
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

1997

A study of user level scheduling and software caching in the A study of user level scheduling and software caching in the

educational interactive system educational interactive system

Kaoru Tsunoda

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Tsunoda, Kaoru, "A study of user level scheduling and software caching in the educational interactive
system" (1997). Theses Digitization Project. 1398.
https://scholarworks.lib.csusb.edu/etd-project/1398

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1398&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1398&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/1398?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1398&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

A STUDY OF USER LEVEL SCHEDULING AND SOFTWARE CACHING

IN THE EDUCATIONAL INTERACTIVE SYSTEM

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in ­

Computer Science

by

Kaoru Tsunoda

June 1997

A STUDY OF USER LEVEL SCHEDULING AND SOFTWARE CACHING

IN THE EDUCATIONAL INTERACTIVE SYSTEM

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

Kaoru Tsunoda

June 1997

Approved by:

Dr. Tcmg L ./lYu, fyChair, Computer Science Date

Dr. Arturo I. Concefpcion

Dr. George M, Georgiou

 ' An Educational.Inte2:-actlve SYStern (EIS) is designed and-

implemented as a, part of this study. .The EiS;is;a; text-^b .

di.stance learning system Which;creates a virtu.ai clas:s on ;

the Internet The, system"has the capability of scheduiing to

equalize the average waiting, time .of the students' in;a class

and cacliing to . improye the system perfotmahce. Besides the . .

.implementation: of the system, two;.,major topics, scheduling

and caching, are investigated in this study to discover

their efficiency in,.the EIS.

A,fixed, priority multilevel,queue algorithm is used, to; ;

schedule students' requests. Under conditions where the

requests are randomly distributed and the , utiliza;tion; of the

server, is 80%,; the scheduler , equalizes . the average waiting

time of each, - *

The other study shows that:the high, hit ratio of caching:

is . not a' critical factor for the EIS. because a single cache.,;

miss operation, cr^stes an unacceptable; da.ta transmission ,

delay as- an inte.ractive :system.. An ideal solution ■ for.,; the

system is,: -to; provide a large eache in. the local,disk to keep

the whole screen.: data of the Session. This would reduce the :

network traffic. :. '. ,

,ixx

http:virtu.ai

ACKNOWLEDGEMENTS

: I would:like; toV.acka^ to my advisor, Dr.

Tong■Yu,: whb,spent a great amdunt time giving me. advice andi

encouragement to accomplish .this r.esdarch. ,I -would also like

to. acknowledgevmy .committee members , Dr. Concepcipn and;^ D

Georgiou for their valuable suggestions and support

I. would like to thank several. graduate students ̂ who

shared nie. a useful inforraation: . Hah Sheng Yuh, Kwoh Soo Han,

and ;Jason Lin. .

. My special gratitude goes to my wife;Hinako, for her.:

support and great understanding. , ,

IV

TABLE OF CONTENTS

ABSTRACT Hi

ACKNOWLEDGEMENTS ; iv

LIST OF FIGURES vii

LIST OF TABLES viii

CHAPTER 1. INTRODUCTION 1

1.1 Computer Conferencing 1

1.2 Motivation 2

1.3 Organization of Thesis 3

CHAPTER 2. FOUNDATION OF THE STUDY 5

2.1 TCP/IP Protocol 5

2.2 Scheduling 7

2.3 Queuing Theory 8

2.4 Caching 19

CHAPTER 3. SYSTEM DESIGN 21

3.1 The Educational Interactive System 21

3.2 Scheduling 25

3.3 Caching 27

CHAPTER 4. SIMULATION 29

4.1 Scheduling 29

4.1.1 Objective 29

4.1.2 Simulation Methodology ,29

4.2 Caching 33

V

 . 4.2.1 Objective 33

4.2.2 Simulation Methodology 34

CHAPTER 5. EXPERIMENTAL AND SIMULATION RESULTS 37

5.1 Scheduling 37

5.1.1 Experimental condition 37

5.1.2 Results 40

5.2 Caching 44

5.2.1 Experimental condition 44

5.2.2 Results 45

CHAPTER 6. DATA ANALYSIS 48

6.1 Scheduling 48

6.2 Caching 52

CHAPTER 7. DISCUSSION AND CONCLUSIONS 55

APPENDIX A: OUTPUT OF THE SIMULATION PROGRAMS 58

A.l Scheduling 59

A.2 Caching, 69

APPENDIX B: SOURCE CODE 74

B.l The Educational Interactive System 75

B.2 Scheduling.Simulation Program 76

B.3 Caching Simulation Program 85

APPENDIX C: IMPLEMENTATION OF THE EDUCATIONAL .

INTERACTIVE SYSTEM 95

ACRONYMS 103

REFERENCES 104

VI

LIST OF FIGURES

Figure 2.1: TCP/IP network model protocol stack 6

Figure 3.1: Basic design of The Educational Interactive

Figure 3.2: Screen image of The Educational Interactive

Figure 4.1: Scheduling simulation with multilevel

Figure 4.2: Environment of the cache simulation

Figure C.l Client/Server architecture of

Figure C.3: Diagram of the client program routines ICQ

Figure 2.2: A single server multiple queuing system 9

Figure 2.3: Fixed priority queues 10

System 21

System 23

queue 31

program 34

Figure 4.3 Algorithm of data retrieval 35

Figure 5.1 Input request dataset 38

the Educational Interactive System 96

Figure C.2: Class Diagram of the server program 97

Vll

LIST OF TABLES

Table 4.1: Priority condition based on "the average

waiting time per talk" 32

Table 5.1: Result of preliminary experiment,

M/D/1 model 41

Table 5.2: Result of M/M/1 model without priority

scheduling 42

Table 5.3: Result of M/M/1 model with priority

scheduling 43

Table 5.4: Transmission time using direct dialup to

CSUSB CSCI 45

Table 5.5: Transmission time through the Waternet

gateway 46

Table 6.1: Result of 3 level priority scheduling 50

Table 6.2: 3 level queue priority condition based on

"the average waiting time per talk" 50

Table 6.3: Result of 7 level priority scheduling 50

Table 6.4: 7 level queue priority condition based on

"the average waiting time per talk" 51

Table 6.5: Average waiting time of each level 52

vxii

CHAPTER 1. INTRODUCTION

1.1 COMPUTER Conferencing

Merging of compiaters .and egmmunicatidns has been in the

main stream of compiiter develpprnent.: Interconnectihg'i^."'

computers.' enhances and varies,; the way of computer

utilization . such as/ email s.ystem,: .world wide web, and., video

. On demand;!

. Computer . conferenci.ng .is. a tool. tel.ecommunicati.on

that reduces the need for face-to-face contact in various. = .

business and educatipnal situatipns.. Cpmputer .conferehcing .

proyides.convenieht, cost-effective interaction among people

in different locations. The teGhnology is used for such

purposes,as.distance learning tl] /' virtual meetings, and

collaborative work.projects. A, cpmputer conferencing system,

cohnect.s : participants to a. host C through ^ '

their . own persohal .■.cpmputers (cliehts) , modems, and telephone,

lines or other conmiuhication iinks. ,Receht conferencing

software appiicati.pns allow users to send andv receive, hot ,

only .text but .alsp . graphical, images and audio, data ' [13]

http:tel.ecommunicati.on
http:conferenci.ng

1.2 Motivation

Despite the availability of some commercial computer

conferencing products, there has been very little published

work [7] on a systematic study of those systems. In this

research, an example conferencing system, a text-based

remote interactive system, an "Educational Interactive

System" is designed, implemented, and examined. The system

is based on the client-server architecture and TCP/IP

protocol is used for the communication between the server

and clients.

In the Educational Interactive System, a teacher or

moderator may need to handle a lot of students' incoming

requests to coordinate a class or discussion. The system

also needs to achieve real-time level responses to all

participants' requests in the wide area network

environment.

This study focuses on two issues - scheduling and

caching strategies that make the system.more effective. In

particular, a user level intelligent scheduler with

multilevel queues is examined [9]. This supports the teacher

to provide a fair opportunity for all the students in the

class to participate'. In addition, a software caching is

used to study the effectiveness of performance for remote

access. Basics of the scheduling and caching are described

in the following sections.

The goals for this research are the following:

• To research optimal scheduling algorithm for the

Educational Interactive System to provide effectiveness

and fairness for all the participants.

• To examine the most effective way of caching method for

the system.

• To build a text-base Educational Interactive System

utilizing above capabilities on the UNIX system.

1.3 Organization Of Thesis

This paper is organized into seven chapters. Chapter 1

describes the basics of conferencing systems, the reasons of

choosing these topics as well as the goals of the research^

Chapter 2 describes the foundation of the study which

includes the protocol used in the Educational Interactive

System and queuing theory used for the mathematical approach

of the scheduling. Chapter 3 explains the design of the

educational interactive system, which is implemented as part

of this research. Chapter 4 discusses objectives and the

details of the simulation method for both scheduling and

caching. In Chapter 5, the results of the experimental

simulation are showed for both scheduling and caching. The

analysis of the results is made in Chapter 6. Finally, in

Chapter.7, the discussion and the conclusion and some new

related topics are presented.

CHAPTER 2. FOUNDATION OF THE STUDY

2.1 TCP/IP PROTOCOL

TCP/IP is a protocol suite that the Internet relies on.

The TCP/IP protocol suite is one of many protocol suites

that support the ISO/GSI communication, model..[21] The well

known ISO/GSI model consists of seven layers, namely the

physical layer, link layer, network layer, transport, layer,

session layer, presentation-layer, and application iaye.r. Gn

.	the other/hand,' 'the/T protocol suite includes the; ­

Transmission Control.Protocol (TCP), the Internet .Protocol

. (IP) the Protocol (UDP) and other protocols.

Figure 2.1 shQwS the eore relationship of protocols in the

protocol hui.fe,1 Altho reference model defines,

seven layers of. protocol stack, the TCP/IP network design.

only, uses five of them.

TCP is a connection-oriented protocol that provides a

reliable, full-duplex, byte stream for a user process. A

byte stream type protocol treats data as a sequence of bytes

.regardless of the length.of data. The TCP also uses a

technique .called virtual circuit to establish client-server

comm'unication. A virtual circuit is a point-to-point' link .y

http:length.of

connection that allows computers to avoid haying to choose a

jiew route for every packet or cellt The use of a reliable;

TCP prbtocol has become the mainstream of programming of

Internet applications. UDP is a connectionless protocol that

has no guarantee for delivering: UDP .datagrams to the proper

destinatibn. A.datagram, type protocol; treats each data unit

independently. IP,is the protocol located in the network

layer and,provides a packet .delivery service for the

transport' layer (TCP and UDP)>

V Application

Program

I Layer

..A...... A...

ii

; Transport

: Layer

1

; Network

IP

■ Layer

- A­

■ V­

[Link

HAV Interface

■ Layer
'A-

Physical ■>r'

Layer

Figure 2.1 TCP/IP network model prbtocol stack

■ As an Application Program Interface (API)for TCP/IP

prbtocol;based applications,!-the BSD. socket ,:interface was

developed at UC Berkeley in the 1970s. . The ; spcket interface

includes a variety of software functions or routines to let

programmers develop applications, for TCP/IP networks [17].

2.2 Scheduling

The scheduling, usually process scheduling or CPU

scheduling, is the basis of multiprogrammed operating

systems [2]. By switching the CPU among processes, the

operating,system can increase the effectiveness of the

computer. The objective of scheduling is determined by

several criteria such as CPU utilization, throughput,

turnaround time, waiting time, and response time [2].

There are many scheduling algorithms to determine which

of the processes in the ready queue are to be assigned to

the CPU. First Comey First Served Scheduling(FCFS) is the

method whereby the process that requests the CPU first, gets

the service of the CPU first. In Shortest Job First

Scheduling(SJF), the process that has the next smallest CPU

burst, gets the service next. Round Robin Scheduling(RR) is

the scheme that adds the preemption to the FCFS; RR

switches CPU among processes allocating to each a certain

quantum (time slice). Multilevel Queue Scheduling provides

several level of ready queues and the CPU is used first by

the processes in the queue with highest priority. The

processes are permanently assigned to one queue. Multilevel

Feedback Queue Scheduling is the same as Multilevel Queue

Scheduling except that it allows processes to,move between

queues.. Preemptive scheduling allows processes to switch

from running state to ready state during the execution. On

the other hand. Non-preemptive scheduling does not provide a

ready state. The process keeps the CPU until it releases the

CPU either by terminating or by switching,to the waiting

state.

2.3 Queuing theory

One of the goals of this study is to justify the

algorithm of a scheduling simulation program by comparing

simulation results and theoretical data based on queuing

theory. Queuing theory is a useful methodology for

quantitative analysis of computer networks [10]. It is often

used to analyze waiting time, number of events in the

■ ■ ■ ■ ■ ■ . ■ ,i ■ ■ .

system, and necessary queue length [20]. A/B/m is a

convenient notation for summarizing a queuing model, where A

is the interarrival-time probability density, B is the

service-time probability density, and m is the number of

servers.

 . A popularly used model is the M/M/1 model (M =

exponential probability density), where an exponential

interarrival probability is assumed. It is a reasonable

model for any system that has a large number of independent

inputs such as airline reservations, file lookups on

inquiries, and packet-switching networks [8] . Figure 2.2

describes the queuing system structure for a single-server

with n level queues. Assume that items from queue level k

arrive randomly at rate Xjc (items per. second).

Queues

Arrivals

1(Highest priority)

rm

A. TTTT

Server

tttt

TTTT

n (Lowest priority)

Figure 2.2. A single server multiple queuing system

The above multilevel queue can be considered as a fixed

priority queuing. If we assume that 1 is the highest

priority and n is the lowest, the queuing system can be

structured as Figure 2.3. And if the request arrivals and

service-times are,exponentially distributed, this model can

be categorized as M/M/l model. Thus, overall request arrival

rate A, and average waiting time T can be. calculated using

equations just like a single server queuing model as

follows.

X : mean arrival rate items per second

k=\

P—^^Pk P' utilization

/c=l

S: mean service time for each arrival

N^p/(l-p) TV : mean number of items in the system

T=N/A T : mean time an item spends in the system

JL=A At--An

serverK+l| k 1 k-1n 1

—►

Arrivals;

priority k

Figure 2.3 Fixed priority queues

10

[The Poisson Distribution]

Queuing theory often uses the assumption that the

events causing input to the system occur at random. For

example, customers who walk into a bank or users who call up

an Internet provider can occur randomly at any time during

the day and such events are regarded as Poisson-distributed

[19]. Poisson distribution is equivalent to saying that the

arrivals occur randomly or the interarrival times have an

exponential distribution. It can be shown mathematically

that the probability of having n arrivals in a given time

period ?is [10]:

(^0"

. = (2.3-1)

n\

X: IS the mean arrival rate

[Queuing theory examples]

For example, a cashier is busy 85 percent of her time

and the remainder of the time she stands idle waiting for

the next customer. Her utilization can be considered as

0.85. As another example, if the arm of a disk makes 9000

file references in the peak hour and the arm is in use for

an average of 300 milliseconds per reference, then the

utilization of the arm for the peak hour is (9000 x

300)/(3600 X 1000) = 0.75.

11

Finding the utilization, queuing theory will sometimes

be able to give an average waiting time in the queue and the

number of items in the queue and so on.

[Singe-server cpieuing formulas]

M/M/1. model is a simple queuing system which consists

of a single server with Poisson arrivals and exponential

service times. Under this condition, the utilization of the

server is described as follows:

p=-=XS (2.3-2)

M

where A. is arrival rate, /j. is service rate and S is service

time. The relation among Tw (the time an item waits before

being served),7(s (the time it is being served), and Tq (the

time it spends in the system for both waiting and being

served) is

Tq = Tw + Ts

Also and Tn,are described as follows.

Tq^r^ (2.3-3)

1-p

pS

(2.3-4)

1-p

12

M/G/1 model is based on arbitrary or general

independent service times.. This means that the service time

is not necessarily exponentially distributed. In this case

71 and are described as follows.

(2.3-5)

pSA

P.,= :2.3-6)

\-p

where A = — 1+1 S-l'

2 sJ

These equations indicate that M/M/1 model is a special case

of M/G/1 model. When the standard deviation of the service

time is equal to the average, the service time distribution

is considered as exponential [8,18].

There is another model called M/D/1 where the service

time is constant. In this condition, and 21,are:

_S{2-p)

(2.3-7:

' 2(1-p)

pS_

T. = (2.3-8)

2(1-p)

13

[Noripreen^tive pricjrities]

^ foliowirig .discussion: on the derivatidn of thei:

waiting time for the multirevel priority: queue is tahen from

Modeling arid Analysis of Computer Communications Networks hy

Jeremiah F. Hayes [22].

; . ^ , W priority queue, there is an ■

interaction -between all priority levels."Assuming a message,

which .has the highest" prioirity, - finds a lower priority v, .

message being ;served;,on its arfival in.the system.. In this

situation, even if no messages in the highest priority.; class

are in thq; system, there is a delay uhtil the lower class. .

message has completed service1 It is hecessary;to. consider..

no l.ess than three prior,ity classes to take cSre. df the :.

middle class: being affected by both higher. :and lower

classes. Under,.such S cqndition, assume - that messages from

all three classes,: have Poisson arrivals rabe. with average .

kk, k =1,2,3, respectively;. , let riik be the number of messages

in class k in the system at ith departure epoch.

Suppose that the (/+I)st departure . epoch is priority

class 1. In other words, a class I message has been assigned

to the server and new messages of all three class have

arrived while this message was being served. This situatibn

can be described as follows.

.-14

fii+ij = yiii — 1 + cm (2.3-9a)

ni+1,2 = ni2 + a2i (2.3-9b)

ni+1,3 = riis + asi (2.3-9c)

where nuX), ajk, j, k=l,2,3 is the number of messages in class j

to arrive during the service of a message in class k.

If the (/+l)st departure is class 2,

fti+1,1 ~ ci]2 (2.3-lOa)

ni+1,2 = ni2 - 1 + a22 (2.3-lOb)

ni+1,3 = ni3 + a32 (2.3-lOc)

where ni2>0. Because of the priority discipline, there is no

message in class 1 at the zth departure.

If the (z+I)st departure is class 3,

rii+ij = ai3 (2,3-1la)

fti+ij = 023 (2.3-1lb)

ni+1,3 = ni3 - I + 033 (2.3-Ilc)

where ni3>0. Since there is no message in class I and 2 at

the zth departure. ;

The final equation is obtained by the situation when the zth

departure leaves the system completely empty.

ni+],i = Oik (2.3-12)

where k,1=1,2,3 for «i/=«j2=ifJ/j=0.

I ^ . ■

15

The probability of the above four cases are:

(2.3-13a)

when nii=ni2=ni3=0.

Hj= (2.3-13b)

A

when «/;>0.

' (2.3-13C)

A

when ni]=0, «,2>0 .

n^=p^ (2.3-13d)

A.

when nii= ni2=0, ni3>0.

where p = A^Si +A2S2+A^Ss.

Using the conditions (2.3-9a) through (2.3-13d),

calculations based on the two-dimensional probability-

generating functions of rii+ij and nt+jj will result as follows

n =1+ (2.3-14

2/7(1-^5,)

A'ZAsI

n„=l+

k=\
(2.3-15:

2pil-A,S,-A,'S2)(l-A,Si)

Where is the mean square service time of level k. Both

equations represent the expected number of messages where

16

one message is beginning to be served. The average number of

messages which have arrived during the queuing time of the

message to be served are for class 1 and Hjj-l for

class 2. Then the average waiting time for class 1 (Tn,;) and

class 2 {Tyv2) are derived as follows.

3

h

Til -1)=̂
k=\

(2.3-16)
-1 11 ^ 2(1-A^Sj)

r.^P(^27-i)= —=^——=- (2.3-17)

Where p is the probability of message arrivals to a

nonempty system. From (2.3-16) and (2.3-17) ^ the theoretical

average waiting time of particular level for the n level

queue under M/G/1 condition can be calculated. The average

waiting time of a level 7 is:

r.,,=- 5—— (2.3-18)

2(i-X4'S0(i-i;4S'.)

4=1 4=1

: Request arrival rate of level k

Sk • Average service time of level k

SJ : The mean square service time of level k

17

If the service time is Poisson distributioti,. 'theii ­

where each level of service rate f.ik = fi, the mean square ,

service time of level A:becomes

also , ^

Sk-^tSk{t)dt==^t/M~'^dt=—

from above, the mean square service time of level A:becomes

Assign this to (2.3-18), then;

E-vst

n,> ,^i " rvr ^ (2.3-19)

(1-22.S.)(1-SA5»)

■ ■ ; . ■: ■ /t=l, ■ ■ ■ .

This formula is for the. average waiting time under M/M/l

condition. ' -'

Since 5)1= — , it can be also transformed into the following.

j, _ / k=\

V /t=i My\ k=i

18

V /J A=1 / V m k=\ y

.Z.4.:,Cachxng:|

A': cache In general is a fast ^ storage located .between ,

the :,CPU 'and'the: main- me,mo.ry,. Data are copied into'the cache ;

on a temporary basis to,improve . access time. When,a .

particular piece of data, -is needed,; it .first: checks whether

it is in the cache. If it is the data,is used directly from

the cache:.. If ,it is not, it uses,the data .from the main

mertiory ■ [11] i . ■ . , i' ■ .f' ' . ■ '. . . : - ; '

. : Cache manag.em is a significant factor in . improying

the .system performance.; because .. cache size and a replacement

policy.may result in more than.80 percent of all adcesses :

originaliy from;the Cache [2]. . There, are yarious replacement..

algorithms.for,. software level caching. .For .example,. FIFO .

algorithm simply replaces the oldest data segment. Least

Recently Used ;(LRU) algorithm replaces the data"segment.t

hasinot^. b for: the longest period of..time.. And. Least

Frequently. Used; (LFU) replacement, algorithm resplaces th.e;

data segment that is' usedyleast frequently. . . .

19

http:manag.em
http:me,mo.ry

Main memory can be considered as a cache between:the.

CPU and the., disk.. :Thts cohc.e^ of caching can be applied .to^ ,

the network envirpnment.. If the : required data;segment is,

not; in the client's main memory as a cache,/;;a .copy of the

data,is brought from"the server,to.the clieht::system.

Therefore,, caching in the network environment not only ,

decreases .disk I/O,- but also reduces network traffic..

Moreover, if the dient is located- far from the server via

Internet,, caching; becomes a more significant,factor for ..the

system performance. The study of ..the caching has been done

in various network environments, such as distributed .,;file

systems .[3,.4] and;.world wide web servers. [5,6,12,16]. A

similar .technique, the slave server, is used; in [12] and .

[16] to improve response time .and, security,for the .:Web

server.; Both:approaches ■ utili.ze the Gaching to. shorten

response time. , ­

. 2o:

http:utili.ze

CHAPTER 3. SYSTEM DESIGN

3.1 THE EDUCATIONAL INTERACTIVE SYSTEM

A basic design of tHe Educational Interactive System

for this research is shown in Figure '3.1.

Client(student)

Server

Disk* *

Disk

RAM CE)RAM

Client(teacher) ..

Disk

TCP/IP RAM

Subnet connection

Internet Service Provider Client(student)

Disk

Interaet RAM

Phone line

U/
local memory

system

Figure 3.1 Basic design of the Educational

Interactive System.

This system is based on a centralized organization

which.simulates classes at school. The system consists of . :

one server and multiple,clients, As a class, one client acts

as. a teacher, (coordinator), and the other clients perform as

.students. They are intefconnected using TGP/IP locally

21

(within intranet) or via Internet. The participants, the

teacher and the students, are able to participate in the

class using their PCs from their home. Ideally each client

is to have extra disk space to keep every screen image of

the session of the class as well as to have enough main

memory to furnish an effective cache.

As shown in Figure 3.2, all participants have the same

type of screen. A curses-based window is used to divide the

screen into three sections. The top Screen, which is the

public screen,.is to display the current status of the class

or the previous status of the class. The middle screen,

which is the private screen, is used to input individual

questions, answers, or comments by the user. User inputs are

sent to the server, and then distributed to all clients to

be displayed on the public screen of each machine. The

bottom screen, which is the guide screen, shows user

commands of the system. These commands are used by the user

to start, request an,access to the server, and end their

session in the system.

22

http:screen,.is

Public screen

(display purpose)

Thisscreen is the public screen
 - current screen

which displays teacher's - previous screen

comments and students'

answers and so on.

Private screen

This screen is the private screen

(inputpurpose) which accepts teacher's and

- requests students'input.

- answers

Guide screen

- comments
 I: XXX R;xxx E:xxx Q;xxx

- Command information

Figure 3.2 Screen image of the Educational

Interactive System.

The basic procedure of the execiatibn of the Educational

Interactiye System is as follows:

1. Execute the server program and specify the port number on

the server machine to communicate with the clients

2. Execute the client program on each participant's machine

and specify the name of the server and the port number to

establish the connection.

.3. Type at the Private screen on a client's machine.to

initiate the session.

4. Type ^R' at . the .private screen.: on a client's machirie.to.

request sending messages to all. the clients. If the t

server responds with the message "Start talk",, the

messages will be" sent to all the clients and displayed on

their public screens.

23

http:machine.to

5. Type ^Q' at the private screen to indicate quitting the

talk session.

6. Type ^E' at the private screen to terminate the session.

7. Type ■*?#' (# = 1,2,3, . .) to retrieve previous screen

pages.

The server acts as a coordinator in the system. Upon

receiving requests from the participants, the system

automatically schedules them according to their priorities

based on historical data. Screen data are stored temporarily

in the cache of the clients as well as in the disk of the

server.

All participants are able to choose to see either the

current or previous screen on their public screen,. When a

user requests the previous screen, the image is retrieved

from the cache or the disk of the server.

The UDP socket interface is used to transfer datagram

between the server and clients in the system. The UDP„ .

requires easier impiementation technique than the TCP socket

interface does. Since the UDP does not need to make virtual

connection between the server and clients, the server can

handle multiple requests from many clients in a simple way.

Although the UDP protocol is not reliable [21] , it provides

24

enough transmission capacity for the system based on low

level of complexity.

The system is developed and tested under IRIX 5.3

operating system on SGI machines in the computer lab at

CSUSB. The server program is written in C++ to utilize

advantages such as code reuse and encapsulation. The client

program is written in C, because of its simplicity. In terms

of the execution of the program, the server program is

executed on the server machine to provide the communication

port first. Then the client programs are executed on each

client machine. Upon the execution of the client program,

the name of the server and the port number should be

specified. The server and the client program can reside in

the same machine. The typical situation is that the teacher

runs both the server program and the client program on her

machine and students execute the client program on their

machines.

3.2 SCHEDULING

The server of the Educational Interactive System has a

scheduling capability to handle students' requests. This

scheduler is designed to help the teacher give a fair

opportunity of participating for the students.

. 25

The system design of the scheduler depends on the

definition of the criteria of the fairness and scheduling

scheme. In order to implement the scheduler, the criteria of

fairness must be defined. For example, if the definition of

the fairness is the number of opportunities to talk, a

student who had more opportunities to talk than another

student gets lower priority for the next request and who had

less opportunities to talk gets higher priority for the next

request regardless of the total time amount of talk. If the

definition of the fairness is the average waiting time per

opportunity to talk, a student who has a long average

waiting time per opportunity to talk gets higher priority to

reduce next request's waiting time and who has a short

average waiting time per opportunity to talk gets lower

priority then she tends to wait long time for the next

request.

After defining the fairness, for the scheduler, the type

of the scheduling scheme must be chosen. Some major

scheduling schemes are first-come first-served scheduling,

round-robin scheduling, multilevel queue scheduling, and

multilevel feedback queue scheduling.

For the scheduler of the Educational Interactive System,

"the average waiting time per talk" is used for the

criterion of the fairness as described in the next chapter.

26

And a fixed priority multilevel queue scheduling is used for

the scheduling scheme. Since students in a class usually

talk without interruption, the scheduling is performed in a

non-preemptive way.

3.3 CACHING

As discussed in the section 2.4, the caching in a

network environment is a useful technique to improve the

performance of the data retrieval. Without caching, when a

participant wants to see the previous screen of the class

and go back to see the current screen again, the screen

images would have to be retrieved from the server's disk. If

the size of the screen image is large and the bandwidth of

the network is limited, it may become an unacceptable

duration for an interactive system. Probably, ten seconds is

the maximum acceptable duration for each data retrieval for

the participants [13]. When the size of data increases, the

caching.becomes more important for the system performance.

As shown in Figure 3.1, typical cache locations in the

system are the local memory system, which is a. virtual

memory (RAM + swap space), of the client system and server

system..

27

; The. hit .ratio of caching (the possibility of finding a

requested data in the cache) is also a critical factor for

the.system with the cache. If the.hit ratio is low, it does

not imprpve,or could degrade overall system performance by .

the .overhead of the..data: replacement, '

...The Educational Interactive. System is a text-based

system and the size of the public screen is designed to be

960 bytes:(12 x 80)., However, the typical data size of

screen, for the web. browser is; 20k - 25k bytes .[14] and a

complex graphic based screen image; may become over 1MB in ­

size. , The. size, of data,; Which is. transmitted 'Over..: the

network, the bandwidth of the network, and the cache are

interrelated to each other. Therefore, it. is important to

ensure the following points before, applying the cache for

this system,

• Is cache useful for this system?

.• If so:, what,minimum hit ratio : is. required?

* Where should the cache be located?.

28

CHAPTER 4. SIMULATION

4.1 SCHEDULING

4.1.1 Objective

An investigation of the scheduler based on the

students' historical record is one of the main objectives in

this study. The goal of,the scheduler is to provide a fair

opportunity for all the students in the class to

participate,.. . .

A simulation program is implemented to determine the

suitability of the scheduling algorithm for the Educational

Interactive System.

4.1.2 Simulation Methodplogy

In order to identify the appropriate scheduling scheme

for the system, the definitibn of fairness must be'defined

first. Examples of.criteria, are such as,

*^The average waiting time per talk":

Students who,have a longer waiting time, per talk, than

the average waiting time pgr talk for all students, get

higher priority and those who have a shorter waiting

29

period per talk get lower priority. The purpose of this

scheme is to equalize the average waiting time per talk

for each student.

^*The nvunber of times of talking":

Students who talk many times, get lower priority and

those who tend to use less opportunities to talk , get

higher priority. The purpose of this scheme Is to

equalize the number of opportunities to talk taken by

Individual student.

"The total talk time":

Students who have a long total amount of talk time, get

lower priority and those who have a short total amount

of talk time, get higher priority. The purpose of this

scheme Is to equalize the total amount of talk time for

each student.

In this simulation, "The average waiting time per talk"

was chosen to be the criterion of the fairness. Because this

criterion allows us to analyze the consistency between the , .

experimental simulation result and theoretical result based

on queuing theory. In order to equalize the average waiting

time per talk for each student, a multilevel queue

scheduling Is used. Although the system needs to set a time

limit for each student's talk (e.g. five minutes), the

30

individual talk must be completed in a non-preemptive

manner. Because dividing students' talk into short time

quanta is not a natural way of talk in the class. As shown

in Figure 4.1, a five-level queue is used for the priority

scheduling simulation.

Multilevel Queue Scheduling

Highest Priority

m

Students' Calculate

Serve(Talk)

Requests Priority

lh

m

LowestPriority

Figure 4.1 Scheduling simulation with multilevel queue.

When a student's request has arrived, the system

calculates her priority based on the previous accumulated

waiting time. Then the system puts the request into one of

the queues with assigned priority. The requests with the

highest priority are served first in a FOES sense. If the

queue is empty, the requests in the queue with the next

highest priority will be served and so on. Each time, the

31

request of a student in the multilevel queue Is assigned to

the server, the waiting time Is recorded and added to the

total waiting time. The number of talk and the total amount

of talk time are also recorded and added to the total when

the student's talk Is finished. These recorded data are used

to calculate the priority of the same student's next

request. The execution of the program terminates within a

given time limit set by the program. As a result of the

execution, the program outputs the statistics of all the

students Including the number of opportunities to talk, the

average waiting time per talk, and the total amount of talk

time. .

The scheduler decides priorities of the request based

on the following table.

Condition Priority

N>1.5M 1

1.5M>N>1.25M 2

1.25M>N>0.75M 3

0.75M >N>0.5M 4

0.5M>N 5

N:The average waiting time per talk ofthis student.

M:The average waiting time per talk ofall the students.

Table 4.1: Priority condition based on

"the average waiting time per talk"

32

Based on this scheduling algorithm, students who have more

than or equal to 150% of all the students' average waiting

time get the highest priority. Students who have less than

150% and more than or equal to 125% of all the students'

average waiting time get the next highest priority and so

on.

4.2 CACHING

4.2.1 Objective

The main objective of the simulation is to study how

the local cache and the remote cache affect the overall data

transmission performance.

This simulation program is written to measure the data

transmission time between the server and the client via the

Internet.

The Educational Interactive System needs to transfer

data among the server and the clients. When the clients

request the image to appear on their screen, the image must

be sent from the. server within an acceptable time period. If

the response time from the server is too long for the

participants, they will not be able to participate in the

class as an interactive mode.

33

4.2.2 Simulation Methodology

' The program consists of a server program and a client,

program. As shown in Figure 4.2, the server program and the

client program are executed from their individual location

through a ,subnet or the Internet.

CSUSB CSCI

Server program Gateway
♦*'Disk

□ □ CaseB
RAM

Subnet
I Client prograrn,***

Disk %
*** ',Local memSfy Indigo □ % •. •"

i RAM .Q ■
system Phone line ■ r-

-------5-1
r»

— h:
rii■ ■ ■■■■■■

Internet Service Providor ■ Client prograiti^^*'*
Internet Disk

□ n ■kAM
: ;

—-iCZ
Phone line ' p(^

Case A :

Figure 4.2. Environment of the cache simulation program.

The programs: transfer pages of screen images to each

other using.the UDP: socket interface. Both the server and

the : client ■. programs : create the local cache in the memory

system (RAM + disk) on their, execution. The screen pages

,34

are originally kept in the server's local disk. When screen

pages are retrieved from the server, the pages are copied to

the server's cache (remote cache) and the client's cache

(local cache). During the execution of the program, if the

client finds the pages in its cache, those pages are used to

improve the system performance. The program based on the

following algorithm is used to retrieve the pages of screen,

and the Least Recently Used (LRU) algorithm is used for the

page replacement in the cache.

The client requests a page ofscreenfrom the server.

If(The clientfinds the page in local cache)

{

Getthe page from local cache/* Local cache hit */

Else if(The server find the page in server's cache)

{

Getthe pagefrom server's cache /* Remote cache hit */

and also copy it to the local cache

Else

{

Getthe page from server's disk /* Cache miss */

and also copy it server's cache and local cache

}

Figure 4.3 Algorithm of data retrieval.

The caches can hold ten pages of the screen data. The

35

system also keeps track of a time stamp and page number to

perform LRU data replacement. The sample execution of the

simulation program is described in Appendix A.2.

36

CHAPTER 5. EXPERIMENTAL AND SIMULATION RESULTS

5.l^^ SCHEDULING \ ^ ^v- ''v'

5,1>1 Experimental cohditipn

[system configuration]

The^scheduling simulatipn.;. program listed in Appendix .

B.2 can ,be : executed oh; a sta:nd alone UNIX system.

[Input dataset]

in 	Order,to: create :an input 'dataset for the experiment,

the gbservation of classes has been conducted- This

observation of the classes.,icscil25 and escil23:in. the

Computer ;Science Department, showed some: ... primary features,..

of 	Studentit talk in the classes., ihosie ieatufes are:

•. 	 Some students tended to talk.more often than ihe other

Students did.

•. The range of the talk length was,from lO, secbnds.to

■ around 5 minutes, and.the average:w4s about 80 seconds. ■

•	The. standard deyiation of the talk .iengths . was close to

.	 : 80, When the standard'deyiation. is; equal to the mean, the

distribution of the talk .length is random [8].

37

; ,Considering the features above, the input dataset is

created as follows.. The input dataset consists of thred..

items: student identification (ID), talk length, and arrival

time as shown Figure 5.1.

One request data

✓ N

/

Arrival Time /0 \i 40: 110 : 150 : 250 : 320 : 400' ■ ■ '
......:...^... :.

StudentID
 5 { 12 i 7 ■ 17 I 0 : 5 ; 10 ■ ■ ■ '

Talk Length ^40^ 90: 120 : 70 :100 : 80 : 60 '■''

Figure 5.1. Inptit request dataset

Student IDs are in range.between 0 and 29, 30 students:

in the class. Some students' IDs appear more often than the

others in the dataset.. The talk length is -an amount of time

of talk. . The. range of the .talk, iength is from TO to; 27.0

seconds and the itiean is 80 seconds. The value of the . talk

.l.ength. is randomly selected from that range to be the

standard .deviation close to SO. Arrival times are .created by;

a Poisson .distribution using the folTpwing equation which is

the. probabiTity. of e.xactly W ,events arriving in an interval

38

of length t.

p^(t^= {X is the mean arrival ratej

n\

Using this equation, the mean arrival rate is >1=0.01 arrival

per second and an interval of length is t=l second. Under

this condition, the probability that just one event happens

within one second (P](l)) is less than 0.99%. The probability

that two events happen within one second (PjCl)) is less than

0.005% and so on. Then a random generator is executed every

second for the whole class length to create a request

arrivals dataset.

Class length used for the experiment is 100,000 seconds.

The reason to choose such long class length is that the

experimentation based on random events tends to require

certain amount of time period or large number of input to

get stable result to meet theoretical data. This is shown in

the preliminary experiment in the next section. It can be

considered as a class length of a whole quarter. A class is

usually 90 to 120 minutes and 20 lessons in one quarter. The

total amount of class length is easily beyond 100,000

seconds.

39

[Type of experimentatiori]

Three types of experiments were conducted. The first

experiment. <A> was a preliminary experiment to examine the

consistency between the results.of simulation program' and of

queuing theory.. The condition of the experiment was

categorized in a M/D/l model where all talk lengths, (service

time) were constant.; This is the, simplest case of queuing

model,and enables us, to check the validity of the simulation

program. The second experiment was M/M/1 model without

priority scheduling,the dataset of the service time in this

case was random as the input dataset described above. And

the third experiment <C> was M/M/1 model with priority \

scheduling. A priority scheduling was added to the second

experiment to observe the improvement:.

5.1.2 Results

<A> Preliminary experiment, M/D/l model.

In this experiment, the service time (talk length, jS)

was, 40 seconds constant. The request arrival rate (A) was

:0.02 request/second, and the'utili2atippp(pf .;the system

, {p=ZSy was , 0;8. The program was qxecuteH 'frve^ t^ for

each, class length to get rdliabTe average waiting .time for

the requests. ,

40

http:results.of

Class Length

(seconds)

1000

Average

Theoretical

10000

Average

Theoretical

100000

Average

Theoretical

Trial Number of

requests

1 22

■ 2	 21

3 15

4 19

5 17

18.8

Average	 20.0

211
1

2 185

3 180

4 200

5 201

195.4

Average 200.0

1 1989

2 2028

3 1968

4 1993

5 2045

2004.6

Average 2000.0

Average waiting

time(seconds)

60

,	 42

29

37

15

36.6

80.0

75

52

40

107

69

68.6

80.0

94

81

75

65

77

78.4

80.0

Table 5.1 Result of preliminary experiment, M/D/1 model

The theoretical average waiting time in the table is

calculated using the equation (2.3-8) shown in Chapter 2.

The result showed that if the class length was short like

1000 seconds, there was a significant discrepancy in the

average waiting time between the theoretical result (80

seconds) and experimental result (36.6 seconds). However, as

41

the class length increased, :the discrepancy became smaller.

The experimental- result of the plass length 100,000 seGonds

reached 98.0% of the theoretical result. , ­

 M/M/1 model without priority.

In:, this.experiment, the service time was. 8,0 seconds,

average and ra.ndomiy distributed. The/request arrival rate

was 0.01 request/second. The utilization of the system is

0.8., The. Gla.s.s,length was 100,0:00 secpnds. A single level,

queue was used to keep waiting requests and no priority was

added to the requests. The:prpgram was executed five times

to get stable result as described in Appendix A. The

following table shows the summary of the.result.

Standard deviation of

Trial Average waiting average waiting time for

time per request each student

(seconds)

' ■ ■ 1' . 342., , ,48.25 , :

V ■ ■ -2 ■ : -323 . 53.38

. - -l ■■ ;326 ■ 46.35

4. 298 46.8

5­ . ' . . . - 351-V , , , 44.83

V Average 328.0 ,. 47.92

Theoretical average 320.0 ' ■

Table 5.2: Result of M/M/1 model without

priority scheduling.

42

The . resul.t showed triat the average waiting time per .

request Was very close to its .theoretical result .(.102.5%) \

The. theoretical result, 320 seconds, can be calculated, from-

the equation (2.3-4) in Chapter 2i. The.v;s.tandard deviation of

the-average.waiting time .; fo^^ each student was 47..92.

<C> M/M/I rttbdel with priority scheduiing

The; dondition of the was;same as except

the .addition of;. priority with five level: queue. .;

The results is..described in' A.1 and.the summary is,

as follows.'

Standard deviation of

Trial Average waiting average waiting time for

(lime-;rV';. each student

(seconds)

■ I . .316' 37.54 ■

309 44.66

345 ; 27.03

316 . : 35.21

353 ... 36.97

Average 327.8 36.28

Theoreticalaverage 320.0 ; —-''

Table 5.3: Result of M/M/l model with

, The;.result showed that the average waiting, time,per

request' was.:;also very close , to. its theoretical result

(102.4%).,-^"fe S'tandard deyiation .pf average waiting time, for

43

each student became 36.28 which was significantly smaller

than the one without scheduling. As shown in Figure 2.3, the

theoretical average waiting time for all, requests can be

calculated using the. same method of case .

5.2 CACHING

5.2.1 Experimental condition

[System Configuration]

The configurations of software and hardware of this

experiment were:

Server: Hardware - SGI indigo with NFS disk

Software - IRIX 5.3(UNIX) operating system

Client: Hardware - 486DX2/66MHz, 16MB, 14.4Kb modem

Software - Linux 1.2.1

The server and client were connected via the Internet with

PPP protocol.

[Transmission data size]

Four different data sizes, Ik, 2.5k, 5k, and 7.5k bytes

were used. A message with size larger than 7.5k bytes could

not be sent in this experiment because data transmission

duration caused synchronization problem between the server

44

and client program. The buffer size for the transmission was

64 bytes.

[Transmission route]

Two routes were used with PPP connection as shown in

Figure 4.2. Case A used an Internet service provider

(WaterNet) and case B used a direct dialup to the gateway at

CSUSB CSCI.

[Cache location]

The location of the remote cache was the memory system

(virtual memory) of the server. The local cache was

allocated in local memory system of the clients.

5.2.2 Results

The results of the transmission time for the data

retrieval from the server to the client for both case A and

B are described below. All measured data are the average of

five times execution of the program to be more reliable

result.

Case A

Data Size(bytes) Ik 2.5k 5k 7.5k

(A)Local cache hit 110 118 119 125

(B)Remote cache hit 821858 1815131 3459577 5123560

(C)Cache miss 825738 1862251 3534444 5164550

Table 5.4: Transmission time using direct

dialup to CSUSB CSCI.(microseconds)

45

Case B

Data Size(bytes) Ik 2.5k 5k..,., 7.5k

(A)Local cache hit 112 111 123 118

(B)Remote cache hit 921494 1903730 3620061 5236214

(C)Cache miss 938262 1949748 3629184 5243740

Table 5.5: Transmission time through

the WaterNet gateway.

(A) Local cache hit is:the Situation that the client found

the requested data- in the local _cache. Rempte cache hit

is the situatidn; that the client found the requested data; in

the; reraqte (server's) ,cache. (C) Cache miss is the situation

that the client could not. find the data in both local and . . .

remote, then heeded _.to: get:it, froni .the server's,disk. ,

Note: During the, execution of the experiment, no virtual ,:

memory, (part of disk:) usage, was ; observed at: the client as

shown in the following log;.,

client,:$ vmstat ■ i
prbcs . . ; itiemory swap • . io ; , system .' , -cpu

. r b w" , swpd free buff si so , ...bi bo in . cs us sy., id
1:0::0 [. • 0 2956 4312 0 0 17' . 2- ,183 83 . 5 • ■ 9 87.^

' s.wpd: the amount, of yirtual memdry used (kB). i

, si : 7^ memory swapped in from disk (kB/s).'

(so' ^ Amount of memory swapped:to idisk :(kB/sj. ^

46

From table 5.4 and 5.5, the following things were found.

■ 	 There was a little transmission delay (approximately 0.1

second) for the WaterNet gateway compared to the direct

dial up. (5.2-1)

■ 	 The results of "(A)Local cache hit" were almost the same

for four different data sizes for both case A and B.

(5.2-2)

■ 	 The results of "(B)Remote cache hit" and "(C)Cache miss"

were almost linear against the data size for both case A

and B. (5.2-3)

■ 	 From (A) and (B), local cache hit creates enormous

performance advantage compared to remote cache hit.

(5.2-4)

■ 	 From (B) and (C), the. performance difference between

remote cache hit and cache miss was small; remote cache

hit was only about 1% faster . (5.2-5)

47

CHAPTER 6. DATA ANALYSIS

6.1 SGHEDULINS

.' The re.sult: of; the; pfelirninarY experimeht <A> in section

5:.1.;2. shows that to apprpach theoretical result, , a certain

class length is required, because randomly distributed

requests .get.either very high density or veiy low density

from time,to time. High density request arrival creates a . .

long waiting time and low density request, arrival creates a ^

short, waiting time during that period.. The experiment with,

the condition described in, sectioh :5.1 required 100,QOO-,

seconds for the class length to obtain a stable, average

waiting time. :,If the experimental,class is too short, the,

average waiting time tends not to reflect the, usual case,.

Using a long enough,: class length, , 100,000 seconds, the

experimental average waiting time very closely approached

the theoreticallresult (about ,102.5%) for both main

experimental simulations with five level queue: M/M/1

model(without ncheduling arid <C>, M/M/1 model with

scheduling,. This, proves the validity of the simulation,

;,p>rogram.:

' 4,1

The purpose of the priority scheduling based on the

criterion, "The average waiting time per talk", is to

equalize the average waiting time per talk for each student.

If the standard deviation (STDDEV) of the average waiting

time for each student is decreased by the scheduling, the

algorithm is effective. Since the STDDEV of the experiment

<C> M/M/1 model with scheduling, 36.28, is less than the

experiment M/M/1 model without scheduling, 47.92, the

priority scheduling algorithm showed an improvement.

Three and seven level queue scheduling were also

examined to compare the results.. The results and condition

are described in Figure 6.1 through 6.4 below. Three level

queue scheduling did not show an improvement (STDDEV=48.11)

compared to single level queue scheduling, without

scheduling. Seven level queue scheduling showed an

improvement (STDDEV=44.68) but not as much as five level

scheduling. This result indicates that increasing the number

of queue level does not always create an improvement because

it may create excessively long waiting time for the lowest

priority requests.

Therefore, the priority scheduling with five-level

queue based on the condition in Table 4.1 is an appropriate

scheme for the fair scheduler handling the average waiting

time.

49

http:STDDEV=44.68
http:STDDEV=48.11

Standard deviation of

Trial Average waiting average waiting time for

time each student

(seconds)

1
 351 45.50

2 286 41.98

3 , 322 53.08

4 344 63.20

5 v ,282 36.77

Average 317.0 48.11

Theoretical average 320.0

—

Table 6.1: Result of 3 level priority scheduling.

Condition Priority

N>1.5M 1

1.5M>N> 0.75M 2

0.75 M>N 3

N:The average waiting time per talk ofthis student.

M:The average waiting time per talk ofall the students.

Table 6.2: 3 level queue priority condition based on

"the average waiting time per talk"

Standard deviation of

Trial Average waiting average waiting time for

time each student

(seconds)

1 308 29.07

2 326 64.69

3 318 39.91

4 , 290 36.23

5 . 327 ■ 53.48

Average 313.8 44.68

Theoretical average 320.0

—

Table 6.3: Result of 7 level priority scheduling.

50

Condition Priority

, , .N >2.0M t.1. :. ■

2.0M>N> 1.5M . . - 2: .

; 1.5M.>N> L25M :; ;■ . ..■■ ■ .3. :
1.25M>N>0.9M -4 .
0.9M>N>0.75M -5:

0.75M>N>0.5M 6

0.5M>N ■ 7

N: The average waiting time per talk of this student.
M: The average waiting tiine per talk of all the students.

Table 6.4: 7 level queue cohditlon based on
"the average time per talk"

[Theoretical and experimental results]

With, the equatibn (2.3-19) , the theoretical average , . .

waiting time of each level.of multilevel,queuing Can.be

calculated. :)Let us look at the first result of priority

SGhedul.ing in Appendix; A, oh page 64. The number of talk at

the first level is, 52, second level 53, third level . 799,

fourth leyel :58, and .fot. fifth level 27. Since class length

is 100, 000 seconds, .request;.arriva.l rates for each class are

/I, =0:v 000.52, =0.00053, . ';i3:=0i0d7 9-9, \=0.00058, and

: 00027 . respectivelyi .. .The average service time of the

firSt.. : level: is: Sj -=; 4 915/52. - 94 .52 seconds. Other levels of

..service., time are' 5'2 = .79.53 .seconds, 55 e -79 .34 seconds, 5^ =

89 ..3,1 seconds:, and 3'y.= s.e.conds.: From this information,

the average waiting time of each level becomes Twi='ol. 54,.

51

http:level.of
http:0.75M>N>0.5M
http:1.25M>N>0.9M

7'ii;2=74.33, rn,5=257.21, 7\,,^=1048.24, and 7\„5=1410.35 seconds. The

table 6.2 shows that the comparison between theoretical and

experimental average waiting time. Although lower level

queues increase the difference between the experimental and

theoretical results, the overall experimental results were

pretty close, to the theoretical result. This consistency

indicates the validity of the simulation program of

multilevel queue priority scheduling.

Level 1 Level2 Level3 Level4 Level 5

Experimental result 67.2 72.0 259.7 947.1 1240.0

Theoretical Result 67.5 74.3 257.2 1048.2 1410.4

Ratio 99.6% 96.9% 101.0% 90.4% 87.9%

Table 6.5; Average waiting time of each level.

6.2 CACHING

The result (5.2-5) in Section 5.2.2 shows that the

remote cache is not useful for this system. The result (5.2­

5) also indicates that the local data copy between the

memory and disk is, much faster than the remote data copy

over the network. If each client has the local cache in its

disk to keep all the data of the session, data retrieval

from the server will be eliminated.

,52

http:7\�5=1410.35
http:7'ii;2=74.33

The duration of "(A)Local cache hit" of both case A and

B in section 5.2.2, is almost same for different data size.

Because the cache access time is trivial compared to the

duration of message display . The local cache definitely

creates significant performance improvement in this kind of

WAN environment. However, if the memory usage.of the client

is excessively.heavy, unlike the condition of this

experiment, it may reduce the performance improvement due to

thrashing.

There is a linear relation between the size of data and

the remote access time even if the size of the data is small

as (5.2-3) indicates. Using the cache miss operation of case

B, because of the linear relation between the data

transmission time and the data size, the following equations

are derived to calculate approximate data transmission time

for larger data size.

0.94 sec = Ik * A + B (1)

5.24 sec = 7.5k * A + B (2)

from (1) and , (2), A = 0.66, B = 0.28 sec.

Y = 0.66X + 0.28 (6.2-1)

where y is duration(sec), x is data size.

If an acceptable data transmission time is 10 seconds

(Y = 10), the maximum data size will be about 15k bytes (x =

14.7). This indicates that one page of text-base screen

53

http:usage.of

(about Ik bytes), can be transferred .fast enough,to be an

interactivei mode without any caGhe.

, Assuming that the, client's local cache hit ratio is 80%

and one page of screen data is, 25k bytes, users will find

80% of time,: of screen image retrieval without any problem, ,

because of (5.2-4,). However, 2,0%, of, time they need to wait

more than ,15 Seconds) and,)this is not . tolerable as an : ,

interactiye system. .This indicates that . high hit .ratio of

cache is not a criticai factor.:.for the Educational

Interactive System because, a single cache miss operation

could eause uhacceptable data .transmissidn,.delay. ,

If, the size of,;„data is 20,k to 25k bytes like web pages,

larger bandwidth isr required to .transmit data as an

interactive,system. It is also better to provi,de a iarge

ehough : cache in the local) disk,to keep aliLthe .screen data ,

from , the server. An additional experiment, was,.conducted to

test the data transmission from the client's local disk to

its memory. It shdwe.d that 1 MB of data can:be)transferred ,

:from , the.Ideal:disk to , the: local: memdry (no page ,:fault, were,

fdund during .the experimenti in around,0.5; . second.:)

54

CHAPTER 7. DISCUSSION AND CONCLUSIONS

Two main objectives were investigated in this study:

the efficiency and optimization of the scheduling and

caching for the Educational Interactive System.

For the scheduling part of this study, we specifically

used a fixed priority five level queue algorithm. The

purpose of the scheduling is to equalize the average waiting

time of each student in the class. When the utilization of

the server is 0.8 and class length is 100,000 seconds, the

average waiting time of each student in the class showed an .

improvement by using the priority scheduling. The standard

deviation of the waiting time of each student decreased from

47.92 to 36.28. This indicates that the five level queue

algorithm is efficient under this condition. With three

level and seven level queue priority scheduling, improvement

of the scheduling was not as much as the one with five level

queue. Therefore, among single, three, five, and seven level

queue, the five level queue scheduling was optimal in this

experiment.

The other topic, the experimental simulation of

caching, showed interesting results. We found that the

location of caching is a more important factor than the

55

replacement algorithm because the Educational Interactive

System requires a real-time system-level response to the

users. If the response from the server is unacceptably slow,

users no longer participate in the class properly. We

assumed that ten seconds is the maximum tolerable duration

for the screen image transmission of the system. Under such

a condition, a remote cache hardly made any performance

improvement for the system (1% improvement compared to

without the remote cache). Although the local cache created

significant improvement for cache hit operation, a single

cache miss operation created a critical time delay for the

data transmission. As a result, all the screen images sent

from the server should be kept in the local disk of all the

clients. 1 MB of image can be transmitted to the screen

buffer of the client within 1.0 second with this

configuration. It could also replace, the allocation of both

local and remote cache in the memory.

The experiment showed that although caches improve

system performance, a text-based Educational Interactive

System is not necessary to have caches to achieve

interactive capability. However, as the screen image

increases like a web page, the bandwidth of the network

needs to be larger than this experimental condition. Ideally

56

the Educational Interactive System should utilize the cache

in the local disk.

Lastly, it is necessary to note that this experiment

was conducted with the current level of hardware

configuration. As time goes by, CPU power, network

bandwidth, and Internet technologies will be enhanced at a

fast pace. Then the result of this experiment may be very

different from the one today.

57

APPENDIX A: OUTPUT OF THE SIMULATION PROGRAMS

58

A.l SCHEDULING

 M/M/1 Model Withou't Priority Scheduling

/■k-k-k-k-k-k-k-k-k-k-k-k'k-k-k-k-k-k-k-k'k-k'k-k'k-k-k-k-k-k'k-k-k-k-k-k-k-k-k-k-k-k'k'k'k-k-k-k-k-k-k-k-k'k-k-ki(/
/* Scheduling Simulation Log */
/* */
/* - Average talk length 80 seconds */
/* - Request arrival density 0.01 request/second */
/* - Class length 100,000 seconds
^•k'k-k-k-k'k-k-fck-kick-k -k.-k k-k'k-k-k'k-kkk-k'k'kk-k-kkkkk-k-k-k-k-k-k-kk-k'k-k-k-kk j

/* [Without Priority Scheduling Trial 1]

k k k k k k [] kkkSummary

NumTalk 0] : 32 ServiceT: 2480 WaitingT: 9330 AveWaitingT: 291 ServiceTAve: 77

NumTalk 1] : 25 ServiceT: 2200 WaitingT:11361 AveWaitingT: 454 ServiceTAve: 88

NumTalk 2] : 29 ServiceT: 3130 WaitingT: 83 98 AveWaitingT: 28 9 ServiceTAve: 107

NumTalk .3] : 39 ServiceT: 2545 WaitingT:14354, AveWaitingT: 368 ServiceTAve: 65

NumTalk 4] : 33 ServiceT: 2925 WaitingT:11275 AveWaitingT: 341 ServiceTAve: 88

NumTalk 5] : 28 ServiceT; 2490 WaitingT: 9452 AveWaitingT: 337 ServiceTAve: 88

NumTalk 6] : 28 ServiceT: 2560 WaitingT; 8880 AveWaitingT: 317 ServiceTAve: 91
NumTalk 7] : 37 ServiceT: 3695 WaitingT:12056 AveWaitingT: 325 ServiceTAve: 99
NumTalk 8].: 43 ServiceT; 3785 WaitingT:16143 AveWaitingT: 375 ServiceTAve:
NumTalk ^9] : 37 ServiceT; 3270 WaitingT:15193 AveWaitingT: 410 ServiceTAve:
NumTalk 10] : 27 ServiceiT; 2115 WaitingT:10923 AveWaitingT: 404 ServiceTAve: 78

NumTalk 11] : 30 ServiceT; 2430 WaitingT;10546 AveWaitingT: 351 ServiceTAve: 81
NumTalk 12] : 32 ServiceT.; 3560 WaitingT: 7542 AveWaitingT: 235 ServiceTAve: 111

NumTalk 13] : 37 ServiceT: 3400 WaitingT:12749 AveWaitingT: 344 ServiceTAve: 91
NumTalk 14] : 34 ServiceT; 3575 WaitingT:10475 AveWaitingT: 308 ServiceTAve: 105
NumTalk 15] : 41 ServiceT: 3150 WaitingT:14570 AveWaitingT: 355 ServiceTAve: 76

NumTalk 16] : 30 ServiceT; 2365 WaitingT;10076 AveWaitingT: 335 ServiceTAve: 78
NumTalk 17] : 25 ServiceT; 1915 WaitingT: 6867 AveWaitingT: 274 ServiceTAve: 76

NumTalk 18] : 35 ServiceT: 3000 WaitingT: 9196 AveWaitingT: 262 ServiceTAve: 85

NumTalk 19] : 38 ServiceT; 2895 WaitingT:14778 AveWaitingT: 388 ServiceTAve: 76
NumTalk 20] : 37 ServiceT; 2665 WaitingT;12858 AveWaitingT: 347 ServiceTAve: 72

NumTalk 21] : 34 ServiceT: 2670 WaitingT:12149 AveWaitingT: 357 ServiceTAve: 78

NumTalk 22] : 35 ServiceT: 2685 WaitingT:11114 AveWaitingT: 317 ServiceTAve: 76
NumTalk 23] : 28 ServiceT: 2505 WaitingT:10978 AveWaitingT: 392 ServiceTAve: 8 9
NumTalk 24] : 35 ServiceT: 2735 WaitingT:10727 AveWaitingT: 306 ServiceTAve: 78
NumTalk 25] : 33 ServiceT; 2425 WaitingT:10411 AveWaitingT: 315 ServiceTAve: 73

NumTalk 26] : 32 ServiceT; 3195 WaitingT:12750 AveWaitingT: 398 ServiceTAve: 99

NumTalk 27] : 33 ServiceT: 2525 WaitingT:10378 AveWaitingT: 314 ServiceTAve: 76

NumTalk 28] : 2 9 ServiceT; 2865 WaitingT:11525 AveWaitingT: 397 ServiceTAve: 98

NumTalk 29] : 37 ServiceT: 3165 WaitingT:12591 AveWaitingT: 340 ServiceTAve: 85

Total > NumTalk 993
AveNumTalk 33
ServiceTime 84920
WaitingTime 339645
AveWaitingTime 342
ServiceTimeAve 2830

< Priority Level Information >

Level: 1 # of Talk: 993 Talk Time: 84920 Waiting Time: 339645
Level: 2 # of Talk: 0 Talk Time: 0 Waiting Tinie: 0
Level: 3 # of Talk: 0 Talk Time: 0 Waiting Time: 0

Level: 4 # of Talk: 0 Talk Time: 0 Waiting Time: 0 .

Level: 5 # of Talk: 0 Talk Time: 0 Waiting Time: 0

59

^'kick-k-k-k-k-k'k-k-k-^-k-k-k-^-k-k-k-k-k-k-k-k-k'k-k^^k-k-k-k^-k-k-k-k-k^'k-k-kic-k-k-k-k-k-k-k-k'k-k-k-k-k-k-k'k-k-k-k-k-k-k'k-k-k-k-k-k-k'k^k-k-k^

/*

/* Scheduling Simulation Log '^/

/*. ■

- Average talk length 80 seconds -k /

- Request arrival density 0.01 request/second */

/* - Class length 100,000 seconds '^/

/-k */

j-k'k-k-k-k-k-k-k'k-k-k-k-k'k'k-k-k-k-k'k-k-k-k-k-k-kk'k-k-k-k-kk-k-kkkkk-k-k-k'k-k-k-k-k-k-k-k-kk-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k'k-k-k-k-k-k-kl

/* [Without Priority Scheduling Trial 2]

*-sk- -jk- Summary] * ■*- -!k- -^^-:k' -*- -!k- -;k-;k- -!k- -^-Ar -)k- -^-^-^-^

NumTalk 0] : 31 ServiceT:3135 WaitingT:10705 AveWaitingT: 345 ServiceTAve: 101

NumTalk 1] : 36 ServiceT:2545 WaitingT:10755 AveWaitingT: 298 ServiceTAve: 70

NumTalk 2] : 37 ServiceT:2800 WaitingT: 7299 AveWaitingT: 197 ServiceTAve: 75

NumTalk 3] : 25 ServiceT:2250 WaitingT: 8825 AveWaitingT: 353 ServiceTAve: 90

NumTalk 4] : 29 ServiceT:2850 WaitingT:11368 AveWaitingT: 392 ServiceTAve: 98

NumTalk 5] : 35 ServiceT:2125 WaitingT:11515 AveWaitingT: 329 ServiceTAve: 60

NumTalk 6] : 30 ServiceT:2280 WaitingT: 8356 AveWaitingT: 278 ServiceTAve: 76

NumTalk 7] : 30 ServiceT:2085 WaitingT:10797 AveWaitingT: 359 ServiceTAve: 69

NumTalk 8] .: 28 ServiceT:2070 WaitingT: 9479 AveWaitingT: 338 ServiceTAve: 73

NumTalk 9] : 40 ServiceT:2880 WaitingT:13319 AveWaitingT: 332 ServiceTAve: 72

NumTalk 10] : 32 ServiceT:3225 WaitingT:12382 AveWaitingT: 386 ServiceTAve: 100

NumTalk 11] : 40 ServiceT:3335 WaitingT: 8498 AveWaitingT: 212 ServiceTAve: 83

NumTalk 12] : 39 ServiceT:3220 WaitingT:11677 AveWaitingT: 299 ServiceTAve: 82

NumTalk 13] : 32 ServiceT:2635 WaitingT:10906 AveWaitingT: 340 ServiceTAve: 82

NumTalk 14] : 33 ServiceT:1950 WaitingT:11716 AveWaitingT: 355 ServiceTAve: 59

NumTalk 15] : 38 ServiceT:2700 WaitingT: 9352 AveWaitingT: 246 ServiceTAve: 71

NumTalk 16] : 39 ServiceT:2735 WaitingT:12006 AveWaitingT: 307 ServiceTAve: 70

NumTalk 17] : 29 ServiceT:1945 WaitingT:10268 AveWaitingT: 354 ServiceTAve: 67

NumTalk 18] : 25 ServiceT:1645 WaitingT;10108 AveWaitingT: 404 ServiceTAve: 65

NumTalk 19] : 36 ServiceT:2735 WaitingT:15216 AveWaitingT: 422 ServiceTAve: 75

NumTalk 20] : 25 ServiceT:2070 WaitingT: 9155 AveWaitingT: 366 ServiceTAve: 82

NumTalk 21] : 30 ServiceT:2170 WaitingT:10410 AveWaitingT: 347 ServiceTAve: 72

NumTalk 22] : 39 ServiceT:3850 WaitingT:12398 AveWaitingT: 317 ServiceTAve: 98

NumTalk 23] : 32 ServiceT:2815 WaitingT:11801 AveWaitingT: 368 ServiceTAve: 87

NumTalk 24] : 41 ServiceT:3250 WaitingT:10701 AveWaitingT: 261 ServiceTAve: 79

NumTalk 25] : 36 ServiceT:2895 WaitingT:10990 AveWaitingT: 305 ServiceTAve: 80

NumTalk 26] : 41 ServiceT:3330 WaitingT;13191 AveWaitingT: 321 ServiceTAve: 81

NumTalk 27] : 37 ServiceT:2830 WaitingT:14459 AveWaitingT: 390 ServiceTAve: 76

NumTalk 28] : 32 ServiceT:2320 WaitingT: 9028 AveWaitingT: 282 ServiceTAve: 72

NumTalk 29] : 3 9 ServiceT:2910 WaitingT:11979 AveWaitingT: 307. ServiceTAve: 74

NumTalk 1016
AveNumTalk 33
SeryiceTime 79585
WaitingTime 328659

AveWaitingTime 323
ServiceTimeAve 2652

< Priority Level Information >

Level: of Talk: 1016 Talk Time: 79585 Waiting Time: 328659
Level: of Talk: 0 Talk Time: 0 Waiting Time: 0
Level: of Talk: 0 Talk Time: 0 Waiting Time: 0
Level: of Talk: 0 Talk Time: 0 Waiting Time: 0
Level: of Talk: 0 Talk Time: 0 Waiting Time: 0

60

/■k-k-kick^-k-k-k-k-k-k-ki('k'k-k-k-kic-k:k-k-k-k-k-k^-k-k-k-k-k-k-k-k'k'k-k-ki^-k-k-k-k-k-k'k'k/
jic -k!

Scheduling Simulation Log */
/■k k/
/* - Average talk length 80 seconds */
/* - Request arrival density 0.01 request/second

- Class length 100,000 seconds */
/* */
l-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k'k-k-k-k-k-k-k-k-k-k-k-k-k-kkk-kkk-k'k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k J

/*-■ [Without Priority Scheduling Trial 3]	 'I

•k -k -k -k -k k ^k-k-k-k-kk SUITimarySummary] -k-k-k-k-k-k-k-k-k-k-k

NumTalk 0] 46 :4430 WaitingT.: 12637 AveWaitingT 274 ServiceTAve: 96

NumTalk
NumTalk

1]
2]

32
29

:2175
:2105

Waiting!
WaitingT

: 12250
: 8701

AveWaitingT
AveWaitingT

382 ServiceTAve:
300 ServiceTAve:

67
72

NumTalk 3] 28 :1550 WaitingT ; 9730 AveWaitingT 347 ServiceTAve: 55

NumTalk 4] 39 :2965 WaitingT : 11320 AveWaitingT 290 ServiceTAve: 76

NumTalk 5] 30 :2635 WaitingT : 7840 AveWaitingT 261 ServiceTAve: 87

NumTalk 6] 28 :1920 WaitingT : 10219 AveWaitingT 364 ServiceTAve: 68

NumTalk 7] 34 :3605 WaitingT ; 11164 AveWaitingT 328 ServiceTAve: 106
NumTalk 8] 28 :1930 WaitingT ; .8420 AveWaitingT 300 ServiceTAve: 68

NumTalk 9] 21 :2360 WaitingT : 7275 AveWaitingT 346 ServiceTAve: 112

NumTalk 10], 35 :3245 WaitingT :10791 AveWaitingT 308 ServiceTAve: 92

NumTalk 11] 32 :2255 WaitingT :10691 AveWaitingT 334 ServiceTAve: 70

NumTalk 12] 33 :2295 WaitingT :10023 AveWaitingT 303 ServiceTAve: 69

NumTalk 13] 31 :2590 WaitingT : 9852 AveWaitingT 31,7 ServiceTAve: 83

NumTalk 14] 32 :2225 WaitingT : 8819 AveWaitingT 275 ServiceTAve: 69

NumTalk 15] 35 :3745 WaitingT : 9309, AveWaitingT 265 ServiceTAve: 107

NumTalk 16] 29 :2430 WaitingT : 9762 AveWaitingT 336 ServiceTAve: 83

NumTalk 17] 40 :2710 WaitingT : 13981 AveWaitingT 349 ServiceTAve: 67

NumTalk 18] 31 :2525 WaitingT : 11223 AveWaitingT 362 ServiceTAve: 81

NumTalk 19] 26 :2120 WaitingT :10653 AveWaitingT 409 ServiceTAve: 81

NumTalk 20] 33 :2190 WaitingT ;10739 AveWaitingT 325 ServiceTAve: 6 6

NumTalk 21] 29 :2670 WaitingT :12745 AveWaitingT 439 ServiceTAve: 92

NumTalk 22] 24 :2605 WaitingT ; 6658 AveWaitingT 277 ServiceTAve: 108
NumTalk 23] 29 :2310 WaitingT ;10265 AveWaitingT 353 ServiceTAve: 79

NumTalk -24] 31 :2825 WaitingT ; 9173 AveWaitingT 295 ServiceTAve: 91

NumTalk 25] 27 :2010 WaitingT :11342 AveWaitingT 420 ServiceTAve: 74

NumTalk 26] 37 :3610 WaitingT ; 11174 AveWaitingT 302 ServiceTAve: 97

NumTalk 27] 37 :3555 WaitingT : 11484 AveWaitingT 310 ServiceTAve: 96

NumTalk 28] 42 :3150 WaitingT :13286 AveWaitingT 316 ServiceTAve: 7 5

NumTalk 29] 26 :1900 WaitingT : 10307 AveWaitingT 396 ServiceTAve: 73

< Total > 	NumTalk 954

AveNumTalk 31
ServiceTime 78640

,WaitingTime 311833
AveWaitingTime 326
ServiceTimeAve 2621

< Priority Level Information >

Level; 1 # of Talk: 954 Talk Time: 78640 Waiting Time: 311833

Level: 2 # of Talk: 0 Talk Time: 0 Waiting Time: 0
Level: 3 # of Talk: 0 Talk Time: 0 Waiting Time: 0

Level: 4 # of Talk:, 0 Talk Time: 0 Waiting Time: 0
Level: 5 # of Talk: 0 Talk Time: 0 Waiting Time: 0

61

^•k-ki^ic-k-k-k-k-k-kif-k-k-ki<ic-:ki(-ki<icici<-k-ki<i<'k'kic-k-k'ici(ici(i(i^-k-k-k-k-k'k-k-k-k-k-k-k-k-k-k-k:k-k^

/-k

/* Scheduling Simulation Log . i

/■k -k /
/* - Average talk length 80 seconds '^ /
/* - Request arrival density 0.01 request/second

/* - Class length 100, 000 seconds /

/* /

^'k-kk-k-k-k^-k^-k-k-k-k'k-k-k-k-kk-kk-kk-k'kkki^i^-kkk-k-k-k^-k'kk-kkkk-k-k-k-kk'k-k-kk-kk^-k-kk-k-k-k-k'k-k-k-k-k-k-k-k'k-k-k'k-k-k/

/•k [Without Priority Scheduling Trial 4]

k -k -k -k -k -k k k -k k -k ^ -k k•k -k -k -k "k "k Summary

NumTalk 0] : 24 :1765 WaitingT: 7618 AveWaitingT: 317 ServiceTAve: 73

NumTalk 1] : 39 :2970 WaitingT:11132 AveWaitingT: 285 ServiceTAve: 76

NumTalk 2] : 41 :4010 WaitingT:10098 AveWaitingT: 246 ServiceTAve: 97

NumTalk 3] : 25 : 1490 WaitingT: 8502 AveWaitingT: 340 ServiceTAve: 59

NumTalk 4] : 33 :2685 WaitingT:10104 AveWaitingT: 306 ServiceTAve: 81

NumTalk 5] : 33 :2360 WaitingT: 9694 AveWaitingT: 293 ServiceTAve: 71

NumTalk 6] : 40 :3090 WaitingT:11009 AveWaitingT: 275 ServiceTAve: 77

NumTalk 7] : 26 :2300 WaitingT: 8375 AveWaitingT: 322 ServiceTAve: 88

NumTalk 8] : 35 :3250 WaitingT: 9750 AveWaitingT: 278 ServiceTAve: 92

NumTalk 9] : 31 :2765 WaitingT: 9710 AveWaitingT: 313 ServiceTAve: 89

NumTalk 10] : 24 :1920 WaitingT: 8738 AveWaitingT: 364 ServiceTAve: 80

NumTalk 11] : 26 :1780 WaitingT: 7381 AveWaitingT: 283 ServiceTAve: 68

NumTalk 12] : 29 :2075 WaitingT:10646 AveWaitingT: 367 ServiceTAve: 71

NumTalk 13] : 42 :3275 WaitingT:13741 AveWaitingT: 327 ServiceTAve: 77

NumTalk 14] : 36 :3870 WaitingT: 9656 AveWaitingT: 268 ServiceTAve: 107

NumTalk 15] : 22 :1435 WaitingT: 8221 AveWaitingT: 373 ServiceTAve: 65

NumTalk. 16] : 36 :2870 WaitingT: 9230 AveWaitingT: 256 ServiceTAve: 79

NumTalk 17] : 33 :2310 WaitingT: 9217 AveWaitingT: 279 ServiceTAve: 70

NumTalk 18] : 37 :2010 WaitingT: 8346 AveWaitingT: 225 ServiceTAve: 54

NumTalk 19] : 29 :2655 WaitingT: 6765 AveWaitingT: 233 ServiceTAve.: 91

NumTalk 20] : 36 :2175 WaitingT:10454 AveWaitingT: 290 ServiceTAve: 60

NumTalk 21] : 32 :2950 WaitingT: 9715 AveWaitingT: 303 ServiceTAve: 92

NumTalk 22] : 31 :3350 WaitingT:11500 AveWaitingT: 370 ServiceTAve: 108

NumTalk 23] : 43 :31.65 WaitingT:11402 AveWaitingT: 265 ServiceTAve: 73

NumTalk 24] : 40 :3180 WaitingT:14420 AveWaitingT: 360 ServiceTAve: 79

NumTalk 25] : 32 :2250 WaitingT:10395 AveWaitingT: 324 ServiceTAve: 7 0

NumTalk 26] : 31 :2890 WaitingT; 7114 AveWaitingT: 229 ServiceTAve: 93

NumTalk 27] : 37 :2365 WaitingT:10238 AveWaitingT: 276 ServiceTAve: . 63

NumTalk 28] : 24 :2750 WaitingT: 9869 AveWaitingT: 411 ServiceTAve: 114

NumTalk 29] : 34 :2680 WaitingT:10051 AveWaitingT: 2 9.5 ServiceTAve: . 7.8

NumTalk 981
AveNumTalk 32

ServiceTime 78640
WaitingTime 293091
AveWaitingTime 298
ServiceTimeAve 2621

< Priority Level Information >

Level: 1 # of Talk: 981 Talk Time: 78640 Waiting Time: 293091

Level: 2 # of Talk: 0 Talk Time: 0 Waiting Time: 0

Level: 3 # of Talk: 0 Talk Time: 0 Waiting Time: 0

Level: 4 # of Talk: 0 Talk Time: 0 Waiting Time: 0

Level: 5 # of Talk: 0 Talk Time: 0 Waiting Time: 0

62

^•k-k-k-k-k'k-k'k-k-kic-k'k-k-k-kic'k'k-k-k-krk-k-k.-k-kic-k-k'k-k-k-k-k'k'k-k-k-k'k'k'kic'k-k-k'k-kicick-k-k-k'k'k'k'k-k'k'k-k'k-k-k-k-k.-k'k-k-k-k-k-k-kj^

/■k -k/.
Scheduling Simulation Log , ,

/■k -k /
- Average talk length 80 seconds . . */
- Request arrival density. 0.01 request/second
- Class, length 100,000 seconds

/* , . . /
!k -k k -k -k -k -k -k -k -k -k '-k -k k -k -k -k -k -k -k k -k -k -k -k k -k ^ -k -k -k -k -k -k -k j

j-k ,[Without Priority Scheduling Trial 5]

■krk-k-k-k-k [Summary] ■k-k-k-k-k -k -k -k -k -k -k -k -k -k -k -k -k -k -k k -k k -k -k -k -k -k -k -k -k -k -k ^ -k

NumTalk 0] 34 ServiceT: 2460 WaitingT 12833 AveWaitingT: 377 ServiceTAve: 72

NumTalk 1] 35 ServiceT: 2445 WaitingT 13742 AveWaitingT: 392 ServiceTAve: 69

NumTalk 2] 37 ServiceT; 2705 WaitingT 13045 AveWaitingT: 352 ServiceTAve: 73

NumTalk 3] 40 ServiceT: 3265 WaitingT 13582 AveWaitingT: 339 ServiceTAve: 81

NumTalk 4] 25 ServiceT: 2035 WaitingT 10382 AveWaitingT: 415 ServiceTAve: 81

NumTalk 5] 36 ServiceT: 2440 WaitingT 11921 AveWaitingT: 331 ServiceTAve: 67

NumTalk 6] 33 ServiceT: 2145 WaitingT 12116 AveWaitingT: 367 ServiceTAve: 65

NumTalk 7] 39 ServiceT: 3095 WaitingT 11989 AveWaitingT: 307 ServiceTAve: 79

NumTalk 8] 29 ServiceT: 2600 WaitingT 12572 AveWaitingT: 433 ServiceTAve: 89

NumTalk 9] 34 ServiceT: 3530 WaitingT 9959 AveWaitingT: 2 92 ServiceTAve: 103

NumTalk 10] 37 ServiceT: 2665 WaitingT 13028 AveWaitingT: 352 ServiceTAve: 72

NumTalk 11] 38 ServiceT: 3255 WaitingT : 14103 AveWaitingT: 371 ServiceTAve: 85

NumTalk 12] 32 ServiceT: 2830 WaitingT :11342 AveWaitingT: 354 ServiceTAve: 88

NumTalk 13] 38 ServiceT: 2625 WaitingT :15559 AveWaitingT: 409 ServiceTAve: 69

NumTalk 14] 36 ServiceT: 3075 WaitingT ; 13225 AveWaitingT: 367 ServiceTAve: 85

NumTalk 15] 41 ServiceT: 3835 WaitingT :13621 AveWaitingT: 332 ServiceTAve: 93

NumTalk 16] 40 ServiceT: 3520 WaitingT :10126 AveWaitingT: 253 ServiceTAve: 88

NumTalk 17] 36 ServiceT: 2940 WaitingT :13901 AveWaitingT: 386 ServiceTAve: 81

NumTalk 18] 34 ServiceT: 2020 WaitingT ; 10514 AveWaitingT: 309 ■ServiceTAve: 59

NumTalk 19] 29 ServiceT: 2715 WaitingT :10740 AveWaitingT: 370 ServiceTAve: 93

NumTalk 20] 33. ServiceT: 1675 WaitingT :12798 AveWaitingT: 387 ServiceTAve: 50

NumTalk 21] 36 ServiceT: 3905 WaitingT :13210 AveWaitingT: 3 66 ServiceTAve: 108

NumTalk 22] 30 ServiceT: 2345 WaitingT :12679 AveWaitingT: 422 ServiceTAve: 78

NumTalk 23] 36 ServiceT: 2195 WaitingT : 8662 AveWaitingT: 240 ServiceTAve: 60

NumTalk 24] 36 ServiceT: 3315 WaitingT :12278 AveWaitingT: 341 ServiceTAve: 92

NumTalk 25] 31 ServiceT: 2265 WaitingT : 11776 AveWaitingT: 379 ServiceTAve: 73

NumTalk 26] 27 ServiceT: 2220 WaitingT ; 8692 AveWaitingT: 321 ServiceTAve: 82

NumTalk 27] 30 ServiceT: 2390 WaitingT : 10547 AveWaitingT: 351 ServiceTAve: 79

NumTalk 28] 30 ServiceT: 2895 WaitingT ; 9835 AveWaitingT: 327 ServiceTAve: 96

NumTalk 29] 31 ServiceT: 1625 WaitingT ;10317 AveWaitingT: 332 ServiceTAve: 52

< Total > NumTalk 1023
AveNumTalk 34

ServiceTime 81030
. WaitingTime 359094

AveWaitingTime 351
ServiceTimeAve 2701

< Priority Level Information >

Level: 1 # of Talk: 1023 Talk Time: 81030 Waiting Time: . 359094

Level: 2 # of Talk: 0 Talk Time: 0 Waiting Time: 0

Level: 3 # of Talk: 0 Talk Time: 0 Waiting Time: 0

Level: 4 # of Talk: 0 Talk Time: 0 Waiting Time: 0

Level: 5 # of- Talk: 0 Talk Time: 0 Waiting Time: 0

63

<C> M/M/1 Model With Priority Scheduling

^-k -k -k -k -k -k -k -k -k -k -k -k if -k ic -k -k ic -k -k -k ̂ -k -k -k -k -k -k -k -k -k -k -k -k -k -k -k ■:h -k -k -k -k -k ^

/* Scheduling Simulation Log
/■k k/

/* - Average talk length 80 seconds
/* - Request arrival density 0.01 request/second */

- Class length 100,000 seconds
jk.k kkj

jk [With Priority Scheduling Trial 1] * /

kkkkkk Summary k k kk kk kkkkkkkkkkkk

-> Prioirty based on Average Waiting Time with Level 5

NumTalk 0] 28 :2400 WaitingT 10053 AveWaitingT: 359 ServiceTAve: 85
NumTalk 1] 35 :2830 WaitingT 9994 AveWaitingT: 285 ServiceTAve: 80

NumTalk 2] 34 :2605 WaitingT 1111^9 AveWaitingT: 327 ServiceTAve: 76

NumTalk 3] 24 :2080 WaitingT 8893 AveWaitingT: 370 ServiceTAve: 86

NumTalk 4] 33 :2970 WaitingT :11689 AveWaitingT: 354 ServiceTAve: 90
NumTalk 5] 26 :2025 WaitingT : 8702 AveWaitingT: 334 ServiceTAve: 77

NumTalk 6] 30 :2345 WaitingT : 10324 AveWaitingT: 344 ServiceTAve: 78

NumTalk 7] 32 :3060 WaitingT : 9756 AveWaitingT: 304 ServiceTAve: 95

NumTalk 8] 31 :2725 WaitingT :10466 AveWaitingT: 337 ServiceTAve: 87

NumTalk 9] 32 :2760 WaitingT : 12103 AveWaitingT: 378 ServiceTAve: 86
NumTalk 10] 34 :2750 WaitingT :13118 AveWaitingT: 385 ServiceTAve: 80

NumTalk 11] 32 :2110 WaitingT 9591 AveWaitingT: 299 ServiceTAve: 65

NumTalk 12] 27 :2490 WaitingT : 9135 AveWaitingT: 338 ServiceTAve: 92

NumTalk 13] 38 :3535 WaitingT 10861 AveWaitingT: 285 ServiceTAve: 93.

NumTalk 14] 32 :2425 WaitingT :11202 AveWaitingT: 350 ServiceTAve: 75

NumTalk 15] 25 :2260 WaitingT : 9671 AveWaitingT: 386 ServiceTAve: 90

NumTalk 16] 41 : 4115 WaitingT :12270 AveWaitingT: 299 ServiceTAve: 100

NumTalk 17] 32 :2445 WaitingT : 9660 AveWaitingT: 301 ServiceTAve: 76

NumTalk 18] 2 8 :1305 WaitingT ; 9998 AveWaitingT: 357 ServiceTAve: 46

NumTalk 19] 29 :1795 WaitingT ; 7771 AveWaitingT: 267 ServiceTAve: 61
NumTalk 20] 36 :2130 WaitingT 10171 AveWaitingT: 282 ServiceTAve: 59

NumTalk 21] 42 :3645 WaitingT ;11197 AveWaitingT: 266 ServiceTAve: 86
NumTalk 22] 34 :2780 WaitingT ; 9388 AveWaitingT: 276 ServiceTAve: 81

NumTalk 23] 33 :1840 WaitingT :10035 AveWaitingT: 304 ServiceTAve: 55
NumTalk 24] 31 :2210 WaitingT 10303 AveWaitingT: 332 ServiceTAve: 71

NumTalk 25] 36 :2555 WaitingT 9142 AveWaitingT: 253 ServiceTAve: 70
NumTalk 26] 38 :2825 WaitingT 11982 AveWaitingT: 315 ServiceTAve: 74

NumTalk 27] 33 :3115 WaitingT :10711 AveWaitingT: 324 ServiceTAve: 94

NumTalk 28] 46 :4135 WaitingT :13402 AveWaitingT: 2 91 ServiceTAve: 89
NumTalk 29] 37 :3310 WaitingT :10545 AveWaitingT: 285 ServiceTAve: 89

NumTalk 989
AveNumTalk 32

ServiceTime . 79575

WaitingTime 313252
AveWaitingTime 316
ServiceTimeAve 2652

< Priority Level Information >

Level: 1 # of Talk: 52 Talk Time: 4915 Waiting Time: 3492

Level: 2 # of Talk: 53 Talk Time: 4215 Waiting Time: 3815

Level: 3 # of Talk: 799 Talk Time: 63390 Waiting Time: 207530

Level: 4 # of Talk: 58 Talk Time: 5180 Waiting Time: 57 93.5
Level: 5 # of Talk: 27 Talk Time: 1875 Waiting Time: 40480

64

^■k-k'ki(-kici^i(i(-k-ki<-k-kic'k^-k'k'k-k-k-k-k-:k-k'k:k-k-k-k-k-k-k-k-k-k-k-k'k-k-k'k-k-k-k-k-k-k-kick-k-k-k-k:k'k'k-k-k-k:^ck^'k-k-k-k^-k-k^^-k-k/

/* Scheduling Simulation Log */
j-k -k j

- Average 	talk length 80 seconds */
- Request 	arrival density 0.01 request/second */
- Class length , 100/000 seconds */

J-k -k /
j-k-k-k'k-k'k-k-k'k-k-kk-k-k-k-k-k-k-k-k-k'k-k-k-k-k-k-k-k-kkk-k-kk-k-k-k-k-k-k-k-k-k-kkk-k-k-k'k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k'k-k-k-k-k-k-k-kkl

/* [With Priority Scheduling Trial 2]

^ ^ ^ Summary] * 	 -k-k -k-k-k-k-k-k^k-k-k

-> Prioirty based on Average Waiting Time with Level 5

NumTalk 0] : 36 ServiceT:3270 WaitingT:10111 AveWaitingT: 280 ServiceTAve: 90

NumTalk 1] : 40 ServiceT: 3 60.5 WaitingT:12768 AveWaitingT: 319 ServiceTAve: 90

NumTalk 2] : 36 ServiceT:1925 WaitingT: 8782 AveWaitingT: 243 ServiceTAve: 53

NumTalk 3] : 36 ServiceT:3710 WaitingT: 12295 AveWaitingT: 341 ServiceTAve: 103

NumTalk 4] : .37 ServiceT:3535 WaitingT: 10918 AveWaitingT: 295 ServiceTAve: 95

NumTalk 5] : 25 ServiceT:1715 WaitingT: 8524 AveWaitingT: 340 ServiceTAve: 68.

NumTalk 6] : 33 ServiceT:2685 WaitingT: 9222 AveWaitingT: 279 ServiceTAve: 81

NumTalk 7] : 34 ServiceT:1850 WaitingT: 9920 AveWaitingT: 291 ServiceTAve: 54

NumTalk 8] : 30 ServiceT:2215 WaitingT: 10072 AveWaitingT: 335 ServiceTAve: 73

NumTalk 9] : 45 ServiceT:3855 WaitingT: 12268 AveWaitingT: 272 ServiceTAve: 85

NumTalk 10] : 22 ServiceT:1395 WaitingT: 6542 AveWaitingT: 297 ServiceTAve: 63

NumTalk 11] : 38 ServiceT:3750 WaitingT: 9825 AveWaitingT: 258 ServiceTAve: 98

NumTalk 12] : 36 ServiceT:3045 WaitingT: 12086 AveWaitingT: 335 ServiceTAve: 84

NumTalk 13] : 43 ServiceT:3270 WaitingT: 11048 AveWaitingT: 256 ServiceTAve: 76

NumTalk 14] : 40 ServiceT:3450 WaitingT: 11491 AveWaitingT: 287 ServiceTAve: 86

NumTalk 15] : 19 ServiceT:1395 WaitingT: 694 6 AveWaitingT: 365 ServiceTAve: 73

NumTalk 16] : 31 ServiceT:2000 WaitingT: 9007 AveWaitingT: 290 ServiceTAve: 64

NumTalk 17] : 31 ServiceT:2075 WaitingT: 10579 AveWaitingT: 341 ServiceTAve: 66

NumTalk 18] : 34 ServiceT:2840 WaitingT: 11223 AveWaitingT: 330 ServiceTAve: 83

NumTalk 19] : 35 ServiceT:3360 WaitingT: 12227 AveWaitingT: 349 ServiceTAve: 96

NumTalk 20] : 33 ServiceT:2990 WaitingT: 13214 AveWaitingT: 400 ServiceTAve: 90
NumTalk 21] : ,32 ServiceT:1580 WaitingT: 9828 AveWaitingT: 307 ServiceTAve: 49

NumTalk 22] : 34 ServiceT:2535 WaitingT: 11282 AveWaitingT: 331 ServiceTAve: 74

NumTalk 23] : 31 ServiceT,: 3135 WaitingT: 10121 AveWaitingT: 326 ServiceTAve: 101

NumTalk 24] : 29 ServiceT:3390 WaitingT: 13098 AveWaitingT: 451 ServiceTAve: 116

NumTalk 25] : 35 ServiceT:2145 WaitingT: 11013 AveWaitingT: 314 ServiceTAve: 61

NumTalk 26] : 31 ServiceT:3295 WaitingT: 9513 AveWaitingT: 306 ServiceTAve: 106

NumTalk 27] : 24 ServiceT:1275 WaitingT: 6055 AveWaitingT: 252 ServiceTAve: 53

NumTalk 28] : 38 ServiceT:2715 WaitingT: 10864 AveWaitingT: 285 ServiceTAve: 71

NumTalk 29] : 30 ServiceT:2800 WaitingT: 8341 AveWaitingT: 278 ServiceTAve: 93

< Total > 	NumTalk . , 998

AveNumTalk 33

ServiceTime 80805

WaitingTime 309183

AveWaitingTime 309

ServiceTimeAve 2693

< Priority Level- Information >

Level: 1 # of Talk: 69 Talk Time: 6895 Waiting Time: 4060

Level: 2 # of Talk: 67 Talk Time: 6130 Waiting Time: 5507

Level: 3 # ,of Talk: 759 Talk Time: 58960 Waiting Time: 201760

Level: 4 # of Talk: 55 Talk Time: 5170 Waiting Time: 50272

Level: 5 # of Talk: 48 Talk Time: 3650 Waiting Time: 47584

65

^•k-k-k-k-k-k-k-k-k-k -k k -k-k-k-k-kk-k-k k kkk k kkkkkkk^

/*

/* Scheduling Simulation Log

/k k/

/* - Average talk length • 80 seconds >/

- Request arrival density 0.01 request/second */

/* - Class length 100,000 seconds

/k k/

jkk.kkkkkkkkkkkkkkkkkkkkkkkkkkkkl

/* [with Priority Scheduling Trial 3]

kk k k k k SUTTITna Uy] kkk

-> Prioirty based on Average Waiting Time with Level 5

NumTalk 0]: 43 ServiceT:3540 WaitingT 13862 AveWaitingT: 322 ServiceTAve: 82

NumTalk 1]: 36 ServiceT:4045 WaitingT 14747 AveWaitingT: 409 ServiceTAve: 112

NumTalk 2]: 34 ServiceT:2760 WaitingT 11079 AveWaitingT; 325 ServiceTAve: 81

NumTalk 3]: 28 ServiceT:2370 WaitingT 10258 AveWaitingT: 366 ServiceTAve: 84

NumTalk 4]: 29 ServiceT:1925 WaitingT 10603 AveWaitingT: 365 ServiceTAve: 66.

NumTalk 5]: 41 ServiceT:2480 WaitingT 12291 AveWaitingT: 299 ServiceTAve: 60

NumTalk 6]: 33 ServiceT:2875 WaitingT 11874 AveWaitingT: 359 ServiceTAve: 87

NumTalk 7]: 33 ServiceT:2405 WaitingT 12200 AveWaitingT: 369 ServiceTAve: 72

NumTalk 8]: 32 ServiceT:1885 WaitingT 10228 AveWaitingT: 319 ServiceTAve: 58

NumTalk 9]: 26 ServiceT:1700 WaitingT 8981 AveWaitingT: 345 ServiceTAve: 65

NumTalk 10].: 38 ServiceT:3450 WaitingT 12641 AveWaitingT: 332 ServiceTAve: 90

NumTalk 11]: 30 ServiceT:1985 WaitingT 9211 AveWaitingT: 307 ServiceTAve: 66

NumTalk 12]: 34 ServiceT:2170 WaitingT 10922 AveWaitingT: 321 ServiceTAve: 63

NumTalk 13]: 31 ServiceT:2625 WaitingT 9789 AveWaitingT: 315 ServiceTAve: 84

NumTalk 14]: 28 ServiceT:2380 WaitingT 10550 AveWaitingT: 376 ServiceTAve: 85

NumTalk 15]: 35 ServiceT:2590 WaitingT 11994 AveWaitingT: 342 ServiceTAve: 74

NumTalk 16]: 33 ServiceT:3175 WaitingT 12623 AveWaitingT: 382 ServiceTAve: 96

NumTalk 17]: 38 ServiceT:3325 WaitingT 13225 AveWaitingT: 348 ServiceTAve: 87

NumTalk 18]: 27 ServiceT:1885 WaitingT 10634 AveWaitingT: 393 ServiceTAve: 69

NumTalk 19]: 31 ServiceT:2455 WaitingT 10101 AveWaitingT: 325 ServiceTAve: 79

NumTalk 20]: 33 ServiceT:2560 WaitingT 11042 AveWaitingT: 334 ServiceTAve: 77

NumTalk 21]: 33 ServiceT:3520 WaitingT 11571 AveWaitingT: 350 ServiceTAve: 106

NumTalk 22]: 32 ServiceT:2700 WaitingT 9939 AveWaitingT: 310 ServiceTAve: 84

NumTalk 23]: 36 ServiceT:2730 WaitingT 11800 AveWaitingT: 327 ServiceTAve: 75

NumTalk 24]: 32 ServiceT:2360 WaitingT 10946 AveWaitingT: 342 ServiceTAve: 73

NumTalk 25]: 27 ServiceT:2185 WaitingT 9745 AveWaitingT: 360 ServiceTAve: 80

NumTalk 26]: 39 ServiceT:3675 WaitingT 13587 AveWaitingT: 348 ServiceTAve: 94

NumTalk 27]: 31 ServiceT:2820 WaitingT 10898 AveWaitingT: 351 ServiceTAve: 90

NumTalk 28]: 30 ServiceT:2260. WaitingT 11568 AveWaitingT: 385 ServiceTAve: 75

NumTalk 29]: 29 ServiceT:2965 WaitingT 10288 AveWaitingT: 354 ServiceTAve: 102

NumTalk 982

AveNumTalk 32

ServiceTime 79800

WaitingTime 339197

AveWaitingTime 345

ServiceTimeAve 2660

< Priority Level Information >

Level: 1 # of Talk: 62 Talk Time: 4350 Waiting Time: 3661

Level: 2 # of Talk: 40 Talk Time: 3365 Waiting Time: 2240

Level: 3 # of Talk: 763 Talk Time: 63695 Waiting Time: 196563

Level: 4 # of Talk: 69 Talk Time: 5465 Waiting Time: 65366

Level: 5 # of Talk: 48 Talk Time: 2925 Waiting Time: 71367

65

^-k-kic-k-ki(i(-ki(-k-k-k-k-k-k-ki(-k-k-k'k-k-k-k'k-k-k'k-k-k^-k'k'k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-:k-k-k-k-k-k'k-k-k-k-k:k'k-k-k-k:k'k-k-k-ki(-k'k'k'k-k^

/■k -k /
/* Scheduling Simulation Log '^ /
f-k -k /
/* - Average talk length 80 seconds !
/* - Request arrival density 0.01 request/second */
/* - Class length 100,000 seconds ,^/

""I
I'k-k-k-k-k'k-k-k^-k-k-k-k^-k-k-k-k-k-k-k^-k'k-k'k-k-k-k-k-k'kk^-k-k-k-k-k-k-k-k-k-k-k-k-k-k'k-k-k-k-k-k-k-k-k-k-k'k-k^-k-k-k-k-k-k-k-k'ki^-k'k-k-k-kl

/•k [With Priority Scheduling Trial 4]

•k -k -k -k -k -k SUITimary] 'k-k-k-k-k-k-k-k-k-k^-k-k-k-ki^-k-k-k-k'k-k-k-k-k-k'k^-k-k-k-k-k-k-k-k-k-k'k-k-k-k-k-k-k-k-k'k-k-k-k-k-k-k-k-k-k-k-k-k-k

-> Prioirty based on Average Waiting Time with Level 5

NumTalk 0] 28 ServiceT: 2175 WaitingT: 9486 AveWaitingT: 338 ServiceTAve: 77

NumTalk 1] 30 ServiceT: 2205 WaitingT: 9220 AveWaitingT: 307 ServiceTAve: 73

NumTalk 2] 29 ServiceT: 2435 WaitingT: 9648 AveWaitingT: 332 ServiceTAve: 83

NumTalk 3] 34 ServiceT: 2110 WaitingT:11545 AveWaitingT: 339 ServiceTAve: 62

NumTalk 4] 36 ServiceT: 2375 WaitingT:13270 AveWaitingT: 368 ServiceTAve: 65

NumTalk 5] 37 ServiceT: 2810 WaitingT:12480 AveWaitingT: 337 ServiceTAve: 75

NumTalk 6] 35 ServiceT: 2765 WaitingT:11745 AveWaitingT: 335 ServiceTAve: 79

NumTalk 7] 35 ServiceT: 2780 WaitingT: 8899 AveWaitingT: 254 ServiceTAve: 79

NumTalk 8] 30 ServiceT: 2010 WaitingT: 7838 AveWaitingT: 261 ServiceTAve: 67

NumTalk 9] 34 ServiceT: 2650 WaitingT:10463 AveWaitingT: 307 ServiceTAve: 77

NumTalk 10] 28 ,ServiceT: 2415 WaitingT: 9770 AveWaitingT: 348 ServiceTAve: 86

NumTalk 11] 30 ServiceT: 2330 WaitingT: 8461 AveWaitingT: 282 ServiceTAve: 77

NumTalk 12] 31 ServiceT: 2395 WaitingT: 9894 AveWaitingT: 319 ServiceTAve: 77

NumTalk 13] 37 ServiceT: 3390 WaitingT:11747 AveWaitingT: 317 ServiceTAve: 91

NumTalk 14] 28 ServiceT: 1615 WaitingT: 7877 AveWaitingT: 281 ServiceTAve: 57

NumTalk 15] 31 ServiceT: 2120 WaitingT: 7833 AveWaitingT: 252 ServiceTAve: 68

NumTalk 16] .38 ServiceT; 3335 WaitingT:13208 AveWaitingT: 347 ServiceTAve: 87

NumTalk 17] 33 ServiceT: 2210 WaitingT:10354 AveWaitingT: 313 ServiceTAve: 66

NumTalk 18] 41 ServiceT: 4570 WaitingT:11260 AveWaitingT: 274 ServiceTAve: 111

NumTalk 19] 25 ServiceT: 2395 WaitingT: 8924 AveWaitingT: 356 ServiceTAve: 95

NumTalk 20] 36 ServiceT: 2580 WaitingT: 12469 AveWaitingT: 346 ServiceTAve: 71

NumTalk 21] 28 ServiceT: 2050 WaitingT: 9632 AveWaitingT: 344 ServiceTAve: 73

NumTalk 22] 30 ServiceT: 2275 WaitingT: 10981 AveWaitingT: 366 ServiceTAve: 75

NumTalk 23] 31 ServiceT: 2620 WaitingT: 10941 AveWaitingT: 352 ServiceTAve: 84

NumTalk 24] 31 ServiceT: 2215 WaitingT: 8416 AveWaitingT: 271 ServiceTAve: 71

NumTalk 25] 34 ServiceT: 2020 WaitingT: 11142 AveWaitingT: 327 ServiceTAve: 59

NumTalk 26] 27 ServiceT: 2755 WaitingT: 8728 AveWaitingT: 323 ServiceTAve: 102

NumTalk 27] 39 ServiceT: 4260 WaitingT: 11591 AveWaitingT: 297 ServiceTAve: 109

NumTalk 28] 31 ServiceT: 2480 WaitingT: 11063 AveWaitingT: 356 ServiceTAve: 80

NumTalk 29] 39 ServiceT: 3585 WaitingT: 10302 AveWaitingT: 264 ServiceTAve: 91

< Total > NumTalk 976
AveNumTalk 32

, ServiceTime 77930
WaitingTime 309187
AveWaitingTime 316
ServiceTimeAve 2597

< Priority Level Information >

Level: of Talk: 85 Talk Time: 6685 Waiting Time: 5612
Level: of Talk: 67 Talk Time: 5315 Waiting Time: 6423
Level: of Talk: 671 Talk Time: 54195 Waiting Time: 148030
Level: # of Talk: 77 Talk Time: 6065 Waiting Time: 68848
Level: # of Talk: 76 Talk Time: 5670 Waiting Time: 80274

67

^•k'k-kic-k'k-k-k-k-k-k'k-k-k-k'k'k-k'k-k-k-k-k-k-k-k'k-k-k-k-k'k'k^k'k'k-k-k-k-k-k-k-k-k-k-k-k-k-k'k'k-k-k-k^-k'k^h-k-ki^-k-kicif-k'k-k-k-k-k-k-k^^k-kj

/* Scheduling Simulation Log ■ /
/^ .

- Average talk length 80 seconds */

/* - Request arrival density 0.01 request/second

/* . - Class length 100,000 seconds

/* */

/* [With Priority Scheduling Trial 5]

-> Prioirty based on Average Waiting Time with Level 5

NumTalk 0] , 40 :2330 WaitingT:16746 AveWaitingT 418 ServiceTAve: 58

NumTalk 1] 40 :3040 WaitingT : 15440 AveWaitingT 386 ServiceTAve: 76

NumTalk 2] 42 :2730 WaitingT : 13042 AveWaitingT 310 ServiceTAve: 65

NumTalk 3] 39 :3015 WaitingT:14899 AveWaitingT 382 ServiceTAve: 77

NumTalk 4] 38 :2285 WaitingT:15415 AveWaitingT 405 ServiceTAve: .60

NumTalk 5] 25 :2760 WaitingT:10264 AveWaitingT 410 ServiceTAve: 110

NumTalk 6] 37 :3525 WaitingT:11343 AveWaitingT 306 ServiceTAve: 95

NumTalk 7] 33 :2685 WaitingT:12476­ AveWaitingT 378 ServiceTAve: 81

NumTalk 8] 32 :2910 WaitingT:13258 AveWaitingT 414 ServiceTAve: 90

NumTalk 9] 30 :3155 WaitingT : 11.415 AveWaitingT 380 ServiceTAve: 105

NumTalk 10] 33 :2995 WaitingT : 9624 AveWaitingT 291 ServiceTAve: 90

NumTalk 11] 34 :2040 WaitingT : 10557 AveWaitingT 310 ServiceTAve: 60

NumTalk 12] 29 :2135 WaitingT ; 9243 AveWaitingT 318 ServiceTAve: 73

NumTalk 13] 29 :2770 WaitingT : 9545 AveWaitingT 329 ServiceTAve: 95

NumTalk 14] 34 :2690 WaitingT:12647 AveWaitingT 371 ServiceTAve: 79

NumTalk 15] 38 :2825 WaitingT:12546 AveWaitingT 330 ServiceTAve: 74

NumTalk 16] 23 :1745 WaitingT : 7606 AveWaitingT 330 ServiceTAve: 75

NumTalk 17] 34 :2195 WaitingT:10933 AveWaitingT 321 ServiceTAve: 64

NumTalk 18] 41 :4225 WaitingT:14077 AveWaitingT 343 ServiceTAve: 103

NumTalk 19] 30 :2495 WaitingT 10105 AveWaitingT 336 ServiceTAve: 83

NumTalk 20] 27 :2060 WaitingT:10138 AveWaitingT 375 ServiceTAve: ■ 76

NumTalk 21] 27 :1930 WaitingT 10494 AveWaitingT 388 ServiceTAve: 71

NumTalk 22] 36 :2805 WaitingT : 10761 AveWaitingT 298 ServiceTAve: 77

NumTalk 23] 33 :2110 WaitingT 11536 AveWaitingT 349 ServiceTAve: 63

NumTalk 24] 32 :2240 WaitingT 11392 AveWaitingT 356 ServiceTAve: 70

NumTalk 25] 30 :2185 WaitingT 10428 AveWaitingT 347 ServiceTAve: 72

NumTalk 26] 45 :3540 WaitingT ;17232 AveWaitingT 382 ServiceTAve: 78

NumTalk 27] 48 :3780 WaitingT 16654 AveWaitingT 346 ServiceTAve: 78

NumTalk 28] 42 :2540 WaitingT 12974 AveWaitingT 308 ServiceTAve: 60

NumTalk 29] 38 :3060 WaitingT 14175 AveWaitingT 373 ServiceTAve: 80

< Total > NumTalk 1039

AveNumTalk 34

.	 ServiceTime 80800

WaitingTime 366965

AveWaitingTime 353

ServiceTimeAve 2693

< Priority Level Information >

Level: 1 . # of Talk: 76 Talk Time: 6575 Waiting Time: 6165

Level: 2 # of Talk: 56 Talk Time: 3480 Waiting Time: .4842

Level: 3 # of Talk: 805 Talk Time: 62735 Waiting Time: 242382

Level: 4 # of Talk: 58 Talk Time: :3835 Waiting Time: 45219

Level: 5 # of Talk: 44 Talk Time: 4175 Waiting Time: 68357

68

A.2 CACHING

^•k-k-k-^-k-k-k-k-k-k'k-k-k'k-'k-k'k-^-k-k-k-k-k-k-k-k-k-k'k-k-k-k-k-k-k'k-k-k-k-k-k-k-k-k'k-k-k-k-kick-k-k-k/

/* Caching simulation log 1 '^/

/■k ^ /
/* - Transmission data size 2.5k */
/* - Direct dialup to CSUSB CSCI gateway */
/* */
l-k-k'k'k-k-k-k-k-k-k-k-k-k-k-k-kk:-kl

/■k [Server log] */

<indigo>$ server

Enter port number: 5500

msg: 4 Miss
msg: 6 Miss

Total cache hit : 0
Total cache miss: 2
Total hit ratio : 0%
Simulation is done!

<indigo>$

j-k _[Client log]

<PC486>$ client

Miss
start 857332363.363017
end 857332365.162083
durat 1799066 micro /* transmission time */

Hit
Start 857332365.162336
end 857332.365.162456
durat 120 micro

Hit
start: 857332365.162646
end : 857332365.162758
durat: 112 micro

Hit
start: 857332365.162946
end : 857332365.163057
durat: 111 micro

Hit
start 857332365.163243

end 857332365.163356
durat 113 micro

Hit '
start: 857332365.163544
end : 857332365.163657
durat: 113 micro

69

Miss

start: 857332365.163843

end : 857332366.962108

durat: 1798265 micro

Hit

start: 857332366.962359

end : 857332366.962482

durat: 123 micro

Hit

start: 857332366.962670

end : 857332366.962785

durat: 115 micro

Hit

start 857332366.962972

end 857332366.963087

durat 115 micro

Hit

start: 857332366.963273

end : 857332366.963387

durat: 114 micro

Hit

start: 857332366.963574

end :, 857332366.964299

durat: 725 micro

Total cache hit ,: 10

Total cache miss: 2

Total hit ratio : 83%

Simulation is done!

<PC486>$

70

^•k-k-k-k'k-k-k'k-k-k-k-k-k-k-k'k'k-k-k-k-k'k-k-k-k'k-k-k-k-k-k-k-k'k-k-k'k'k-k-k'k'k'k'k-k-k-k-k-k-k-k-k-k-k/

/* Caching simulation sample log 2 */

/■k kI

/* - Transmission data size 2.5k
/* - Direct dialup to CSUSB CSCI gateway

k!
jkk k k k k kk kj

/k [Server log]

<indigo>$ server

Enter port number: 5500

msg: 1 Miss
msg: 2 Miss
msg: 3 Miss
msg: 4 Miss
msg: 5 Miss
msg: 6 Miss
msg: 1 Hit
msg: 2 Hit
msg: 3 Hit
msg: 4 Hit
msg: 5 Hit
msg: 6 Hit
msg: 1 Hit
msg: 2 Hit
msg: 3 Hit

Total cache hit : 9
Total cache miss: 6
Total hit ratio : 60%
Simulation is done!

<indigo>$

/k [Client log] —

<PC486>$ client

Miss
start: 857332557.336333
end : 857332559.185560
durat: 1849227 micro

Miss
start: 857332559.185865
end : 857332560.985494
durat: 1799629 micro

Miss
start 857332560.985735
end 857332562.795352
durat 1809617 micro

Miss
start: 857332562.795594
end : 857332564.670039
durat: 1874445 micro

71

Miss

start

end

durat

Miss

Cache

start

end

durat

Miss

Cache

start:

end :

durat:

Miss

Cache

start;

end :

durat:

Miss

Cache

start:

end :

durat:

Miss

Cache

start:

end :

durat:

Miss

Cache

start

end

durat

Miss

857332564.670280

857332566.505476

1835196 micro

replace at 0

857332566.505717

857332568.305492

1799775 micro

replace at 1

857332568.305730

857332570.119069

1813339 micro

replace at 2

857332570.119309

857332571.990779

1871470 micro

replace at 3

857332571.991023

857332573.825911

1834888 micro

replace at 4

857332573.826155

857332575.700022

1873867 micro

replace at 0

857332575.700899

857332577.600249

1899350 micro

Cache replace at 1

start: 857332577.600489

end : 857332579.449255

durat: 1848766 micro

Miss

Cache replace at 2

start: 857332579.449496

end : 857332581.320320

durat: 1870824 micro

Miss

Cache replace at 3

start 857332581.320564

end 857332583.169314

durat 1848750 micro

72

Miss

Cache replace at 4

start 857332583.169554

end 857332585.19947

durat 1850393 micro

Total cache hit : 0

Total cache miss: 15

Total hit ratio : 0%

Simulation is done!

<PC486>$

73

APPENDIX B: SOURCE CODE

74

B.l The Educa'bional Interactive System

The source code is located under

/u/class/tongyu/thesis/kaoru on orion. Notes are written in

README file in the directory.

75

B.2 Scheduling Sixaulation Program

7^--—-[. att.h]— —___w.——-k/

#include "define.h"

.class Attend7 ■ ' 7 . . ■

private:
int NumTalk[NumOfStudents];

int ServiceTime[NumOfStudents];
int WaitingTime[NuinOfStudents];

, int Priority[NuinOfStudents];■

'7 7' ■ ''

7 int. LpyelWaitingTime [5]; V
int LeyelTalkTime[5]; ; ;
int LevelNumOfTalkX;5] ; 7

7v^^ 7 . - : , 7 . 7 . ;

int
int

AveServiceTime [NuitipfStudents1;
AveWaitingTiine [NumOfStudents] ; 7 .

int
int
int

TptalNumTalk; ;
TotaiServiceTime;
TotaiWaitingTime;

-

int
int
int

AveTotalNumTalk;
AveTotalServiceTime;
AveTotalWaitingTime;

■7. public:"'
' Attend ()■ ■■' ■■{ ./

: TotalNumTalk=0;
, :TotalServiceTime=0; .
Tot,alWaitingTiitie=0;

,

'

:AveTotalNumTalk=0; 7
AveTotalServiceTime=0;
AveTotalWaitingTime=0;

;
. .
.

for(int .1=0; i<NumOfStudents; i++)
NumTalk[i] =0; '
ServiceTime[i] =0;

{ ,
:

,
.

, AveServiceTime[i]-0;
AveWaitingTime [i]=0f

. ^ 7

. . . " ' ■ ' ■ " ■7.:.' -
.--AttendC)' - ' ■■■ ■ : /:7' 7 7v

int: ^ { return(Priority[Sid]) ; };

int / TncrementNumTalk(int Sid);

int, AddServiceTime(int ,Sid7iut TTime) ;

int AddWaitingTime(int Sid, int TTime) ;. ^

void CalcAverage(vqid)7

void CalcTptaiAverage(void);

int 7CalcPribrity(int Sid, int Level);

7 	int SetPriority(int Sid, int Pri) { return(Priority[Sid] = Pri); };
void AddLevelTime(int Prio, int Wt, int Tt);
void PrtLevelTotal(void); ; : ­

void InltPriority(int Level);

76

void PrtAttendee(int Type);

};

/* [rand.h]■

#include <math.h>

#include <tiine.h>

#include "queue.h"

class Random

{

private:

double Intervals-

double ArrivalRate;

double PO;

double Pis-

double P2 s*

double Es*

double tmps*

int Count;

int random;

fstream OutStream;

public:

Random() {

const char RequestFile[] = "input.dat";

const char ErrorMsgL] = " Unable to open file:

srand48((unsigned) time (NULL));

srand((unsigned) time (NULL));

E = 2.71828;

Count =0;

Interval =1.0;

ArrivalRate =0.01;

tmp = ArrivalRate * Interval;

PO = pow(Es -(tmp));

PI = tmp * PO;

P2 = 1.0 - PO;

OutStream.open(RequestFiles ios::out);

if(OutStream.fail())

{

cerr « ErrorMsg « RequestFile « endl«endl;

exit(-1);

}

}

~Random(){

OutStream.close0;

int CheckReqArrival(void);

int GetUid(void);

Rdata ^SetReqData(int Id, int Ts);

int NumOfEvents(void);

}; .

77

/■k [queue.h] --­

#include "define.h"
#include "data.h"

class Node {
public:

Rdata *Ptr;

Node *Next;

Node(Rdata *P) {

Ptr=P;

Next = NULL;

}

class ReqQ
{

private:

Node *Head[NumOfPriority];

Node *Tail [NuniOfPriority] ;

int Totalltern;

public:

ReqQ() {

for (int i; i<NuinOfPriority; i++) {
Head[i] = NULL;
Tail[i] = NULL;

}

Totalltem = 0;

}

int Append(int Prio^ Rdata *P) ;
int IsEmpty(void);
Node *Pickup(int *Pri) ;
int Lookup(int Id) ;

} ;

/■k _[main. CO]

#include <stdlib.h>
#include <stdio.h>
#include <iostreain.h>
#include "rand.h"
#include "att.h"

main(int argc, char** argv)
{

int ClassLength;
int PrioLevel;

int Etype;

int Uid;

int Priority = 0;

int Priority2 = 0;

Rdata *Rptr;

Node *Nptr;

int TimeStamp = 0;

int TalkTime;

int EndTime;

7 8

int ArrivalTime;

int WaitingTime; .
int CurrentSpeaker = -1;

Attend Student;

ReqQ Q;

Random Rand;

if(argc != 3)

{ ■ .
fprintf(stderr, "Usage: %s class_length prio_level\n", *argv);

exit(1);

ClassLength = atoi(argv[1]);

PrioLevel = atoi(argv[2]);

Student.InitPriority(PrioLevel);

while(1)

if((ClassLength*l.2) <= TimeStamp)

break;

if(ClassLength >= TimeStamp)

. {

Etype = Rand.CheckReqArrival0;

if(Etype == 1) {

do:{

Uid = Rand.GetUidO;

if((CurrentSpeaker I- Uid) && (!Q.Lookup.(Uid),))

break;

} while(1);

if(PrioLevel > 1) {

Priority = Student.CalcPriority(Uid^ PrioLevel);

//cout « "Uid: " « Uid « "" « Priority « endl;

} ■

Rptr = Rand.SetReqData(Uid, TimeStamp);

Q.Append(Priority, Rptr);

},

else if(Etype == 2) {

do {

Uid = Rand.GetUidO;

if((CurrentSpeaker != Uid) && (!Q.Lookup(Uid)))

break;

} while(1);

if(PrioLevel > 1) {

Priority = Student.CalcPriority(Uid, PrioLevel);

}

Rptr = Rand.SetReqData(Uid, TimeStamp);

Q.Append(Priority, Rptr);

do ,{

Uid = Rand.GetUidO;

if((CurrentSpeaker != Uid) && (!Q.Lookup(Uid)))

break;

} while(1);

79

if(PrioLevel > 1) {

Priority = Student.CalcPriority(Uid^ PrioLevel);

}

Rptr = Rand.SetReqData(Uid^ TimeStamp);

Q.Append(Priority, Rptr);

}

}

if(EndTime == TimeStamp)

{

CurrentSpeaker = -1;

}

if(CurrentSpeaker == -1 && !Q.IsEmpty())

{

Nptr = Q.Pickup(&Priority2);

CurrentSpeaker = Nptr->Ptr->Id;

ArrivalTime = Nptr->Ptr->Ts;

WaitingTime = 0;

if(ArrivalTime < TimeStamp)

{

WaitingTime = TimeStamp - ArrivalTime;

Student.AddWaitingTime(CurrentSpeaker, WaitingTime);

}

Student.IncrementNumTalk(CurrentSpeaker);

TalkTime = Nptr->Ptr->Tt;

Student.AddLevelTime(Priority2, WaitingTime, TalkTime);

Student.AddServiceTime(CurrentSpeaker, TalkTime);

Student.CalcAverage();

Student.CalcTotalAverage();

EndTime = TimeStamp + TalkTime;

}

TimeStamp++;

}

cout« "# " « Rand.NumOfEvents() « endl;

Student.PrtAttendee(PrioLevel);

Student.PrtLevelTotalO;

/-k [att.cc]

#include <stdio.h>

#include <iostream.h>

#include "att.h"

int Attend::IncrementNumTalk(int Sid)

{

TotalNumTalk++;

return(++NumTalk[Sid]);

}

int Attend::AddServiceTime(int Sid, int TTime)

{

ServiceTime[Sid] = ServiceTime[Sid] + TTime;

80

TotalServiceTime = TotalServiceTime + TTime;

return(ServiceTime[Sid]);

}

int Attend::AddWaitingTime(int Sid,int TTime)

{

WaitingTime[Sid] = WaitingTime[Sid] + TTime;

TotalWaitingTime = TotalWaitingTime + TTime;

return(WaitingTime[Sid]);

}

void Attend::PrtAttendee(int Level)

{ - ■
cout << "\n'*'** * * * [Summary] ;
cout « ■''f \n";

if(Level -= 1)
{

cout « endl « " -> No Priority" «endl«endl;

}

else

{
printf("\n -> Prioirty based on Average

Waiting Time with Level %d\n\n". Level);
}

for(int i=0; i<NumOfStudents; i++) {

printf("NumTalk[%2d] :%3d", i, NumTalk[i]) ;

printf (" ServiceT:%4d", ServiceTime[i]) ;

printf(" WaitingT:%5d'% WaitingTime[i]) ;

printf(" AveWaitingT:%4d", AveWaitingTime[i]) ;

printf(" ServiceTAve:%4d\n", AveServiceTime[i]) ;

}
printf("\n < Total >");
printfC NumTalk :%5d\n", TotalNumTalk) ;
printf(" AveNumTalk :%5d\n", AveTotalNumTalk) ;
printf(" ServiceTime :%5d\n", TotalServiceTime) ;
printf(" WaitingTime :%5d\n", TotalWaitingTime) ;
printf(" AveWaitingTime:%5d\n", AveTotalWaitingTime) ;
printf(" ServiceTimeAve:%5d\n", AveTotalServiceTime) ;
cout « endl;

void Attend: :CalcAverage(void)
{

for(int i=0; i<NumOfStudents; i++) {
if(NumTalk[i] != 0) {

AveServiceTime[i] = (int) ServiceTime[i]/NumTalk[i];
AveWaitingTime[i] = (int) WaitingTime[i]/NumTalk[i];

} , .
}

}

void Attend: :CalcTotalAverage(void)
{

if(TotalNumTalk != 0) {
AveTotalServiceTime = (int) TotalServiceTime/NumOfStudents;
AveTotalWaitingTime = (int) TotalWaitingTime/TotalNumTalk;
AveTotalNumTalk = (int) TotalNumTalk/NumOfStudents;

int Attend::CalcPriority(int Sid, int Level)

{

if(Level ==3)

{

if(AveTotalWaitingTime != 0 && NuitiTalk[Sid] != 0) {

if(AveWaitingTime[Sid]>=(AveTotalWaitingTime^l.5))

return(0);

else if(AveWaitingTime[Sid]<(AveTotalWaitingTime^O.75))

return(2);

}

return(1);

}

else if(Level ==5)

{

if(AveTotalWaitingTime != 0 && NumTalk[Sid] != 0) {

if(AveWaitingTime[Sid]>=(AveTotalWaitingTime*l.25))

return(0);

else if(AveWaitingTime[Sid]>=(AveTotalWaitingTime^l.1))

return(1);

else if(AveWaitingTime[Sid]<(AveTotalWaitingTime^O.75))

return(4);

else if(AveWaitingTime[Sid]<(AveTotalWaitingTime*0.9))

return(3);

}

return(2);

void Attend:lAddLeveITime(int Prio, int Wt, int Tt)

{

LevelWaitingTime[Prio] = LevelWaitingTime[Prio] + Wt;

LevelTalkTime[Prio] = LevelTalkTime[Prio] + Tt;

LevelNumOfTalk[Prio]++;

}

void Attend::PrtLevelTotal(void)

{

printf(" < Priority Level Information >\n\n");

for(int i=0; i<5; i++)

{

printfC Level: %d # of Talk: %3d", i, LevelNumOfTalk[i]);

printfC Talk Time: %5d", LevelTalkTime[i]);

printf(" Waiting Time: %5d\n", LevelWaitingTime[i]);

}

}

void Attend::InitPriority(int Level)

{

if(Level==3) {

for(int i=0; i<NumOfStudents; i++)

Priority[i]=1;

}

else if(Level==5) {

for(int i=0; i<NumOfStudents; i++)

Priority[i]=2;

}

}

82

http:if(AveWaitingTime[Sid]<(AveTotalWaitingTime^O.75
http:if(AveWaitingTime[Sid]>=(AveTotalWaitingTime*l.25
http:if(AveWaitingTime[Sid]<(AveTotalWaitingTime^O.75

/■k [rand,cc]

#include <iostreain.h>
#include <stdlib.h>
#include "rand.h"

int Random: :CheckReqArrival(void)
{

double Tmp;

while((Tmp = lrand48()) > 10000001)

continue;

Tmp = Tmp/10000000;

if(Tmp <= PI) {

return (1) ;

}

else if(Tmp < P2) {

return(2) ;

1

else

return (0) ;

int Random: :GetUid(void)
{

int Tmp;

while((random = rand()) >= 30000)

continue;

random = random/100;

Tmp = random/10;

return(Tmp) ;

Rdata ^Random: :SetReqData(int Id, int Ts)
{

int TalkTable[10]={10,15,20,25,45,65,80,110,170,270};

int Tmp;

Rdata *Ptr = new Rdata() ;

Tmp = random/10;

Tmp = random - Tmp^lO;

Ptr->Id = Id;

Ptr->Ts = Ts;

Ptr->Tt = TalkTable[Tmp];

OutStream « Ptr->Tt « " ";

Count+t;

if(0 == (Count%5))

OutStream « endl;

return(Ptr) ;

83

int Random::NumOfEvents(void)

{

return(Count);

} ,

■ [queue.cc] ■

#include <stdio.h>

#include "queue.h"

int ReqQ::Append(int Prio, Rdata *P)

{

Node *Tmp = new Node(P);

if(Head[Prio] == NULL) {

Head[Prio] = Tail[Prio] = Tmp;

}

else {

Tail[Prio]->Next = Tmp;

Tail[Prio] = Tmp;

}

TotalItem++;

if (Totalltem,>= 29){

cout « "Q is full" « endl;

exit(0);

}

}

int ReqQ::IsEmpty(void)

{

return(Totalltem ==.0);

} „ " ■

Node *ReqQ::Pickup(int *Pri)

{

Node *Tmp;

for(int i=0; i<NumOfPriority; i++)

{

if(Head[i] != NULL) {

Tmp = Head[i];

Head[i] = Head[i]->Next;

Totalltem—;
★Pri = i;

return(Tmp);

} .

}

return(NULL);

84

http:queue.cc

B.3 Caching Simulation Program

iinqlude <sys/types.h>

#include:<sys/socket.h>,

,#include - <unistd.h>,■ . , . 'JV.

#define SMALL .:2

fdefine MIDIUM / ; . 5

#define LARGE' ^ ^ ^ ^ ^ ■ • , ; ^

#define IvlaRGE;' ■V:i5- ■ ■

#define FSMALL > 1024; "
;#define,;FMIDIUM :2560:
#define FLARGE; ; 5120
fdefine FVLARGE. , , 7680,. ̂ ^ ­

#define FILESIZE FMIDIUM^^ ; : ; /

#define MAXLINfi, ^ s 512

#define LINES . : ^ MIDIUM

#define GOLUMNS ; ■ MAXLINE+l ; ;

#define MAXCACHE 10

#define FALSE 0

#define TRUE 1 ,

struck cache {

'■ -" 'intk 'tag;;

; char page[LINES] [GOLUMNSi;

int tstamp;

K; ■ ' . -v' ' ' , ■ ' ' ,
int tiine_stanvp;

int used^os;

int tQtal_iiit;

int total_miss;

int total_ratio;

struct cache iny_cache [MAXGAGHE] ;

char ,tfname-"storage"; . ;

int _ establish(int ^sfd, struct sockaddr_in *s_addr.)

.. tinclude-.;<:stdip'.h>- ,k^
#include <sys7time.h> ■ ; ^ ^

■■#include ■•<strlng>h>

#include' <netdb;.h>-''

#include <uhistd.h>

#include <netinet/in.h>

#include <sys/types.h> : ,

#include,<sys/s6cket.h>;

#include "serverwh"

85

int mainO'

{ ' ^ ■ V V .
int sockfd; /* socket descriptor */ v , ;
struct sockaddr_in serv^addr;. server*s addreas */
struct sockaddr_in cli_addr; /* client's address */

int clilen; /* client*s address size ^ ^

char msg[iy^ buffer for message-*/'

■ 	 int msglen; , /:* message length */ ^ \

int riumber; page number, of data, */, ; ■ . :

int c_pos:; ,/^ cach^ position , \

• total_hit ■
• ■ ■ ■■ ■■ . xtotaljmiss ■ ■ =' 0;.. , ; .

total_rati:o = :0;^ . ./

time_stamp = 0;

.■ ,used_pos.. . '/ ' ■ = .0;

/* establish UDP; connection with client ■^7 - ^

\ establish(&sockfd, &serv_addr) ;

/* recieve page number from client and return page to client
. ,V.\i^fQ.r:(;;7 " ; ■ ' ■ '■"■'V' ' 7 ' ■ ■■' ' ' ' ' ' ' ■ ' 7: 'i-i': . '-" . 7,­

,, , memset;(/* initialize buffer */
[: o sizeof (cli^addrh; /* set client's address lengthT'/; : ,

, 7* recieve page nubirler .from client */
, msglen, - recvfromCsoOkfdy^.'^m^ MAXLINE, -0, , '

sclilen);;
■■ V if (msglen<0');,7^

perrorC'recvfrom error") ;

printf {''msg:\%3s"> msg) 1 ' :7 ; ' ■ 7' :
, niimber - atoi (msg)7 , 7

if end sign(999):^7 finish program ^ 7 ■ , ,

if ■ ■(number =^-,:999) -­

■ prt_resuit ■()■■;■ . ■■■ 	 ■ ■ '7' l' - ­
- printf("Simulation is donelXn") ; , '

'exit (Gir. ■ ' ■ ■7' '

c_pos ^ check_cache (number) ; /* check cache data is there or not */

if(c_pos != -1) /* hit^ send page from cache to client */

printf(" Hit\n") ;
send_jDage_to_client(c_poS/ &sockfdr &cli^addr, :&clilen);

• total_hit++; . , /* increment, hit . count7*/^ ̂ '-7

else /* miss, get page from disk to cache */

.	 printf(" MissXn") ;
if(used_pos<MAXCACHE) /* cache is not full yet */ 77 ­

c_pos = used_pos; /* available cache position */

/* get page from disk to cahce */

get_page_from_disk(number, c_pos) ;

8 6

/* send page from cache to client

send_page_to_client(c_pos, &sockfd, &cli_addr/ sclilen);

used_pos++; /* increment cache used postion */

total_miss++; /* for cold start */

}

else /* cache is full, replace it */

{

printf("Cache replaceXn");

/* choose replacing cache position using LRU policy '^/

c_pos = least_recently_used();

/* get page from disk to cache

get_page_from_disk(number/ c_pos, &sockfd, &serv_addr);

/* send page from cache to client ^/

send_page_to_client(c_pos, Ssockfd, &cli_addr, &clilen);

total_miss++; increment miss count */

}

}

}

int establish(int *sfd, struct sockaddr_in *s_addr)

{

int p_number;

printf("XnEnter port number: ");

scanf("%d", &p_number);

memset(s_addr, 0, sizeof(struct sockaddr_in));

/* bzero((char *)s_addr, sizeof(struct sockaddr_in)); */

if((*sfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)

perror("server: can't open datagram socket");

s_addr->sin_family = AF_INET;

s_addr->sin_addr.s_addr = htonl(INADDR_ANY);

s_addr->sin_port = htons(p_number);

if(bind(*sfd, (struct sockaddr *)s_addr, sizeof(struct sockaddr_in)) < 0)

perror("server: can't bind local address");

}

int check_cache(int num)

{

int i;

for(i=0; i<used_pos; i++) /'^ check out the cache^/

{

if(my_cache[i].tag==num) /* hit, return location^/

return(i);

}

return(-l); /* miss */

int get_page_from_disk(int pnum, int epos)

{

FILE ^fp;

87

/ v.:"'"' '/ . ■
±nt spointv ^■
char buf[MAXLINE+1];

/* open storage file with read binary: mode ,*/ : /

if;(:. (fp=fopen(fname, "rb")) == NULL)

p:erro:r (fname) ; 	 ^ V- ' i; '

fseek^(fp, OL, 0) ; ; /* set; pointer to the beginihg of the file' j^/'
spoint - FILESIZE * (pnum-l); /* caliculate offset of accessing page */
fseek(fp, spoint, 0); /* forward pointer to the page */

forCi-O; i<LlNES; i++) 	 ; /i '

" • ' ■ ' ■ 	 /■
fread(bufr sizeof(char) , MAXLINE, fp) ; ,
buf[MAXLINE]='\0';

: strcpy(my_cache[epos] .page[iiv buf) ; ,
/* printf("c[%d] .p[%2d] : %s", epos, my_Gache[epos] .page[i]) ; */

.	 ^ ■ ■ .
my_cache [epos1. tstamp = time_stamp++;:

my_cache [epos1.tag^ - pnum; .

close (fp

inb send_page_to_client(int cpos^ int; *sd>. struct sockaddr *c_addry int ^c_len)

;	 char ms'^[MAXLlNEI;^ ^ ^ ^ ;
int / ms.glen;' ' • ■ " . , '
int.. i;v; ■ ■.

■ . ,for(:i.=^C);./i<Li:NES; i+4)\.';' ;.T.

^ ^ i^ sizeof (msg)) ■ /
strnepy(msg, my_cache[epos];pagefi]f . MAXLINE);

■msglen.= stflen(msg); , /
if(sendto(*sd^ msg, msglen, 0, c_addr, *c_len) != msglen)

perror("sendto error");

int'prt^cacheiiht^'epos,)

■ ■ int i; ■ , . " 	 .'i 4 ' ' ' '

for(i=0; i<LINES; i++) : :

printf("c[%d] .p [%2d] : %s", epos, i, my_cache[epos] .page [i]) ;

int least_recently_usedO

int i:.; ■ ^ v: 'l'' : '^ i : :

int ts; V'^ v-'.V'

int pos=0; .4,. ̂ .

ts 	= my_cache [0] .:tStamp;

for(i=l; i<MAXCACHE; i++) {

88

if(iny_cache[i].tstanip<ts) {

ts = iny_cache[i].tstamp;

pos=i;

}

}

return(pos);

}

int prt_result(void)

int tmp;

printf("\nTotal cache hit :%3d\n", total_hit);

printf("Total cache miss:%3d\n", total_miss);

tmp = total_hit + total_miss;

printf("Total hit ratio :%3d%%\n", (total_hit * 100)/tmp);

■ [client,h]■

#include <sys/types.h>

#include <sys/socket.h>

#include <unistd.h>

#define SMALL 2 /^ 512 X 2 = IK */

#define MIDIUM 5 /* 512 5 = 2.5K V

#define LARGE 10 /* 512 10 = 5K V

#define VLARGE 15 /* 512 15 = 7.5K -^/

/* storage file size */

#define FSMALL 1024

#define FMIDIUM 2560

#define FLARGE 5120

#define FVLARGE 7680

#define FILESIZE FMIDIUM

#define MAXLINE 512 /* length of line of the cache */

#define LINES MIDIUM /* number of lines of the cache */

#define COLUMNS MAXLINE+1 /^ column size for the cache */

#define MAXQUEUE 10 /* lenght of queue for most used */

#define MAXCACHE 5 /* cache size */

#define FALSE 0

#define TRUE 1

/* one cell of cache */

struct cache {

int tag; /* page number of data */

.	 char page[LINES][COLUMNS]; /* one page of data */

int tstamp; /* time stamp */

int count; /* the number of hit */

};

/* queue for least used policy only */

int update_q[MAXQUEUE];

int q_head;

int full_q;

int timer; /* timer */

89

int used__po;5; /* cache used level -*/

int total^hit; ; /* total number of hit */

int total_niiss.; /* total number of miss */

int total ratio,; /* total hit ratio */

struct cache.my^cache[MAXCACHE]; actual cache decraration */

char ,*fname="storage"; data file name */;

int establish(int *sfd, struct sbckaddr_in *s_addr);

int get_page_from_server(int num^ int pos, int *sfd, struct sockaddr_in

*s_addr); •

int prt_cache(int cnum);

int check_cache(int num);

int least_recently_used();

int least_used();

int update_cache(int num);

int prt_result(void);

#include <stdio.h>

#include <sys/time.h>

#include <string.h>

#include <netdb.h>

#include <unistd.h>

#include <netinet/in.h>

#include <sys/socket.h>

#include "client.h"

void main()

int number; /* page number */

Struct timeval ts; /* variable for gettimeofday() */

int c_pos; /* cache positoin */

int start_sec; : /* start time in second */

int start_usec; /* start time in micro second */

int end_sec; /* end time in second */

int end_usec; end time in micro second */

int duration; /* duration of data retreival ^/

int. sockfd;, /* socket descriptor^/ ,

struct sockaddr_in serv_addr;/* server address */

total_hit = 0; ; . ^

total_miss =0;

total_ratio = 0;

timer = Q; /* timer set to 0 */

used_pbs: = 0; /* set cache empty */

q_head =■ 0; /* queue head at 0 */ ■

full_q = FALSE; /* set queue is not full */

/* establish UDP connection with server */

establish(&sockfd, &serv addr);

/* retreive data until end */

for(;;)

90

/* printf("Which page you need [1-10] ? ");

scanf("%d", Snumber); /* input the page number to retreive

/* set starting time '^f

gettimeofday(&ts,, NULL);

start_sec = ts.tv_sec;

start_usec = ts.tv_usec;

c_pos = check_cache(number); /* check page is in cahce or not */

if(c_pos != -1) /* hit, get page from cache */

{

printf("Hit");

prt_cache(c_pos); /* print out page in cache */

/* update_cache(number); for least used policy */

/* set ending time

gettimeofday(&ts, NULL);

end_sec - ts.tv_sec;

end_usec = ts.tv_usec;

total_hit++; /* increment hit count */

}

else /* cahce miss, need to get page from server */

{

printf("Miss");

if(used_pos<MAXCACHE) /* local cahce is not full */

{

c_pos = used_pos; /* set available cache position */

/* get page from server */

get_page_from_server(number, c_pos, &sockfd, &serv_addr);

prt_cache(c_pos); /* print page in cache

/* set ending time */

gettimeofday(&ts, NULL);

end_sec = ts.tv_sec;

. end_usec = ts.tv_usec;

used_pos++; /* increment cache position */

total_miss++; /* cold start */

}

else /* local cache is full, need to replace it */

{

/* c_pos = least_used(); */

/* choose replacing cache position using LRU policy */

c_pos = least_recently_used();

printf(" Cache replace at %d\n", c_pos);

/* get page from server */

get_page_from_server(number, c_pos, &sockfd, &serv_addr);

prt_cache(c_pos); .

/* set ending time */

gettimeofday(&ts, NULL);

end_sec = ts.tv_sec;

end usec = ts.tv usec;

total miss++; /* increment miss count

}

91

printf("start: %d.%d\n", start_sec> start_uSec)r ,

printf,("end .%d.%d\n"/ end_seCr end_useG);

duration .= 10000Q0*(end_sec-. start_sec) + (end_usec - startvUsec);

printf("durat: %ld inicro\n"v duration);

int establish(int *sfd, struct sockaddr_in *s_addr)

'v. ■ "■ ■ ■ - ' ■ ■ ■ ' ■ ■ ■• • • ■ ■■ " ■ ­
char ' ■ V ^ hostname[50];

int p^humber; .

struct hostent ' *hp; , ■

struct sockaddr_in cli_addr;

strcpy(hostname, "indigo");

/* printf("Enter port number: "}; */

/* scanf("%d", &p_number) ; */

p_number =5500;

memset (s^addr, 0, sizeof (struct sOckaddr_in)) .

if ((hp = gethostbyname (: hostname)) == NULL) {

perror("gethostbyname error");

return(-1) ;

v • • " '■
if((*sfd= socket(AF_INET, SOCK_DGRAM, 0)) < 0) ; { :

perror("socket error") ;

return(-1);

memset (s_addr, 0, sizeof(struct sockaddr_in)) ;

memcpy(&(s_addr->sin_addr), hp->h_addr, hp->h_length);

s_addr->sin_family = AF_INET;

s_addr->sin_port = htons((u_short) p^number);

memset ((char *)&cli_addr, 0, sizeof(struct sockaddr_in)) ;

cli_^addr. sin_family , , ^ AF_INET;

cli_addr.sin_addr.s_addr = htonl(INADDR_ANY);

cli_addr.sin_port = htons(0) ; '

if (bind (*sfd, (struct sockaddr *) &cli_addf, sizeof (cli_addr)) < 0) {,
perror("bind error");

return(-1) ; • '

return(0);

int get_page_from_server(int hum, int epos, int *sd, struct sockaddr_in *s_addr)

char msg[MAXLINE];

int msglen;

■ int s_len;
int i;

: char buf[MAXLINE+1]; ; , ^ ^ ^

memset(&msg, 0, sizeof(msg));

sprintf (msg, "%d%c", .num, * \0 ') ; . . V

92

msglen = strlen(msg);

if(sendto(*sd, msg^ msglen, 0, (struct sockaddr *)s_addr,

sizeof(*s_addr)) != msglen)

perror("sendto error");

if(!strcmp(msg, "999")) {

prt_result0;

printf("Simulation is done!\n");

exit(0);

}

for(i=0; i<LINES; i++) {

memset(&msg, 0, sizeof(msg));

msglen = recvfrom(*sd, buf, MAXLINE, 0,

(struct sockaddr*)s_addr, &s_len);

if(msglen<0)

perror("recvfrom error");

buf[MAXLINE]='\0';

strcpy(my_cache[epos].page[i], buf);

}

my_cache[epos].tag=num;

my cache[epos].count=0;

}

int prt_cache(int epos)

{

int i;

for(i=0; i<LINES; i++) {

/* printf("c[%d].p[%2d]: %s", epos, i, my_cache[epos].page[i]); */

}

printf(" %d lines at %d printed!\n", LINES, epos);

my_cache[epos].tstamp = timer++;

my_cache[.cpos].count++;

int check_cache(int num)

{

int i;

for(i=0; i<used_pos; i++) /* check out the cache */

{

if(my_cache[i].tag==num)

return(i);

}

return(-l);

}

int least_recently_used()

{

int i;

int ts;

int pos=0;

ts = my_cache[0].tstamp;

for(i=l; i<MAXCACHE; i++) {

if(my_cache[i].tstamp<ts) {

ts = my_cache[i].tstamp;

93

pos=i;

}

}

return(pos);

}

int least_used()

{

int cnt;

int i;

int pos=0;

cnt = my_cache[0].count;

for(i=l; i<MAXCACHE; i++) {

if(my_cache[i].count<cnt) {

cnt = iny_cache[i].count;

pos=i;

}

}

return(pos);

int update_cache(int num)

int i;

if(full_q !=,TRUE) {

update_q{q_head] = num;

q_head++;

if(q_head == MAXQUEUE) {

q_head = 0;

full_q = TRUE;

- ■ }

else {

my_cache[update_q[q_head]].count^—;

update_q[q_head] = num;

q_head++;

if(q_head == MAXQUEUE) {

q_head = 0;

}■ , ■ ■

}

for(i=0; i<q__head; i++)

printf("%d ",update_q[i]) ;

printf("\n") ;

int prt_result(void)

int tmp;

printf("Total cache hit :%3d\n", total_hit) ;

printf("Total cache miss:%3d\n", total_miss) ;

tmp = total_hit + total_miss;

printf("Total hit ratio :%3d%%\n'\ (total_hit ^ 100)/tmp) ;

}

94

APPENDIX C: IMPLEMENTATION OF

THE EDUCATIONAL INTERACTIVE SYSTEM

95

The Educational Interactive System consists of a

server and client program. The basic architecture is ;

described in Figure C.1. A single server handles multiple

requests from clients simultaneously. When the server

receives a message from the client, it responds as the

message requested. Both the server and client program are

event-driven execution and communicate each other by UDP

socket interface.

Server

Message Reply

Client
Client Client

Figure C.1: Client/Server architecture of

the Educational Interactive System

. The server program is written in C++. Figure C.2

describes the class diagram of the server program.

96

Name ofclass Chat

InitSession

Memberfunctidns EndSesson

Receive

Store

Send

RequestGhat
QuitChat

File Attend Request

SaveLine

SetPageLine
AddAttendQ
Delet

AddRequestQ
Delet

GetLine Lookup Lookup
SetTimeStamp RemoveHead

IncTalkNum IsEmpty
SetSum

Queue

AddQ
Delet

RemoveHead

IsEmpty

Timer

SetTimer

InitTimer

CheckTimer

Figure C.2: Class Diagram of the server program

Each: box indicates a class in the server program which

contains a name of the class (bold word) and instances. The

upper level classes, which have an outgoing arrow, use

objects of the lower level classes which have an incoming

arrow. For example, the Chat class has objects of Filer

Timerr Attendf and Request. The Chat class is the highest

level of the class in the program structure and utilizes

97

data structures and instances of all other classes directly

or indirectly. The instances of the Chat class denote well

the primary function of the server program. These instances

are capable of establishing TCP/IP connection, receiving and

sending messages, registering participants, scheduling the

requests from participants, setting a timer, and sending

screen images.

The Attend class contains a linked list to keep track of

the information of all the attendees in a class. When a new

participant initiates a session, a participant's node is

created and added to the list. When he ends the session, the

node will be deleted from the list. The Attend class also

has an instance for the calculation of the priority of

requests. A structure Adata is used as a node of the list in

the Attend class. It contains information including total

waiting time, number of opportunities to talk, total amount

of talk time, average waiting time per talk, and so on.

The Request class creates a queue structure to maintain

incoming requests. The ̂ Request class is defined as an object

which consists of a five level queue. A node of the queue is

defined as a structure Rdata which contains an IP address

and the initial of the participant who made a request.

A structure Node is publicly defined to provide a

primitive linking capability for the Adata, Rdata, and Queue

98

class. The Queue class owns instances for the basic

manipulation of linking structure.

The File class handles the screen data of the session.

It keeps all the screen images during the class and extracts

a specific page segment for the request.

The Timer class provides the capability of setting a

time limit for a current talker in the class. If the timer

is set, the talk session of the current talker in the class

will be terminated within certain time limits. The server

program is not able to use a system call, sleep() to achieve

a timer function, because a server process needs to be

always awake to receive a client's request. Therefore, a

child process is created (fork) to communicate with the

server process by another socket interface. When the time

limit comes, the child process sends a message to the server

process. The server process receives the message just like

the message from clients and reacts as requested.

Particularly, a system call gettimeofday() is used to get

the time stamp in a timer function.

The client program of the Educational Interactive

System is written in C within a single file. The diagram of

the client program routines is shown in Figure C.3 below.

99

mam
 iriit win

establish

check cache
chat

prt_cache

Iru

Fi^re C•3: Diagram of the client program routines

The curses library is used to divide; a screen into

three windows. The program starts with initialization of the

windows;by init_win routine. Then the establish routine

establishes the connection with the server program. Once the

connection is established, the chat routine handles the

communication with the server. The program is an event

driven execution which waits for input from the keyboard and

TCP/IP port. When the program receives a message, it

responds as the message requested. Non-blocking capability

is used to handle multiplexing I/O that the client gets

messages either from user via keyboard or the server through

I/O port. A system call, select() provides the capability of

handling multiple.requests. This system call allows the user

process to listen to multiple events, such as keybpard input

and the message from I/O port, and to react only when one of

100

these events occurs. The method of thd I/O multiplexing is

written in [17].

The client program also has a caching function based on

LRU replacement algorithm. Ten screen page size of array is

allocated as a cache on its execution so that it resides on

the virtual memory space. When user requests a screen page,

the check_cache routine checks the local cache first. If the

page is in the cache, the prt_routine routine displays it.

If it is not in the cache, it will be retrieved from the

server. When the cache is full, the Iru routine is called to

find the page segment for the replacement in the cache.

The Educational Interactive System utilize UDP socket

interface. The UDP implementation of the system is simpler

than the TCP implementation. The server program needs to

receive multiple messages from clients simultaneously. This

means that the server with the TCP implementation needs,to

create multiple processes to make virtual connections with

all the clients. Those server processes also need to

communicate with each other to make a database of the

system. These requirements may complicate the system .

significantly. With the UDP implementation, however, the

server needs to have only one process to receive multiple

messages from all the clients.

101

The Educational Interactive System used only one

process for the server except the timer function.

Utilization of multiple processes may enhance the capability

of the server. In such a case, the processes need to

communicate with not only clients' processes but also other

processes on the server. Then the design and the

implementation of the program increase their complexity

remarkably. Handling multiple processes requires a

considerable amount of effort to implement.

It also simplifies the program if just one port is used

for the communication. Since UDP keeps track of the IP

address of the sender of each message, the program is able

to identify the destination or original address of the

message using just one port.

Note that the actual implementation of the server

program did not use a file system to keep screen data of the

session. It rather used an array in the local memory system

because frequent disk I/O access may lead significant

overhead to create synchronization problem dealing with

requests from clients through TCP/IP port.

102

ACRONYMS

TCP : Transmission Control Protocol

UDP : User Datagram Protocol

IP : Internet Protocol

LRU : Least Recently Used

ISO : International Standard Organization

OSI : Open Systems Interconnect model

API : Application Programming Interface

FCFS : First-Come, First-Served

SJF : Shortest-Job-First

RR : Round Robin

LFU : Least Frequently Used

EIS : Educational Interactive System

103

REFERENCES

[1] Laney, J. D., "Going the Distance: Effective Instruction

:	 Using Distance Learning Technology" Educational

Technology Mar'-Apr 1996/ pp.51-54

[2] Silberchatz, A., and Galvin, P. B., Operating System

Concepts, Addison-Wesley, Publishing Company, 1994

[3] Nelson, M, N., et al., "Caching the Sprite Network File

System", ACM Transactions on Computer Systems, vol.6,

no.1, Feb. 1988, pp.134-154 : / / ;

[4] Ousterhout, J. K., et al., "The Sprite Network Operating

System", IEEE Computer, vol. 21, Feb. 1988, pp. 23-36.

[5] Kwan, T. T., et al., "NCSA's World Wide Web Server:

Design and Performance", IEEE Computer, vol.28, no.11,

Nov 1995, pp.68-74

[6] Pitkow, J. E., and Recker, M. M., "A Simple Yet Robust

Caching Algorithm Based on Dynamic Access Patterns",

Proceedings Second International WWW Conference, 1994,

pp.1,039-1,046

[7] Chung, G., and at el., "Dynamic participation in a

computer based conferencing system". Computer

Communications, vol.17, no.1, Jan 1994 pp. 7-16

[8] Stallings, W., "A practical guide to Queuing Analysis",

Byte, Feb 1991 pp. 309-316

[9] Kay, J., and Lauder, P., "A Fair Share Scheduler",

Communications of the ACM, vol.31, no.l, Jan 1988,

pp.44-55

[10] Kleinrock, L., Queueing Systems Vol.2: Computer

Application, Jhon Wiley &Sons, Inc., 1976

[11] Patterson, D. A., and Hennessy, J. L., Computer

Architecture A Quantitative Approach 2"^ Edition,

Morgan Kaufmann Publishers, Inc., 1996

[12] Classman, S., "A caching relay for the World Wide Web",

Computer Networks and ISDN Systems, vol.27, 1994,

104

pp.165-173

[13] Watabe, K., et al., "Distributed Desktop Conferencing

System with Multiuser Multimedia Interface", IEEE

Journal on selected areas in communications. Vol.9,

NO.4, May 1991, pp.531-539

[14] Kwan, T. T., et al., "User Access Patterns to NCSA's

World Wide Web Server", Tech. Report UlUCDCS-R-95-1934^

Dept. Computer Science^ Univ. of Illinois^ Urbana-

Champaign, Feb. 1995.

[15] Ramanathan, S., and Venkat, P. R., "Architectures for

Personalized Multimedia", IEEE Multimedia^ Spring 1994,

pp. 37-46

[16] Luotonen, A., and Altis, K., "World-Wide Web proxies".

Computer Networks and ISDN Systems, vol.27, 1994,

pp.147-154

[17] Stevens, W. R., UNIX Network Programming, Prentice-

Hall, Englewood Cliffs, NJ 1990

[18] Martin, J., System Analysis for Data Transmission,

Prentice-Hall, Englewood Cliffs, NJ 1972

[19] Fox, B. L., and Glynn, P. W., "Computing Poisson

Probabilities", Communications of the ACM, vol.31,

no.4, Apr. 1998, pp.440-445

[20] Bondi, A., B., "An analysis of finite capacity queues

with priority scheduling and common or reserved waiting

areas". Computers Operations and Research, vol.16,

no.3, 1989, pp.217-233

[21] Jamsa, K., and Cope, K., Internet Programming, Jamsa

Press, Las Vegas, NV 1995

[22] Hayes, J., F., Modeling and Analysis of Computer

Communications Networks, Plenum Press, New York, 1984

105

	A study of user level scheduling and software caching in the educational interactive system
	Recommended Citation

