists of a set of clients (processes), a set of
 

services, an Object Service Broker (OSB), and a Microkernel.
 

Clients may use the OSB via Microkernel to access
 

remote/locai services, or directly use any existing OS
 

services. OSB responds by contacting providers of a service
 

and establishing a connection between the client and the
 

service provider. The provider of a.service is referred to
 

in the Spider system as a. Functionality Server (FS). A
 

service can be defined by an object-oriented interface and
 

implemented in C++. For example, a simple FS may only
 

provide a basic service. Such as sorting arrays. A complex
 

FS may provide a more sophisticated service such as file
 

system.
 

Each FS is an object or provides a group of objects to
 

offer service that is encapsulated and hidden from the
 

clients. The clients are only, interested in the behavior of
 

a service, not in its internals. Thus, clients don't know
 

what kind of sorting algorithm is iiftplemerited in the FS.
 

It is important to support the idempotency in a
 

distributed system..The Spider System,needs to support
 

idempotent operations to eliminate any redundant reguest.
 

For a sequence of same requests from a user. Spider must
 

treat these requests as a single request and provides the
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same result to the user. A transaction number can be'
 

assigned to a user request, in order for Spider to determine
 

that the user's request is repeated or not. The idempotency
 

can reduce any unnecessary or redundant access to the Spider
 

system.
 

The following sections will discuss the components of
 

the Spider system in more detail.
 

3.2.1 Microkernel
 

The Spider distributed system will be a kernel-based
 

operating system. This system will be structured as a
 

collection of cooperating servers running on top of a
 

minimal kernel. Structuring systems in this manner offers a
 

number of potential benefits.including, ease of ,•distribution,
 

reconfigurability, extensibility,• portability/ protectipn,
 

and correctness [6/ 8]. Like other microkernel; operating
 

systems (e.g., the Spring's nucleus [9], and the Mach's
 

microkernel [1]), the Spider's•microkernel has four primary
 

abstractions:
 

a) Process and thread management
 

The processes are the same as processes in the Unix
 

systems. Each process has an address space. A process
 

. consists of one. or.more threadsjAll- the:thrasds . in a
 

process share the address space and execute in a
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timeshared manner on a single CPU machine. On a
 

multiprocessor, several threads can be active at the
 

same time. ■ 

b) Memory management
 

The microkernel will provide memory management to
 

handle the allocation and deallocation of memory,
 

paging, and.swapping.
 

c) Inter-process communication (IPG)
 

The Spider microkernel will provide facilities for
 

the IPG, including pipes, sockets, RPG (Remote
 

Procedure ..Gall), and shared memory.
 

d) I/O management
 

All low-level I/O is handled by the kernel.
 

We want to minimize the size.of the kernel, so other
 

basic, services will be implemented in user level.
 

Since constructing a.microkernel depends on the
 

machine's hardware architecture, it causes its complexity to
 

increase when implementation is from scratch. The Spider's
 

microkernel will have to deal with three^major architectures
 

(SGI, Sun SPARG, .and Data General) in our GSUSB
 

Laboratories. In the future., the Spider's microkernel will,
 

run on every, machine, and those Unix services will be moved
 

up to the service objects level.
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3.2.2 Communica'bion in Spider
 

i;' ^ ^ Spider system will be based on the client/server
 

model. The basic Gommunication paradigms will be the..remote,
 

^procedure- call (RPG) mechanism [3.] and the BSD spcket. . v
 

3.2.2.i Remote Procedure Call
 

The RFC mechanism providesltr^ and efficiency
 

for user programs and applications in the distributed
 

'■systems.^^'^ conversibn .of data representation, the 

. a.ddress vof - the. .remote .,machihe.>. and communication and system 

.failure . ftoiri prbgramjte .. 

: . ; ; l\n RFC system pro.yi.des the ; ExteJ-nal Data . Repre-sentatipn ; 

l(XDR)- : library, and ■defines the ■RFGunessage-passing protocol. 

.: The XDR in . RPb 'system is able to hide all IPG . details and 

offer the ease of developing networked applications. The RPG 

model provides two communication interfaces, client stub and 

server stub, which are generated by the RPG compiler. The 

stubs use the RPG protocol to construct and exchange 

messages between client and server. The client stub, a dummy 

procedure, is an intermediate for the client to call the 

particular functions, where the actual implementations of 

the functions are on the server side. The client stub 

delivers the client's request to the server stub and waits 

for the reply. The.server stub unpacks the messages and 



invokes the real procedures, then packs and sends the result
 

back to the client stub. The client then receives the result
 

from the client stub as the execution is performed locally.
 

Figure 3.4 describes a basic RFC model.
 

Server
 

calling procedure called procedure
 
Client
 

results
arguments
 arguments
results
 

Server Stub
Client Stub
 

reply request
request reply
 
messages messages
 messages messages
 

Network
 

Figure 3.4 Remote Procedure Call.
 

The communication facility used by the RFC model is
 

provided by the underlying network to deliver messages to
 

the remote machines. The Spider system will use both TCF and
 

UDF protocols for the RFC corrununication model. To obtain
 

maximum throughput for a bulk data transfer, the TCF
 

protocol can provide a reliable delivery and buffers
 

messages to immediately return control to the user. The
 

buffered messages are flushed when the buffer is full.
 

Thus, the RFC model can be asynchronous and users can make
 

more calls. For low-latency calls, the UDF protocol can be
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used and the buffer is flushed immediately, but the user can
 

be blocked. Figure 3.5 shows the comparison of TCP and UDP
 

protocols.
 

Protocol Type Data Type Transmission
 

Stream reliable
TCP Connection -oriented
 

UDP Connectionless Datagram unreliable
 

Figure 3.5 Comparison of TCP and UDP protocols.
 

To use a remote procedure call in the Spider system,
 

the communication protocols can be system-defined or user-


defined depending on the application. The structure of the
 

Spider system is based on the RPC-like model to provide a
 

transparent and object-oriented distributed computing
 

environment.
 

3.2.2.2 Berkeley Sockets
 

To use the Berkeley Sockets interface, programmers need
 

to handle all the details of communication in the programs.
 

Although using socket interface will be more difficult for
 

programmers to debug and produce programs, programmers can
 

have more control on the data transmission.
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The basic concept of the socket communication is based
 

on establishing a phone-like line between client and server
 

programs. Once the connection has been established, the
 

client and server can exchange information through this
 

particular line.
 

Since the socket interface can directly talk to the
 

network without any other interface, it is much easier for
 

programmers to use this mechanism to provide more efficient
 

services. In the Spider system, some functionalities will
 

need to provide broadcasting message ability, which will be
 

implemented using socket interface. Furthermore, for a
 

cross-platform connection, the RFC mechanism may have
 

difficulty to apply on different platforms because most RFC
 

compilers are system-dependent.
 

In Chapter 4, the socket interface will be used for
 

implementing the distributed computation for the Spider
 

system.
 

3.2.3 Object Service Broker
 

Object service broker (OSB) is the central component of
 

the Spider system, handling the communication between all
 

objects in the system, regardless of their location,
 

platform or implementation. The main idea of OSB is similar
 

to the subcontract of the Spring operating system [10], the
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DCE's Cell Directory Server [17] and OMG Object Request
 

Broker (ORB) [16].
 

OSB manages the interaction between client and server
 

objects. This includes "marshaling" and "unmarshaling" of
 

requested parameters and results. The marshaling operation
 

of OSB is to transform the request and object into marshaled
 

form and send to server. The unmarshaling operation is to
 

receive the incoming object from the server, extract
 

information from the object, and send result back to the
 

client. Figure 3.6 depicts the client requesting server
 

object through OSB.
 

Server Object
 
Client
 Object
 

Implementation
 

Object Service Broker
 

Figure 3.6 Invoking a method on a server-based object
 

When a client wishes to perform an operation on a
 

server object, OSB is responsible to find the object
 

implementation for the request by contacting the Registry
 

Server, to prepare a server object to receive the request,
 

and to make connection for client,and server [16].
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The invoking .operations,on server- objects Gan.be
 

perfbrmed in:a staM which works very -much like ,. Remote
 

Procedure Call (RFC).. An object defines its interface using i
 

Interface-.Definition.Language (IDL) [16, ,17]^. The . IDL
 

.definition ;is:,,then compiled tfcp . produce a[client st^ : : .
 

■aerver ̂ skeleto,n,: code- that typically [gets iihked into, the [; . 

ciieht and server objects, [ respectively [Che' client stub rahd. 

server skeleton are.[ .p.art ,0f .[tlie OSB ..(see Fignre [3 ..7. ) . TO ■ [ [ 

invoke a method in., t.he. SeEvep .bbj^^e^ client .calls[a [[ 

: 	function,[(a. request [thata via;:(7SB -is [cbnveyed.; .tb[ and. / 

executed dn.the destination object.[At .the same time/., the [ : 

client is blocked'until: the ,functiOn[ returhs[.:[. [ . [,./ 

Client Server 

Stub OSB Skeleton 

Figure 3.7 Ihe structure of OSB. ; 

The implementation of, a . simple OSB will be ; discussed in. 

3.2.4 E^anctionality Server
 

- Functionaiity:setyers can be. simple or ^complex, but
 

.provide .bhly • Each functionality server is . . 

implemented as a'^ bbject .and can. be [accessed: , via. the object
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oriented::interface..::Thus Ihdse functtonality servers:can he .
 

rised , as distributed: objects and ;providai'^cjr.;t:herr:y
 

- transparent interaction within ̂ a distributed systerti. :.
 

The object-orlented interface used by fuhcfionality .
 

jservers: and clients; is; daacribed in IDL;. [16,, 17.] ipLy'^
 

provides a standird,',, •ianguage-neutral:nieans of d®scripinp . ..
 

the public interface;bf an;object. Figure 3.8 describes:;a
 

-Simple IDf;interface from the specification., of OMG's,IDL : -:
 

[uuid(7:0ff8-220-6ela-ilcc--89ee-t8002b2albGa)Tj- : ■ 

:' ; 'iinterfa.ce^-Sbrt.'f f;i-.: tv-;;: l - l ' f' 

. void sorting i .,[int °'^'t]:. ai^y:varra:y,-;^[in short -flag); 

■ "-■ ''Figure ,3■.'8:.-'A'Sor'-t"-Interface 

All data types ttsed in an IDL - interface -definition (an 

operation's return typeS; and: parameter types.) , must ..be either 

the IDL basic types (short, long, floal:, boolean...) , IDL . 

template types (sequence, strings, arrays) , or IDL 

constructed types (sbructs, unions, envims) . In Figure 3.8, 

the sorting operation takes a pass-by-reference any and a ' 

pass-by-value short to sort any kind of array and does not 

return a value, but the sorted array will be passed back to 

the client. The in indicates that the parameter is passed 

from client to server, and but indicates that the parameter 

is passed from server to client. 
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Since every object must, be unique to the whole
 

distributed, system, each interface can be assigned a
 

universal unique identifier (UUID) [16]/The unique UUID
 

identifies an IDL interface and give information to the OSB
 

for object invocation. Every FS needs to provide an endpoint
 

[17] for. clients to. make a connection. Thus,, ea.ch FS must
 

register its service in the registry Server,, where the OSB
 

will, look up the location of the server,by contacting the
 

registry server. A registry server is also one of FSs that
 

exists on every machine and maintains an endpoint table of
 

all servers' objects. Figure 3.9 depicts the steps to create
 

a new FS in the Spider system.
 

There are, three basic steps: , ,, ,
 

• Register: the new FS needs to register , its service with
 

the UUID and endpoint to the Registry Server.
 

.	 • Update table: Registry Server updates its registry
 

table by recording down new. FS's UUID and endpoint.
 

• Broadcast: Registry Server broadcasts the new
 

infprmation to all other Registry Servers.
 

After the above three, steps are don©/ the new service is
 

available to the users. Users can, access this FS at any
 

workstation.
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Request object^ Registry Registry
 

endpoi] Server Server
 

OSB
 
Reply endpoint 3.Update
 

endpoint
all registry New FS
 

with UUID
L server
 

1. Registerto
 

Registry Server the Registry
 
endpoint table
 

pnHpoint
 2.put into table
 

Figure 3.9 New FS registers to the Registiry Server.
 

A single IDL interface may have many implementations,
 

but must contain the operations described.by the IDL
 

interface ih the public section of the implementation class,.
 

The implementation of an obgect is encapsulated and hidden,
 

from the client. Functions on the server side are , referred
 

to as skeletons [16, 17], with a skeleton function
 

corresponding to each operation declared in the IDL
 

interface. The skeleton receives invocation requests sent
 

from the client stubs. The skeleton will.unmarshal a request
 

and invoke the corresponding member function Of the FS. When
 

the member function returns, the skeleton will marshal the
 

return parameters and, with the help, of the OSB, send them
 

back to the client side stub.
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On the other hand, the member functions declared for
 

the client side class are the same as those declared for the
 

functionality server implementation class. The member
 

functions of the client side class are referred to as stubs.
 

Stubs are invoked by the client program when client sends a
 

request of an operation. They marshal the invocation request
 

and its arguments, send it to the server side with the help
 

of the OSB and then wait for a response. If a response has
 

been received, the stub unmarshals the return parameters and
 

returns to the client program. The inter-process
 

communication necessary for an operation invocation is
 

transparent to the client. Figure 3.10 depicts the
 

interaction of clients and functionality servers. First, the
 

client uses the OSB to request access to services. Second,
 

the OSB responds by contacting FSs of a service and
 

establishing a connection between the client and the FS.
 

OSB
 
2.Response
 

1. Requests
 

3.Connection 

Client J FS 

Functionality 
Servers 

3.Connection 
Client 

FS 

Figure 3.10 The interaction of the clients and Functionality Servers.
 

52
 



3.3 Functionalities of the Spider System
 

The previous section defines the overview of the Spider
 

system; this section discusses several functionalities
 

which will be developed on the Spider system. The basic
 

mechanisms of each functionality will be defined. These
 

functionalities will include distributed file system,
 

distributed computing, security, and clock synchronization.
 

Each functionality can be implemented as an object in
 

the Spider system and become a functionality server. Some
 

functionality servers may become clients of other
 

functionality servers. For example, a file object needs to
 

send requests to the security object to get the
 

authentication in order to verify the user's privilege to
 

access the file object.
 

3.3.1 Distributed File System
 

The distributed file system (DFS) is an important
 

component of any distributed system. In a distributed
 

system, clients do not need to or should not know that the
 

file system is distributed. Since most of the machines are
 

workstations in our laboratories at CSUSB, files can be
 

stored at any machine.
 

: DFS is one of the functionality servers:in,the,Spider
 

system. In general, this file system uses threads to allow
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multiple file accesses simultaneously, RPC and OSB for
 

communication between clients and servers, the security
 

server to protect files, and the clock synchronization
 

server to synchronize seryer clocks.
 

Traditional file systems are designed as a central
 

server model, such as Network File Systems [20]. These
 

central server file systems will have performance bottleneck
 

when the system grows large. Examples of file systems, such
 

as xFS [2] and the Spring File System [15], are designed in
 

contrast with traditional file systems. These two
 

specifications give a direction to the design of the
 

distributed file system for the Spider System.
 

The Spider System is an object-oriented and distributed
 

system that is structured around objects. Therefore, a file
 

or a directory is an object in the Spider system. The basic
 

services for the distributed file system will be discussed
 

in the following sections.
 

3.3.1.1 Directory and Naming Servers
 

The naming server will provide file transparency to
 

clients. The clients do not need to know where the file is
 

located. Furthermore, a distributed file system not only
 

needs to have location transparency, but also location
 

independence [23], such that, any file can reside at any
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machine. However, the location independence is not easy to
 

achieve, but it is a desired property to have in:a
 

distributed system.
 

The directory server is able to provide the creation
 

and deletion of directories, using naming server to name and
 

rename files, and moving location of directories. The global
 

root directory, should be viewed the same way in all clients.
 

The directory server maintains the directory path table in
 

every machine, but not for all the,directory paths..For
 

example, if a user looks up the path /A/B/C, the user sends
 

a message to the directory server, which will find the
 

location of A. According to the directory path table, the
 

server having A will provide information of B. Then the same
 

for C, the user will be able to.get the information of files
 

under C directory [23] (see Figure 3.11).
 

/A
 
Server 1
 

Look up
 
/A/B/C
 

Client
 

Server2
 

Reply to client 'A Servers
 
c
 

with C
 

Files
 

Figure 3.11 Pireetory lookup.
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The naming server allows any file object to be
 

associated with any name. This association of name and
 

object is called a name binding [15]. Each name binding is
 

stored in a directory object, such that every file name is
 

unique in this directory object.
 

Both directory server and naming server is secured by
 

an access control list (ACL). An ACL can protect every file
 

object and directory object. Only authorized clients can be
 

allowed to access the particular objects in DFS.•ACL will be
 

discussed in the security section.
 

3.3.1.2 Caching Server
 

The DFS of the Spider system should be stateful [23].
 

Although a stateless file server tends to have fault
 

tolerance, the systems that keeps, less-client's state
 

information force Glients,to communicate with the;.server
 

more frequently, which will -cause more network traffic. In
 

the Spider system, each;file, server has . to keep track of. :
 

which clients have cached copies of the file objects.
 

However, the caching server of the client side has the duty
 

to report to the file se,rver, .if-the-cache file obj.ect has
 

been modified. Because the file server tracks all the cached
 

file objects, it will notify ,(invalidate) all .other clients
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holding a copy of the cached file object. This will ensure
 

that all clients will be able to access the latest data.
 

The main responsibility of the caching server is to
 

keep data consistency of all cached objects in the Spider
 

system. The DFS of the Spider system will use the write-


invalidate protocol [21] to keep cache consistency. It will
 

use the single writer and multiple readers'semantic. By
 

using file locking, all files are kept consistent. The
 

locking server can be elected by the file object's server
 

initially. Every client must request file lock before
 

reading or writing a filei.Because the ,file object is cached
 

on the client's machine, the original file object must be
 

updated and all other copies are invalidated, once the
 

client modifies the cache file object.
 

. Using the caching server, each object can be 

xeplicated and sent to clients. The caching -server also.^ 

needs to interact with the microkernel's virtual memory 

manager in order to provide an efficient file .service.. . ■ : ■ 

3.3.2 Security
 

Security is a major concern.in a distributed system. We
 

want .to avoid any unauthorized use- and access ho the.. Spider.. .
 

■ system. Thus, the security of the Spider system wi.hl.cohs.ist 
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of two servers -- authentication server and Access Control
 

List (ACL) server.
 

3.3.2.1 Authentication Server
 

In a timesharing system, a user logs on a machine by
 

typing the user's name and password. If a user logs in
 

successfully, the kernel keeps track of the user's idehtity
 

and permits or refuses access to files and some other
 

resources based on it [23]. In the Spider system, once a
 

user logs in and gets authenticated by the security server,
 

it's not necessary to keep track of the user. Thus, the
 

security service must provide the authentication.
 

A well known authentication server is Kerberos [22].
 

The user receives a ticket from the Kerberos authentication
 

server after exchanging encrypted message. The ticket will
 

allow the user to access the network services, which
 

specifies the limitations of user's access, then the ticket
 

can be sent over the network in the distributed system
 

without sending the user's password. The Spider system will
 

use Kerberos as part of the security service.
 

3.3.2.2 Access Control List Server
 

The Access Control Lists (ACLs), [14, 21] allow a user
 

to receive from the file server permission to operate on the
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. particular file objects or dlrectbry , pbjepts 	 stbr.ed ..
 

in the: file^ server. - The AGLs::give the/authorizatioh to ; , ,
 

■ 	 clients and inform which usereiahd.groups; may access the . i,: 

resources. Therefore, each .object i^n the Spider system is, . . 

proteoted.by . an ACL:. When a user requests hp invocatibn .pn.;' 

an object; service, :the AGL server will issue;:an ACL to. the 

... object dependihg dh the user's .ticket. . 

there is no. central. AGL ; server in the,Spider :system,; 

; but .each .file .object, is' assQ.ciated,,with its AGL server; ; : 

. /depending:on its. location^ .To .modify the; access.; rights..of! 

i tha objects, only 'the:::object'.s' owne.f has the; ability ^/to: .. :^;^/^ 

; performV a hiorarehica:!/pohtrdl .[21],,.v which . allows the owpe,r ■ 

/do. modify, tha AGL of the object and all the objects below it 

''l:in tha/hierarchyv./-' -/./■■ ■/: /..•■ ■::' jc/, 

The basic steps for . a user to Ipg" in thio. Sp.dder, system 

// and :usa . the system .: s.prvices can be described as fdllows . .( sea 

: Figure 3.12) : 

. .: al Log in the system. The user types the username .. and , . 

b). Get a :ticket. The . Kerberos authentication server 

authenticates the user and.grants, the ticket to the. . 

user. 

cj, Raquest. seryioe. 'The user, sends: t.he request to the .OSB, 

•59 

1 



d) Issue the AGL. The OSB contacts the ACL server to issue
 

a proper, ACL to the user.
 

e) Give ACL to the object. The ACL server assigns the
 

capability for the user to access the object.
 

f) Reply to the user. The object performs the requested
 

services according to the ACL and gives the results to
 

the user.
 

Kerberos
 
1.Logs in
 

2. Grants ticket
 
5. Gives ACL
 

User
 

Object ACL
 
6.Replies to user
 Server
 

3.Requests service
 
4.Issues ACL
 

OSB
 

Figure 3.12 The overview of the security model.
 

The security in Spider should be stateful;- . but we
 

choose it to be stateless. Spider is designed, as a .
 

distributed object system, and every server object invoked
 

by a user has an ACL to accompany with it. Because a user
 

receives, a ticket from the authentication server and this
 

ticket gives the certain privilege of accessing server
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objects, the security in Spider does not need to record all
 

information of user's activities.
 

3.3.3 Clock Synchronization
 

In a distributed system, the...absence ,of.a global .cloc.k ., .
 

[21, 23] may cause the system to be in an inconsistent state
 

because all workstatidns' clock are not synchronized. There ,
 

are some algorithms discussed in [21, 23] on how to
 

synchronize clocks in a distributed system. However, most of
 

these algorithms, use a single time server to,.be..responsible
 

for the clock synchronization, which is not suited in a
 

distributed .system. Park [18] proposed an optimistic
 

.cdncurrency control mechanism based on-a clock :
 

synchronization, which provides a flexible and efficient way
 

to synchronize the global:clock in a distributed .systei^*
 

DuVall's simulated global clock algorithm [5] represented an
 

improvement over Park's clock synchronization. These two
 

algorithms will be adopted by the Spider system.
 

3.3.3.1 Park's Clock Rate Synchronization Algorithm
 

In Park's algorithm, the clock rate server (Pcks)is
 

chosen randomly to adjust the clock rate of the requested
 

machine (P±). During the clock rate synchronization, another
 

coordinator machine (Pc)- is chosen randomly to be the
 

61
 



intermediate for these two machines. The algorithm has the
 

limitation that all machines run on the same LAN because the
 

constant message transmission is assumed. The clock rate
 

synchronization is illustrated in Figure 3.13.
 

Thalt(P±)
 

Ta.(Pc) Tb(Pc)
 

Tc(Pc) Td(Pc)
 

•CRS I
 

Thalt(Pcrs)
 

Figure 3.13 Clock Rate Synchronization [181
 

The relations between; these machines.; can,be.dete.rmined. by ,
 

the following equations [18]:
 

Ttrans(PcRSr Pc) — [Tb(Pc) ~ Ta(Pc) ~ Thalt(Pcrs)]/2
 

Ttrans(P±f Pc) ̂ [Td,(Pc) — To(Pc) ~ Tjmj,T(P±)1/^
 

Clock Ratio(PcRs, Pi) = [Tb(Pc) - Ta(Pc)]/[Td(Pc) - Tc(Pc)]
 

Park proposed a clock rate.synchronizatio.n, where the
 

clock rate server can be chosen randomly. This algorithm is
 

suitable for a real distributed system. The clock
 

synchronization only need to be done once initially. Since
 

the Spider system is designed for the Department of Computer
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Science at CSUSB, Park's algorithm is applicable to the
 

Spider system.
 

3.3.3.2 DuVall's Simulated Global Clock
 

DuVall's simulated global clock [5] presents a more
 

efficient algorithm for clock synchronization which combines
 

the features of Cristian [4] and Park [18] to be a hybrid
 

clock synchronization algorithm. DuVall refined Park's
 

algorithm to be able to. synchronize system clock with the
 

Universal Coordinated Time.(UTC) rate, and DuVall's
 

algorithm does not need periodical.re-runs for clock
 

synchronization.
 

DuVall's algorithm adopts the transmission time
 

estimation from Cristian and offset to local time from Park
 

.[5]. Periodically, at least with each configuration change,
 

this algorithm will need to be run or re-run. If the
 

coordinator has accessed to the UTC source, the physical
 

global time can be maintained in the system.
 

In. the Spider distributed system, the clock
 

synchronization server will adopt DuVall's algorithm to
 

provide a consistent global clock. The clock synchronization
 

will apply when the system start up. If any machine has
 

crashed and then boots up again, only that particular
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machine will perform the^ q •SYhchrbhization,:^::n all
 

machines . In';t need;fo;re-sy^ again.
 

3.3.4 Scheduling Server
 

The scheduling service alms to maximize the utilization
 

of workstations^ .so that a;, user Is able to.use'Idle or under
 

utilized .workstations:. The main,gqal^ e a ■distributed system 

Is that .a; user^^"^ full use of ell avallabie: resorirces.. 

Including . .coni^ptitlhg power of workstatlohs.. Hdweverv ..we don.'t : 

want users to Interfere with other users' work; so, only 

' Idle and 'Undereut.l11zed workstatlo.n.s^ ape available for users; 

lh;the Spider system.: 

The Condor scheduling system [24] presented a 

. successful; litplem;entatl.on: of process scheduling. The Condor 

. system;.provides 'a sdheduling mechanism fb . schedule' lpn:g 

runnlng..backgrbund . jbba at Idle . workstations .. It; .also; ha.s 

. the. checkpoint and mlgratlbn facilities In order f o; ; suppbrt; • 

the;-fault folerance. If .an. Idle machine; Is logged. In by a 

user or . .cfashed, the . migrated, job will be Stopped and be . . . . 

mlgrafed ;.tb ahpther..Idle machines. That .jbb will restart at 

; the . point where the program stopped;; according to Its 

. . Since the checkpoint . mechanism. Is; us:ed. . f.or t^^^^ 

scheduling service. It Is- necessary for the .scheduling 
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server of Spider to be stateful. The main components of the
 

scheduling service are scheduling manager and pooling
 

server.
 

3.3.4.1 Scheduling Manager
 

In the Spider system, the scheduling server will exist
 

on every machine, which is different from a central manager
 

in the Condor system. When a user executes a long running
 

background job, the local scheduling server will call its
 

pooling server to get the information ̂ of idle,,.machines.. Then.,
 

a scheduling manager will be elected randomly from the pool
 

to monitor all the scheduling activities for the user's
 

task. The local scheduling server will be the shadow of the
 

scheduling manager to keep the most current state of the
 

task execution. Therefore, if the remote machine crashed or
 

becomes busy, where the scheduling manager and pooling
 

server are running on, the local scheduling server is able
 

to re-elect another idle machine to be the new scheduling
 

manager.
 

3.3.4.2 Pooling Server
 

When a user wants the scheduling service, the pooling
 

server will collect all idle and under utilized workstations
 

in its pool. Each,machine will be assigned a priority number
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according to the machine's performance. For example, the
 

highest priority can be the Power Challenge machine, and the
 

lowest priority can be the PC. This will guarantee to
 

provide users with the most efficient computation for their
 

applications.
 

During execution, if a user attempts to log on the
 

machine which is executing a migrated job, the Spider system
 

will prompt a message to warn the user. The user may choose
 

another machine, or still log on this machine if the user
 

does not mind to experience a degraded performance. This
 

mechanism will reduce the risk of too much job migration and
 

the complexity of checkpoint.
 

Condor system is not capable of migrating jobs using a
 

central manager because if the central manager goes down,
 

all the information on migrated jobs will be lost. The
 

scheduling algorithm for the Spider system may involve more
 

messages sent over the network, but it is more suitable and
 

reliable for a distributed system. The scheduling algorithm
 

is illustrated in Figure 3.14.
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Fi^re 3.14 Job migration via scheduling server.
 

3.4 	Gonqlusions of the Spider
 

In this chapter, the structure of the Spider is
 

specrfred and:designed'.. To achieve .the object orientation ;
 

for Spider, OSB offers a transparent object invocation for
 

user - applications' and. FSs provide .an object-oriented and
 

distfibuted service environment.. Because of. the .
 

heterogeneous computing environment in CSnet, the Spider's
 

microkernel is needed to implement a suitable infrast^-ucture,
 

for the Spider distributed system.'The functionalities of
 

the Spider Project are also defined. These functionalities'
 

act as FSs in Spider. They are all specified and designed as
 

objects ..which .facilitates ease . of continuing the ^research on
 

implementing the functionalities of Spider.
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In Chapter 4, the Distributed Computation Service in^
 

Spider is implemented. To prove the validity of.the design,
 

OSB, Registry Server, and Task Manager are implemented in
 

object-oriented approach and then tested for correct
 

execution.
 



CHAPTER 4 Implementation of Distributed Computation
 

Service
 

The concept of distributed computation is to distribute
 

jobs to several remote machines. Each machine may perform a
 

different function, for example, I/O, problem setup,
 

solution, output, and display. All the machines can also
 

perform the same function, to solve a small part of the
 

data. This is referred to as the SPMD (single-program
 

multiple-data) model of computing [7].
 

In this thesis, one of the Functionality Server, the
 

Distributed Computation Service (DCS), for the Spider
 

Project is implemented, and only three services: sorting,
 

matrix multiplication, and vector addition are supported by
 

this implementation. The implementation is described in the
 

following sections.
 

4.1 Implemen'ta'blon of Disfribu'ted Compu'ta'blon Service
 

The implementation of DCS is designed in an object-


oriented approach and written in C++ and Java programming
 

language. The Distributed Computation Service has the
 

following components: OSB, Registry Server (RS), Task
 

Manager (TM), and Java Graphical User Interface (GUI).
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To, design, in object-orientation, we, must provide
 

dbjects to have three characteristics [19]: encapsulation,
 

.inheritance,, and polymorphism, .:
 

. •	Encapsulation means that an object's data, and methods
 

aren't accessible by the object's users except via
 

its .methods'. In C++ programming language, we can use,
 

private to encapsulate the data and methods from the
 

outside world,
 

• Inheritance offers objects to be reusable. Child
 

objects do not need to implement code, but can
 

instead directly use and build.upon the code that is
 

in the parent,
 

• Polymorphism of object-Orientation is the most
 

,	 complex,to describe. Put simply, polymorphism means
 

that the user of two different objects can, in some
 

ways at least, treat them, as if they were the same.
 

For example,, two objects, one representing your
 

checking account and.another your saving account.
 

These two accounts almost have the same; ,
 

characteristics : for your bank activity, both of them
 

offer deposit and withdraw methods. However, the
 

saving account object's withdraw method may probably
 

just 	check the ;amount to be withdrawn against the
 

account balance. The transaction either succeeds or
 



 

 

fails which is depending on the requested amount
 

: e the balance-or not. For the checking
 

:	 accdunt^: the requested withdrawn amount may exceed
 

the balance., if the exceeding amount is within the
 

limit of an automatic loan, which can protect against
 

overdrafts.
 

These important object-orientation characteristics are
 

appiied t objects in this implementation. Figure 4.1
 

shows the overview of the Distributed Computation.Service.
 

Task	 Server
 

Manager	 Object
 

OSB
 

Registry
 
Server
 

ava GUIDaemon
 

Client
 

Application
 

Java GUI
 

Figure 4.1 Overview of Distributed Computation Service.
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4.1.1 Object Service Broker (OSB)
 

,OS.B plays an important role in the. Spider Project. The ,
 

main^functions of an OSB 6bject are: .
 

:• 	to locate the registetad server Regrstry^, .
 

Server (RS) accdrding'to^ client's .request;:• / ;
 

• to submit the job to ,the^'^^T
 

for the TM to monitor the execution;
 

. . • 	to activate the remote:server object, and convey the:
 

client's request to that server object; and
 

• to notify TM that the job is finished ahd.deactiya
 

the server object.
 

When a server object needs to request., ior.ahother
 

server object(s), it also requires the OSB to locate and
 

activate the remote pbjdctls). OSB simply.talfcs .to TM
 

requesting .for any available server, then activates the :
 

server object on the remote machine.
 

4.1.2 Registry Server
 

The responsibility of the Registry Server, which
 

manages a service data base, is to provide an available
 

registered servers list by verifying the request from OSB.
 

The assumption for the Distributed Computing Service is that
 

every machine is independent and may or may not share the
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same file system with others. Figure 3.9 depicts the actions
 

taken when the new Functionality Server (FS) is registering
 

to the - Registry Server and the OSB is requesting servers
 

from the Registry Server.
 

4.1.3 Task Manager Server
 

To manage the available servers for each task during
 

computation, TM needs to keep track of all tasks'
 

activities. In a distributed system, we don't want the Task
 

Manager to be centralized and provide fault tolerance for
 

DCS. Thus, a mirror TM object is created and keeps the same
 

information as TM, in order to take over the TM's job when
 

TM goes down. TM and mirror TM are running on different
 

machines and updating data periodically.
 

OSB has two options for contacting with the TM. First,
 

OSB tries to contact the Task Manager server, if TM is down
 

or no response, OSB will try to contact the mirror TM. If
 

both Task Manager servers are down, then the operation is
 

aborted because the server object can not operate properly
 

without the TM.
 

4.1.4 Java Graphical User Interface
 

In order to provide a friendly GUI to users, we choose
 

the Java programming language to implement the GUI for the
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DCS. Java applets are able to.run on any platforms where .
 

there is a web browser (e.g., Netscape and Microsoft.
 

Internet Explorer). Therefore, anyone is able to access the
 

Spider's DCS through Internet,.if they are authorized users.
 

Because■of the.Internet security issue, users can't 

send files to the original web servers, or open the,servers 

side files via Java applets. Thus, this GUI can only show 

simple - demonstrations to,users how the distributed, 

computation is being done. If users want to use these 

services, they must login in the CSnet and create their own. 

client programs and access the.. DCS in text mode. Figure 4.2 

shows the state 'diagram of the Java program. 

Mam Help
Choose S Applet
 

Sorting Help

Exit WindowWindow 

hoose Vector 
Choose Matrix V Addition 
Multiplicatioi^ 

Exi 

xit 

;MM V. Add 

Window Window 

Figure 4;2 State diagram of Java GUI. 

1:^: 



Each window (Sorting, Matrix Multiplication, and Vector
 

Addition) uses TCP sockets to communicate to a C++ daemon
 

located in the same machine, where the Java program is
 

downloaded. The daemon provides the most current execution
 

information to the Java applet, and the Java program
 

displays the graphical diagram to users (see Figure 4.3 and
 

Figure 4.4).
 

I
 

sgi
 

SQi sgi 1
 

Figure 4.3 A snapshot of the Distributed Quicksort window.
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 JA'" '''"/:'' ''"f/T^
, f , ,/„ „,,,„ )r/',, -^,^fS.:''\:Kf:',/'-^,- --'y
 

'•".^gt^rBy<.«l
 
r'-''""
 

Figure 4.4 A snapshot of the Distributed Matrix Multiplication.
 

The GUI contains applet, frame, panel, ■and d 

objeats. . Since Java already :provides hierarchies .of.common 

classes, we create these objects by inheriting existing ■ : ■ . 

classes. Figure 4.5 shows the hierarchy of classes used for 

this implementation. The hierarchy shows two categories, one 

is Java classes library, and the other are user-defined 

classes. The GUI implementation is based on these objects to 

display graphical diagrams to users. 
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Object
 

Component
 

Coiitalner
 

Window Panel
 

Graph_base Applet
Frame
 

Matrix Distributed

Display Help Dialog SPIDER
 

Multiplication
 

Java defined classes Classes not listed
 

User defined classes
 

Figure 4.5 The hierarchy of GUI Java classes.
 

4.1.5 Conununica-tion in DCS
 

RPC and BSD socket interface are used for the
 

implementation's communication mediums. There are three
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interfaces that are defined as interface definitions for
 

these service objects: distributed quicksort, matrix v
 

multiplication, and vector addition..Because the IDL
 

compiler for the Spider Pro.ject is not implemented, the O.NC
 

RFCs RPCGEN compiler is used to generate all client and
 

server stubs. These stubs provide the proper data
 

conversions for clients and server,objects.
 

For the implementations of; server objects,, the BSD 

socket interface is used for communication. TCP and UDP 

protocols, are employed to suit for different needs in this 

implementation. The table of Figure■ 4.6 describes the 

protocols Used for communication in this implementation. 

Type Protocol 

client-server RFC 

OSB-Registry UDP 

OSB-Tas.k Manager TCP' ■ . , 

task-Task.Manager TCP,, 

task-task , T.CP 

: SVR OSB-Task Manager TCP . 

task-Java Daemon UDP 

Figure 4.6 The protocol table. 

To understand the procedure of the distributed 

computation in the Spider system. Figure 4.7 illustrates the 

steps of the distributed computation. 
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Registry Server
 
Mirror site 

Task 
Update

\i >f Task 
Registry 

Manager Manager 

4.Notify the Tas
 
Manager y/


2.Requesttor 9. Reply to 
registered server OSB 

3.Reply to
 
5. AssignOSB
 
TaskID 

1.Send request 8. Deliver tl 

Client ►>	 request
OSB 

Client OSB 
6. Activate the remote SVR OSB 
vV server object 7. Request for 

Server OSBchildreiK^ 

13. Reply the results to Client 
10. Send to 

Server Server Object 
Object 

n.Spawn children 1. Spawn children 

12.Send 
results back 

Child Child 

Server Server 

Object Object 

Figure 4.7 The protocols of the Distributed Computation Service. 

To illustrate the implementation in object-oriented 

approach, the object diagram of Distributed Computation 

Service is shown in Figure 4.8. 
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Client Program
 
RPC Server-stub


OSB Class
 
Class
 Class
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Server
 

RPC Client-Stub
 Task Manager InLplementation
 
Class
 Class
Class
 

Registry Server
 

Class
 

OSB Class
 

Figure 4.8 Object model of Distributed Computation Service
 

4.2 Overview of the Distributed Computation Service
 

DCS is designed to solve large and complex computations
 

in a distributed and parallel manner, which are sometimes
 

difficult to be executed within a single machine. If the
 

computation is done on the user's machine, the user may
 

experience the degradation of performance because most CPU
 

usage is used on this computation. In a distributed
 

computing environment, once the users submit jobs to the
 

distributed system, they can continue doing other work.
 

Users are not aware of knowing how the job ds done and where
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the job is executed, they just need to receive the correct
 

results.
 

Sorting, matrix multiplication, and vector addition are
 

common computations. How these three problems solved in a
 

distributed computation is discussed in the following
 

sections.
 

4.2.1 Distribu-ted Quicksort
 

The quicksort algorithm provides a fast and efficient
 

way to sort data by recursively calling itself ^
 

algorithm is expressed as follow:
 

Array A[1 . . . N] is to be sorted.
 
^ ̂ lo, hi)
 

/* sort array A from the lo to:hi into ascending order on
 
■ key P. Key Pm is arbitrarily.chosen-as the control key. 

■. Position I and j are used to , paftitiph. the-: subfile so that; 
at any time K. < K, 1 < i and K: > K, 1 > j. It is assumed 
that K^< Khi+i. */ 
if lo < hi 

then [ i <— lo; j <— hi+1; K <— K„, ' 
loop 

repeat i <— i+1 until Ki > K; 
repeat j <— j-1 until Kj > K; 
if i < j ■ 

then swap(A[i], A[j] ) 
else exit 

forever 
swap(A[m], A[j] ) 
call QSORT(lo, m-1) 
call QSORT(m+1, hi) ] 

end QSORT 

The average computing time for quicksort is 0{Nlog2N) 
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.	 of distributed quicksort"isiVto; define a
 

maximum 	number of data size that can perform quicksort in
 

one machine/: Ifithe size'of data is lai(5er than the defined
 

sizei'ffdh •the/::data is:pjdrtition into tWp parts,and g:iydn
 

to two children which in turn apply distributed quicksort
 

recursively. The alqorithm is given as follows:
 

sArray A|l. . N]> minimal data, count is M ,
 
procedure Distributed_Qsort(B,.lo, hi)
 
::/* :B ::is either part.:or. entire of array A-. The ,16 ;a is
 
the lowest and highest position of array B, respectively. p
 
is the pivot point of B after partition. */
 
if::(I • have;parent) ^
 

. then [ /*.. I. am the child */
 
. . receive data from parent . .
 

if ((hi - lo +1) < M)
 

■ 	 then [..call. Q.SORT 

send the result back .to:parent ]
'else ;[ " 

. . partition B into two .parts , ; 
. .: sehd ;two;parts,.:t two. childfen: 

-.wait. for results from children ;
 

send results back to.parent 1
 

else [ /* I am the parent */
 

if ((hi - lo +1) < M)
 

then [ call QSORT
 

, . display , result . .]
 
else [
 

: . , . partition B to two parts
 
send two parts to two children :
 

- . wait for results from.children.
 

display result ]
 

]
 
end Distributed Qsort
 

The average computing time for the distributed
 

quicksort is still in the form 0(Nlog2N), but N may vary and
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depends on the defined minimal data size M. If N is much
 

greater than M, then the resulting sorting tree's depth is
 

increased. That means more children are created during
 

computation, and these leaf nodes will only sort at most
 

(N/2'^~^) of data, where d is the depth of the binary tree.
 

Thus, the average computing time for distributed quicksort
 

will be 0({N/2'^"^ )loga (N/2'^"^ )). Figure 4.9 depicts this
 

computation..
 

* Assume the partitioned data is always halved.
 

Array size=N
 Level
 

Root 1
 

N/2 N/2
 

Child! Child!
 

N/2 N/2 N/2 N/2
 

Child! Child 4 Ch Id5 Child6
 

0[(N/4)log2(N/4)]for each node
 

Figure 4.9 Dls'tribu'bed Quicksort tree.
 

On the other hand, the transmission time may be the
 

main factor that affects the total computing time, and we
 

will discuss this issue in Section 4.3.
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4.2.2 Distributed Matrix Muitiplication
 

The average computing time of two NxN matrices is
 

O(N^), which is relatively higher than quicksort. The
 

algorithm for distributed,matrix multiplication is to
 

distribute the data to several machines and every machine
 

performs the computation,for the portion.of the matrix,
 

multiplication in parallel,
 

. Assume that we use M machines to perform the .
 

computation. The multiplier is separated into (N/M) sub-


matrices, and each child only computes (N^/M).
 

Therefore, the . total average,computing time is O(N^/M).
 

Figure 4.1,0 ̂ depicts the distributed matrix multiplication.
 

xN >— xN, ■^NxN 

Child 1 Child 2 Child3 Child 4
 

Matrix size is NxN. 
0(N^/M) for each nodeSub-matrix size is MxN. 

M<-N 

Figure 4.10 Distributed Matrix Multiplication. 

http:portion.of


 

Also, we need to consider the transmission time spent
 

in the distributed matrix multiplication which will be
 

discussed in section 4.3.
 

4.2.3 Distributed Vector Addition
 

The computing time for the addition of two vectors
 

(arrays) is 0(N) where N is the size of the array. If we
 

can fragment the arrays and distribute them to M machines,
 

we can reduce the computing time by-computing in parallel.
 

The improved total average computing time will be 0(N/M).
 

Figure 4.11 depicts the distributed vector addition.
 

A
 

B
 

Child 4
Child 1 Child 2 Child3
 

Add
Add Add Add
 

r ■ ■ ■ ■ 

0(N/M)
 

Result
 

Figure 4.11 Distributed Vector Addition.
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The transmission time is a major issue during
 

computation, and we will-discuss this in Section 4>3.: ,
 

4.3 Performance and Analysis
 

The main purpose of the distributed computation in the
 

Spider System is to provide a facility for submitting ,
 

computing jobs without worrying about resources on how the
 

job is going to be executed. The entire implementation is
 

done in user level; therefore, there are unavoidable
 

.overheads in communication and data transmishibriV
 

: ,::performande of the distributed ̂ computation will.;be
 

analyzed and Gompared with Parallel .Virtual, Kachine (PVM)
 

[7], the SGI Power Challenge, and a single SGI workstation.
 

^4.■3.vl^:Cpn^a,ris6h witii^PVM 

■The toajor costs in the implementation, of .Distributed ; 

Computation Service are the time of data transmission in the, 

network, setting up remote server objects (OSB and server 

object activate the- remote .objects) , and talking .to TM,. We 

compare the control messages needed to be exchanged in the 

Distributed Computing Service with PVM system. The control 

messages are for tasks and objects (daemons in PVM) to set 

up all required information before sending data. Figure 4^.12 
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in
shows the comparison"of the control messages exchanged
 

these\two systems. ̂  i' - i/i-, ^ 

Distributed Computation Service in Spider 

/'Where send and recv 

OSB-Registry ■/ 's" 

OSB-Task Manager 6 ■/ ;■ ■ ■ ■ ■ ■ ■/ ". 

S'VR_OSB-Task Manager UN 

Total 9+llN 

* N is the number of server objects that request for children from TM. 

(a) 

parallelVirtualMachine 

■" Where : send and recv 

Task-Task 

Task-pvmd 2 

pvmd-pvmd 2N 

'/(t"-;)!;;'; ; Total i- 2N + 2 

* N is the total nxunber machines running pvmd. 

(b) 

Figure 4.12 Comparison of the control messages. 

According to the tables in the Figure 4.12(a) , every 

time; a user;submits a job to the Distributed Computation 

Service, there are 9 control messages to be exchanged before 

starting the execution. PVM needs to exchange 2N control 

messages when there are N machines are added to the PVM 

system, and each spawned task needs to contact its local 
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pvmd via the libpvm library in order to register the task
 

into PVM (see Figure 4.12.(b)). After PVM finishes the
 

initialization, the master pvmd will send a message to each
 

slave pvmd periodically to check its status.
 

The major difference between PVM and the Distributed
 

Computation Service in the Spider System is that PVM is not
 

in object-orientation, but the DCS is. Thus, DCS is more
 

flexible and intelligent that DCS is able to locate the
 

available servers dynamically and choose the most
 

appropriate machines for the users application. Whereas in
 

PVM, the user must specify which machines will be included
 

in the PVM system, and PVM activates slave pvmd daemons on
 

all the machines specified by the user.
 

4.3.2 Perfoxrmance Results
 

In this implementation, we test and collect the
 

execution time for different size of data. All tested data
 

are generated from random numbers. The following comparisons
 

are divided into two categories: real time and user time.
 

The real time is the wall clock time. The user time is the'
 

CPU time of a program execution in the local machine.
 

One of the SGI workstations and the SGI Power Challenge
 

machine are chosen to test the performance on a single
 

machine. DCS and PVM running on SGI workstations are tested.
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4.3.2.1 Matrix Multiplication
 

The maximum size of matrix tested is 300 (300x300 of a
 

matrix).
 

Real Time of Matrix Multiplicatio Execution
 

60 n- SGI
 

CHALLENGE
50

SPIDER
 
40
 

PVM
 

E 30
 

20

10
 

50 100 150 200 250 300
 

Matrix Size
 

Figure 4.13 Comparison of Matrix Multiplication in real time i
 

User Time of Matrix Multiplication Execution
 

♦—SGI 
60 ■—CHALLENGE 
50 SPIDER 

40
 PVM 
o
 

E 30
 
h"
 

20
 

10
 

0
 

0 50 100 150 200 250 300 

Matrix Size 

Figure 4.14 Comparison of Matrix Multiplication in user time. 

In Figures 4.13 and 4.14, the average total execution 

time (real time) for a program submitted to the Spider DCS 
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is higher than the program executed on a single machine (SGI
 

workstation and Power Challenge), but the average user time
 

for both DCS and PVM are much smaller than a single SGI
 

workstation.;
 

4.3.2.2 Vector Addition
 

The maximum array size tested was 100/000 in the vector
 

addition.. Figures 4.15 and 4.16 show the comparisons of the
 

average real time and user time for different systems.
 

Real Time ofVector Addition Execution
 

-SGI
 

25
 -CHALLENGE
 

-SPIDER
 
20
 

-PVM
 

15
 

10
 

10,000 30,000 40,000 50,000 100,000
 

VectorSize
 

Figure 4.15 Comparison of Vect;or Addition in real time.
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User Time of Vector Addition Execution 
—^SGI 

4.5 y -IKCHALLENGE 

4- —^SPIDER 

3.5 - -KK-PVM 
3 -

® 25 -

I 
1.5-

1 -

0.5 -

0 II 

Vector Size
 

Figure 4.16 Comparison of Vector Addition in user time.
 

In this test, the performance of programs executed on a
 

single machine has a shorter average real time than DCS and
 

PVM. For the average user time, DCS has better performance
 

than PVM and a single S.Gl workstation.
 

4.3.2.3 Distributed Quicksort
 

The maximum data size tested was 100,000 in the
 

distributed quicksort.
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Real Time of Distributed Quicksort Execution
 

30
 

25 -

20 - -SGI 

-CHALLENGE 

E 15 
-SPIDER 

-PVM 
10 

5 -

*
 

1,000 5,000 10,000 20,000 50,000 100,000
 

Array Size
 

Figure 4.17 Comparison of Distributed Quicksort in real time.
 

User Time of Distributed Quicksort Execution
 

-.♦^SGI
3^
 

-^1—CHALLENGE 
2.5 -- SPIDER 

-X—PVM 
2 

E 1.5 

0.5 

0 1,000 5,000 10,000 20,000 50,000 100,000 

Array Size 

Figure 4.18 Comparison of Distributed Quicksort in user time. 
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in Figure 4.17, DCS failed to provide a good
 

performance for real time test, where DCS had the highest
 

real time than the other three systems. On the other hand,
 

DCS and PVM have a very competitive performance in user
 

time, see Figure 4.18.
 

4.3.3 Analysis
 

Figure 4.19 shows who has the best performance in the
 

group. The Silicon Graphics Power Challenge XL has surpassed
 

Spider, PVM, and a SGI workstation in most, performance
 

tests. When those test programs were executed on the Power
 

Challenge machine, each program was partitioned and running
 

on four CPUs in a true parallelism; therefore. Power
 

Challenge showed the best performance in the,overall test.
 

PVM has an impressive result in the matrix multiplication.
 

.Although the Spider's DCS fails to improve the program
 

execution time, DCS still, improves the user time in all
 

three tests.
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Matrix Vector Distributed
 
Test Multiplication Addition Quicksort
 

Machine Real TimeUser TimeReal TimeUser TimeReal TimeUser Tim«
 

DCS
 

PVM X X
 

X X X
CHALLENGE X
 

SGIWorkstation
 

X: indicates the system that has the best average time among the
 
group.
 

Figure 4.19 Performance analysis table.
 

The major costs of the performance in the DCS are data
 

transmission on network, remote object activation, and
 

waiting for TM's services. Current network configuration in
 

the CSnet (see Figure 2.1) relies on the Ethernet, which can
 

only provide 10 Mbps bandwidth.,To activate.the remote
 

server object, the rsh function call is used which contain
 

some overhead when invoking a Unix system call. Furthermore,
 

the time spent on waiting and talking to Task Manager,
 

especially in. distributed quicksort computation where a
 

number of children accessing the TM simultaneously, is the
 

main factor of the slow performance.
 

To predict the estimated overhead in the Distributed
 

Computation Service, we analyze the time spent in each
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computation service and generate equations to express the
 

overhead of our implementation. The following sections
 

explain the estimation of overhead in DCS.
 

4.3.3.1 Analysis of Distributed Quicksort
 

In the distributed quicksort implementation of DCS, we
 

estimated the overhead in its execution. The following
 

explains the meaning of each symbol used in this analysis:
 

Tq: the average time to start a remote object.
 
Tdi the average time for a node to pack and unpack data.
 
Tp! the average time for transmitting one packet of message.
 
Tv,: the average waiting time to get the service from TM
 
N: the data size of integers.
 

M: the maximum number of elements* that can be performed using
 
quicksort in one node.
 

P: the number of elements of each packet (maximal elements to be
 
transmitted at a time).
 

C: the maximum number of leaf nodes.
 

L: the level of the link.
 

Lt : total levels of the links in the tree.
 
*Note: each element of the data is an integer and has 4 bytes
 

representation in Unix systems.
 

Lt = |'log2(N/M) + 1] C = 2^'-^
 

Each link between two nodes has the following approximate
 

number of data transmission:
 

2*(N/(2^"^*P)) + 5
 

(N/2^~^) is the size of data given to the child node and 5 is
 

the number of messages exchanged for other information. The
 

total transmission time for a link from start to finish is
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{2*(N/(2^"^*P)^) +
 

Each parent- Spends; heeds children fby, talfcing'
 

to.TM. ;ThuS;; ,.the . estirnated transmitting ;timciof all links :> •
 

can be expressed as . . follow:
 

i=LT-' ■ i—hj—2 

+5)* Tp) + Tp :+ 1^]-+ - X
 
■■ .1=2'" -v' i=o- ■■ ■ ■ ■- ■ ■ ■ I. 

The. control messages for the execution ;is 9+..lln, . where 

the H :.is the number of parent nodes. The transmission time' . 

'for the Gontrbl ■ messages is.: . . ; .v^ 

. [9 +-i-i * 2^-^-1) ] * Tp ■ (2); 

. According to the equation (1) . arid (2) ., we can find the 

estimjated tite: of "Overhead; for a; pfogram; in. the .DCS as: 

.Ttotai'- ;r9;.+:ili *"Tp + To + 
■,i=Lr, "■ ■ ■ • . i=LT-2 -: 

r
p>̂

 X2'*T„* ((N / +5)* Tp) + T„ + TJ + 
i=0 1 

where (;9+ll.*'{ 2^'^.-l) ) is the number : of control messages
 

exchanged, and the To is for the first server object. For
 

example, giving the following measured values:
 

Tdis 0.02 second To is 0.84 second 
Tp. is , 0 .018 secdnd T„. is 0.79 seegnds 
;n = ;20ooo i ; t m = 5ooo . 
"p'i=.''250 ' : .V:-' ■i.; V . 
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then, Lt =v[lDg2(N/,M) +
 
■ ThUSv;''-t h ■;■ ■ /A/': ' - ' ': 

Ttotai = ■|9+ll*3)*Tp^ + :'-C' -:+v^ 
■■ - , ■ ■. . , ■ ■ ■ i=Lj ■'■■ ■ ■ ■•. ■ '• i=Lj-2 

r r^) +;t„ + t,] + £2' *t^: ■ 
. . • . >=2'- ■ ■ '■t ■ ■ ,: ■ i=0 ■ '
 

= 11.99 seconds.
 

:T total estimated oyerhead during : 

exeGution, If we add this to the time that a program spends 

in initialization, computation, and prihtingVmessage to. the-

terminal, the ::totai exeGUtion, time will he: about 13-15 

seconds. The average time for initialization, computation, 

and printing messages during execution is 2.48 seconds. 

.Thus, the estimated time; 14:. 47 seconds.,,. The., actual execution 

time of the same data size in the test is 17.81 seconds. The 

estimated execution time is smaller than the actual time 

because we assume the network load is steady (the data 

transmission is a constant) and data is always partitioned 

into two same size of data. Therefore, the estimated time is 

approaching the best case of the computing time of 

Distributed Quicksort and is smaller than the actual 

measured time from the test. From this analysis, we are 

:able to know that the main cost for distributed quicksort is 

data transmission, which takes over 80% of total execution 

time. ..t:: , --.:.: ;- ' 'I: - " ': ■ ■l"' . . ■■ ■ ' 
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; :,w the data size increases, we can expect that the
 

estimated overhead will increase exponentially. In addition,
 

we also need to consider the latency of the network load and
 

the object's machine load during the execution. These
 

factors::alsQ catf^^ the slow performance of DCS.
 

4.3.3.2 Analysis of Distributed Matrix Multiplication
 

} Sihc the^ basic computing model of .distributed matrix,
 

multiplicatidn and vector addition are similar to each
 

other, we present the analysis of estimated overhead of .
 

distributed matrix multiplication in this section.
 

. The;,: meanings, of symbols .in the .ahalys.is , are.^explained . ..
 

,as-'follow: '1 -i.v;
 

To} the average time to; start a remote"dbject.
 
Td: the average, time; for: a. nbde,..to pack and uhpa'ck .data. .
 
Tp:..the average., time, for transmittihg packet of messag.e.. ,
 

. T„: the average waiting time to get the .service from ;tm
 
N: the , size ot a matrix (NxN);;; . .
 

:Nmin> the minimum si.ze of ,a. matrix, that the multiplication,is
 
■ perfQrmed;'.:lpcaiiyv ; ■ ' ■ V . i.:: 

M: the size .o.f . a,: sub-matrix'
 

P: the. number of elements.of... a packet (maximal , integers to be
 
; ■ ■ transmitted:at:-a time,),.;r
 
Ci ; the maximum number:of • ehildreh.^^^ \
 

. *NQte: .each ; element in a . matrix and a packet is. an integer;and ;
 
: ;::::-h^ 4 byteS representation in' Unix .systems;. 

When we calculate the multiplication of two matrices,
 

for example, Anxn • Enxn? A is going to be partitioned into
 

sub-matrices.,, if .N is greater than. If N :> Nroin, then
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there will be C = fu/M] children to:^
 

between parent and child has the following number of data
 

transmission:
 

+;v5 ' ■; ^ 

Because^ each child only. calculate: the muitiplicatioh of/ vi 

A' mxn ,size. t:f iAs.:product -is MxN.' „ 

Thus., the: tdtai.cstimatedvtransmission tii^e fob theit 

distributed matrix multiplication can be expressed as 

■ -followr ' V': ' - ■ !■' ■ -"i.

.vc r ?[:( + N^) /p:+ / 

The cohtrol. messages for: the..executidn is ;2P.,: because 

.in the comp.uting: model; of mattix ;multiplication, and : yectpr 

addition thdre; is . only. One parent, during execution> .The: :i 

transmissioh; tinie for the. cont message -is 2.0 * Tp-

Therefore, ' the. estimated Oyerhead; for 

multiplication program executed in .the . DCS; is^: 

. Ttotai = 20*Tp + To + T„ + C* [ ( (2*M*N + N^) /P + 5) *Tp + To t Td] . : 

For example, giving the following measured values: 

Td is 0.02 second To is 0.84 second 
Tp is 0.016 second T„ is 0.3 second 
N = 200 M = 40 
P = 250 = 50 

then, G = 5.
 
Thus,
 

Ttotai = 20*Tp + To + T„ + C* [ ( (2*M*N + N^) /P + ,5) *Tp + To + Td] 

24.08 seconds 
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This Ttotai is the total estimated overhead during
 

execution. If we add this to the time that a program spends
 

in initialization, coitiputation, and I/O , which is 1.04
 

seconds as an average, the total estimated execution time is
 

25.12 seconds. This estimated result is close to the actual
 

average execution time of 21.07 seconds.
 

When the matrix size increases, we can expect that the :
 

estimated overhead will increase linearly. The overhead for
 

distributed vector addition also has, the same estimated
 

overhead tendency as the distributed matrix multiplication.
 

4.4 	Conclusions of the Implementation
 

The Distributed Computation Service for the Spider
 

Project is designed and implemented. This implementation
 

shows that the DCS.provides a transparent computation for
 

user applications. The performance of the DCS may not show
 

good results, but the performance is not the main concern of
 

this implementation. The. DCS is able to reduce the CPU usage.,
 

of the user's local machine by distributing jobs to other
 

machines. Furthermore, this computation.model.can be.used to
 

solve other complex problems In parallel and distributed
 

manner, such as NP-complete problems (e.g., the Traveling
 

Salesman Problem and finding Hamiltonian cycle).
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PVM is a daemon-based software application, every
 

machines in a parallel virtual machine are inter-Connected:
 

by its local pvmd that speeds up the tasks' execution. Also,
 

all data,transformation and representation are built in the
 

libpvm library, which offers the ease for users in
 

programming. The prototype of the DCS in Spider can be
 

optimized and improved by the following suggestions:
 

a) optimize the amount of messages exchanged during
 

execution by using packet-oriented methodology;
 

b) provide an application program interface for the
 

ease of porting users programs to use DCS; and
 

c) reduce the costs of data transmission by using the
 

FORE ATM backbone network which can transmit data at
 

155 Mbps.
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CHAPTER 5 Conclusions and Future Directions
 

We have shown the specification and design of the 

Spider System and the,;defined functionalities,^^ f Spider 

in an ;6hjeet-ori®'^ted:'̂ ^a^^ (OOA).'We idehtified five, , 

.funGtidhaiitiea"for theV.Spider ■ System'.and ;.they d.re: 

distributed file system, security, clock synchronization,;f^^;^^:;^^^

scheduling service, and distributed computation Service 

impleirtehtation- of the , Distributed ■Computation .Service (DCS) ; 

has shown a reasonable, performance; from our performahce 

resultsi lhis chapter will conclude the work for t 

and give future directions. 

5.1 	Conclusions for the Specification and Design of the 

Spider Project 

In this thesis, the basic structure and main components 

(Microkernel, OSB, and Functionality Server) of the Spider 

System are designed and given the specification of five 

functionalities. All the components and functionalities 

the Spider must be in object-orientation, in order to 

integrate a truly object-oriented distributed system. Using 

OOA, Spider facilitates easy maintenance, modification, and 

. simplicity in adding more features in: the future. 
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 , ,v From the. survey of; .[14], OSF's DCE [17,
 

23], PVM [7], and Condor [24], we are able to adopt their
 

strengths for our design. The Spider Project and the
 

implementation of DCS will provide a testbed for people to
 

do related research on parallel and distributed computation.
 

The derivations:of those functionalities defined for Spider
 

are described as follow:
 

a).-The^ D File System (DFS) of Spider is
 

designed to provide a distributed file storage which
 

is differeht ,than.monp.lithi^ systems (e.g., Ul^IX).
 

The Naming Server, Directory Server, and Caching
 

Server of DFS are defined to provide a transparent
 

and coherent file accessing for users. The strengths
 

of Spring File System [15] and DCE's distributed
 

file service [17, 23] are adopted^for designing the
 

DFS of Spider.
 

b) 	Security in Spider is designed to protect the whole
 

Spider System from any unauthorized and
 

inappropriate access'of objects.'The Authentication
 

Server and Access Control List Server are defined
 

for users to access any object that they are
 

permitted to use. Also, we adopted the strengths :
 

from Spring's,: security [14j .and DCE..'.s . security
 

103
 



 

 

 

service [17, 23] for the design of the security in
 

. c);	Scheduling service, in Spider; ̂ designed to offer, .
 

intelligent services for user applications. The
 

Scheduling Manager and Pooling Server are designed
 

to migrate user's application on one or more idle
 

and/or low-utilization workstations. Users are able
 

to utilize as many workstations as their
 

applications needed for computation from available
 

machines. The concept from the Condor scheduling
 

system and the scheduling algorithm [13, 14] are
 

■	 adopted to design the Scheduling service of the . . . 

Spider System, 

d) Distributed Computation Service adopts the basic 

. design of PVM [7] to provide a transparent and'
 

distributed computation for user applications.
 

5.2 	Conclusions for the Distributed Computation Service
 

By using the specification and design of the Spider
 

System, we implemented the Distributed Computation Service
 

for Spider. In the current implementation of DCS, the three
 

services are provided -- distributed.quicksort, distributed
 

matrix multiplication, and distributed vector addition.
 

These services employed the conceptual object-oriented
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design of, the Spider.Project,.which includes Object Service:
 

Broker, Task Manager^ and Registry Server to assist the
 

Distributed Computation Service. :
 

PVM [7] shows an excellent work for programs executing
 

in a heterogeneous computing environment which is able to
 

collect from single-CPU machine to multiprocessors as part
 

of, virtual machine. A,set of programming interfaces and
 

libraries are provided for user applications. To'provide
 

fault tolerance, PVM allows .user program to delete or add
 

machines during operation. However,; users, need to configure
 

each machine's environment variables for PVM daemon and
 

libraries, and users may.need to add all machines to be
 

included by the PVM or submit a host, file to PVM when
 

starting up PVM. After the virtual machine is configured^
 

users may run their, PVM programs,in a distributed and
 

parallel manner .,,, - , . ,
 

The major difference of DCS, and PVM is that DCS does,,
 

not. require users to specify that which machines are going
 

to be included in the DCS. The local Registry Server and
 

Task Manager can handle.all available resources for user
 

applications. dSB is able to locate the remote machines and
 

activates remote: server object to perform computation. Users
 

have no knowledge of knowing which machines will be used for
 

the program computation. To avoid increasing a machine's
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workload, DCS does not assign any workstation to be used
 

more than once. This can ensure to get a faster computation
 

by limiting each machine's workload. In PVM, it is possible
 

for a machine to be spawned more than once, during
 

computation.
 

. . . DCS also provides the fault tolerance. A mirror Task
 

Manager server backups all task activities from the Task
 

Manager server in order to continue monitoring program
 

execution, if the Task Manager server fails.
 

Figure 4.19 shows the performance comparisons of DCS.
 

■Since the major costs of slow performance in DCS are data 

communication and network transmission, .DCS may not show a 

faster computing performance. However, it reached the 

objective of reducing the user time in computation and 

provided a testbed for users to do research on distributed 

and parallel computation. Furthermore, the DCS is able to 

provide a transparency for user applications and fault 

tolerance for computations. 

The technology of networking is improving every year. 

If the network used in the DCS implementation is replaced by 

ATM (0C-3cj or OC-12 [23], the overhead of data 

communication and transmission will be reduced to a minimum 

of time and the performance for the DCS will be greatly 

improved. ■ 
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5.3 Future Directions
 

The Spider Project is at its initial,state, only the ,
 

Distributed Computation Service,is implemented. We hope that
 

other researchers continue the work and implement, the rest,
 

of 	the. defined.functionalities. There are several directions
 

needed to be pursued in the future:
 

a). The microkernel is the heart of the Spider Project;
 

however, it is. also the most complex component of
 

the.Spider. The. major concern of constructing the
 

microkernel is.how to include the various system .
 

. architectures in the CSnet.
 

b) 	To support a distributed object system, the IDL for
 

Spider should be defined and implemented in order to
 

provide a strong interface for all objects. We can
 

adopt the specifications of DCE's IDL [17] or OMG's
 

IDL [15] and implement Spider's IDL in the future.
 

c) 	Each, defined functionality in the Spider Project
 

gives a direction for future research. There maybe
 

new methodology and technology in the future. How to
 

adopt the new methodology and technology for the
 

Spider system and determine the needs of our
 

department become the most important directions in
 

the future.
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d) 	Improve the Distributed Computation Service by
 

implementing a programming interface whereby a given
 

program can be partitioned into components so that
 

they can be executed transparently in a parallel and
 

distributed manner. Furthermore, a graphical
 

application tool can be implemented in order to
 

provide easy manipulation and transformation tools
 

^' 	for original programs into the equivalent
 

distributed computing programs.
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