
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

1997

The recursive multi-threaded software life-cycle The recursive multi-threaded software life-cycle

Scott James Simon

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Simon, Scott James, "The recursive multi-threaded software life-cycle" (1997). Theses Digitization Project.
1306.
https://scholarworks.lib.csusb.edu/etd-project/1306

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1306&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1306&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/1306?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1306&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

THERECURSIVEMULTI-THREADED

SOFTWARELIFE-CYCLE

A Thesis

Presented to the

Faculty of

California State University,

SailBernardino

In PartialFulfillment

ofthe Requirements for the Degree

Master ofScience

in

Computer Science

by

Scott JamesSimon

June 1997

THE RECURSIVE MULTI-THREADED

SOFTWARE LIFE-CYCLE

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

Scott James Simon

J\me 1997

Approved by:

o'Z. *={1

Dr. Arturo 1. c'oncepcion, (fchair, Computer Science Date

Dr. Richard J. Hotting

Dr. Kerstin Voigt

© Copyright 1997

Scott J. Simon

Abstract

Software life-cycles are aimed atimproving the processofdeveloping software.

Traditionallife-cycles are adequate for structured development,but notfor object-oriented

software. Object-oriented software development hasa different style tlMn structured

methods which requires different considerations bya software life-cycle. There are b.

number ofexisting object-oriented life-cycles that addressthe specific needsofobject-

oriented development,butthese have little or no supportfor monitoring progress during

development and contain limitations.

This thesis presentsthe recursive multi-threaded(RMT)software life-cycle which

icific needsof
supportsthe monitoring ofprogress during development,addressesthe sp

bund in existing
developing object-oriented software,and attemptsto resolve deficiencies

life-cycles RMT usesthe logical concept ofa"thread"for partitioning and organizing

development activities during the development process,which makes it uijique from

existing life-cycles. Threadssupport iteration and recursion which will be shownto be

critical conceptsfor object-oriented development.The use ofthreads also providesa

mechanismfor measuring progress,provides a hierarchical Structin"e for organizing team

members,clearly delineates responsibilities,and identifies well-laiown paths of

communication amongteam members.

First,the motivation and requirementsforRMT are defined,followed by a brief

summaryofa number existing software life-cycles illustrating their limitations by

comparing themto the previously defined life-cycle requirements.Next,the components

ofRMT are defined in addition to an example ofapplyingRMTto asample project.In

111

conclusion,the strengths/weaknesses ofRMT,RMT'srelevance to the Capability

IV

Acknowledgments

Thisthesis represents a major milestone in my life. Eventhough it has only taken

three years to complete,it represents a significant expenditure oftime,effort,and

commitment(and notjust by myself).It is more than simply a collection ofwords

recorded on paper,it representsthe completion ofasubstantial goalthatLset more than

three years ago. Whilethe research portion ofthis thesis was whatI expected it would be,

the writing ofthe thesis wasnothing like whatI anticipated.Being myfirst undertaking in

writing a m^or paper ofmyownideas,I realized the diflScUlties and fimstrations a writer

feces whentrying to record the thoughts and ideas flying around their head into a

computer(©).Professional writers, whether they author magazine articles,technical

articles,or books,have earned myrespect.

Thisthesis is morethan simply"my"work. WhileI wasthe author,it is the result

ofinput and support fi"om many.First,I would like to thank the Associated Students,

Incorporated(ASI)at California State University,San Bernardino who helped support my

research through an ASI award-1 would also like to acknowledge mycommittee members

Dr.Richard J. Botting and Dr.Kerstin Voigtfor alloftheir insightfulcommentsand

suggestions,pointing out not onlytechmcal mistakes but also the conceptualflaws during

the developmentofthis thesis, making it better thanI could have alone.

Mythesis advisor Dr. Arturo 1. Concepcion deserves credit for much more than

"advising"me during thisjourney.Not only did he give me ideas and suggestionson my

thesis,but he also guided me whenI was unsure and was supportive whenI wasin doubt.

He has been more than an advisor,he has been afnend;

I would like to thank my mother,for molding meto be the manthatIamtoday.I

wantto thank her for allofthe things that she has given me over the years,from advice,to

a strong sense ofright and wrong,and for that really cool motorized car for Christmas

whenI wasa child;and I wantto thank her for aU ofthe things that she sacrificed to give

themto me.Thanksfor being the best mother someone could ever hope for.Ijust hopeI

can be halfofthe parent to mysonthat you are to me.

Finally,and mostimportantly,I would like to thank myloving wife Renee.She has

been so imderstanding and supportive ofmethroughoutthese past three years. She has

sacrificed precious time that we could have spent together whileI toiled away atthe

computer or met with mycommittee members,but she never complained.Rather,she

supported me with wordsofencouragement and telling me how proud she wasofme.She

has given up as much or more asI have,and deserves as much or more ofthe credit.

Renee,Iam proud ofyou...this isfor you.

VI

Table ofContents

Abstract... iii

Acknowledgments v

List ofTables xi

List ofIllustrations xii

Chapter One-Introduction 1

1.1 The Recursive Multi-Threaded(RMT)Software Life-Cycle 3

1.2 Motivationfor an Object-Oriented Software Life-Cycle 4

1.3 Recursive Multi-Threaded Life-Cycle Requirements 6

1.3.1 Traditional Life-Cycle Requirements .'. 7

1.3.2 Object-Oriented Life-Cycle Requirements 9

1.4 Capability Maturity Model(CMM) 13

1.5 Structure ofThesis 14

Chapter Two-Existing Software Life-Cycles

2.1 TaxonomyofSoftware Life-Cycles 15

2.2 WaterfaU Model 16

2.3 Spiral Model —17

2.4 Round-trip Gestalt Design 18

2.5 Recursive/Parallel Model 19

2.6 Fountain Model 20

2.7 Chaos Model/Life-Cycle 23

vu

2.8 McGregor and Sykes -24

2.9The Visual Modeling Technique(VMT) 27

2.10 Methodologyfor Object-oriented Software Engineering of

Systems(MOSES) •••••

2.11 Common Limitations 29

Chapter Three-The Recursive Multi-Threaded(RMT)Life-Cycle

3.1 Process Concepts 31

3.1.1 Threads 32

3.1.1.1 Iterative/Evolutionary Development 35

3.1.1.2 Recursion —— "40

3.1.1.3 Reusability 43

3.1.1.3.1 Source Code Reuse... — 44

3.1.1.3.2 Design Patterns... 46

3.1.1.3.3 Open-Ended Architectures 47

3.1.2 Benefits ofThreads..... 32

3.1.2.1 Monitoring Progress.. — — 32

3.1.2.2 Multiple Abstraction Levels. 54

3.1.2.3 Parallel Development, 37

3.2RMT Activities/Phases

V 3.2.1 Requirements Analysis "62

3.2.2Planning63

viu

3.2.3 Analysis 65

3.2.4 Design 67

3.2.5 Implementation............ .69

3.2.6 Quality Assurance....70

3.2.6.1 Risk Management... 72

3.2.6.1.1 Risk Analysis.72

3.2.6.1.2 Risk Monitoring and Avoidance 75

3.2.6.1.3 Risk Resolution. 75

3.2.6.1.4RMTRisks 76

3.2.6.2 Traceability78

3.3 Documentation 79

Chapter Fom-ApplyingRMT

4.1 TheProject — ••— •SO

4.1.1 Thread Naming Convention... 80

4.2The First Iteration — 82

4.3 The Second Iteration......... 87

4.4 The Third Iteration 89

4.5 The Fourth Iteration.... 91

4.6 Additional Considerations.. -91

4.6.1 Iterations and Child Threads 91

IX

Ineonsistencies/Defects).....,..,......92

4.6.3 Manning Multiple Abstraction Levels...93

4.6.4 Methodologies...................................94

Chapter Five-Conclusions. 96

5.1 Relevance to the Capability Maturity Model(CMM).98

5.2Future Directions 100

AppendkA-Glossary.........102

Bibliography....;.... 106

List ofTables

Table 2.1.TaxonomyofSoftware Life-Cycles 16

Table 3.1 Gilb's Basic Principles ofOpen-Ended Design 49

Table 3.2 Documentation Generated During Thread Phases 79

Table 5.1 CMM Maturity Levels 98-99

XI

List ofIllustrations

A.List ofFigures

Figure 1.1. Conventional vs.Iterative Life-Cycles .j ——12

Figure 2.1 Spiral Model.....— 18

Figure 2.2 Fountain Model —22

Figure 2.3 Linear Problem-Solving Loop 24

Figure 2.4 FractalProblem-Solving Loop..... 24

Figure 2.5 McGregor and Sykes Application Life-Cycle... 25

Figure 2.6 McGregor and Sykes Fractal Software DevelopmentProcess 26

Figure 2.7 OverallMOSES Life-Cycle 29

Figure 3.1 RMT Thread Activities/Phases..... 34

Figure 3.2RMT Thread withN-Iterations...... 36

Figure 3.3RMT Thread with Recursion — 43

Figure 3.4LevelsofThread Abstractions and Thread Managers 56

Figure 3.5 Distribution ofActivities,in Practice,ofTraditionaL Sequential

Software Life-Cycles.... —

Figure 4.1 Thread Hierarchyofthe First Iteration — 87

Figure 4.2 Thread Hierarchy ofthe Third Iteration 90

xu

Chapter One-Introduction

Because our society has become heavily dependenton computers,the software

those computersexecute has been given great responsibilities.Because ofthis

responsibility,the repercussions ofsoftware failures can be significant,even resulting in

the loss ofhumanlife.Between 1985 and 1987 at least two people died ofradiation

overdoses bythe Therac-25 medicallinear accelerator asaresult ofafault in the control

software[Leveson-93]. Also,in the 1991 GulfWar afault in the software for the Patriot

missile caused aScud missile to penetrate the Patriot anti-missile shield near Dhahran,

Saudi Arabia,killing 28 Americansand wounding 98[Mellor-94]. Whydo such significant

software failures continue to occur?The answer is simple,human beings make mistakes.It

would seem,however,that with allofthe advances in software engineering and

technology in the past half-century that such critical software systems could be developed

with better reliability. It is obviousthat this is notthe case and process ofdeveloping

software hasroom for improvement.

Software is complex,formany reasons.The problems software is intended to solve

are complex;the software itselfis complex;and coordinating people to build software is

complex Frederick P.Brook's,Jr. pointed outthat in order to generate an order of

magnitude improvementin the development ofsoftware,the essential difiSculties of

software development need to be addressed,rather than the accidental difficulties

[Brooks-95].These essential difficulties include the inherent complexitiesfound inthe

nature ofsoftware and its development. Accidental difficulties are problems withthe

production,or realization,ofthe software withtoday'stechnOlbgy,whibfiafe notinherent

to the software The essential difficulties include deciding how software is developed and

what is developed,notthe actualimplementation,or codings or the software.

Software engineering is a discipline whose goals are,simply put,to manage and/or

eliminate these essential difficulties ofsoftware developmentto produce better software,

makethe process ofdeveloping software easier,and to do itina productive feshion.Fritz

Bauer provided an early definition ofsoftware engineering as"the establishment and use

ofsoimd engineering principles in orderto obtain economically software that is reliable

and works efficiently onreal machines."[Naur-69]

One area ofsoftware engineering aimed at improving how software is developed is

the definition ofa repeatable,systematic processthat can be applied to the construction of

software,called asoftware life-cycle. A repeatable process helps eliminate manyofthe

uncertaintiescommonto software development.In orderto create a repeatable process,a

software life-cycle definesa set ofactivities, whattasks are performed during each

activity,the order that the activities occur,the preconditionsthat must be metbefore

beginning an activity,and the postconditionsthat must be met before an activity is

complete.Somecommon activities included in life-cycles are analysis,design,coding,and

testing These activities,and the life cycle itselft are intended to make the development

effort more efficient,so it is equallyimportantthatthe process does notimpedethe work

ofthe developers.

Alife-cycle must addressthe needsofmany people involved in the development

process.For software engineers,a life-cycle should provide a step-by-step procedure to

follow for developing software.For project managers,a life-cycle should provide

mechanismsfor coordmating development activities, monitoring progress,allowing the

development staffto cornmunicate effectively,and(mostimportantly)to generate quality

software that satisfies the system requirements.

A software life-cycle is a process,not a methodology.Software methodologies

focus on how to approach and solve a particular class ofproblems,while a life-cycle is a

process organizes the steps taken to solve that problem.Methodologies are used within

the framework ofa life-cycle. Sometimes methodologists define a life-cycle and a

methodologytogether,like MOSES[Henderson-Sellers-94],making the division between

the life-cycle and the methodology vague and confusing.

1.1 The Recursive Multi-Threaded(RMT)Software Life-Cycle

The recursive multi-threaded(RMT)fife-cycle proposed in this thesis isa software

development process which supportsthe monitoring ofprogress during development and

addresses the specific needsofdeveloping software using object-oriented technology.A

number ofobject-oriented software fife-cycles existtoday,butthey have little or no

support for monitoring progress during development,are simply generalconceptsthat

lack detail,and/or have other limitations(which will be shown later).RMT is based on

many Ofthe same fundamentalconceptsfound in other object-oriented fife-cycles,but it is

a detailed fife-cycle which attempts to resolve limitationsfound in existing life-cycles. A

severe limitation ofexisting fife-cycles thatRMT addresses,is the ability to monitor

progress during development. What makesRMT unlike existing fife-cycles is its use ofan

abstraction, called athread,to organize the development process.Two distinguishing

characteristics ofRMT are iteration and recursion. As will beshown later,iteration is an

inherent trait ofsuccessful object-oriented projects and recursion provides developers with

an effective technique for organizing the development process,to monitor progress,and to

allow efficient communication betweenteam members.Thisthesis wiUshow the

motivation and reqrxirements ofRMT,limitations ofexisting object-oriented life-cycles

and howRMT resolves those limitations,and a detailed description ofwhatRMTis and

how it can be applied to projects.

1.2 Motivation for an Object-Oriented Software Life-Cycle

Aside firom the need for better software development processes because ofsystem

failures,there is a need for developing an object-oriented life-cycle that facilitates the

monitoring ofprogress during development.AswiU be shownin chaptertwo,existing life-

cycles have little or no supportfor monitoring progress and/orthe structure ofexisting

life-cycles makes progress monitoring difficult. The ability to measure progress during

development is significant because it allows managers and developersto determine

whether a project isonschedule or not. Whena project overrunssome planned schedule,

the ability to monitor progress during developmentcan help identify thatthe project is

behind schedule earlier during development,rather than at the final delivery date,allowing

managers/developersto take appropriate actions to accommodate the situation.

Another motivation is thatthere is ademand for objectroriented life-cycles because

traditionallife-cycles are ill-suited for object-oriented technology. While the history of

object-oriented programming and object-oriented techmques date back to the 1960's,it

was not until the 1980's that object-oriented technology beganto be ^widely used within

the software engineering commumty.Prior to the wide spread use ofobject-oriented

technology,there were a number ofsoftware life-cycles based upon"traditional"non­

object-oriented technologies.However,object-oriented technologytakes a different

approach to software developmentthan procedural methods.The object modelfocuses on

entities(objects),their attributes,and their behavior rather than placing the emphasison

functions.Dueto this significant difference(and others)between proceduraland object-

oriented methods,manytraditional life-cycles simply do not address the requirements

specific to the development ofobject-oriented software(see chapter 2).Some specific

requirements that some traditional life-cycles do not support are iteration or the overlap of

development activities, which are commonfor object-oriented projects.

An illustration ofthis demand for object-oriented life-cycles is that many

individuals and organizations expend significant effortto developing better processes,

demonstrating that new processes are needed because existing life-cycles do not meettheir

needs. Asaresult ofthis effort,new life-cycles continue to be developed and published.

For example,ateam at theIBMITSO San Jose Center in CaHfomia began working ona

life-cycle and methodology called the VisualModeling Technique(VMT)in 1993[Fang­

96].

Animportant consideration that any new life-cycle should take itito accotmt is that

there are a number ofexisting and emerging standards and modelsthat specifically address

the software development process,which are growing in popularity. Many organizations

are requiring software developersto conform to these software development standards

and models which showsthe concernfor how software is developed.For example,there is

the beliefthat in the near future all software contractorsfor the U.S.government will be

required to demonstrate a software maturity ofLevel3[Saiedian-95],as defined inthe

Capability Maturity Model(CMM)[Paulk-93a,Paulk-93b].Because new standards

continue to be developed indicates that people do not fiiUy understand or agree uponthe

definition ofprecisely whata good development process is, demonstrating the need for

continuing work in defining software life-cycles. Anexample is the recentISO/IEC 12207

standard which specifically addresses the software life-cycle|Moore-96,Singh-95].

1.3 Recursive Multi-Threaded Life-Cycle Requirements

There are many goals ofsoftware life-cycles, butthe primary goalcan be

summarized as being the definition ofarepeatable systematic processfor developing

quality software within scheduling and budgetary constraints.Like software systems,

software life-cycles have requirementsthat they must satisfy to achieve their goals. Object-

oriented life-cycles share manyofthe same requirements as traditional life-cycles.

However,because object-oriented technology hasa substantially different approachto

developing software,there are manyrequirements that are more significant or criticalto

object-oriented life-cycles than traditionallife-cycles. These requirements mayrange firom

general,being applicable to alarge number ofprojects,to specific, applying to only a small

number ofprojects within a specialized domain.Defining a life-cycle that addresses all of

these requirements would be impossible because they mayhave conflicting goals and/or

constraints or add unnecessary overhead to the development process.

RMT addresses the general needsofobject-oriented projects but is flexible enough

to accommodate the needsofspecialized projects. This allowsRMTto be compatible with

alarge corninunity ofdevelopers.To gain a greater understanding ofthe definition of

RMT,the following sections describe the requirementsthatRMT was designed to satisfy.

1.3.1 Traditional Life-Cycle Requirements

There are a number ofrequirementsforRMTthat applyto both object-oriented

and non-object-oriented projects. They are:

Monitorprogress: RMTshould provide the capability to monitor progress and

determine completion ofthe project.

Systematic RMT should provide a systematic processfor producing

quality software.

Repeatable: RMTshould be repeatable for different projects.

Organized: RMT should organize development activities to reduce the

complexity ofproject management,reduce the potential

miscommunication betweenteam members,and maintain

conceptualintegrity ofthe system during development.

Risk Management: RMT should accommodate the identification and

managementofrisks.

Traceability: RMTshould allow developersto trace system requirements

to design specifications and to the resulting software.

The primary goalofRMT is to provide developers with a mechanismto monitor

the progress ofa project during development.Sucha mechanism can provide developers

with earlyfeedback indicating that there are problemsthat need to be addressed before

they become unmanageable.It can also provide a meansfor determining whenthe«

developmentofaproject is completed.RMT must provide the capability to monitor

progress during development.

Another goalofRMT is to provide a systematic processfor producing high-quality

software. Software quality may be defined in manyterms,depending on manyfactors.

Meyer definesthe five mostimportant external qualities ofsoftware as correctness,

robustness,extendibUity,reusability,and compatibility(Meyer-88].Having a process with

a set ofwell-defined steps or rules to follow for constructing something is much easier

than an ad hoc method which basesthe success ofthe project almost entirely onthe skill

and ejqjerience ofthe developers.Among other things,a systematic process provides the

developer with a more accurate e5q)erience base for estimating development effort and

time,a better metric for gauging progress during development,a better framework for

identifying potential problems at an earlier stage,and(hopefiiUy)a higher probability of

producing quality software. Another requirement ofRMTisthat it should be repeatable,

so that it can be applied to many projects rather than discovering anew processfor each

new project. This savesthe developer valuable time and effort.

AsBrooks describes,software is by nature inherently complex[Brooks-95],More

specifically, it is the construction ofthe conceptualrepresentation ofthe software that

introduces the complexity,notthe actualrealization ofthe concept.Part ofthis complexity

can be attributed to the management ofthe activities during the development process.

How development activities are organized can have a drastic impactonthe effectiveness

ofthe development ofsoftware.Projects ofsignificant Size tend to involve larger teams.

Largerteamsincrease the potentialfor communication problems and decreasesthe

conceptualintegrity ofthe system simply because there are more people involved in the

process.To help address these complexities,RMT should provide a framework to

organize development activities in such a waythat the potentialfor these problems is

reduced.

RMT must specify an activity(or activities)to identify and manage potential

problems,or risks,that mightimpactthe development process. This is commonlycalled

risk management and is animportant activity ofthe development process.It is better to

identify potentialrisks and planforthem before they happen rather than ignoring them and

reacting to them after they occur.Risk management is more than simply identifying

potential risks, but also includes monitoring the ofrisks during development,mitigating or

avoiding risks(ifpossible),and carrying outsome contingency plan should risks occur.

Once a software system has beenimplemented,it is essentialto verify that the

resulting system meetsthe requirements ofthe user. Therefi)re,RMT mustfecilitate the

verification ofsystem requirements to the produced software. While the methodologies

used during development(i.e.,requirements analysis,analysis,design,etc.)and resulting

documentation usually facilitates this,RMTshould also provide well-known paths of

communication betweenteam membersto make this process easier.

1.3.2 Object-Oriented Life-Cycle Requirements

Aspreviously mentioned,there are a number ofcharacteristics that are more

criticalto the development ofobject-oriented software than traditional, non-object­

oriented,software. While non-object-oriented projects may also strive for these quaUties

as well,they are essentialto object-oriented software. TheseRMTrequirements are:

Iterative development: RMT should support an iterative development process.

Parallel development: RMT should supportthe overlap ofdevelopment

activities.

Reuse: RMTshould supportthe reuse ofdesign information

(design patterns)and source code.

Maintenance: RMT should accommodate maintenance as part ofthe

software life-cycle.

Many methodologists agree that successful developmentofobject-oriented

software involves iteration. Gilb believes that software evolves over a period oftime,

similar to the developmentofcomplex systems,such as biological organisms.[Gilb-88]

This is called evolutionary development,ofwhich iteration is akey concept.Booch has

observed thattwo traits, well-managed iterative and incrementaldevelopment life-cycles

and the conceptofa strong architectural\ision,were present in virtually all successful

object-oriented systems he had encountered,and absent firom unsuccessfid systems

[Booch-91].

Iterative life-cycles allow the incremental development(and dehvery)ofa system

by producing many versions ofthe system,each more(functionally)complete than

previous versions. While there are a number ofbenefits ofiteration,the most significant is

its adaptability to change.Because there are fi-equeht incremental versions ofthe system,

iterative life-cycles allow potential problemsor changesto be identified earlier inthe

development cycle where the amountofeffort to correct the problem is smaller,rather

than late in the cycle.For example,consider a project where at'the beginning ofthe

10

project the perceived objective is Objective A.Atsome point during development either

the users or developers realize that the actually objective is notreaUy Objective A,but

Objective B.A traditional process with a single delivery ofthe system will not discover

that Objective A is the incorrect objective untilthe software is completed,requiring a

significant amountofeffort to be expended to adaptthe software to satisfy Objective B.

Aniterative process,however,could help identify the changed objective and react to the

change at an earlier point in development,reducing the amountofeffort required to reach

Objective B.Figure 1.1 illustrates this example.

Because iteration is an essentialrequirementfor developing successful object-

oriented software,and because ofthe additional benefits,RMT must be an iterative-based

process.

Another characteristic ofobject-oriented development,that is less pronoimced in

structiued approaches,is that there tendsto be overlap between activities during

development.The conceptofa class provides acommon conceptual unit,or vocabulary,

that is used throughout development activities(e.g.,analysis, design,and coding),and

each activity in an object-oriented life-cycle produces a more complete defimtion ofa

class. Asa result,the division between the completion ofone activity and the beginning of

another becomes less distinct.For exan^le,Berard points out that the"gap"between

object-oriented requirements analysis and object-oriented design is verynarrow when

compared to the"gap"between structured analysis and structured design[Berard-93].

Requiring each development activity to be completed before beginning another activity

11

would be an unnecessary restriction to the development process ofobject-oriented

software.Therefore,RMT must support parallel development.

System

Objectives\ First Delivery

Change

Objective A
m

Starting Point

Final Delivery

Objective B

Conventional life-cycle

System

Objectives

Change
 Objective A

Starting Point

\ /
Delivery to usersW
 SllObjective B

(iterations)

Iterative life-cycle

Figure 1.1: Conventional vs. Iterative Life-Cycles

Software reuse has beena goalofsoftware engineering long before object-oriented

technology became popular.One attraction for using object-oriented technology is its

potentialfor producing reusable software components. While object-oriented

programming languages may make the procedure ofbuilding reusable software

components easier than procedural prograrrraiing languages,it is still more costly to build

12

reusable components.Yourdon estimatesthat reusable componentstake twice the effort

as"one-shot"components[Yourdon-92].

Another levelofreuse that has only recently emerged in the shadow pfobject-

oriented technology is design patterns. Design patterns are an abstraction ofsource code

that contains(proven)design information for a solutionto a particular problem. When

compared to source code reuse,design patterns are less effective because they still need to

be realized into someform ofcode and tested.However,given all ofthe difficulties

associated with source code reuse,design patterns maybe more usefial because they have

agreater potentialofactually being reused.Because ofthe potential benefitsofreuse,

RMTshould accommodate the evaluation and integration ofboth source code and design

pattern reuse in the development process.

Many software lifercycles consider the initial development and deploymentofa

software system and maintenance as separate activities. Software maintenance mayinvolve

more than simply corrective maintenance,or"bug fixing",it may also include adaptive

maintenance,perfective maintenance or enhancements,and preventive maintenance or

reengineering[Swanson-76].Maintenance can accoimtfor more overall effort during the

life-cycle ofa software system than any other activity,an average of67%,infact[Lientz­

78,Zelkowitz-79].For these reasons,RMTshould make acconanodationsfor

maintenance as part ofthe software life-cycle.

1.4 Capability Maturity Model(CMM)

There has been much effort in the software engineering communityto define

standard practices and methodsfor software developmentto improvehow software is

13

developed.Oneofthe mostrecognized efforts is the Capability Maturity Model(CMM).

TheCMM has the goalofimproving software quality by defining various levelsof

development process maturity. While theCMM does not define or advocate the use ofa

particular software life-cycle, it does define some characteristics that must be present in a

software life-cycle in orderto comply with their requirements.Because theCMM is

growing in acceptance among the software community,RMTshould conform to CMM

requirements as much as possible.

1.5 Structure ofThesis

Thisthesis is organized into five chapters and one appendix.This chapter presents

an introduction and motivation for the work proposed in this thesis,asummaryof

development life-cycle requirements,and a briefdescription ofthe CMM.The second

chapter summarizesanumber ofexisting software life-cycles and comparesthemto the

requirements outlined in the first chapter.The third chapter presentsthe proposed RMT

software life-cycle, providing a concise definition ofthe individualcomponentsofthe life-

cycle. Chapterfour presents an example ofhowRMTcan be applied to a specific project.

The fifth chapter providessome conclusions aboutRMT(its strengths and weaknesses),

howRMT apphesto theCMM,and future directions that should be explored forRMT.

Appendix A contains a glossary ofterms used throughout this thesis.

14

Chapter Two-Existing Software Life-Cycles

This chapter presents a briefdescriptiohofanumber ofexisting software life-

cycles,their limitations,and/or any conflicts these life-cycles have with the requirements

outlined in chapter one.The life-cycle descriptions are notintended to be complete byany

means.There are a large number ofexisting software life-cycles, butthis Chapter Only

presents those life-cycles that weredeemed relevant to RMT.They are included eitherfor

historicalpurposes or their relevance for comparing/contrasting them withRMT.

2.1 Taxonomy ofSoftware Life-Cycles

The life-cycles discussed in this chapter are divided into three categories: non­

object-oriented life-cycles,object-oriented life-cycles,and"second-generation"object-

oriented life-cycles. The non-object-oriented life-cycles are included for historic^

purposesto help identify why manytraditionallife-cycles are inappropriate for object-

oriented projects. The categoryof"second-generation"life-cycles refers to life-cycles that

integrate and/or extended existing approaches. Table 2.1 outlinesthe life-cycles discussed.

15

Classification

Non-Object-Oriented Life-Cycles

Object-Oriented Life-Cycles

"Second-Generation"Object-

Oriented Life-Cycles

Life-Cycle

WaterfallModel

Spiral Model

Round-Trip Gestalt Design

Recursive/ParallelModel

Fountain Model

Chaos Model/Life-Cycle

McGregor and Sykes

VisualModeling Technique(VMT)

Methodologyfor Object-oriented

Software Engineering ofSystems

(MOSES)

Table 2.1: Taxonomy ofSoftware Life-Cycles

2.2 Waterfall Model

The waterfall model[Royce-70]is probablythe most widelyrecognized software

life-cycle. It is a linear life-cycle model with anumber ofdevelopment activities that are

performed sequentially. Before an activity can begin,the previous activity must be

completed.

The waterfall life-cycle is a dramatic improvement over the ad hoc build-and-fix

method that wascommonly employed before its introduction. Unfortunately,there are

many problems and limitations with the waterfall model.The most significant problem is

that software development is rarely a sequential process.This does not accommodate

changes during development,requires allofthe system requirementsto be completely and

accurately specified at the beginning ofthe project,and results in inefficient use of

16

personnelresources.Pressman[Pressman-97],Brooks[Brooks-95],McGregor and Sykes

[McGregor-92],and others all confirm limitations ofthe waterfalllife-cycle.

2.3 Spiral Model

The spiral model[Boehm-88]is a risk-driven software life-cycle that iterates

through four basic activities: objective assessment,risk assessment,product development,

and planning.Development starts at some central point,from which development

proceeds outward from the center(i.e., like a spiral),passing through each ofthe four

activities or quadrants. Asthe spiral gets larger,so doesthe cumulative cost.Each cycle in

the spiral modelbuilds the next-level product ofthe resulting system.These products

correspond to the commonly identified life-cycle activities(e.g.,requirements,design,

etc.).

Eventhough the spiral modelappearsto be an iterative life-cycle, it is not truly

iterative becaxise there is afinite numberofcircuits and each circuit really correspondsto a

development phase or activity.For example,implementation occurs during a single circuit.

What makesthe spiral modelappear to be iterative is the &ctthat within each circuit

similar activities,such as planning,determining objectives,evaluatiug risks,etc.,are

repeated in each circuit. This is ill-suited for the iterative requirements ofan object-

oriented life-cycle.In addition,the spiral modeldoes not supportthe overlap ofactivities

during development.The spiral modelis also applicable onlyto large-scale projects

[Boehm-88],making it unfeasible for smaU to medium scale projects.

17

A Cumulative cost

Process

Evaluate altematives,

through steps

Determine identify, resolve risks

objectives,

alternatives,
 Risk^^

constraints
 analysis

Risk

analysis

Risk

analysis

Risk I

analy-i Prototype Prototype Prototype \ Operational

Commitment sis 1 2 3 \ prototype

Review 1—i­ — X _ Emulations,models,benchmarks
Requirements plan
partition

life-cycle plan Conceptof

operation ^Software /software
 Detailed

requirements/ design

Develop
ment plan

Requirements
validations^

desigrj/j ;Code,
Unit I
test

Integration Design validation i

Plan next phases

and test

—Plan
and verification

I

Integration ,
Accept-1 and test
ance|

Implementation , test Develop,verily
next-level product

Figure 2.1:SpiralModel

2.4 Round-trip Gestalt Design

The round-trip gestalt design[Booch-91]is a design method based uponthe fact

thatthe more that is known abouta problem,the easier it is to solve. Whena designer is

confronted with anew problem where they have limited or no experience,the best they

can do isto make an initial attempt at the design,step back and analyze the design,then

make improvements based uponnew understanding ofthe problem.This process is

repeated until the designer is satisfied with the completeness and correctness ofthe design.

This is the round-trip gestalt design.

18

Althoughthe round-trip gestalt design is a design method and nota life-cycle,it's

essence has been used for comparison to iterative software life-cycles.In fact,Booch

suggeststhat it is the foimdation ofthe process ofobject-oriented design[Booch-91].

2.5 Recursive/Parallel Model

The recursive/parallellife-cycle can be caricatured as"analyze a little, design a

little,implementa little, and test a little."[Berard-93]Rather than being a life-cycle that

wasfirst defined then applied to projects,this software life-cycle evolved fi-om software

engineers applying object-oriented technique to real projects.Berard points outthat any

significant software engineering effort will involve both iteration and overlap as wellas

addressing requirements ofdifferent levels ofabstraction at different times during

development.This life-cycle more accurately reflects theses realities ofsoftware

engineering and simplyformalizes the concepts and techniques already used by engineers.

While the recursive/parallellife-cycle is a"top-down"approach,which Berard

states is very often a noticeable flavor to the overall approachfor projects,it does support

compositional,or bottom-up,techniques.The systematic steps inthe recursive/parallel

life-cycle are:

(1)"Systematically decompose a problem into highly-independent components,

(2)re-apply the decomposition processto eachofthese componentsto decompose

themfurther(ifnecessary)—this is the'recursive' part,

(3)accomplish this re-application ofthe process simultaneously on each ofthe

components—^this is the'paraUel' part,and

19

(4)continue this process untilsome completion criteria are met."[Berard-93].

The analysis step requires that the system requirements be understood,propose a

"high level"solution for the requirements,and demonstrate that the proposed solution

meetsthe user's needs.The design step involves the definition ofthe component

interfaces, making decisions about how each component will be implemented,the

identification ofany necessary additionalcomponents,and describing any necessary

programming language relationships.The implementation step requires the implementation

ofthe component interfaces,the implementation ofthe algorithms describing the

componentinteractions,and the implementation ofthe internals ofcomponents which can

not be fiirther decomposed.

While this life-cycle addresses manyofthe fimdamentalrequirements ofobject-

oriented life-cycles(outlined in chapter one),it lacks the detail necessary for the direct

application to a project,leaving too muchofthe process organization up to the developer

to define.For example,it does not addressthe management or organization ofthe

"recursive"or"parallel"elements ofthe life-cycle,risk management,or planning activities.

2.6 Fountain Model

The fountain modelis an object-oriented software life-cycle that supports a high

degree ofoverlap and iteration during development[Henderson-Sellers-90]. The general

flow through development activities proceeds fi-om analysis through design to

implementation,with iterative cycles across several or all ofthese phases.Development

during any phase mayiterate back to any previous phase.The system life-cycle may be

composed ofa number ofseparate class,or clusters ofclasses|Meyer-893,life-cycles;The

20

niunber ofdevelopment phasesincluded in each model varies uponthe application ofthe

life-cycle. For example,the fountain modelfor module development may consist

specification, design,coding,and testing phases while system development contain

additional design,requirements analysis,and testing phases.Because the system view of

the life-cycle may be composed ofmany other class life-cycles,class clusters maybe

developed independently ofand in parallel with other class clusters.

Likethe recursive/parallellife-cycle,the fountain modelaccommodatesthe

iterative and incrementalrequirements ofobject-oriented projects,butit is lacking in

detailed descriptions ofhow the overall development activities andteam membersare

organized.It is almosttoo flexible. The danger ofsuch flexibility is that the development

processcanbecome imdisciplined where developers proceed almostrandomly between

phases.This makes project managementand progress monitoring very difficult,ifnot

impossible.

21

Further

Mainten Development

ance /

Program

Use

Y

System

Testing

Unit

^Testingi

Codin

'Programj

'Design *

System

Design'

Software ^

Requirements

Specification

User

Requirements

Specification,

Requirements

Analysis

Real-World Systems

Figure 2.2:Fountain Model

22

2.7 Chaos Model/Life-Cycle

Raccoon[Raccoon-95]believes that because ofthe complex nature ofdeveloping

software,simple models can not be imposed upon it. To represent the realistic nature of

software development,the chaos modeldescribes software development asa linear

problem-solving loop combined with fi-actals. The linear problem-solving loop consists of

four stages: problem definition,technicaldevelopment,solution integration,and status

quo(i.e.,the current state ofthe system).Intheory,the fractal problem-solving loop is

simplythe linear problem-solving loop where each phase contains an identical problem-

solving loop.In reality,however,there are anumber ofinfluences during development

that make the localization ofrecursive problem-solving loopsto higher-level problem-

solving loop phases difficult. Each phase inthe chaos life-cycle is ejqjressed as afractal.

Because ofthe recursive nature offractals,Raccoon points outthat each phase occurs in

aU other phases and that each phase is acomplete life-cycle itself. The life-cycles phases

then blend together resulting in an"amorphousflow ofemphasis"[Raccoon-95]rather

than separate,distinct phases.

Fromthe perspective ofxmderstanding the nature ofsoftware development,the

chaos modeland chaos life-cycle provides developers witha better understanding ofthe

complexities ofsoftware development and the factors influencing development.For

application to real world projects,however,the chaoslife-cycle is impractical because it

does not provide enough organization ofdevelopment activities. This makes progress

monitoring,planning,communication,etc. difficult for developers because there is a very

complex and imorganized structure to the life-cycle phases oractivities.

23

Problem

Definition

Technicai

Status Quo

Development

Soiution

integration

Figure 2.3:LinearProblem-SolvingLoop

Figure 2.4:FractalProblem-SolvingLoop

2.8 McGregorand Sykes

McGregor and Sykes[McGregor-92]have proposed a software life-cycle that

emphasizes reuse and the support for the Object-oriented paradigm.They divide the

development life-cycle into two independent,and orthogonal,life-cycles;the application

life-cycle and class life-cycle. The reasonfor dividing the two is to produce more reusable

classes.They believe that this division allowsfor acomplete description ofthe classes to

be built without regard for the system being developed,making the classes more reusable.

The class life-cycle is very similar to the foimtain model,but accountsfor the reuse of;

24

existing classes,evolution from an existing class,and the developmentofa classfrom

scratch. The detailed representation ofthe application life-cycle consists ofa series linear

steps,although the actual development process is not(figure 2.5). The visualization ofthe

overall process is described bythe"fractal model."(figure 2.6)which is based upon Brian

Foote's"fractal model"proposed at an OOPSLA'91 research workshop onreuse.

ClientInput

Informal

System

Descrip

tion >

Domain Application

Analysis Analysis High

Level

Design

Class

evelopmen

Instance

Creation

Integration

Test

Maintenance

Figure 2.5:McGregorandSykes Application Life-Cycle.

25

'J©" ^

3U!^3^

Model
Realize

i> 4j =&/

<2:\
-s\%

© S- O'

PPOW \ aaiBsy

©

9UU9^

Refine

/ ■M. 4
lepow \ J

Figure 2.6: McGregor andSykesFractal Software Development Process.

While the application and class life-cycle descriptions suggest that they are

iterative innature, the iterative or incremental steps in the process are only detailed in the

class life-cycle andnot inthe application life-cycle. Eventhough the activities in the

application life-cycle phases are discussed, the overaU application of the life-cycle is not

presented, leaving the life-cycle definition vague and incomplete. The central focus of the

McGregor and Sykes process is to buildreusable objects, whichrequires that two versions

of a class to be implemented when developing classes fi-om scratch; an abstract class and a

concrete class. The intent is that the abstract class embodies the essence of the class,

independent firom an application specific details, and the concrete class is derived firom the

abstract class and addresses the applicationrequirements. While tMs may result inmore

26

reusable objects,it requires significant effortto implement.There may be many projects

where developing truly reusable classes is nota priority, making this processtoo

expensive.

2.9 The Visual Modeling Technique(VMT)

The VisualModeling Technique(VMT)is a complete object-oriented

development life-cycle that is based upon existing and proven methodologies and

techniques.The core techniques used are the Object Modeling Technique(GMT)

[Rumbaugh-91],Jacobson's use cases[Jacobson-92],Wirfs-Brock's Responsibility Driven

Design(RDD)[Wirfs-Brock-90],CRCcards[Wirfe-Bropk-90,Wilkinson-95],event trace

diagrams,object types,and pre- and postconditions.The product life-cycle consists ofa

business planning,development,and packaging/delivery phases.The development phase

ofa product life-cycle is divided into a numberofincrements,each which mayfurther be

divided into a number ofiterations.Eachincrement consistsofa planning period followed

bya production and assessment period.The production period consistsofthe common

software life-cycle phases analysis,design,coding,and testing.

VMT supportsthe iterative and incrementalnature ofobject-oriented software

projects.It also supports reuse and project management activities. The main emphasisof

VMT,however,4sin how the previously mentioned methodologies are applied during

each ofthe production periods during the life-cycle. While this maybe very usefiil and

productive for individuals fluent with these methodologies,others may not be familiar with

them or may be unwilling to change to these methodologies,making VMTan

inappropriate life-cycle.

;",27 ̂

2.10 Methodology for Object-oriented Software Engineering ofSystems(MOSES)

The Methodologyfor Object-oriented Software Engineering ofSystems(MOSES)

is acomplete object-oriented software life-cycle that has evolved from previous work

presented by both Henderson-Sellers and Edwards[Henderson-Sellers-94].In addition to

the delineation ofthe process phases,it also supports a set ofgraphical and textual

notations.The MOSES life-cycle recognizestwo separate life-cycles:the product life-

cycle and the process life-cycle. The product life-cycle is divided into two distinct periods

ofa software system's lifetime,the growth period,where the initial system is constructed,

and maturity period,where the system is maintained and enhanced.Boththe growth and

maturity periods consist ofthree phases. These are the business planning stage,the build

stage,and the delivery stage.The build stage is where the software is actually constructed

and involvesthe application ofthe process life-cycle.

The process life-cycle is an iterative development process(IDP)that is based upon

thefountain model[Henderson-Sellers-90].It recognizes five phases ofdevelopment:

planning,investigation, specification,implementation,and review.Each phase has well

defined goals,performed tasks,and deliverables.

While MOSES hints at the problem ofdecomposing system development into

smaller problems,it only discusses one levelofdecomposition by decomposing the entire

system into a number ofsubsystems which may be developed in parallel. MOSES does not

advocate the recursive application ofthe life-cycle upon each decomposed subsystem.

MOSES also uses a custom notation for diagramming designs which integratesanumber

28

ofother notations. The use ofacustom notation maybe unacceptable for some

developers.

Maturity

Growth Enhancement 1 Enhancement2
Periods

ifr

Product /Business „ /V> . \ /Busines^ \ /iSuslnesSi ,
 Stages
lifecycie (pianninjj HDehvery1 Bu.ld (joeliveryj(p,annin|| (jDeliveryj

Process

Planning ()lnvestigation OSpecificationnimplementationii Review Phases

lifecycie

Figure 2.1: OverallMOSESLife-Cycle

2.11 Common Limitation

In addition to any individual limitations or deficiencies noted,each ofthe object-

oriented life-cycles outlined in this chapter contain acommonlimitation;they do not

explicitly account for monitoring progress during the development process(non-object­

oriented life-cycles are not considered because they do not address the requirements of

object-oriented development,and the roimd-trip gestalt design is excluded because it is

nota life-cycle). Monitoring progress is animportant part ofmanaging a project because it

helps the project manager determine whether or notthe project will meet its schedule(and

scheduling constraints are a requirementcommonto most all projects). Estimating

progress can be difficult. Without some technique for estimating progress,estimates are

simply best guesses based uponthe opinions ofthe developers.Personal opinions will vary

29

between individuals and the accuracy ofthe estimate depends upon their education,

experience,skill, and luck.

Eventhough estimating progress is not explicitly supported bythe mentioned life-

cycles,additional methodscould be used.However,the organization ofthe development

process in each ofthese life-cycles makes estimating progressfundamentally difficult(but

not necessarily impossible)for one oftwo reasons.The first reason is that some life-cycles

are too flexible by allowing developmentto proceed almost randomly between activities

making it difficult to determine the current state and progressofdevelopment.The

fountain model,chaos life-cycle,and McGregor and Sykes are examplesofthis flexibility.

The other difficulty imposed bysome life-cycles,such asVMTand MOSES,on

estimating progress is that the smallest unit ofmanagement is an iteration, which makes

estimating progress difficult(and potentially inaccurate). Aniteration inthese life-cycles

represents a version ofthe entire system.The progressforthe Overall project is based

uponthe individual estimates ofthe manycomponents comprising the overall system.

Each component representsa certain percentage ofthe overall effort to implementthe

system,so the estimate for each component much be weighted relative to its overall

significance to the system.Because the iteration is the smallest unit ofabstraction,

estimatesfor all the software components have to be evaluated,weighted,and compiled at

one abstraction levelto produce an overall progress estimate. Analyzing progress

estimatesfor all ofthe software componentstogether forcesa developer to analyze too

many logical entities simultaneouslyto evaluate/interpretthem effectively.

30

Chapter Three-The Recursive Multi-Threaded(RMT)Life-Cycle

The recursive multi-threaded(RMT)life-cycle is designed to accommodate the

needs ofdeveloping systems using object-oriented techniques and to facilitate the

monitoring ofprogress during development.The previous chapters discussed the

motivation and requirements ofRMT,and summarized a number ofexisting software life-

cycles and some oftheir limitations. This chapter presentsthe fundamentalconcepts and

definition oftheRMT software life-cycle.

Manyofthe xmderlying conceptsand techniquesofRMT are also found in existing

life-cycles(e.g.,the spiral model[Boehm-88]and the recursive/parallel model[Berard­

93]),butthe presentation and implementation ofthose concepts differentiateRMT fi*om

these life-cycles.Eventhough techniques used byRMT,such as iteration and recursion,

have also been proposed in existing life-cycles,what differentiatesRMT firom existing life-

cycles is the use ofa development"thread"asaconceptualunit to organize development

activities and to monitor progress.RMT is a milestone-based,iterative life-cycle that

supports incrementaland parallel development.It usesa divide-and-conquer technique to

system implementation,supports multiple levels ofinformation abstraction,and

encouragesthe use ofopen-ended architectures.The use ofthreadsto organize

development helps provide aform ofcontrolto the complex nature ofobject-oriented

software development(often interpreted as chaotic).

3.1 Process Concepts

Ina nutshell,RMT consists ofa number ofthreads whichimplementsome

software system.Eachthread is an abstraction which representsthe implementation of

31

some portion ofthe overall software system.Athread consists ofa set ofactivities that

are performed in some order to implement a software component(which may be a class,

module,or subsystem),and may be iterated manytimes.Athread may also spawn child

threads which implementsome portion ofthe software componentofits parent thread.

Since athread maybe composed ofother threads,there maybe manythreads executing

simultaneously at any point ofthe development process.Because ofthis hierarchy of

threads,RMT is a divide-and-conquer process and as described in later sections,the

hierarchy ofthreads divides the system implementation into multiple levels ofabstraction.

Supporting multiple levels ofabstraction provides a framework for monitoring progress

during development.

There are a number ofessential concepts that define the RMT process.

Specifically,they are threads,iteration,recursion,and reuse.The following sections

describe each ofthese concepts in detail.

3.1.1 Threads

The centralconceptofRMT is athread. Mosteverything withinRMT is defined in

termsofa thread. Threads are mostcommonly discussed in the context ofprogramming

languages and operating systems.Inthis context,athread is commonlya single path of

execution within a program,where multiple threads maybe executing the same program

simultaneously. This allowsfor parallel execution within a program.This is different from

processes within an operating system because each ofthe threads shares the same program

instructions and memory.A more detailed discussion on programming threads exists in

[Lewis-96].

32

AnRMTthread consists ofa set ofactivities,or phases,that have well-defined

goals,inputs,and outputs. These activities are not unique to RMTbut are present in many

other software life-cycles. AnRMTthread is composed ofplanning,requirements analysis,

analysis, design,implementation,testing,and quality^surance phases.These activities are

generally performed in a sequentialorder,although there maybe overlap betweensome

phases.Unlike traditional,sequential life-cycle models,certainthread phases may begin

prior to the completion ofthe preceding phase.The mostcommon overlap ofphases

occurs in the analysis,design,implementation,testing,and quality assurance phases.

While the analysis,design,implementation,and testing phases mayoverlap with

each other,Berard[Berard-93]points outthat software quality assurance(SQA)is an

activity that occurs during the entire life-cycle and notjust at the end.SQA does not only

consist oftesting,it may also include requirement verification,insuring consistency

between analysis,design,and implementation,performing design and code inspections,

etc. The Software Engineering Institute[Paulk-93a]recommendsa set ofSQA activities

that should be carried out by a group independent fromthe developers.Because these

activities and the individuals performing these activities are independent from(yet closely

tied to)the development activities,SQA could be considered its own process with a

separate life-cycle tlmt occurs in parallel withthe development life-cycle. A sample SQA

life-cycle might consist ofwalkthroughs and risk analysis during the requirements analysis

phase,inspections and risk monitoring/management during design and implementation

phases,and testing after implementation is complete.This is notthe only or bestSQA life-

cycle.Because the SQA activities used by orgaiiizations mayvarygreatly;RMTdefinesa

' 33 ,

minimum set ofSQA activities but allowsfor additional activities during all development

activities.

RMTThread

Testing

Implementation
Requirements

Analysis
Planning Design

Analysis^^ ^ ^^^^^ ^^^ ^^^^^^" Quality
——-J Assurance

Figure 3.1:RMTThreadActivities/Phases

Each thread hasateam ofindividuals(one or more)who perform activities to

implement software componentsto satisfy the requirementsfor that thread. Withina

thread team there is one individual,the thread manager,who is responsible for the

software component(s)buUt by the thread.Developers may work on many dififerent

threads and thread managers may manager morethan onethread.

The same step-by-step process defined byathread is applied to many different

parts ofa project by many different developers with different skills and responsibilities.

For example,the same thread abstraction used byan engineer to implementa single class

is also used bythe project architect for the conceptualview ofthe entire system.This is

analogousto threads in programming languages where multiple threads share the same set

ofinstructions.InRMT,these shared instructions are simplythe steps,or activities,that

are performed during athread.

34

3.1.1.1 Iterative/Evolutionary Development

AsBooch,Gilb,and others have described,there is a need to support iteration and

incremental development within an object-oriented development life-cycle. There are a

numberofreasons whyiteration may occur during software development(and whya

software life-cycle should accommodate it). One reason is that it is simply easier to

partition development into smaller,more manageable pieces.Acommon method for

incrementally developing a class isto implementthe complete interface with methodsthat

do nothing(a stub),then incrementallyimplement(or extend)each ofthe stubs.

When given a set ofrequirementsfor asoftware component(whether they are for

an entire system orfor a single class),the developmentofthe cornponent should be

partitioned into anumber ofincrementalreleases,distributing the requirementsamong the

incrementalreleases. The requirements should be prioritized according to an

eflfectiveness/cost ratio and scheduled so thatthe highest ranked requirements are included

in the earliest releases[Gilb-88].It is possible that the planned iterations maychange

during the course ofdevelopment.Planned iterations may be removed because system

requirements may be deleted or new iterations maybe added due to new requirements or

the modification ofexisting requirements.In addition,iftechnical problems occur,such as

design or implementationflaws,new iterations may be required to resolve the flaws.

These incrementalreleases do not need to be givento the end user or other team

members,but may simply be used as an internal development milestone.In fact,an

incrementalrelease may not even satisfy any ofthe given requirements.Early project

increments maysimply implementsbasic system architecture or fi*ameworkthatthe"

35

remainder ofthe software system will be built on.Thread iterations may also be used asa

wayto explore and further define vague or incomplete requirements,evaluate potential

risks,or to prove/disprove crucial design decisions. When given vague requirements or the

design for a criticalcomponent,athread iteration may simplyimplement a prototype to

clarify requirements or asa proof-of-conceptfor a design specification. This prototype can

be included asathread iteration during the planning phase for the thread.

/N\

RA JA

OA

Figure 3.2:RMTThread with N-Iterations

In additionto simply partitioning a problem into smaller pieces,iterative life-cycles

are well-suited for handling changes during development,help identify differences between

the defined system requirements and the"true"user requirements early inthe development

process,provide a realistic metric for measuring progress,and help prevent defects fi:om

becoming overwhelming.

Changes during the development process require that developers"backtrack"to

some previous point in the development process,modify or correct some problem,then

continue development along the same,or different, path.Many life-cycles do not

adequately handle changes in requirements,design,etc. during the development process,

viewing them asa negative influences that should be avoided.Brooks[Brooks-95]feels

36

that change is simplyafact that we should acceptand accommodate rather than try to

ignore or attribute to poor decision making.Technicalproblems,such as poor design or

implementation decisions,and non-technical problems,such as misuse oftechnology and

personnelconflicts[Raccoon-95],mayrequire development phases be revisited to correct

the errors.In sequential methods,revisiting previous development activities to correct

errors or accommodate changestendsto incur significant costs because it is not part ofthe

planned sequence ofevents.By expecting and planning for development phasesto be

repeated,iterative fife-cycles are more accommodating to change.

Because manytime the users(and developers)do not completely understand the

system requirements at the beginning ofthe project,the system requirements maychange

during development.Incrementalreleasesofthe software can be givento the users to

solicit feedback.Users are able to identify incorrect or missing requirements early inthe

development process ratherthan after the finalsoftware is delivered. This prevents

developers firom ejq)ending significant effort building the software to incorrect

specifications which will require additional effort to modifythe software to the new

specifications later.

Ateach incrementalrelease during an iterative fife-cycle,the actiial development

progress can be compared vdth the project schedule and the schedule can be adjusted

accordingly. Because this is done frequently,it provides the developers and managers with

a more accurate view ofthe development and estimated completion based uponthe

realities ofwhat has been currently implemented.

37

Iteration also help keep software defects at a more manageable number because as

each iteration isimplemented,defects are resolved before the iteration is complete.This

preventsatremendous amoimt ofdefects fi'om having to be resolved at once,like in a

single-release approach.Because defects are resolved at the end ofeach iteration,each

iteration producesa working/tested component making the software more stable earlier in

the development process.

Because development ofthe software components is divided into multiple

iterations, mostiterations are based upon some existing version ofasoftware component.

Since the majority ofthread iterations are based upon existing software,the only

distinction betweenthe initialthread iteration and subsequent iteration is that there is no

existing analysis/design information,source code,etc.to betaken into consideration

during the initial iteration.Infact,there is no reason whythe initialthread iteration can not

be based upon an existing software component,itjust requiresthe developerto review the

existing software componentjust like during subsequentthread iterations. Because ofthis,

developers can improve or extend existing software components at anytime during a life-

cycle,whether the component is currently under development or has already been

delivered to the user and is"development-frozen".InRMT,maintenance ofasoftware

component(or system)is no differentthan the initialimplementation ofthat component,it

simply requires new iterationsto implement additionalrequirementsfor the existing

component.Even in the normalcourse ofthe developmentofasoftware component,new

requirements may be added after development has begim and before it is completed.

Maintenance is no different. Viewing maintenance as part ofthe system Ufc'^cycle by

38

continually repeating development phases(i.e., iteration a thread)makesRMTcycUc in

nature(thus,the term life-"cycle")because it hasno end-point.

Care should be taken when planning the number ofiterations athread should have.

Using too many iterations to implementacomponentcan have detrimental effectson

productivity,requiring more effortto manage the iterations themselvesthan is saved as a

result ofusing iteration.Iterations should only be planned whenthe benefits ofdividing

the developmentofsome component into a number ofiterations is greater than the cost of

managing the iterations themselves.The criteria used for deteriiiiriing how many iterations

to use for a particular thread depends greatly onthe nature,complexity,and functionality _

required ofthe componentto be implemented.

To help guard against developersmaking poorjudgments and scheduling excessive

iterations,a guideline for determining how many iterationsto use is that each iteration

should representa significant portion ofeither the overall effort to implementthe

component or a significant portion ofthe overallfunctionality ofthe component.For

example,each iteration should represent no lessthan 15-20% ofthe overall effort or

fimctionality ofthe component(i.e.,a maximum of5to 7iterations). Exceptions maybe

made to this guideline for very complex components.Microsoft,for example,usesthree

or four project milestones(similar to an iteration)for developing products.[Cusumano­

95]Another safeguard is to have a peer review by a group ofdevelopersofthe estimated

number ofiterations for athread during the thread planning phase.

39

3.1.1.2 Recursion

RMTthreads,like threads in programming languages,maycreate child threads.

Within anRMTthread,the implementation phase may simply be the realization(coding)

ofa simple software component(aclass)or a complex software component(asubsystem).

For non-simple softwarecomponents,the implementation phase may actually be the

recursive application ofa number ofmore specialized threads,where each child thread

implementsa particular portion ofthe complex software component.

EachRMTthread begins with a given set ofrequirementsfor a software

componentthat the thread mustimplement.These requirements may be in varying levels

ofabstraction,ranging from very high-level(for an entire system)to very specific(fora

single class). Aspreviously mentioned,these requirements may be prioritized and

implemented in variousthread iterations. Withina single thread iteration,the

implementation phase begins whenenough design information has been defined from

analysis and design phasesto specify what needsto be implemented(the preconditions of

the implementation phase are specified later).Ifthe design information is the specification

forasmaU-grained component(a class or group ofclasses)thenthe implementation phase

results in the actualcoding ofthe component.If, however,the design isfor a higher-level

component,thenthe current design must be further detailed to identify and define allof

the classes required to implementthe higher-level component(s).To make this processof

specialization more manageable,the design ofeach higher-levelcomponent is decomposed

mto smaller cohesive groupsand new,more specialized,threads are spawned to satisfy

each ofthese groupsofrequirements(i.e., divide-and-cOnquer).Each ofthese child

:■ 40 : ■ ■■

threadsfollow the same rules as its parent thread;they may iterate manytimes and they

may have a number ofchild threadsthemselves.The implementation phase ofa given

thread is completed when all iterations ofall its child threads have been completed or it

has been terminated prematurely because ofsomefeilure.

Because threads maycreate other threads,there may be any number ofthreads that

are being"executed"at any giventime,each ofwhich maybe in a different phase.Inthis

sense,anRMTthread is similar to a high-level programming language thread.In addition,

aU development initiates froma single thread,the root,which representsthe entire systern.

All other threads are spawned,either directly or indirectly,fromthe rootthread.

While recursion has its benefits,it also has its pitfeUs. Anyone who has written

recursive programs has undoubtedly discovered this at one time or another whenthey

incorrectly code the exit condition and their program fails to terminate. While recursion

can be an eloquent solution to a problem,it adds additionaloverhead.In programs,

recursion requires additionalresources(memory).InRMT,recvusion requires additional

effortto manage and coordinate new threads and increases the potentialfor

miscommunication between developers. There is also the potentialfor creating too many

child threads(Le.,an exponential explosion),where the benefits gained by decomposing

the problem into smaller pieces is outweighed bythe resources required to manage the

threads.

Because threadsincur additional overhead,new threads should only be spawned

whenthe benefits ofdecomposing the problem being solved into smaller pieces is greater

thanthe cost ofmanaging the child threads. Makingthis determination is uptothe

41

individiial, butsome criteria that can be used for determining whento create child threads

are whenthe problem at hand istoo complexto be easily visualized/understood by the

designer/engineer,whenthe solutionto the problem at hand contains multiple unrelated

components which themselves are ofsubstantial size or complexity,or the solutionto the

problem at hand contains a substantialnumber ofcomponentsthat may have drastically

different life-cycles.

Eventhough guidelines may be followed for determining when to create new

threads,developers can still make poor decisions. Another technique to help guard against

the misuse ofthread recursion is to require thread managersto have a peer review by

other developers before being allowed to create child threads.In addition,developers

should simply be educated aboutthe potentialofabusing recmsion and its consequences.

Making them more aware ofthe potential problems may makethem think twice about

spawning new threads.

42

OA

RA

RMT Thread A1 Implementation Phase

QA

TJ l RA
J31 RA

OA
OA

Figure 3.3:RMTThread with Recursion

3.1.1.3 Reusability

Reusability has long been a goalofsoftware engineering methods.It promisesto

reduce development costs/effort and improve quality.As mentioned previously,object-

oriented technology wasoriginally promoted as oflFering a higher degree ofreusability that

it has not been able to deliver.People have realized that both building reusable software

components and reusing existing software componentsis not something that happens

automatically asaresult ofusing a certain methodology or technology,butthat it is

something that is a conscious decision that requires planning and significant effort to

successfully employ.

Reusability cantake manyforms,ranging from high-level design information such

design patternsto low-levelsource code reuse. Although reuse is simply atoolto
as

43

perform an activity,such asa design or implementation,a development life-cycle should

makesome allowancesfor it. Thefollowing sections present a briefdiscussion ofthe

formsofreuse thatRMT encourages.

3.1.1.3.1 Source Code Reuse

Source code reuse is probablythe most efficient and commonlyrecognized form of

reuse.Reusing existing source code provides perhapsthe ultimate benefit ofsoftware

development.It greatly reduces developmenttime and costs,and it improvesthe quality of

the resulting software because the reused con^onentsthemselves are(or should be)of

high quality. MOi[Mili-95]attribute source code reuse asthe only technically feasible

factor to leverage an order ofmagnitude improvementin progranfiner productivity. While

source code reuse is,and has been,a highly sought after goalofsoftware development it

has not been achieved to the degree hoped asaresult ofobject-oriented,or any other,

technologies.

Alfred and Mellor[Alfred-95]believe that onereason wide-scale reuse has not

occurred is because the process ofreusing software is difficult and tune consuming.The

design and implementation ofreusable classes is much different than classes designed for

one-tune use.The design and implementation ofclasses for one-time use tendsto be

influenced bythe system the classes are currently being developed within,and do not take

into consideration other issues which affect their ability for reuse. Truly reusable classes

need to be more generalized than their single use counter parts. McGregor and Sykes

[McGregor-92]believe that to develop reusable software componentsthe life-cycle of

class development should be independent fromthe application life-cycle. The reasonfor

44

this is so thatthe class can be implemented to supporta(more)complete descriptionof

the entity rather than simply what is needed for the current system. Whenimplementing a

new class,this usually involves afiilly-defined base class representing the complete entity

and a specialized derived class for the current system.

There are also implementation issues with reusing source code.For example,in

C-H-the decisionto declare a memberfunction in a class as virtualor non-virtualcan

effect the behavior ofclasses developed by others that inheritfrom that class. Other

implementation difficulties ofreusing source code are platform portability and language

compatibility. Asaresult,designing and developing reusable classes involves more effort

(and expense)than classesfor one-time reuse.

The generation ofretisable classes is only halfofthe problem.Once reusable

classes have been created,classes to be reused must be identified during software

developmentin an efficient maimer.Reviewing source code manuallyto locate candidate

classes is impractical,so someform ofcataloging should be used.The Object Reuse

Classification Analyzer(ORCA)and Automated Hypertext Reuse Search Tool

(AMHYRST)projects are examplesofsystemsthat can be used to support searching

repositories ofreusable software objects[Isakowitz-96]. Another problem with reusing

existing classes is thatit is rare that classes can be reused as-is without any modifications.

Manytimes,the effort required to modifythe reused class involves more effortthan

developing the class fi-om scratch.

Regardless ofthe problems associated with source code reuse,software engineers

willcontinue to pursue source code reuse to their advantage,so a development life^cycle

'45

should accommodate the reuse ofexisting source code(classes). During the design phase

ofanRMTthread,the designers should evaluate existing class libraries to determine if

there are existing componentsthatimplementthe given design specification. Software

components built asthe result ofanRMTthread can be integrated into a class library after

the thread(component)has been completed.

3.1.1.3.2 Design Patterns

Software systems generally contain recurring patternsofsolutions to problems,

whether they are real-world problems or software implementation problems. When given a

new problem,it would be wastefulto inclementa new solution ifsomeone else had

already solved it. The ideal situation would be to reuse the existing source code used to

solve the problem,butthis may not be possible in all cases.The next best situation would

be to consult the individual(s)who had already solved the problem,get a description Of

the solution,and implement it. Manytimes,however,the individual(s)may not be

available,or they may have evenforgotten how they solved the problem.The e?dsting

source code could be examined and the solution extracted,butthistakes valuable time and

may result in an incorrect interpretationofthe solution.In this case it would be usefulfi)r

the original designer to documentthe solution that wasimplemented(while they still have

a detailed knowledge ofthe design)so that other people could use the same approach

whenthey encounter the same problem.This is what design patterns do.They document

the design ofa software componentthat solves a particular problem.

Because ofthe many difficultiesofreusing source code,design patterns are the

nextlogical step for achieving reme.Another reason design patterns are so significant is

46

that object modeling is difficult to get correctthe &sttime,and generally involve several

iterations[Rumbaugh-91].Design patterns are intended to be solutionsthat have been

implemented and provento work.This eliminates the time for others to evolve a design,

which may or may not be correct. While a number ofmethodologists have defined what

information is included in a design pattern,most are based on what is called the

Alexandrianform[CopUen-94]which draws fi:omthe work bythe architect Christopher

Alexander. The Alexandrianform includesthe pattern name,a description ofthe problem,

the context ofthe pattern,any limitations ofthe pattern,the solution,examples,

outstanding issues,and the rationale behind the solution. Otherformats exist for

describing design patterns,such as[Gamma-95],which are also based onthe Alexandrian

form

During the design and implementation phases ofRMTthreads,

designers/developers should review existing design patterns for solutions to problems

identified during these phases.

3.1.1.3.3 Open-Ended Architectures

Once development ofasoftware system has begun,the cost ofmaking changesto

system requirements can be significant. Three factors that may determine the costof

changesto system requirements are the size ofthe change,the time at which the change is

iutroduced,and the architecture ofthe underlying software implementation.First,the cost

ofa change is relative to the severity the change;the more significant the change,the

greater the cost[Botting-97]. Whatmayseemto be a smallchange to a user mayrequire

significant changes and cost to the developers:Second,the costofchange isrelative tothe

47

time at which it is introduced during the development process.The later in the

development processthat the change is introduced,the costlier the change is[Pressman­

97].Lastly,the imderlying software implementation can drastically influence the cost ofa

change independent ofthe size ofthe change and the time that it is introduced.Ifa

software implementation is not malleable,even a smallchange mayrequire significant

modifications to the implementation.

Developers do not have control over the size ofa change or the time a change is

introduced during development,butthey can controlhow the underlying software is

implemented.In Gilb's[Gilb-88]description ofthe evolutionary delivery method,a critical

issue that contributes to the success or failure ofa project is open-ended architectures.

Because evolutionary development is designed to accommodate change during the

evolution ofasystem,and changes can be costly,the underlying system should be

designed and implemented in such a waythat changescan be madeto the system without

incurring significant effort. Open-ended techmques"are quite simply any solution idea

which displays strong attributes ofadaptability,hereimder extendibility, portability and

improvability."[Gilb-88]Table 3.1 summarizes Gilb's basic principles ofopen-ended

Hesign Because Microsoft uses an iterative life-cycle for developing software,they have

adopted the use ofsimilar guidehnesfor developing their product architectures

[Cusumano-95]. Microsoft refers to this as flexible architectures.

48

Allsolution ideas willto some degree allow change ina measurable way.

Each solution idea has multiple ease-of-change attributes.

The e3q>ected range ofeach solution idea's ease-otchange attributes can

be noted and used to selectthem for new designs.

The need for open-endedness is relative to a particular project's

requirements.

Each open-ended solution idea has side-effects which must ultimately be

the basis forjudging the ideasfor possible use.

Youcannot maximizethe use ofopen-endedness—but must always

considerthe balance ofall solution attributes against all requirenxents.

You cannot finally select one particular open-ended design idea without

Tcnnwing which other design ideas are also going to be included..

There is no finalset ofopen-ended design ideasfor a system;dynamic

change is required and inevitable because ofthe externalenvironment

change.

Open-endedness will,by definition,cost less in the long term,but not

necessarily more inthe short term.

Ifyou don't consciously choose anopen architecture initially, your

system's evolution willteach you about it the hard^ay.

Table 3.1: Gilb'sBasicPrinciples ofOpen-EndedDesign

Because ofthe iterative nature ofRMTthreads,some initialthread iterations and

all subsequentthread iteration are based uponsome existing component(s)(in varying

levels ofcompleteness).It is possible that initialthread iterations may be based uponsome

existing componentthat requires modifications orimprovementsrather than implementing

a software component firom scratcL The requirements ofan iteration may require

modification,deletions,additions,and modifications,to the underlying system.Ifthe

underlying system is not designed and implemented to accommodate change(i.e., open-

ended),it is likely that a significant effort will be required to alter the imderlying system to

integrate the modificationsfor the current thread.Because chang,es mayoccur during each

49

iteration ofathread,the software mayrequire modifications duringeach iteration,

potentially magnifying the cost ofimplementing these changes.

Developing software is much like Gilb's analogy ofa chess game.Your long-term

goalis to defeat your opponent,so you could plananumber ofmovesto carry outtlmt

goal. Your opponents moves,however,are not predictable so you have to make

contingency plans.The number ofpossible combinationsfor your movesand your

opponents counter-moves are astronomical,and you can not realistically accountfor all of

them.Therefore,the only movethat really counts is the next one. Siiice change is

inevitable,it is more effective to put your energy into being able to respond to your

opponents move while stiU movingtoward your objective thanto"plan in detail exactly

what you are going to do.The same is true ofsoftware development,and open-ended

architectures are one technique for responding to change.Therefore,software developed

usingRMT should follow the principles ofopen-ended architectures to reduce the amount

ofeffortto accommodate change.

Open-ended architectures are not withouttheir costs. Muchlike developing truly

reusable software components,they are more difficult to design and implement,and take

more time.However,its effectiveness can not be evaluated based uponthe initial

development cost because it is a long-term investment(just like software reuse). Initially,

the cost willseem excessive;spending more time/effortthan is required to

design/implement the immediate requirements.However,during later iterations when

changesand enhancements occur,the time and effort saved because ofthe flexible

architecture can significantly outweigh the initial overhead.

50

While open-ended architectures do require additional effortto implement,there are

some elements ofobject-oriented technology that make it easier: abstraction,

encapsulation, modularity,and hierarchies[Booch-94].These elements have long been

promoted as good software engineering techniquesfor traditional methods and

technologies,butthey are an inherent characteristic ofthe object-oriented approach,

making it easier fora developer to design and implement software with open-ended

qualities. Using object-oriented technology does not guarantee that the software produced

willcontain open-ended qualities,poor designers can still make poor designs,but object-

oriented technology definitely makes building open-ended architectures easier.

Shaw[Shaw-84]defines abstraction as"a simplified description,or specification,

ofasystem that emphasizessome ofthe system's details or properties while suppressing

others.A good abstraction is one that emphasizes details that are significant to the reader

or user and suppresses details that are,at least for the moment,immaterialor

diversionary".Encapsulation is atechnique that hides the internal details ofan abstraction,

or object,firom the user ofthe abstraction. This is usually done by separating the external

view ofthe object,commonly referred to as its interface, firomthe implementation ofthe

object. Modularity is atechnique oforganizing asystem into a number ofcohesive and

loosely coupled units,or modules.In compiled programming languages,such asCand

C-H-,a module is simply asource code file that can be compiled separately. While

modularity helps divide a system into logically related abstractions,a hierarchy allows a

developer to rank and order abstractions.Each ofthese elements aids in both the

51

conceptual(i.e., analysis and design)and physical(i.e.,implenientation)constraction of

open-ended architectures.

Eventhough open-ended architectures are really a design and implementation

technique,it is ofsuch importance that it affects how the life-cycle processis defined

because an evolutionary process can fail horribly ifthe designed and implemented system

is not open-ended.Forthis reaSon,nsers ofRMT are encouraged to follow the principles

ofopen-ended architectures.

3.1.2 Benefits ofThreads

The purposeofusing threads as abstractions ofthe development process is to

provide someform ofcontrolor managementfor acomplex process.Asaresult ofusing

threads asaformofcontrol,they provide a mechanism for monitoring progress during

development,allow parallel development,and support niultiple levelsofabstraction.The

following sections discuss these benefits in detail.

3.1.2*1 Monitoring Progress

Perhapsthe single greatest benefit ofRMTis its ability to monitor progress.RMT

supportsthe task ofmonitoring progress during developmentby providing a mechanism

that makesthe processofevaluating and interpreting progress estimates easier for

developers. Rather than requiring developers to estimate progressfor aU the software

componentsofa system at one levelofabstraction,RMT divides this estimation into

smaller units ofabstraction: iterations and the thread hierarchy. This mechanism still

requires developersto make their"best guess"(i.e., estimate),but only for a small Unit of

abstraction,notfor a large system.

■ 52

Progress estimation begins at the smallest unitofabstraction inRMT,aclass.The

implementation ofa class is performed within the conceptualunit ofathread,which is

partitioned into a number ofiterations. Before the implementationofthe class actually

begins,each iteration is assigned a percentage ofoverall effort required to implementthe

class(the sumofthe percentagesfor all iterations is 100%).Progress is measured by

summing up the assigned percentagesofiterations that have been completed,plusthe

assigned percentage ofthe current(incomplete)iteration multiplied by its estnmted

progress.For example,consider the implementation ofa class that is partitioned into three

iterations with percentages of40%,35%,and 25%ofthe overallimplementation effort,

respectively,given to each iteration.Ifthe first iteration is completed and the second

iteration is50%completed,the overallimplementation is 57.5% complete((40%* 1.0)+

(35%*0.5)+(25%*0.0)=57.5%).

Progress estimates need to be updated frequently,at each iteration,to

accommodate anychangesthat may occurthat would affectthe origin^ estimates.For

example,ifnew iterations are added the estimated percentages need to be revised to

reflect the new set ofiterations.

Once the progressofindividualthreadscan be determined,the progress of

implementation phases which have spawned child threadscan be determined.The progress

ofanimplementation phase is simplythe sumofthe weighted progress estimates ofeach

ofits child threads.Inthe samefashion that each thread iteration is assigned a percentage

ofthe overall effort for the thread,child threads are assigned a weighted value indicating

the percentage ofeffort ofthe implementation phase ofthe parentthread that the child

. ■53; , , ■ ■

thread represents.For example,ifthe implementation phase ofathread hastwo child

threads,A and B,where A constitutes75%ofthe implementation effort andB constitutes

25%ofthe implementation effort, weightsof0.75 and 0.25 will be assigned to each ofthe

child threads,respectively.Ifthread A is25%complete and threadB is75%complete,the

overall progress ofthe parent threadsimplementation phase is 37.5%((0.75 *0.25)+

(0.25*0.75)=0. 1875+0.1875=0.375)

While this stiU requiresthe developers to estimate the percentage ofoverall effort

that each iteration and child thread represent,it does provide some systematic method for

estimating progress ofcomplex components and an entire system.

3.1.2.2 Multiple Abstraction Levels

When applyingRMTto a particular project,allofthe threads are organized in a

hierarchy.Each levelin the thread hierarchy represents a different levelofabstraction.

High-levelthreads address general overall system requirements while low-levelthreads

address the requirementsfor individual classes.Each thread abstraction levelis usually

managed and implemented by different developers because each abstraction levelrequires

a different skill set and expertise. While there can be any number ofabstraction levels in a

particular project,there are three broad classifications: project-level,subsystem-level,and

class-level.

Threadsin the project-level category address the high-level(broad)system

requirements.The highest levelthread is the root thread,which represents the entire

system being developed. All other threads are spawned from the root thread.Brooks

believes that the project architect"is responsible for the conceptualintegrity ofall aspects

54

ofthe product perceivable by the user"and represents the interests ofthe user during the

system development.[Brooks-95]It is the project architect who should be responsible for

the management ofthe root thread.Brooks also feels that the project architect is

responsible for partitioning the overall system into subsystems.Each ofthese subsystems

will have itsown architect, which may or may not be the project architect. Class-level

threads represent the threadsthat deal with the lowest levelofdetail(the most

specific),which is the actualimplementation ofa class. Software engineers and

programmers are responsible for class-levelthreads. Subsystem-levelthreads represent the

intermediate threads between the project-leveland class-levelthreads,which deal with

subsystems and modules.Project designers are generally responsible for subsystem-level

threads,although the project architect mayinvolved for higher-levelsubsystem threads

and software engineers maybe involved for lower-levelsubsystem threads,depending

uponthe availability ofresources.

How the development staffare organized caninfluence the quality and timeliness

ofsoftware development.Poorly organized teamscan have veryimdesirable effects on

development,making communication between developers difficult or unreliable,

introducing delays,etc.Eachthread hasa set ofassigned team members,and by

structuring threads asa hierarchyRMT providesan organization to the developmentteam.

Because eachteam memberofathread has well-defined responsibilities,the hierarchy of

RMTthreads provides well-known points ofcommunicationthroughoutthe entire

developmentteam so individuals can identify who to contact whenthere is a question or

problem related to a particular component or thread!

: 55

ProjectTeam

Project-Level Threads

(ProjectArchitect)

•Subsytem
Subsystem-Level Subsytem

^ Team8
Threads(Designers) Team A

Class-Level Threads

(S/W Engineers)

ClassTeam A ClassTeam B ClassTeam C

J
%

Figure 3.4:Levels ofThreadAbstractionsand Thread Managers

Athread manager is responsible for implementing the requirements assigned to

their thread.Because this thread mayspawn other child threads,the manager is also

responsible for these child threads.The requirements givento a child thread is essentially a

contract betweenthe managersofthe parent and child threadsfor whatthe child thread

needsto do.This clearly defines the responsibility ofeach individualin the development

process.In addition,the thread manager is responsible for notifying the manager ofthe

parentthread whentheir thread is completed.

The hierarchy ofthreads can have its disadvantages. First,each new child thread

involvesthe additional overhead ofa person to manage the thread.The addition ofnew

threads can also reduce the conceptualintegrity ofthe project because asthe high-level

requirements"trickle"downthrough the thread hierarchy,the essence ofthe requirements

may be lost or fade because they have been decomposed'into manyindependent pieces

56

(the"can't see the forest through the trees"syndrome).The thread hierarchy also addsthe

potentialfor rniscommimication simply because there are more individuals introduced in

the development chain from the user to the engineer who implementsthe software.

Because ofthese potentialproblems,new threads should be created only after careful

consideration. Section3.1.1.2 discusses some guidelines for whento create new threads.

In addition,the requirements that are passed to child threads should be as close to the

originalthread requirements as possible so that the conceptualintegrity ofthe system is

maintained.

Within each thread,the distribution ofdevelopment effort for each phase depends

uponthe levelofabstraction.Project-levelthreads generally involve more effort in the

planning and requirements analysis phases,subsystem-levelthreads involve more analysis

and design activities,and class-levelthreadsinvolves more implementation.

3.1.2.3 Parallel Development

With the overlap betweenthe analysis,design,implementation,testing,and quality

assurance phasesand the recursive application ofthreads,parallel development is

introduced.Parallel development simply meansthatthere maybe more than one activity

being performed at any given time.In sequential life-cycles, parallel development is

impossible because the development effort is required to be in a single phase at any given

time.Thisresults in the inefficient useofresources because team membersspecializing in

different areas may be idle while others are not,and vice versa.

57

Implementation

Design

Analysis
 Testing

::Software Quality Assurance^

^\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\'^

Time

Figure 3.5:Distribution ofActivities, in Practice,ofTraditionalSequential

Software Life-Cycles[Berard-93]

Berard[Berard-93]describesthat in practice,even in traditional sequential life-

cycle modelsthere is a great dealofoverlap between phases(see figure 3.5).Eventhough

there is overlap ofactivities,in many life-cycles a majority ofthe planning/requirements

activities happen early,implementation happens in the middle,and testing happens at the

end ofthe life-cycle.InRMT,athread may be in multiple phases simultaneously and there

may be any number ofthreads executing at any giventime during a development cycle,

each ofwhich maybe executing at a different levelofabstraction;therefore,there is a

high-degree ofparallel development.Asa result ofthe high-degree ofparallel

development,there is a very efficient use ofresources(developers). Ata particxxlar

moment during the development cycle project architects may be analyzing high-level

requirementsfor one subsystem,project designers may be designing other subsystems,

software engineers may be implementing other components,and quality assurance

specialists may be testing other components all at the same time. Atthe beginning and end

ofhigh-levelthreads,such asthe root thread,there willtend to be someteam members

58

performing a majority ofthe work while others will have very little to do.This can not be

avoided unlessteam members are qualified to perform different activities ofthe

development life-cycle(although,there are stiU only so many people that can have their

hands in the cookiejar at the'same time).

Within programming languages,a mechanism is usually provided to synchronize

the parallel execution ofmultiple threads so that they can coordinate their activities to

avoid rmdesired side-effects(e.g.,concurrent access/modification ofdata). WithinRMT,

developmentthreads may also need to be synchronized with other threads,although the

reasons are different than those ofprogramming languages.RMTthreads need to

synchronize with other threadsso that the software components being implemented byone

thread will work with software components being developed by other threads. Thread

synchronization occurs when allofthe phases within athread iteration have been

completed.This is animportant concept because it implies that any child threads that may

have been spawned during the implementation phase have beenterminated and the

software component satisfies the requirements ofthe thread iteration(i.e., it satisfies its

contract).

In order for parentthreadsto know when child threads have been synchronized,

they must be able to communicate.This is done bythe manager ofathread who reports to

the manager ofthe parentthread that the child thread is completed(this is discussed in

more detailin the following section). Thread synchronization occurs at alllevelsof

abstractions, but is most significant at the root thread which representsthe entire software

system.The synchronization ofthread iterationsatthe root thread impliesthatthe

59

incremental version ofthe entire system is complete and functional. This mayinvolve a

delivery ofthe system to the user or internal projectteamsfor evaluation and feedback. •

The concepts ofiteration and sjmchronization withinRMTis very similar to that of

milestones.A milestone is simply an event at which time a number ofobjectives are to be

con^leted.Milestones usually have an associated estimated or required con^letion date

and can represent deadlinesfor user deliverables,an indicator when certain objectives have

been completed,or internal goals identifying the completion ofa particular component.

WithinRMT,the synchronization(completion)ofathread is synonymous with a

milestone.Ifthe completion ofa particular thread iteration is deemed significant,a

milestone may be established atthe end ofthat thread iteration. Microsoft usesa

development life-cycle which divides large projects into three to four major milestone

product releases[Cusumano-95].

Another benefit ofthread synchronization(and iterative development)is that,ifthe

implementation has been done correctly and dOigently,at each point in the development

processthere is a working,tested(butincomplete)version ofthe system that could

theoretically be shipped to the user. Microsoft uses anincrementaltechnique called the

synch-and-stabilize process,which usesfrequent"builds"(synchronization)and

stabilization periods ofthe system to fecilitate this.[Cusumano-95]The synchronization

part ofthe process involvesthe"daily build and smoke test"[Cusumano-95,McConnell­

96].The daily build involves the compilation and linking ofall source code into executable

programs each day.Ifthe build fails, fixing the build becomesthe highest priority. Once

the build is successful,the"smoke test"is run to verify that there are no major problems

60

withthe system.It is not acomprehensive set oftests,but tests the major componentsof

the software to prevent qualityfrom degrading and integration problemsfrom becoming

significant.

3.2RMT Activities/Phases

AnRMTthread is divided up into a number ofphases that carry out different

portionsofthe development process.Each phase hasa well-defined goal with specific

inputs and outputs and mayinvolve a number oftasksto carry outthese goals. Generally,

the results ofone phase are inputsfor the next phase.These phases are not unique to

RMT,and in fact are commonto manysoftware life-cycles. While the phases are

undertaken in a sequential order,there maybe overlap between phases,especially withthe

quality assurance phase which happens simultaneously with all phasesofthread but

ciilmiiiates atthe end ofthe thread.

MostoftheRMTthread phases produce documentation(e.g.,textualand

graphical)as output. This documentation is critical to applying RMT effectively because

the documentation not only provides developers with a clear and concise description of

existing components,but it representsthe state ofathread.Because many developers may

work on multiple threads,it is possible that some threads may"go to sleep"temporarily

because no one is available to work onthatthread. Atsome time later whenthe

developers become available to resume work onthese threads,the developers need to

continue where they left thread development.The documentation can contain the

information describing what state thread development wasin when it"wentto sleep".

61

Since these documents can,and probably will,undergo changes during thread

iterations,some method should be employed to maintain a history,or versions,ofeachof

these documents.This allows developersto consult and compare previous versions ofthe

documents.Ifthe client wantsto know why the project schedule is behind, maintaining

versions ofthe requirements document mayshow that a significant number ofsystem

requirements were added since the initial iteration.

Thefollowing sections describe each oftheRMTthread phases.Many object-

oriented methodologies have very detailed definitions ofwhat is done(and how)during of

these phases.BecauseRMT does not require the use ofa particular methodology,the

descriptions present the goals ofeach phase without specifying the details ofhow the tasks

are performed.

3.2.1 Requirements Analysis

The first phase ofanyRMTthread is requirements analysis. The goalofthis phase

is to solicit, analj^e,and define the requirementsfor some software component.These

requirements represent a contract between the thread and the client ofthe thread.Project-

levelthreads generally require the user to provide the developers with an initial set of

requirements.The initial set ofrequirements may be incomplete,inaccurate,inconsistent,

vague,or unnecessary.The developers need to improve these requirementsto ensure that

the requirements are whatthe user really needs,detail any vague requirements,identify

any inconsistencies between requirements,identify any requirements that were not

identified, and eliminate unnecessary requirements. This usually involves interviews

betweenthe developers and users. The requirementsfor lower-levelthreads,subsystem­

62

leveland class-levelthreads,are usually specified bythe developersthemselves as part of

the system implementation to satisfy higher-level user requirements.Refinement ofthese

requirements generally involves discussion between developersto insure that the

requirements are accurate and complete.

3.2.2Planning

The planning phase takes a set ofwelldefined requirements asinput and produces

a development planfor the thread. Since the input is a set ofwell-defined requirements,

the planning phase can only begin after the requirements analysis phase has been

completed.The primary goals ofthe planning phase is to estimate the number ofiterations

required to implementthe given set ofrequirements,prioritize the'set ofgiven

requirements,and assign each ofthe requirementsto a particular thread iteration. While all

ofthe requirements wiU be passed to the next phase,onlythose requirementsthat are

assigned for the currentthread iteration are scheduled for implementation.The other

requirements are included onlyfor evaluation to avoid any conflicts or dependencies with

previous or future thread iterations.

The requirements can be assigned to thread iterations using any method deemed

necessary bythe project manager,but Gilb[Gilb-88]suggeststhat requirements should be

ranked and prioritized according to the value for the user and the amountofeffort

required to implementthese requirements.Requirements with the larger value to cost ratio

should be assigned to early iterations. The development plan should include a specification

for each iteration which includes the set ofrequirementsto be addressed in that iteration,

the estimated amountofeffort required to carry outthe iteration;the estimated/required

63

completion time for the iteration,and the allocation ofavailable resources needed to carry

outthe thread iteration.

Each organization has its owntechnique for estimating development effort and

scheduling projects,but when scheduling the estimated completion date forthread

iterations(a.k.a. milestones)it is suggested thatsomeform ofbuffering be incorporated

into the estimated schedule. Microsoft incorporatessome amountofbuffering in each

major product development milestone to accommodate uncertainties that arise during

developmentto more accurately meet estimated dates[Cusumano-95].These uncertainties

mayinclude scheduling overruns because of misimderstandingsofrequirements or

technical issues,unscheduled requirements,or other une^qpected problems.This buffer

time should not be used for anticipated tasks such asfeature development or testing.In

application products,Microsoft usually allocates20to 30jpercentofthe schedule to buffer

time[Cusumano-95].

Another critical goalofthe planning phase isto produce what Microsoft calls a

vision statement[Cusumano-95]and Schach calls a specification document[Schach-96].

This document is based uponthe set ofsystem requirements,produced inthe previous

phase,and specifies precisely whatthe resulting system is, whatfunctionality it will

contain,and anysystem constraints.In addition to specifying whatthe product is,the

vision statement specifies whatthe system is not. This is equally important as specifying

whatthe system is. Schach views this document asa contract betweenthe developers and

the users asto what constitutes the acceptable criteria for the resulting system.

64

3.2.3 Analysis

Once the development plan has been completed,analysis ofthe given requirements

can begin, which is the first step ofthe actualsystem implementation. The input to this

phase is the set ofrequirements,a development plan,and arisk analysis reportfor the

currentthread iteration. The risk analysis report is a result ofthe quality assurance

activity,which is discussed in alater section. The goalofthis phase is to fully understand

and define the problem to be solved forthe given set ofrequirements. The outputofthis

phase is a clear understanding and definition ofthe problem,which maytake theform of

documents and/or diagrams,depending uponthe particular methodology being used. This

document is called the problem specification. The problem specification willlikely include,

in additionto a description ofthe problem,a descriptionofa number ofobjects/classes

(i.e.,their name,attributes,and behavior)that were identified during the analysis phase

that are problem-specific.These objects or classes may or maynot be coded during the

subsequent implementation phase,depending upon their relevance in the design and

in^lementation phases.It is possible that an object/class identified during the analysis

phase is simply used to describe and modelthe problem but have no representation in the

resulting software.

The requirements scheduled fi)r implementation during the current thread iteration

are the primaryfocus during this phase.Related,or potentially related,requirements may

also be considered for analysis during this phase because they may affect the requirements

scheduled for implementation during the currentthread.Requirements scheduled for

implementation during the current thread iteration may not have been in^l&mented'yetor

65. '

they may be existing requirements that have beenimplemented during a previousthread

iteration but have been modified.Ifarequirement is new,then it must be analyzed and a

new problem specification must be constructed.Ifthe requirements is an existing

requirement that has been modified thenthe previous problem specification for the

modified requirement should be compared with the modified requirement ofthe cunrent

thread to identify incompatibilities.A new problem specification should be created for the

modified requirement which accountsforthe requirement changes.These problem

specifications are used asinputforthe design pha?e.

During subsequentthread iterations,the software componentsimplemented by

previous iterations should be consulted during the analysisofcurrent requirements. This

may identify similarities or conflicts with the existing software. Similarities mayresult in

the reuse ofdesign information and/or source code.Conflicts mayresult in modifications

to the existing software to accommodate changesrequired for the current requirements.

Because manyofthe input requirements may be unrelated to each other and can be

analyzed and specified independently,the specification for some problem areasmay be

completed before others. Once enough specification information exists for a particular

problem areathe design phase for the specified problem area can begin.For problem areas

that are closely related or dependentoneach other,the design ofthose problems should

be delayed until all related problems have been fully analyzed and specified because each

specification could change due to later analysisofrelated problems.Because design

activities may begin simultaneously with analysis,the boundary between analysis and

design activities is vague.To further cloud the boundary between analysis and design,the

66

identification and description ofanalysis objects/classes during the analysis phase may be

considered the beginning ofthe design phase. This is due to the fact thatthe description of

a class is commonto all development phases and the initial specification ofa class'

attributes and behavior begins during the analysis phase.

3.2.4 Design

The goalofthe design phase is to specify,in detail,how the underlying software

components are to be implemented.The input to this phase is the problem specification

document which isa detailed definition ofa problem.The outputofthe design phase is an

implementation plan,or design document,which providesa detailed specification ofthe

software component(s)to be implemented,and maytake theform oftextual documents

and/or diagrams,depending uponthe design methodology used.

Onthe initial thread iteration,the design phase involves reviewing the problem

specification and constructing the specification(or design)for the software component(s)

to solve the specified problem(s).During subsequentthread iterations,the design

documentation and source code for the existing system(implemented during previous

thread iterations or by other threads)may need to be reviewed to identify anyimpactthat

the problem specification ofthe current thread iteration will have onthe existing system

Commonly,each thread iteration willrequire new functionality to be added to existing

components,which mayrequire modification to the existing con^onent.

Asa solution to the problem specification input fromthe analysis phase is outlined

during the design phase,new objects/classes that were not identified in the problem

67

specification may be introduced in the design documentto flilly-specify the solution to the

problem[McGregor- 92].These objects are hidden firom the user.

The Hftgign for a software component may begin whenenough analysis information

exists to fully specify the problem the component needsto solve. Similar to the overlap

betweenthe analysis and design phases,the implementation phase may begin before the

design phase is conqileted. Since alarge number ofsubsystems,modules,and classes may

be identified and specified during the design phase,the design for some components may

be completed before others.In this situation,the actualimplementationfor these

components may begin before all design activities have been completed.It would be

prudent only to begin implementing componentsthat are either independent ofother

components,or related to components which have complete design information.

Iflibraries ofdesign patterns are available to the designer,they should be evaluated

during the design phase to determine ifthere are existing designsthat are applicable to the

problem at hand.Ifapplicable patterns are located,thenthe existing design information

should be reused and incorporated into the design specification.Iflibraries ofreusable

software componentsare available,they should also be consulted to determine ifthere are

existing software componentsor frameworksthat could be used during the

implementation ofthe design specification. This is done because the design specification of

the potentialcomponent(s)can be made to conform to the existing software

component(s),ifthe integrity ofthe design is not compromised.Thenthe existing

components could be reused with little or no software modifications.

68

3.2.5Implementation

The implementation phase is where the actual software coding occurs.The input to

this phase is a design specification for a particular software component.Thiscomponent

maybe asingle class or an entire software system.The output ofthis phase is a fiilly

implemented software componentthat adheresto the given design specification. Since the

design specification generated during the design phase maycontain specifications for a

number ofindependent software components,it is possible for implementationto begin

before the design specification for aU software con^onentshas been completed.The

implementation ofa software component may begin whenthe design specification for that

component has been completed in the design phase.

Ifthe design specification is for a low-level software component(e.g.,a class),

thenthe component is coded according to the given design specification.Ifthe given

design specification is for a high-levelsoftware component(e.g.,a module or subsystem),

thenthe design specification is decomposed into anumber ofsmaller,cohesive pieces,and

new threads are spawned to implement each piece.To iirplementthe given design

specification,new classes may be identified that were not specified inthe design

specification but are required for implementing the design(see[McGregor92]).

To promote software reuse,a design pattern library and source code library should

be reviewed,ifavailable,for compatible designs and/or source code before implementing

new components.Ifcompatible design information or existing components are located,

they should be reused appropriately. Thisimproves development time and software

quality.

69

Onthe initialthread iteration whenthere is no existing software component,the

source codeto be implemented wiU be done from scratch.On initial iterations where a

software component already exists or during subsequent thread iterations,it is possible

thatthe source code to be implemented during this phase willneed to be integrated into

some existing versionofthe overallsystem Ifthis is the case,then the design

specifications and source code ofthe existing system affected by and/or related to the

changes outlined in the design specification should be reviewed prior to coding.This

review is done to reduce(and hopefuUy eliminate)potential problems during or after the

required coding.Ifnew components are coded,then the review involves understanding

how the existing system and the new software component will intefact.Ifany existing

componentsrequire modification,the review involvesthe identification ofany behavioral

changesto existing methods and any"client"componentsinvoking these methods.

3.2.6 Quality Assurance

Quality assurance is a broad term which meansinvolves many different activities at

many different times during software development.The quality assurance phase

encompasses all activities required to ensure the quality ofthe software produced.It

occurs simultaneously with all other thread phases,but culminates after the

implementation phase.

The mostcommonform ofquality assurance is testing. The type oftesting

performed during athread depends uponthe abstraction levelofthe thread. Unit testing

occurs during class-levelthreads;integration testing occurs at system-levelthreads;and

fimctionaltesting occurs during the project-level thread(s)vAs with the development of

70

the system source code,the developmentoftest cases should involve reviewing existing

Hftsign patterns and source code libraries,reusing designs and/or componentsfor test cases

where possible.

It is generally preferred that the person performing testing(design,

implementation,and execution)is not the same person who developed the software being

tested. This is because the developer's view ofthe software is tainted with implementation

details,where anindependenttest engineer is removed from the implementation details

and is more concerned with behavior. This also allowsfor a higher degree ofparallel

development which results in a shorter developmenttime.Microsoft,for example,tries to

pair up atest engineer with each developer[Cusuniano-95].

Developmentoftest cases can begin as early asthe analysis phase.A high-level

dpisign for test cases can begin as soon asenough stable design information exists for a

component,which may occur before the design phase has been completed.It is wise to

only begin atest case design whenthe system component design is relatively stable and is

not likely to change drastically. Whenthe design specification for asystem component has

been completed and the implementation phase begins(note that the design phase may not

yet be completed), the complete test case design can be begin.The finaltest case design

may vary greatly informality and detail depending on the complexity ofthe test and

available resources(e.g.,time,budget,etc.). The actualimplementation ofthe test case

may begin once the test case design has beencompleted.This may occur during the

implementation phase before the componentto be tested has been completed. Allowing

for developmentoftest cases to happen in parallel with the system development

71

streamlines the development process.Ifpersonnelare not availability during the design

and implementation phasesto develop the test cases,the test cases can be developed

following the implementation phase.

Testing,however,is notthe onlytask ofthe quality assurance phase.It may also

involve risk management,verifying that the software meetsaU ofthe system requirements,

and assuring consistency ofindformation betweenthe analysis, design? 3ud in^lementation

phases.

3.2.6.1 Risk Management

While not part ofthe traditional quality assurance activities,risk management is

another task performed during the quality assurance phase,primarily because,like quality

assurance,it occurs simultaneously during all other thread activities. Astnentioned briefly

in chapter one,risk management is comprised ofthree distinct tasks: risk analysis,risk

monitoring and mitigation,and risk resolution.

3.2.6.1.1 Risk Analysis

When dealing with problems during software development it is better to prepare

for potential problemsrather than reacting to them after they happen.That is whatrisk

analysis is intended to be,a proactive strategy fi)r dealing with problems during software

development.The"risk analysis"task focuses onthe identification,evaluation,and

planning ofpotentialrisks associated with developing software.

The first goalofthis task is to identify any potentialthreats to the developmentof

athread based uponthe given requirements,scheduling requirements,development

environment(e.g.,personnel,technology,etc.), existing systems;'and any otheridentified

72

factors. There are a number ofmethods and techniques that can befollowed for identifying

risks that identify many different types ofrisks.Pressman[Pressman-97]suggests the use

ofarisk item checklist ofquestions that can be used to identify risks. This checklist is

divided into several sub-categories ofknownand predictable risks:

"Product size—^risks associated with the overall size ofthe software to be built or

modified

Business impact—^risks associated with constraintsimposed by managementor the

marketplace

Customer characteristics—^risks associated with the sophistication ofthe customer

and the developer's ability to communicate with the customer in atimely

manner

Process definition—^risks associated with the degree to which the software process

has been defined and isfollowed bythe development organization

Development environment—^risks associated withthe availability and quality ofthe

tools to be used to built the product

Technologyto be built—^risks associated withthe complexity ofthe system to be

built and the'newness'ofthe technology that is packaged bythe system

Staffsize and experience—^risks associated with the overalltechnical and project

e5q)erience ofthe software engineers who willdo the work." pressman-97]

While there are other techniquesfor identifydng risks,muchofthe risk

identification can be attributed to the skill and experience ofthe individual.

The second goalofthis task is to rate the potentialcosts ofeach identified risk.

There are anumber ofmethodsto do this,but mostinvolve some classification based

uponthe probability that the risk -will occur and the impact or consequencesasa result of

the identified risk. The probability ofeach risk occurring is specified asa percentage,while

the impact or consequence ofeach risk is some scalar value assigned by the developer.An

overallrisk factor can be calculated for each identified risk by multiplying the probability

bythe impact.The identified risks canthen be sorted and the highest probabihty-to-impact

73

value should receive the most attention.Pressman[Pressman-97]and Jacobson[Jacobson­

92]suggest the use ofarisk table sorted by probability and impact/consequence.Low

order risks may be deemed not significant enoughto warrantfurther consideration.

Pressman refersto this as drawing a cut-ofiFline for aU identified risks less thansome

factor.

Once risks have been identified and classified,each risk above the cut-offline

should be further classified as severe,moderate,or mild risks.Developmentforthe current

thread maycontinue in one ofthree ways based uponthese sub-classifications. Mild risks

havealower probability-to-impact value so thread development can continue asnormal

but an avoidance and contingency plan is made to managethe risk should it occur.

Moderate risks have enough significance to temporarily putthe thread developmenton

hold untilsome risk management/resolution technique(see section 3.2.6.1.3)can either

reduce the priority ofthe risk,eliminate the risk entirely,or promote the risk to a severe

risk. A severe risk is one that is considered to have potentialrisks so greatthat the current

thread must be terminated. This is similar to the spiral model[Boehm-88]inthat at the

beginning ofeach spiral(and in the case ofRMT,athread)some risk resolution technique

may be used to evaluate unknown risks before continuing development.

While the risk analysistask is notaindependent phase defined within anRMT

thread,it begins during the planning phase and must be convicted before the analysis

phase can begin.It is not required that the planning phase be con^leted priorto beginning

risk analysis,but it would be prudent onlyto analyze risks based upon requirements and

development plans that are feirly complete and accurate. Analyzing potentialrisksfor

74

requirements and development plans that wiU only change later will result in wasted effort.

When beginning risk analysis,afully specified set ofsoftware componentrequirements

and a development plan is required(which may be complete for the related component(s),

but notfor the entire thread). The result ofthis task is a risk analysis report which includes

a list ofpotential risks,the probability and impactofeach risk,anyinformation gained

during prototype threads used to clarify risks,and contingency plansfor each risk.

3.2.6.1.2 Risk Monitoring and Avoidance

The risk monitoring and avoidance tasks occur during allthread phasesfollowing

the planning phase.Risk monitoring involves identifying whetherthe probability that any

ofthe identified risks has increased or decreased based uponanumber offectors. Should

the probability ofa risk increase enough so that the probability-to-impact value becomes

signifirant^ risk avoidance techniques maybe employed to decrease the significance ofthe

risk,or to eliminate it entirely.Ifthe probability that a risk will occur becomesso great

and can not be avoided,it is possible that the current thread development may stop until

the risk is either resolved using the methods mentioned in the previous section or the

thread is immediatelyterminated.

3.2.6.1.3 Risk Resolution

The risk resolution task is the action taken whenarisk has either occurred or is

categorized as being significant enough to put developmenttemporarily on hold.Ifthe risk

has not yet occurred but has been deemed significant enoughto stop development,then

some proofneedsto be shownthat either reducesthe priority ofthe risk or that the risk

maybe addressed nsing some development or implementhtibntechnique:To do this a

75

prototype,benchmark,or proof-of-concept implementation maybe used to clarify and/or

resolve the identified risk,which involves the spawning ofa new thread with requirements

to address these issues. After the"prototype"thread has been completed either(1)

another prototype thread will be spawned ifthe previous prototype wasinconclusive,(2)

the risk will be downgraded to alower priority asaresult ofthe information gained during

the prototype thread and the currentthread developmentcan continue,or(3)the identified

risks will be promoted to a severe risk and the thread will be immediatelyterminated.If

the risk has already occurred,thenthe contingency plan,which wascreated during the risk

analysis task,needsto be implemented.

It is importantto note that while the estimated effort for risk analysis can be

reasonably estimated inthe development plan,risk management mayincur additional

overhead to the thread.Should such events occur,the development plan should be

modified and re-evaluated accordingly.

3.2.6.1.4RMT Risks

As part ofthe risk management activities,there are certain risks inherent to RMT

that can have negative resultsonthe development process that should be identified and

monitored during development.These risks are the misuse ofiteration and recursion,

malcing iacorrect progress estimates,and miscommunication betweenteam members.

As mentioned previously,the misuse ofiteration and/or recursion during

developmentcan have detrimental effects on development.Therefore,the use ofiteration

and recursion should be carefully monitored to prevent developers from abusing these

techniques.Ifathread manager noticesthat a developer is using what seemsto be an

76

excessive number ofiterations and/or child threads,the manager should inqiiire aboutthe

reasonsfor nging the iterations and/or child threads.Ifthey are deemed excessive,then the

developers need to remove the extra iterations/child threads and adjust the appropriate

development plans accordingly.

Another potentialrisk is making inaccurate estimates for determinmg progress of

threads. When estimating the amountofeffort required for a particular thread iteration or

child thread,developerscan make mistakes.If, at any point during development,an

estimate is discovered to be incorrect,the development planfor thatthread should be

updated accordingly and any parent thread should be notified ofthe changes.Anyimpact

that such changes have onthe schedule should also be made to the"development plan,and

the parent should be notified. These modificationsto the development plan is very sunilar

to what happens at the beginning ofeachthread iteration whenthe thread requirements

change.

Finally,because development is organized as a hierarchy,there isa potentialfor

miscommunication betweenteam members simply because there are more individuals

involved in the chain fi:om user requirements(top-level)to actual class implementation

(bottom-level)and there are moreteams working independently ofeach other.A possible

risk avoidance technique for this problem isto have regular meetings with developers firom

different teamsto review the progress and direction ofeachteam.Also,thread managers

should meet withthe managersofparent and child threadsto review thread requirements,

progress,directions,and to voice any assumptions that anyteams mayhave ofother

77

teams.These techniques can help surface any problems that mayoccur due to

miscommunication betweenteam members.

3.2.6.2 Traceability

Berard defmes traceability as"the degree ofease with which aconcept,idea,or

other item maybe followed from one point ina processto either a succeeding,or

preceding,point in the same process."[Berard-93]WithinRMTtraceability meansthat

each ofthe original system requirements can be traced to the resulting system.This allows

the developers,specifically the quality assurance engineers,to verify that resulting system

satisfies the originalrequirements.To facilitate traceability,each requirement(and/or

element inthe vision statement)should be named or numbered and referenced in atest

plan to verify thatthe requirement has been met.For the rootthread the test plan should

contain referencesto the overallsystem requirements.For threads other than the root,

each requirement input to thatthread should be referenced and/or verified in the testing

phase.

Rather than simply tracing requirementsfromthe requirements analysis and

planning phases directly to the testing phase,which maybe difficult and or time

consuming,tracing requirements should be performed during intermediate development

activities. Specifically,every specification made in the vision statement(which is notan

exclusion specification)should be traceable to arequirement inthe requirements

specification and every aspect ofthe design documentcan be traced to the vision

statement[Schach-96].This occurs during the planning phase,whenthe vision statement

is being prepared,and the design phase,whenthe design document is prepared.Both the

78

vision statement and design document must satisfy this criteria before being considered

complete.

3.3 Documentation

As discussed in the previous sections,eachthread phase takessome input and

producessomeform ofoutput.Most phases produce someform ofboth textual and

graphical documentation,with the exception ofthe implementation phase which produces

source code.Thefollowing table summarizesthe documentation generated byeachthread

phase.

RMT Thread Phase Resulting Documentation

Requirements Analysis Requirementsdocument

Planning Development plan. Vision statement

Analysis Problem specification document

Design Design document

Implementation Source code

Quality Assurance Risk analysis report,test plan

Table 3.2:Documentation GeneratedDuring ThreadPhases

79

ChapterFour-Applying RMT

While the previous chapter presented the conceptsand definitions ofthe

componentsofRMT,this chapter provides a scenario ofhow to applyRMTto a

particular project. While the sample project is intended to illustrate how RMTcan be used

in practice,manyofthe details have been left out,such asthe actual design specifications.

Within the description ofeach thread iteration onlythe significant differences from

previous iterations will be discussed.

4.1 The Project

The hypothetical project used will be a client/server application to query,insert,

and update a database in a multi-user environment.The client portion ofthe system will be

an application with a graphicaluser interface(GUI)that allowsa user to query,display,

insert,and update datain arelational database managementsystem(RDBMS)runnmg on

aremote server machine onalocalarea network(LAN).A single server application wiU

communicate witha number ofclient applications across the network and interface

directly with the RDBMS.The server application acts asthe liaison betweenthe client

application and theRDBMS.

4.1.1 Thread Naming Convention

Because ofthe iterative and recursive nature ofRMTthreads,there may be a large

number ofthreads that need to be managed and monitored during development.An

explicit hierarchy ofthreads helps organize development,but it still may become difficult

to identify and trace the ancestors and descendants ofthese threads.In order to quickly

80

identify the location ofathread and/orthread iteration inthe hierarchy ofproject threads,

the following thread naming convention will be used.

There are three elements ofathread iteration that identifies its position within the

project thread hierarchy;its parent thread,the iteration number,and its sibling threads.

First,to uniquely identify athread from its siblings,athread name contains one or more

letters(e.g..A,B,AA,etc.). Secondly,to identify individualthread iterations,athread

name contains a version number which identifies a particular thread iteration(e.g., 1,2,

etc.). Lastly,to identify athreads lineage,a thread name is prefixed with the name ofits

parent thread followed by a period (.). The rootthread hasno parent thread so the prefix

is omitted.For example,the second iteration ofaroot thread is named A2,withtwo child

threads named Al.An and A2.Bn.

There are anumber oftools that are commonly used during software development

to maintain a history ofsource code and documents(e.g.,SCCS,RCS).These tools

generally usesomeform ofversion ntunbers to identify distinct copies offiles. The version

numbersofthreads could be assigned based uponthe version numbering scheme used by

such tools so that the thread version numbers would correlate to the version numbers

assigned to the actualsource code files,design documents,etc.

While this naming convention uniquely identifies athread in the thread hierarchy,it

is not very meaningfulto developers.Therefore,an additionalname may also be used in

conjimction with the unique name.

81

4.2 The First Iteration

The first thread iteration ofanRMTthread is unique firom all other thread

iterations. The difference is that at the initialthread iteration there is less existing design

information or source code so more must be done fi:om scratcL Subsequentthread

iterations,however,usually build uponsome existing component(s)fi-om previous

iterations(unless the existing component is discarded)and developers musttake existing

designs and source code into consideration. The unique name ofthe first iteration ofthe

rootthread for this example is Al.

During the requirements analysis phase,the following system requirements are

identified during user/developer meetings and interviews:

(1)The client apphcation mustcommunicate with a single server application

across aLAN.

(2)The server application mustcommunicate with a number ofclient applications

acrossaLAN.

(3)The server application mustinterfece with anRDBMS.

(4)The chent application must provide a GUIforthe userto query data in the

RDBMSthrough the server application(this is the mostcommon operation

performed by users).

(5)The client application must provide aGUIforthe user to insert data into the

RDBMS(viathe server application).

The above system requirements are thenformalized into the requirements

document,which serves asthe basisfor project development fi*om this pointforward.In

reality,there should be many more system requirements,such as hardware/software

82

specifications,theRDBMSto be used,specific GUIrequirements,etc.,but were left out

for the sake ofbrevity for this example.

The first task ofthe planning phase isto prioritize the requirements in order of

importance to the user.From the above list, requirements(1)through(3)can be grouped

together into a single requirement because they represent the underlying architecture of

the entire system.Eventhoughthe implementationofthis architecture will not be anything

that the user will see,it should be given the highest priority.Requirement(4)should be

giventhe next highest ranking ofimportance.This requirement encompasses both the GUI

design and the mostcommonly used operationofthe system.The last requirement,(5),is

given lowest priority.

The nexttask ofthe planning phase is to estimate the amount ofeffort required to

implementeachofthese requirements.In order to determine these estimates,developers

are consulted for their input. After the estimates are compiled,the developers estimate the

number ofiterations that wiU be required to implementthe requirements.For this set of

requirements,three iterations will be used for the rootthread.The first iteration will be an

internal milestone that will not be delivered to the user.Requirements(1),(2),and(3)will

be addressed in this iteration and will consist ofa basic client(with no GUI),server,and

RDBMS applications. The client apphcation will be able to connectto the server

application,the server application wiU be able to connectto theRDBMS,and the client

and server applications will be able to send and receive dummyrequests and responsesto

simulate normaloperations.The second and third iterations will address requirements(4)

and(5),respectively,and will both be delivered to the user. Atthe second iteration,the

83

GUIforthe client application will be in place and the user wiU be able to perform basic

queries against the RDBMS.The third iteration will allow the user to insert new data into

the RDBMS.Eachofthe identified thread iterations will be given anestimated start and

end date.

Each iterationfor thread A is then assigned some percentage ofthe overall effort

required to implementthe entire thread.Iteration A1 represents40%ofthe overall effort,

iteration A2represents25%,and iteration A3represents35%.

Atsome point during the requirements analysis and planning phase,risk analysis

begins. This producesarisk analysis report,which must be con^leted before the analysis

phase begins.

Eventhough the requirement analysis and planning phases address aU ofthe user

requirements,only the requirementsthat are scheduled for the first iteration are considered

during the analysis phase;requirements(1),(2),and(3).Four major modules or

subsystems eire identified as part ofthe problem:the client application,the server

application,acommunication subsystem,and a database abstraction subsystem.The

specific requirements and behavior for each ofthese subsystems are analyzed and specified

in the problem specification document.In this exan:q)le,the specifications forthe

communication subsystem are completed prior to the other subsystems,so the design

phase for the communication subsystem actually begins before the problem specification

for the remaining subsystems is completed.

Asthe design phase ofthe communication subsystem begins,the developers

identify a number ofclasses in a class hbrary that contain the functioimlity required ofthe

84

problem statement,and can be reused in the implementation phase.The existing design

documentationfor the classes isthen incorporated into the design specificationforthe

communication layer.

While the designfor the communication subsystem is in progress,the analysis

phase is completed and the problem statementsfor the remaining subsystems were made

available.During the design ofthe remaining subsystems,the developers are unable to

identify any existing design patterns or source code for the remaining problem

specifications,so the subsystems must be constructed fî om scratch.

The implementation phase begins withthe given design ofthe four subsystems.

Existing componentsfor the conmiunication subsystem have already been identified as

solutions for the design,so no implementation is required.Theimplementation ofthe

client,server,and database subsystemsis performed by creating three new child threads,

A1.A,Al.B,and Al.C.Thread ALAimplementsthe client subsystem and containsfour

iterations(i.e.,threads A1.A1,A1.A2,A1.A3,and A1.A4).Thread ALB implementsthe

server subsystem and containsthree iterations(i.e.,thread Al.Bl,ALB2,and ALB3).

Thread Al.C implementsthe database abstraction subsystem and contains three iterations

(i.e., Al.Cl,ALC2,and ALC3).The implementation phase ofthread A1 is not

completed untilthreads ALA,ALB,and Al.C have been completed.

To allow the manager ofthread A1 to monitorthe progressofthe implementation

phase ofthread Al,threads ALA,ALB,and Al.C are each assigned a percentage ofthe

overall effort ofthe implementation phase.Thread Al.A represents55%ofthe overall

implementation effort,thread ALB represents25%,and thread ALCrepresents20%.

85

During this thread iteration the risks identified inthe risk analysis report are

monitored but their priorities are unchanged so no risk managementtechniques are

necessary.

The design ofthe test cases begins during the later part ofthe design phase,when

the design information is fairly stable. These test cases are both unit tests and fimctional

tests.Implementation ofthe test cases begins during the implementation phase. After the

initial implementation ofthe software componentsfor thread Al,the test cases are

exercised,during which time anumber ofdefects are identified. The identified defects are

resolved and the test cases are again executed.This process is repeated irntU aU ofthe test

cases are performed without generating any errors.It is importantto note that the

implementation phase is not completed imtilaU defects are resolved.

Once allofthe testing is completed,the requirements ofthe thread are traced to

the resulting software,verifying that the requirements are met.Atthis point the basic

architecture ofthe system is in place and a skeletal version ofthe overall system exists

with the client application being able to connectto the server application,which is able to

connectto theRDBMS,and basic messages are passed between the client and server

applications.

Halfwaythrough the first iteration,the project manager requests a progress report

for the project. First,the manager ofthread Al asksthemanagersofthreads Al.A,Al.B,

and Al.C for the progress estimates. Al.A reports40%complete,Al.B reports60%

complete,and Al.C reports75%complete.The manager ofthread Al then computesthe

overall progress ofthe implementation phase ofAl to be52%((55%*0.4)+(25%*0.6)

86

+(20%*0.75)=22%^15%+15%~52%;

estimates that these comprise50%ofthe overall effort ofthread A1.The thread manager

overall effort ofthread iteration Al.Therefore,t]he overall progress ofthread A1is65.6%

((50%* 1.0)+(30%*0.52)+(20%*0.0) 50%+15.6%+0%=^65.6%).

A1

A1.A A1.B A1.C

IZE
I X X X X X

A1.A1 A1.A2 A1.A3 A1.A4 A1.B1 A1.B2 A1.B3 A1.C1 A1.C2 A1.C3

Figure 4.1:

4.3 The Second Iteration

,Al,implemented the basic architecture ofthe

GUIto the client application and to

name

Because the first iteration ofthe root thread wasan internal milestone and no

discrepancies were identified withthe system requirements,no modificationsto the system

87

requirements are necessary.Because there were no changesto the requirements document

fromthe previous iteration,the development plan does not need to be modified.It does

need to be reviewed to determine how the actual progress ofthe system is relative to the

development plan. Atthistime,development progress is on schedule according to the

estimates in the development plan.

The analysis phase ofthis thread iteration involves specifying the problemsfor

constructing the client application GUIto enable the clientto perform queries againstthe

RDBMS.These problems are independentofeach other and are analyzed separately. The

analysis ofthe client GUIinvolvesthe description ofwhat user interface elements(e.g.,

windows,buttons,etc.)shotild exist.The analysis ofthe requirementto querythe

RDBMSinvolves substantially more objectsthat affect the client, server,and the database

subsystems.

The designforthe client GUIinvolves describing,in detail, what user interfece

elements should comprise the GUI,how they should look,how they should be organized,

and how they should behave.The design for the client,server,and database subsystems

involves identifying aU ofthe classes required to implementthe requirementsfor each

module,and specifying their attributes, behavior,and interactions.Because there is already

an existing system(produced during the first iteration,Al)that the new implementation

wiU be added to,the design documentation and source code forthe existing software is

reviewed and the new design is added and incorporated into the design documentfromthe

previous iteration.

88

After the second iteration is completed,the system is delivered to the user for

preliminary use and feedback.During thistime the user identifies several minor aesthetic

issues withthe client GUI,but also identifies an additionalrequirement that wasnot

included inthe previous requirements document. After being able to query existing data in

the RDBMS,the user realized that they would need to update existing datain additionto

inserting new data.This requirement is added atthe beginning ofthe next iteration.

4.4 The Third Iteration

The original goalofthe third iteration wasto add the ability to insert data into the

RDBMSfromthe client application.However,after the delivery ofthe software built

during the second iteration,the user identified anew requirement for the software to

update data intheRDBMS.The change ofrequirements meansthat system requirements

must be reviewed and re-evaluated before developmentcan continue.The unique name of

the third iteration ofthe rootthread is A3.

After addi'tinnal meetings with the user to fully define the new requirement,the

requirements document is updatedto reflect the changes identified by the user.These

changes consist ofthe new requirementto update data intheRDBMSfromthe client

application and several slight changesto the client application's GUI.Because ofthe

change to the system requirements,specifically the addition ofnew requirements,the user

is notified to expect animpactto the schedule and cost ofthe project.

Asaresult ofchanging the system requirements,the development plan must be

modified to reflect these changes.This process is essentially the same asthe first iteration

withthe exception that a number ofrequirements may have already been satisfied by

89

previous iterations(and can be ignored ifthey are not affected bythe changes)and there

may already be resource estimates for existing requirements.Each ofthe remaining

requirements to be implemented must be re-prioritized,the scheduled number ofroot

thread iterations must be updated according to the new set ofrequirements,and the

remaining requirements to be implemented must be assigned to the remaining iterations.

Because the addition ofthe requirementto update data intheRDBMS does not

affect the existing implemented system or the remaining requirementfor inserting data into

theRDBMS,anew thread iteration is added to implementthe new requirement.The

requirementfor updating data in theRDBMS is deemed more significantto the user,so it

is scheduled for in^lementation during the third iteration and the requirementto insert

data into theRDBMS is scheduled for the fourth iteration.

The remainder ofdevelopment during the third iteration proceeds similar to

previousthread iterations, without any major difficulties. The resulting system is delivered

to the user for evaluation and no new changes are identified.

A3

A3.A A3.B A3.C

X 1

A2.A1 A3.B2 A3.C2 A3.C3
A3.B1 A3.C1

Figure 4.2: ThreadHierarchy ofthe ThirdIteration.

90

4.5 TheFourth Iteration

The primaryrequirement ofthe fourth iteration is to implementthe insertion of

datainto the RDMBSfromthe client application.The requirementsforthe fourth iteration

are unchanged from the third iteration,so the requirements analysis and planning phases

are tmeventfiil. The analysis,design,implementation,and testing are performed without

anyincidents and the resulting;system is delivered to the user. Atthis pointthe delivered

system satisfies aU ofthe system requirements,satisfying the developers contract with the

user and the project is complete.

4.6 Additional Considerations

The previous example showsatypical application ofRMTto a project. There are a

number ofsituations that may arise during developmentthat require additional

considerations.

4.6.1 Iterations and Child Threads

Dividing the implementation ofa particular software componentinto a numberof

iterationsand creating multiple child threads is intended to makethe software

development process easier. While these techniques can be very helpful,they can also have

negative effects ifthey are misused.Each thread iteration or new child thread requires

some amountofoverhead to manage.Ifmanythread iterations are used to implementa

smallsoftware component,then the effectiveness ofusing iterations is dirninished because

more effort is spent managing the iteraitions than is gained by using iterations. The same

appliesto child threads.In addition,the more levels that exist inthe thread hierarchy ofa

project,the more potentialthere is for the loss ofconceptualintegrity ofthe system

■ 91 -'

because ofthe number ofindividuals involved in communicating information. Therefore,

thread iterations and the spawning ofchild threads should be used only whenthe iteration

and/or child threads results in more effort saved than is spent managing the iteration

and/orthread(chapterthree discusses the benefitsofiterations and child threads).

4.6.2 Early Termination ofa Thread(Handling Inconsistencies/Defects)

No matter how good a process or methodology is, or how skilled the developers

are,people still make mistakes.The architect may overlook some obscure detail, designers

may produce poor designs,and engineers mayintroduce defects during implementation.

Asa result ofthese mistakes,the development plan must be altered to resolve these

problems.This may have a relatively smallimpact,affecting a single phase of

development,or it mayhave significant repercussions,affecting the entire project.

TheRMT life-cycle is designed to help reduce the impactofchanges in the

development plan by using incrementaldevelopment,promoting open-ended architectures,

etc. These techniques do not always accommodate allchangesso seamlessly.There are

situations that may arise after athread has begun that causesthe typicalthread life-cycle to

be altered to addressthese changesor defects.Someofthese situations include:

• The identification ofinconsistencies,flaws,or defects inthe requirements,

development plan,problem specification,design specification,or software

implementationthat affects an ancestor thread.

• A risk identified in the risk analysis reportthat either occurs or the

probability/severity ofbecomesso great that it must be resolved immediately.

92

• Achange ofrequirements occurs.

In all ofthe above situations,the currentthread is immediately terminated and the

parent thread is notified ofthe problem,and the issue must be resolved bysome higher-

level thread.Ifthe problem identified is related onlyto the parent thread,sibling threads

may or may not continue as planned,depending uponthe nature ofthe problem.Ifthe

problem is not limited to the parent thread,thenthe parent thread(and all ofits child

threads)is also terminated and its parent thread is notified.The problem is then

propagated upthe thread hierarchy until it can be resolved bythe appropriate thread.It is

also possible thatthe identified problem may affect other threads not directly related to

thread that identified the problem.

Once the situation has been resolved,the thread at whichthe problem wasresolved

begins anew thread iteration. This new thread iteration is similar to the initial iteration

because it needsto re-evaluate the thread requirements because they mayhave changed as

a result ofthe resolved problem This may cause changesto the development plan as well

as child threads. Child threads that were previously planned maybe eliminated,new child

threads may be required,and previously planned child threads may continue with different

requirements.

4.6.3 Managing Multiple Abstraction Levels

With the potentialfor a large number ofthreads,sub-threads,etc.,and associated

developmentteams,it is important to have good commumcation betweenteam members

so that questions and problems can be addressed quickly and efficiently. This can be done

by identifying well-known channels ofcommunication betweenteams. WithinRMT,each

93

thread hasa manager who,among other responsibilities,is the primary contactfor

questions and issues related to thatthread.Ifateam member has an issue with a particular

thread they can raise the issue with that threads manager.In addition to answering

questions and handling problems,the thread manager is responsible for reporting progress

regularly to the thread manager ofthe parentthread. This allowsthe managerofthe

parentthread to update owntheir progress estimates.Ifproblems are identified during a

thread that can not be resolved bythe currentthread manager,the problem is discussed

with the manager ofthe parentthread.

4.6.4 Methodologies

RMTis a development process,nota methodology.Thetwo are orthogonaland

the methodology(or methodologies),used during developmentcan be chosen

independently ofthe process.RMTdoes not require or enforce the use ofany particular

methodology during development.Information is communicated betweenRMTthread

phases in theform ofdocumentation,whoseform and content is dictated by the particular

methodology(or methodologies)used during each phase.The information inputto certain

thread phases may have particular content and format constraints based uponthe

requirements ofa methodology.Ifdifferent methodologies are used fortwo thread phases

that exchange information,the information must be compatible between methodologies.If

the information communicated between thread phases is not compatible,is lacking in

detail,or containstoo much detail, it must be modified to aformat usable by the

methodology used in the receiving thread phase.The conversion ofinformation between

94

methodologies can require additional effort and resources,and hasthe potentialfor

misinterpretation and loss ofinformation.

WhileRMTdoes not advocate the use ofone or more methodologies,because of

the additional effort and potentialfor miscommuiucation ofinformation during translation

between methodologies,it is suggested that a single methodology be used throughoutthe

life-cycle,ifpossible;Ifmore than one methodology is used,great care should betaken in

choosing methodologiesthat require little or no translationto provide an efficient

transition between development activities.

The Unified Modeled Language(UML)has recently emerged asalanguage for

specifying,visualizing,and constructing software that is based upon existing proven

methodologies[Booch-97].One ofthe benefits(and goals)ofUMListhat it provides a

single "unified"perspective across development phases,ehminating the overhead of

translating information between methodologies and notations.UMLis largely based upon

Jacobson's Object-Oriented Software Engineering(OOSE)method[Jacobson-92],the

Booch method[Booch- 94],and the Object Modeling Technique(OMT)[Rumbaugh-91].

Each ofthese methods has notably different strengthsin different development activities:

OOSE provides excellent requirement analysis capabilities,OMT is exceptionally

expressive for analysis ofinformation systems,and Booch-'93 is expressive during the

design and construction ofsoftware.UMLincorporates the best aspects ofeach ofthese

methodsand presentsthem in a seamless model.This makesUMLan excellent candidate

methodologyfor use within theRMTlife-cycle.

95

Chapter Five-Conclusions

Thisthesis hasshownthat existing software development life-cycles do not

support monitoring progress during the development process and they do not satisfy the

requirements ofdeveloping object-oriented software(outlined in chapter one). Object-

oriented life-cycles do not adequately support progress monitoring and traditional life-

cycles do not accommodate the generalneedsofobject-oriented development.Because of

the need for a life-cycle to support these requirements,RMT was developed.RMT is a

complete software life-cycle, borrowing several positive qualities from severalexisting

life-cycles, which encompasses allthe phases during the lifetime ofa software system,

from its conceptionto final delivery and maintenance.The most significant contribution of

RMT is its ability to support progress monitoring throughthe use ofthreads asan

abstraction to organize development activities.In addition to defining the componentsof

RMT(chapter three),the application ofRMTto a hypothetical project was presented

(chapter four).

EventhoughRMT does addressthe needsofobject-oriented development,it is not

Brook's"silver bullet",having itsownstrengths and weaknesses.The biggest weaknessof

RMTis that it is atheoreticallife-cycle that hasnot yet been proventhrough use onareal-

world project.Eventhough it hasnot been exercised in areal-world situation,the core

concepts ofRMT are similar to other"proven"life-cycles,so it is anticipated that the

results would be successful. Another weaknessofRMT is the potentialfor an e^qjonential

e}q)losion ofthreads and thread iterations by misusing recursion and iteration. To help

guard against this problem,guidelines should be established by an organization to help

96

prevent this from happening and to identify,at an early stage,whena problem does occur

so that it can be corrected before the problem becomes unmanageable.

Eventhough a project is object-oriented,the stability ofthe system requirements

can influence the benefits ofRMT.David Bond[Bond-95]has presented four major

categories ofsoftware development projects based uponthe source ofthe requirements

and the number ofclients.In order ofmost stable to least stable requirements,they are:

constrained software,internal client software,vertical marketsoftware,and mass market

software. Constrained software has highly constrained requirements atthe beginning of

the project that remain unchanged during development and is generally built for one

customer.Atthe opposite end ofthe spectrum,massmarketsoftware is built fi)r a large

number ofcustomers,has frequently changing requirements,and has high scheduling

pressures dictating the functionality that is included at the time ofrelease.

While thread iterations and recursion can be applied to any project,RMT(and

iterative life-cycles in general)is most appropriate for projects where the system

requirements are vague or frequently changing,like Bond's mass marketsoftware

classification.RMT can stiU be used effectively forthe other project types,butthe

iteration and recursion techniques can be used asinternal development styles rather thana

meansto accommodate changing requirements and/or schedules.

In addition to the stability ofsystem requirements,RMT is most useftxlfor

medium-to large-scale projects rather than small-scale projects. This is because for small-

scale projects the benefits ofusingRMT are outweighed bythe overhead required to

managethe threads.

97

5.1 Relevance to the Capability Maturity Model(CMM)

The current version ofthe CMM,vl.1 [Paulk-93a,Paulk-93b],was developed by

the Software Engineering Institute(SEX)at Carnegie-Mellon University which defines a

modelfor process maturity used by an organization.TheCMM defines an evolutionary

pathfor process maturity,so that an organization can more easily improve its development

process.Each step,or level,inthe evolutionary path is built upon previous steps,

providing additionalimprovements,and requiresthe presence ofcertain key activities,

techniques,and tools called key process areas(KPAs).The five levels ofmaturity,in

increasing order ofmaturity,are: initial,repeatable,defined,managed,and optimizing.

Table 5.1 summarizes each maturity level.

Maturity Name Description

Level

1 Initial The software process is characterized asad hoc,and

occasionally even chaotic.Few processes are defined,

and success dependson individual effort.

2 Repeatable Basic project management processes are established to

track cost,schedule,and functionality.The necessary

process discipline is in place to repeat earlier successes

on projects with similar applications.

3 Defined The software processfor both managementand

engineering activities is documented,standardized,and

integrated into an organization-wide software process.

All projects use a documented and approved version of

the organization's processfor developing and

maintaining software.This level indicates all

98

characteristics defined for level 3.

4 Managed Detailed measuresofthe software process and product

quality are collected.Boththe software process and

products are quantitatively understood and controlled

using detailed measures.This levelincludes all

characteristics defined for level3.

5 Optimizing Continuous processimprovementis enabled by

quantitative feedback fi'omthe processand firom

testing innovative ideas and technologies.Thislevel

includes aU characteristics defined for level4.

Table 5.1:CMMMaturityLevels[Pressman-97]

Some ofthe KPAsrequired for variousCMM maturity levels are concerned with

organizational and managementtechniquesfor the software development process such as

software project planning,requirements management,etc. Software life-cycles,like RMT,

address manyofthese same KPAs.OtherCMMKPAsare targeted towardsthe overall

development approach ofan organization that are outside the scope ofasoftware life-

cycle,such as peer reviews,training programs,and technology change management.

BecauseRMT only addresses a subset ofthe KPAsrequired for all five levels ofmaturity,

RMT cannot solely satisfy the requirementsfor aU five levelsofCMM maturity.RMT

supports most(but not all)KPAsofmaturity levelstwo and three,but none oflevels four

and five.TheRMT process,however,does not exclude a developer firom any ofthe

maturity levels(i.e., usingRMT does not prevent a developer fi'om qualifying for a

particular maturity level).

99

Simply usingRMT does notimply that an organization will automatically be

compliant with a particularCMM maturity level. When used in conjunction with several

additional software engineering practices,RMT providesa strong foundationfor being

compliant withthe CMM.For levels three and four,RMT providesthe foundationfor a

majority oftheCMMrequirements.

5.2 Future Directions

There are a number offuture directions and tasks that research forRMTcan(and

should)take.The mostimportant step inthe evolution ofRMTis its applicationto areal-

world project.A project should be selected that is a medium-to large-scale project with

loosely-defined or changing requirements.It would also be ofparticular interest to

somehow measure the effectiveness ofRMT,possibly comparing it with the effectiveness

ofother life-cycles. The successfiil application ofRMT would give it more credibihty,

moving it outofthe domainoftheoreticallife-cycles to a practical fife-cycle.

Another area ofinterest would be to develop a computer aided software

engineering(CASE)tool(using theRMT process itselfto develop the tool)to modeland

documenttheRMT development process. This would allow project managers and

developers to easily review and update any aspect ofthe development process(e.g.,

update resource estimates,revise delivery dates^ etc.). The example in chapter four hints at

some requirementsfor suchaCASEtool: being able to graphically display thread

iterations in a project hierarchy,display/edit property informationfor athread iteration,

allow multiple users accessto the same project information,etc.

100

It would also be usefulto describe how to applyUML diagrams and notations

during each oftheRMT phases. This would provide developers with a practical step-by­

step"cookbook"onhow to applyRMT and UMLto their own project.

Finally,there is interest in developing a systemfor maintaining a repository of

HftRi'gn pattern information(at California State University,San Bernardino)that could be

done in coryunction with the developmentofanRMTCASE tool.BecauseRMT suggests

the use ofdesign patterns,perhapsanRMTCASEtoolcould directly interface with such

a design pattern repository system The requirementsofthe CASEtoolcould influence the

requirements and design ofsuch asystem

101

Appendix A-Glossary

Because manyterms are used by different individuals with different meanings,this

appendix provides definitions for terms used throughout this thesisto avoid any

ambiguities in their interpretation.

abstraction - A view ofan object,entity,or other conceptualelement that only considers

the characteristics relevant or necessaryfor a particular purpose while ignoring the

remaining,irrelevant characteristics,

activity - An operation or technique that is performed to complete some goalduring a

particular phase in a life-cycle(see also,task),

bottom-up design - The process ofdesigning asystem by starting withthe most primitive

abstractions or conqjonents and progressively building higher-level abstractionsto

the highest-levelcomponent(contrast withtop-down design),

class - An abstraction that represents the logical collection ofentities or objects with

similar attributes and behaviors,

cohesion - The degree whichfunctions,procedures,or operations within a given module

are "fiinctionally"related,

component- A collection ofone or more classes,a module,or a subsystem,

coupling - The degree which modulesare related to or dependenton other modules,

divide-and-conquer- A problem-solving technique which"divides"a problem into a

number ofsmaller pieces,recursively appliesthe technique to each piece,then

combinesthe results into a single solution.

102

encapsulation - The process ofgrouping both the structure and behavior ofan

abstraction,usually to separate the interface ofthe abstraction from its

implementation.

evolutionary development- The incrementaldevelopment ofasoftware system where

each increment producesa version ofthe software that extends,enhances,or

improves previous versionsofthe software. This is similar to the"evolution"of

biological organisms over time,

iteration - The process ofrepeating a series ofdevelopment phases during the

developmentofasoftware componentto extend,enhance,orimprove the

in^lementation ofthe component,

life-cycle -(a.k.a. software life-cycle,development Ufe-cycle,development process)A

systematic process that can be applied during the construction ofsoftware.A life-

cycle usually divides construction into anumber ofphases which have very well-

defined goals,tasks,inputs,and outputs(e.g.,analysis,design,implementation),

methodology -A particular approach or technique that can be used to solve a particular

class ofproblems,such as analysis or design.Methodologies are generally used

within a life-cycle phase,

model- An abstraction that is used to clarify or understand acomplex artifact,such as

software systems or real-world scenarios,

module - A program unit which is some logical collection ofoperations or objects,

modularity - The property ofdiscrete componentsthat are highly cohesive and loosely

coupled.

103

object - A particular instance ofa class which contains itsown unique attribute values,

phase-A period oftime within a life-cycle, during which anumber ofpredefined

activities or tasks are performed to carry outsome well-defined goal,

process - The definition and organization ofthe activities performed during the

developmentofa software system,

requirement- A capability,condition,or fimctionality that is needed to achieve some

identified goal. System requirements specify the functionality required by a

software system to satisfy the needsofthe user,

software development- The process ofconceiving and implementing asoftware system,

structured design - The process ofdesigning by algorithmic decomposition,

task - Anoperation ortechnique that is performed to complete some goal during a

particular phase in a life-cycle(see also,activity),

thread - An abstraction which representsthe developmentofasoftware componentto

satisfy some setofrequirements.It distinguishes several activities,or phases,that

have well-defined goals,preconditions,and postconditions during the actual

component development.Athread maybe iterated any number oftimesto

incrementallyimplementthe required software component(s).In addition,athread

iteration maycreate a number ofother threads to implementlower-level

components.The same step-by-step process defined by athread is applied to many

different partsofa project by many different developers with different skills and

responsibilities.

104

top-down design- The processofdesigning asystem by starting withthe highest-level

(contrast with bottom-up design).

105

Bibliography

[Alfred-95]Charlie Alfred and Stephen J. Mellor,Observations onthe role ofPatterns in

Object-Oriented Softv^are Development,Object Magazine,5(2),May 1995,pp.

61-65.

[Berard-93]Edward V.Berard,Essayson Object-Oriented Software Engineering Volume

1,Prentice HaU,1993.

[Boebm-88]Barry W.Boebm,A Spiral ModelofSoftware Development and

Enhancement,IEEE Computer,May 1988,pp.61-72.

[Bond-95]David Bond,Project-LevelDesign Archetypes,Software Development,July

1995,Vol.3,No.7.

[Booch-91]GradyBooch,Object-Oriented Analysis and Design with Applications,

Benjamm/Curnrnings,1991.

[Booch-94]GradyBooch,Object-Oriented Analysis and Design with Applications,2°''

ed.,Benjarriin/Cvimmings, 1994.

lBooch-97]GradyBooch,et al.. Unified Modeling Language:UMLSummary,vl.O,

Rational Software Corporation,January 1997,http://www.rational.com.

[Botting-97]Richard J. Botting,Personal Communication,1997.

|Brooks-95]Frederick P.Brooks,Jr.,The Mythical Man-Month:Essayson Software

Engiueering,Anniversary Edition,Addison Wesley,1995.

[Coplien-94]JamesO.Coplien.Software DesignPatterns:Common Questions&

Answers,Proceedings ofObjectExpo New York,pages39-42,June 1994,New

York,SIGS Publications.

[Cusumano-95]MichaelA.Cusumano and Rick Selby,Microsoft Secrets,Simon&

Schuster,1995.

[Fang-96]F.W.Fang,Andrew C.So,R.Jordan Kreindler,The visxial modeling technique:

Anintroduction and overview.JournalofObject-Oriented Programming,July/Aug

1996,Vol.9,No.4.

[Gamma-95]Erich Gamma,Richard Helm,Ralph Johnson,and John Vlissides,Design

Patterns:Elements ofReusable Object-Oriented Software,Addison-Wesley,1995.

[Gilb-88]T.Gilb,Principles ofSoftware Engineering,Addison Wesley,1988.

106

http:http://www.rational.com

[Henderson-Sellers-90]Brian Henderson-Sellers and Julian M.Edwards,The Object-

Oriented SystemsLife Cycle,GorrimUnications ofthe ACM,September 1990 Vol.

■ 33,No.9.' - . .

[Henderson-Sellers-94]Brian Henderson-Sellers and J.M.Edwards,BookTwoofObject-

Oriented Knowledge:The Working Object,Prentice Hall, 1994.

[Isakowitz-96]TomasIsakowitzand Robert J. Kauflfinan,Supporting Searchfor Reusable

Software Objects,IEEE Transactionson Software Engineering,June 1996,Vol.

■ 22,-No.6.

[Jacobson-92]Ivar Jacobson,Magnus Christerson,Patrik Jonsson^ Gunn^Overgaard^

Object-Oriented Software Engineering AUseCaseDriven Approach,AddisOn-

Wesley,1992.

[Leveson-93]N.G.Leveson and C.S.Turner,"AnInvestigation ofthe Therac-25

Accidents,"IEEE Computer26(July 1993),pp. 18-41.

[Lientz-78]B.P.Lientz,E.B.Swanson,and G.E.Tompkins,Characteristics of

Application Software Maintenance,Communicationsofthe ACM21,June 1978,

■ ■ ■^\:^'-v- 'pp.466-47i. ' ' ' :

[Lewis-96]BilLewis andDaniel J. Berg, Threads Primer: A Guide to Multithreaded
Programming, Prentice Hall, 1996,

|McConnell-96] Steve McConnell, Daily Build and Smoke Test, IEEE Software, July,
1996, pp. 144,143.

|McGregor-92] JohnD. McGregor,David A. Sykes, Object-Oriented Software

Development: Engineering Software for Reuse, VanNostrandRemhold, 1992.

[Mellor-94]P. Mellor, "CAD: Computer-AidedDisaster," TechnicalReport, Centre for

Software Reliability, City University, London,UK, July 1994.

[Meyer-88] BertrandMeyer, Object-Oriented Software Construction, Prentice Hall,1988.

[Meyer-89] BertrandMeyer, .From structuredprogramining to object-oriented design: the
road to Eiffel, StructuredPrOgramining, 1, 1989, pp.19-39.

[Mili-95] HafedhMili,FatmaMili, and AliMill,Reusing Software: Issues and Research
Directions, IEEE Transactions on Software Engineering, Vol. 21,No. 6, June
T995,pg528-562.. .

[Moore-96] James W. Moore andRoy Rada, "Organi^tionalBadge Collecting,"

Cnmmunications of the ACM, August 1996i, vOL 39c ho; 8; pp; 17-21.

107

[Naur-69]Naur,P.,and B.Randell(eds.),Software Engineering:A Reportona

Conference sponsored bythe NATO Science Committee,NATO,1969.

[Paulk-93a]M.C.Paulk,B.Curtis,M.B.Chrissis,and C.V.Weber,Capability Maturity

Modelfor Software,Version 1.1,Software Engineering Institute,CMU/SEI-93­
TR-24,February 1993.

[Paulk-93b]M.C.Paulk,C.V.Weber,S. Garcia,M.B.Chrissis,and M.Bush,Key

Practices ofthe Capability Maturity Model,Version 1.1,Software Engineering

Institute, CMU/SEI-93-TR-25,February 1993.

[Pressman-97]Roger S.Pressman,Software Engineering:A Practitioner's Approach,4th

ed.,McGraw-Hill,1997.

[Raccoon-95]L.B.S.Raccoon,The Chaos Modeland the Chaos Life Cycle,Software

Engineering Notes,January 1995,Vol.20,No.1.

[Royce-70]W. W. Royce,"Managing the DevelopmentofLarge Software Systems:

Concepts and Techniques,"1970 WESCON TechnicalPapers,WesternElectronic

Show and Convention,Los Angeles,August 1970,pp.A/l-l-A/1-9.

[Rumbaugh-91]JamesRumbaugh,MichaelBlaha,William Premerlani,Frederick Eddy,

Object-Oriented Modeling and Design,Prentice Hall, 1991.

[Saiedian-95]Hossein Saiedian and Richard Kuzara,"SEI Capabihty Maturity Model's

Impacton Contractors,"IEEE Computer,January 1995,pp. 16-26.

[Schach-96]StephenR.Schach,Classical and Object-Oriented Software Engineering,3'^

ed.,Irwin,1996.

[Shaw-84]M.Shaw,Abstraction Techniques in ModemProgramming Languages,IEEE

Software,vol. 1(4),October 1984,p. 10.

[Singh-95]Raghu Singh,"The Software Life Cycle Processes Standard,"IEEE Computer,

November 1995,vol.28,no. 11.

[Swanson-76]SwansonE.B.,The DimensionsofMaintenance,Proc.2"*^ Intl. Conf.On

Software Engineering,IEEE,October 1976,pp.492-497.

[Willdnson-95]N.Wilkinson,Using CRC Cards:AnInformalApproach To Object-

Oriented Development,SIGS Books,New York,1995.

[Wirfs-Brock-90]Rebecca Wirfs-Brock,Brian Wilkerson,Lauren Wiener,Designing

Object-Oriented Software,Prentice Hall, 1990.

108

[Yourdon-92]E.Yourdon,Decline and Fallofthe AmericanProgrammer,Yourdon

Press,Englewood Cliffs, 1992.

[Zelkowitz-79]M.V.Zelkowitz,A.C.Shaw,and J.D. Gannon,PrinciplesofSoftware

Engineering and Design,Prentice-Hall,Englewood Cliffs, 1979.

109

	The recursive multi-threaded software life-cycle
	Recommended Citation

