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» Abst-ract

Software hfe-cycles are aimed at lmprovmg the process of developmg sofcware
Tradltlonal hfe-cycles are adequate for structured development, but not for object-oriented
software. Object-oriented software development hasya different “style” than structured
methods which requires different considerations by a softWare_iife-cycle. There are a
number of existing object-oriented life-cycles that address the specific needs of object-
oriented development,‘ but these have little or no. support for monitoring pro gress during
| development and contain limitations.

Th1s thesis presents the recursive multi-threaded (RMT) software hfe—cycle wh1ch
supports the monitoring of progress during development, addresses the specific needs of

developing object-oriented software, and attempts to resolve deficiencies found in existing

]ife-cycles.v RMT uses the logical concept of a “thread” for partitioning and organizing
development activities during the development process, which makes it unique from
existing life-cycles. Threads support iteration and recursion which will be shown to be |
critical concepts for object-oriented development. The use of threads also provides a
mechanism for measuring progress, provides a hierarchical structure for orgariizing team
members, ciearly delineates responsibilities, and identiﬁes we]l-known paths of |
communication among team members.

First, the motivation and requirements for RMT ztre defined, followed by a brief
summary of a number existing software life-cycles illustrating their limitations by
comparmg them to the prev10usly defined life-cycle requirements. Next the components

of RMT are defined in addition to an example of applying RMT to a sample project. In

iii



conclusmn, the strengths/weaknesses of RMT RMT’s relevance to the Capablhty N o .

Matunty Model (CMM) and ﬁ.lture dlrectlons of RMT are also dlscussed
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Chapter One-Introduction
| BecauSe our society has.become-heavily dependent on'conaputers,the software
- those computers execute has been given great responsibilities. Because of this
: responsibi]ity, the repercussions ot‘ software failures can bevsignjﬁvcant even resulting in -
the loss of human life. Between 1985 and 1987 at least two people died of radlatlon
overdoses by the Therac-25 medlcal lmear accelerator asaresult ofa fault in the control
software [Leveson-93]. Also in the 1991 Gulf War a fault in the software for the Patnot
, mrssﬂe caused a Scud missile to penetrate the Patriot antl-mrssﬂe sh1eld near Dhahran,
‘Saudi Arabia, killing 28 Americans and Woundmg 98 [Mellor-94]. Why do such significant
_ soﬁware failures contmue to occur? The answer 1s.srmple, human ‘beings make mistakes. It |
Would seem, however, that w1th all of the advances in software engmeermgv and
_ 'technology in the past half-century that such critical software systems could be developed .
with better reliability. It is obvious that this is not the case and process of developmg ”
software has room for imprOvement. |
. Software is complex, for many reasons. The prohlems software is intended to solve
are complex; the software itself is cornple)r;, and coordinating »people to build software is
complex. Frederick P. Brook’s Jr. pointed out that»in order to generate an order of
”gmtude nnprovement in the development of software, the essentlal dlfﬁcultres of
software development need to be addressed, rather than the acmdental difficulties
' -[Brooks-95] These essential difficulties include the inherent complex1t1es found in the
nature of software and its development Accidental dlfﬁcultles are problems with the

production, or realization, of the soﬁware with today’s technology, Whlch are not inherent



. to the software The essentlal d1ﬂicult1es mclude dec1 mg how soﬁware is developed and BRI O

B what is developed not the actual nnplementatlon, or codmg, or the software | e

| Soﬁware engmeermg 1s a d1sc1p]me whose goals are, s1mply put tomanage and/or .
elnmnate these essential d1ﬂicult1es of soﬂware development to produce better software
make the process of developmg soﬁware ea51er and to do 1t in a productrve fashlon Frltz
Bauer prov1ded an early deﬁmtlon of soﬂware engmeermg as “the estabhshment and use |
" of sound engmeenng prmc1ples m order to obtam econormca]ly soﬁware that is rehable ‘
| and works efﬁcrently on real machmes ” [Naur-69] | | |

One area of soﬁware engmeermg almed at 1mprov1ng how soﬂware is developed 1s‘

_ the deﬁnition of a repeatable systematicproc‘ess that can be appliéd to the,conStruct1on of - 5 = |

soﬁware ca]led a soﬁware hfe-cycle A repeatable process helps ehnnnate many of the B
: uncertainties common to software development In order to create a repeatable process a k a
software hfe-cycle deﬁnes a set of activities, what tasks are performed durmg each

| actmty, the order that the act1v1t1es occur the precondltlons that must be met before‘
beginning an activity, and the postcond1t10ns that must be met before an act1v1ty is

: complete. Some comrhon activities included in life-cycles are analysis, design, coding, and

- _testmg These activities, and the life cycle 1tself are mtended to make the development

effort more efﬁc1ent s0 it is equally unportant that the process does not 1mpede the work L

- of the developers ,
A hfe-cycle must address the needs of many people mvolved n the development
process For soﬁware engmeers a life-cycle should prov1de a step-by-step procedure to

follow for developing soﬁware For pro;ect managers a l1fe-cycle should prov1de



mechanisms for coordinating dev'elopment' activities, monitoring proéress, allowing the
development staff to communicate effectively, and (most importantly)to ‘generate quahty
soﬂware that satisfies the system requirementsi | .

A software life-cycle‘ is a process, not a methodology. Soﬂvvare methodologies
focus on how to approach and solve a partlcular class of problems, while a hfe-cycle is a
- process orgamzes the steps taken to solve that problem. Methodolo gies are used within
the framework ofa h-fe-c'ycle Sometlmes methodologists define a life-cycle and a
methodology together, like MOSES [Henderson-Sellers—94] makmg the d1v1510n between
the hfe-cycle and the methodology vague and conﬁlsmg
1 l The Recursive Multl-Threaded (RMT) Software Llfe-Cycle _‘ :

The recursive multi—threaded (RMT) life-cycle proposed in this thesis is a 'soﬁwai'e
development process which supports the-‘ monitoring of progress during development and -
~ addresses the specific needs of developing software using object;oriented technology. A
number of object-oriented software life-cycles exist today,v but they have little or no |
support for momtormg progress durmg development, are simply general concepts that
lack detail, and/or have other hmltations (which will be shown later) RMT is based on

many of the same fundamental concepts found in other object-onented life-cycles, but it is
a detalled life-cycle which attempts to resolve hmltations found in existing life-cycles. A
severe hmltation of existing hfe-cycles that RMT addresses, is the abihty to monitor
progress during development. What makes RMT unhke ex1st1ng hfe-:cycles- is its use of an
abstraction, called a thread, to organize the development process. Two distinguishing

characteristics of RMT are iteration and recursion. As will be shown-later, iteration is an



inherent trait of successful object-oriented projects and recursion provides developers with
an effective technique for organizing the development process, to monitor progress, and to
allow efficient communication between team members. This thesis will show the
motivation and requﬁements of RMT, linﬁjtatiéns of existing object-oriented life-;ycles ;
and how RMT resolves those limitations, and a detailed description of what RMT is and
how it éan be applied to projects.
1.2 Motivation for an Object-Oriented Software Life-Cycle
Aside from the need for better software developmént processes because of system

failures, ther;s is a need for déveloping an object-oriented life-cycle that facilitates the
' monitoring of progress during development. As will be shown in chapter two, existing life-
~ cycles have little or no support for monitoring progress and/or the structure of existing
life-cycles makes progress monitoring difficult. The ability to measure progress during
development is significant because it allows managers and develof)érs to determine
whether a project is dn schedule or not. When a project overruns some planned schedule,
the ability to monitor progress during development can help identify that‘the project is

behind schedule earlier during developmeni, rather than at the ﬁnal de]iﬁfery date, allowing
managers/developers to take appropﬁate actions to abcommodate the situation. |

Another motivation is that there is a demand for object—oriented er-cyéles because

traditional life-cycles éfe i]l-suited for 6bject-oriented technolq_gy. While the history of
object-oriented programming and object-oriented ,techniques date vb'aickto> the 1960’s, it
was notvum:il the 1980’s that object-oriented technology began to be wide‘ly‘ used within |

the software engineering community. Prior to-the wide-spread use of object-oriented. .



technology, there were a nurnber of soﬁware life-cycles based upon “traditional” non-
object-oriented technologies. However, object-oriented technology takes a different
approach to software development than procedural methods. The object model focuses on
entities (ob_]ects) their attributes, and their behavror rather than placmg the emphasrs on
functions. Due to this significant drﬂ’erence (and others) between procedural and object-
oriented methods, many traditional hfe-cycles simply do not address the requlrements
specific to the development of object-oriented soﬁware (see chapter 2). Some specific
requirements that some traditional life-cycles do not support are ‘iteration or the overlap of

~ development activities, which are common for object-oriented nrojects.

An.illustration of this demand for object-oriented life-cycles is that vmany

7 individuals andorganizations expend significant effort to developing better processes,

demonstrating that new processes are needed because existing life-cycles do not meet their

needs. As aresult of this effort, new life-cycles continne to be deveIOped and published. ‘

' For example, a team at the IBM ITSO San Jose Center in Cahforma began workmg ona

hfe-cycle and methodology called the Visual Modelmg Techmque (VMT) in 1993 [Fang-

96].

An imoortant consideration that any new life-cycle should take into account is that
there are a number of existing and emerging standards and models that specifically address
the soﬁware development process, which are growing in populanty Many organizations
: are requiring soﬁware developers to conform to these software development standards
and models which shows the concern for how software is developed. For example, there is

 the belief that in the near future all software contractors for the U.S.-government will be



requﬁ‘ed to demonstrate a soﬁware maturity of Level 3 [Saiedian—95], as defined in the
‘Capability Maturity Model (CMM) [Paulk-93a, Paulk-93b]. Because ﬁew standards
continue to be developed indicates that people do not fully understand or agree upon the |
_ deﬁnitioﬁ of precisely what a good development process is, demonstrating the need for |
continuing work in defining software life-cycles. An example is the recent ISO/IEC 12207
standard which specifically addrésses the software life-cycle [Moore-96, Singh-95].
1.3 Recursive Multi-Threaded Life-Cycle Requirements

There are many goals of software life-cycles, but the primary goal can be
summarized as being the definition of a repeatable systematic process for developing
quality software w1th1n scheduling and budgetary constraints. Like software systems,
software life-cycles have requirements that they must satisfy to achieve their goals. Object-
oriented life-cycles share many of the same requirements as traditional life-cycles.
However, because object-oriented technology has a substantially different approach to
developing software, there are many requirements that are more significant or critical to
object-oriented life-cycles than traditional life-cycles. These requirements may range from
general, being applicable to a large number‘of projects, to specific, applying to only a small
number of projects within a specialized domain. Defining a life-cycle that addresses all of
these requirements would be impossible because they may have conflicting goals and/or
constraints or add unnecessary overhead to the development process.

RMT addresses the general needs of object-oriented projects but is flexible enough

to accommodate the needs of specialized projects. This allows RMT to be compatible with



a large community of developers. To gain a greater understanding of the definition of

RMT, the following sections describe the requirements that RMT was designed to satisfy.

1.3.1 Traditional Life-Cycle Requirements

There are a number of requirements for RMT kthat'apply to thh"objéétforiented

and non-object-oriented projects. They are:

Monitor progress:
Systematic

Repeatable:

Organized:

Risk Management:

Traceability:

RMT should provide the capability to mimitor progress and
determjne completion of the project. |
RMT should provide a systematic process for prodlicing - |
quality software.

RMT should be repeatable for different projects.

RMT should organize development activities to reduce the
complexity of projéct management, reduce the potential
niisconirnliniciation between team members, and maintain
conceptual integrity of the system during development.‘
RMT should accommodate the identification and
managem‘eni of risks. |

RMT should allow developers to trace system réquirements

to design specifications and to the resulting software.

The primary goal of RMT is to prdvide developers with a mechanism to monitor

the progress of a project during development. Such a mechanism can provide developers

- with early feedback indicating that there are problems that need to be addressed before

they become unmanageable. It can also provide a means for determining when-the: -



development of a project is completed. RMT must provide the capability_to monitor
progress during developrnent.

Another goal of RMT is to proﬁde a systematic process for producing high-quality |
soﬁwarev. Software quality may be defined in many terms, depending on many factors.
-. Meyer deﬁnes the five most important external qlialities of software as correctness,
robustness, ektendibi]ity, reusability, and compatibility ‘[Meyer-88]. Having a process .With
'a set of well-defined steps.or rules to fOlloW for constructing something is much easier
than an ad hoc method which bases the success of the pI‘OJeCt almost entirely on the skill
and experience of the developers Among other things, a systematic process provrdes the
developer with a ‘morev accurate experience base for estimating development effort-and
time a better metric for gauging progress durmg development a better ﬁramework for
| | 1dent1fy1ng potentlal problems at an earlier stage and (hopefu]ly) a higher probability of
producing quahty software. Another requirement of RMT is that it should be repeatable
- so that it can be applied to many pI‘OjeCtS ,rather‘ than discovermg anew process for each
new project. This saves the deVelopervialnable tirne and effort. :

 As Brooks describes software is by nature inlierently complex [Brooks-95].‘ More

speciﬁcally, it is the constructlon of the conceptual representation of the software that -
mtroduces the complex1ty, not the actual reahzatlon of the concept Part of this complexity
can be att_ributed to the management of the activ1t1es dunng the development process.
How development aCtivities are organized canv have a drastic impact on the eﬁ’ectiveness
of the development of soﬁware. Projects of significant size tend to involve larger tearnsi

Larger teams increase the potential for communication problems-and decreases. the. ..



conceptual integrity of the éystem simply because there are more péople involved in the
process. To help address these complexities, RMT should provide a framework to
organize development activities in such a way that the potential for these problems is
reduced. | |

RMT must specify an activity (or activities) to identify and manage pbtential -
problems, or ﬁsks, that might impact the development process. This is commonly called
risk management and is an important activity of the 'developmér_lt process. It is ,Beiter to -
identify potentiél risks and plan for them before they happen rather than ignoring them and
reacting to them after they occur. Risk management is more than simply idenﬁfying
potential risks, but also includes monitoi'ing the of risks during development, mitigating or
avoiding risks (if possible), and carrying out some contingency plan should risks occur. |

ane a sbﬁware system has been implemented, it is essential to verify that the
resulting system meets the requirements of the user. Therefore, RMT must facilitate the
verification of ‘system requirements to the producéd software. While the methodologies
used during development (i.e., requirements analysis, analysis, design, etc.) and resulting
documentation usually facilitates this, RMT should also provide well-known paths of
communication between team members to make this process easier. |
1.3.2 Object-Oriented Life-Cycle Requirements

As previously mentioned, there are a number of characteristics that are more
critical to the development of bbject-oriented software than traditional, non-object-
oriented, software. While non-object-oriented projects may also strive for these qualities

as well, they are essential to object-oriented software: These RMT requirements-are: -



Iterative development:  RMT should snpport an iterative development process.
Parallel developtnent: RMT should snpport_the' overlap of development
activitie's‘.' |
Reuse : RMT shonld support the reuse of design inforrnat‘ion
(design pattems) and sontce code. ; |
Maintenance: - | ' RMT_'shonld accommodate maintenance as part of the
’ soﬁ\vare life-cycle. »
- Many methodologists agree that snccessful development of object-oriented
| soﬁWare_‘ lnvolves iteration. Gilb believes that sOﬁwa_l‘e evolves over a period ‘of titne,
snmlar to the development of complex systems, such as biological ‘organisms. [Gilb-88]
This is called evolutionary development, of which iteration is a key concept. Booch has 1 |
observed that two traits, well-managed iterative and incfemental development life-cycles
and the concept of a strong: a;chitectural vision, were present 1n virtually all successﬁll
object-oriented systems he had encountered, and absent from unsuccessful SvStems
- [Booch-91]. | - | | |
Iterative life—cycles' allow the increnaental' developnlent(and delivery) :of a svstem
by_'producing many versions of the system, each more ‘(ﬁmctionally) complete than
‘ pfevion_s versions. While there are a numbef of benefits of iteration, the most signiﬁcant is
its adaptability to,change. Because there are' frequent incremental versions of the system,
iterative life-cycles allow potential prohlenlsor changes to be ‘identiﬁed earlier in the
development cycle vvhere thev amount of effort to correct the problem is bsmaller, rather

‘than late in the cycle. For example, consider a project where-at the"beg'inning'of the -
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project the perceived objective is Objective A. At some point during development either
the users or developers realize that the actually objective is not really Objective A, but
Objective B.A traditional pr-ocess w1th a single delivery of the system will not discover
that Objective Ais the incorrect objective until the software is completedj requiring a |
significant amount of eﬁ'ort to be expended to adapt the soﬁware to satisfy Objective B.
An iterative process, howeVer, could help identify the changed objective and react to the |
change at an earlier point in development v reducing the amount of effort required to reach |
Objective B. Flgure 1. 1 illustrates this example

Because 1terat10n isan essential requirement for developing successful object-
- oriented SOﬁware, and because of the additlonal benefits, RMT must be an 1terat1ve-bas_ed‘ '
process. |

Another characteristic of object-oriented development, that is less pronounced n
structured approaches, is that there tends to be overlap between act1v1ties during
development The concept ofa class prov1des a common conceptual unit, or vocabulary,
that is used throughOut development activities (e.g., analysis, design, and codmg), and .
~ each activity in an object-oriented life-cycle produ_ces a more complete deﬁnition ofa
class. As a result, the division between the completion of one activity and the begmmng of

another becomes less distinct. For example, Berard points out that the “gap”' between

B object-oriented requirements analy31s and object-onented desrgn is very narrow when

: compared to the “gap” between structured analy31s and structured des1gn [Berard-93]

Requlrmg each development act1v1ty to be completed before begmmng another act1v1ty -
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would be an unnecessary restriction to the development process of object-oriented

software. Therefore, RMT must support parallel development.

System ‘
ObjectiveS\ First Delivery
Change \\ @ .
; Objective A

Starting Point

Conventional life-cycle

System
Objectives . .
Change \ ‘ Objective A
Starting Point . & v ‘
e
I
. \1“ ;”J
Delivery to users ,t“;"

(iterations)

e

Objective B

Iterative life-cycle

Figure 1.1: Conventional vs. Iterative Life-Cycles
Software reuse has been a goal of software engineering‘ long before object-oriented
technology became popular. One attraction for using object-oriented technology is »bits
potential for producing reusable software components. While objef;t-'orientéd
programming languages may make tﬁe procedure of building reusable software

components easier than procedural programming languages, it is still more costly to build
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. reusable components. Yourdon.estirnates that reusable components take twice the effort
as “one-shot”co'rnponents [Yourdon-92]r.
Another level of reuse that has only recently emerged in the 'shado'w .of object?

oriented technology is design patterns. ‘Desi‘gn patterns are ’an abstraction of source code |
 that contains (proven) des1gn mformatlon for a solution to a pamcular problem When

.compared to source code reuse, de31gn patterns.are less effective because they still need to
be realized into some form of code and tested. However glven all of the drﬂicultles
associated with source code reuse, de31gn patterns may be more useful because they have
a greater potent1a1 of actually being reused Because of the potent1a1 beneﬁts of reuse,
RMT should accommodate the evaluatlon and integration of both source code and desrgn ,
pattern reuse in the development process |

Many soﬁware hfe—cycles con51der the initial development and deployment of a

sol’twa.re system and malntenance as separate activities. Software mamtenance may involve |
more than simply corrective malntenan_ce, or “bug ﬁ:tmg”, it may also mclude adaptwe .

_ maintenanCe, perfective n":laintenance‘ or enhancements,"and preventive maintenanCe or
- reengineerin_g [Swanson-76]. Maintenance caniaCCOunt for more overall _’effort dunng the
life-cycle of a software system than any other activity, an average of 67%, in fact [Lientz-
78, Zelkowitz-79]. For these reasons, RMT should make accommodations for -
maintenance as part of the software life-cycle.v |
14 Capablllty Maturity Model (CMM)
There has been much eﬁ'ort in the software englneermg commumty to. deﬁne

standard practices and methods for software development to improve-how software is-
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| developed. One of the most recognized eﬁoﬁs is the Capability Maturity Model (CI\/IM); '
The CMM has the goal of improving software quality by defining various levels of
development process »fnaturity. While the CW does not define or advocate the use of a |
particular software lifefcycle, it does define sofne characteristics that must be present in a '
software life-cycle in order to comply with their requirements. Because the CMM is
growing in acoeptance among the software community, RMT should ‘conform to CMM

_ requirerﬁents as much as‘possible. | |
1.5 Structure of Thesis

This thesis is orgenized into five chapters and one appendix. Tlﬁs chapter presents

an introduction and motivation for the work proposed in this thesis, a smnmory of
development life-cycle requirements, and a brief description of the CMM. The second

- chapter summarizes a number of existing Soﬁware life-cycles and compares them to the

requirements outlined in the first chapter. The third chapter presents the proposed RMT

software life-cycle, providing a concise definition of the md1v1dua1 components of the life-

cyc]e. Chapter four presents an.exajvnple of how RMT can be abplied to a specific project.

The fifth chapter provides some conclusions abodt RMT (its strengths aod weaknesses), '

how RMT applies to the CMM, and future direotions that should be explored for RMT.

Appendix A contains a glossary of terms used throughout this thesis.
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| Chapter Two-Exnstmg Software Llfe-Cycles
| ThlS chapter presents a bnef descnptlon of a numher of ex1st1ng software ]er-. ‘ B
' ",cycles, thelr hrmtatlons and/or any conﬂlcts these hfe-cycles have ‘\vlth the requrrements | B j:v |
' | | ou_thned in chapter‘ onet The hfe—cycle desc_npt_lons are not intended to be complete by any ‘
g means There are a large nurnber of existing soﬁvvare ]jfe-cycles hut this 'chapter only
presents those hfe-cycles that were deemed relevant to RMT They are mcluded e1ther for |
hlstoncal purposes or thelr relevance for companng/contrastmg them with RMT .
| 2.1 Taxonomy of Software Llfe-Cycles |
The hfe—cycles dxscussed in this chapter,are divided hlto 'three categories: noné .
. object-orlented hfe-cycles obJect-onented hfe-cycles, and second-generation” object-
_onented life-cycles. The non-obJect-onented life-cycles are mcluded for h15tor1ca1

purposes to help identify why many trad1t10na1 hfe-cycles are mappropnate for obJect-

oriented projects. The category of “second-generation” life-cycles refers to life-cycles that =~

| integrate and/or extended existing approaches. Table 2.1 outlines the life-cycles discussed. B
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Classification ' - Life-Cycle
Non-Object-Oriented Life-Cycles | Waterfall Model
' | Spiral Model
Object-Oriented Life-Cycles | Round-Trip Gestalt Design
' Recursive/Parallel Model
Fountain Model
Chaos Model/Life-Cycle- -
“Second-Generation” Object- McGregor and Sykes
Oriented Life-Cycles Visual Modeling Technique (VMT)
- | Methodology for Object-oriented

Software Engineering of Systems
(MOSES)

Table 2.1: Taxonomy of Software Life-Cycles
2.2 Watérfall Model ~

The Waterfall model [Royce-70] is probably the most widely recognized software |
life-cycle. It is a linear life-cycle model with a number bf dévelopment activities that are
performed sequentially. Before an activity can begin, the previous activity must be
completed.

The waterfall life-cycle is a dramatic improvement over the ad hoc build-and-fix
method that was commonly employed before its introduction. Unfortunately, there are
many problems and limitations with the waterfall model. The most significant problem is
that software development is ra;ely a sequential process. This does not accommodate
changes during development, requires all of the system‘ requirements to be completely and

accurately specified at the beginning of the project, and results in inefficient use of
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personnel resourceS. Pressman [Pfessman—97], Brooks [].3rooks-95]; McGregorv and ijkes
[McGregor-92], and others all confirm limitations of the Wéterfa]l life-cycle.
2.3 Spiral Model |

The spiral model [Boehm-88] is a risk-driven software life-cycle that iterates
vthrough four basic activities: objective assessment, risk aseessment, produc'e development,
and planning. vDevelopment starts at some central point, ﬁorﬂ which deV?lprnent - ’
‘ proceeds outward from the center (i.e., like e spiral), pessing through each of the four
act1v1t1es or quadrants. As the spiral gets larger, so does the cumulatlve cost. Each cycle in
the spiral model builds the next-level product of the resultmg system. These products
' correspond to the commonly identified life-cycle activities (e.g., requ1rements de31gn, '
etc.). |

Even though the spiral model appears to be an iterative life;cycle, it is not truly
iterative because there is a finite nuniber of circuits and eaoh circuit really corresponds to a
deVelopment phase or actiﬁty. For exam’pie, implement'ation occurs duringv a single c1rcu1t | | 7
What makes the spiral model appear to be iterative is the fact that w1thm each circuit | v
similar acti{fities, such as planning, deterrrﬁﬁing‘objecti’ves, evaluating risks, etc.,are
repeated in eaoh circuit. This is ill-suited for.tﬁe iterative requifements of an ooject-
oriented life-cycle. In addition, the spiral model does not support the ove;flap of activities
during development. The spiral model is also applicable only to large-scale pfojects

[Boehm-88], making it unfeasible for small io medium scale projects.
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2.4 Round-trip Gestalf Design -

The round-trip gestalt design [Booch-91] 1s a désign method based upon the fact
that thé more that is knbwn about a problem, the easiér itisto soive‘. When a designer is
conﬁ'oﬁted with a new problem whefe thesf'have limited or no experience, the best they
candoisto ma.ke‘~an initial attempt at the design, step back and analyze the design, then

make improvements based upon new understanding of the problem. This procesé is

repeated until the designer is satisfied with the completeness and correctness of the design.

This is the round-trip gestalt design.
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Although the round-trip gestalt design 1s a design mcthod and not a ljfe-cycle, it’s
essence has been used for comparison to iterative soﬁwaré life-cycles. Ii_l fact, Booch
- suggests that it is the foundation of tile' process of object-oriented design tBOoéh—91].
2.5 Recursive/Parallel Model o

The recursive/parallel life-cycle can be céricatured as “analyze a little,' design Aa
1itﬂe, implement a little, and test a little.” [Berard-93] Rather than being a life-cycle that
was first defined then applied to projects, 'this software life-éYcle evolved from software
engineers applying»object-oriénted» technique to real projects. Berard points out that any
significant sbﬁware engineering veffort will involve both iteraﬁon and overlap as well as |
addressing requirements of diﬂ'erént levels of abstraction at diﬂbrént tirnesbduriri}g
development. This life-cycle mdre accurately reflects theses ‘r_ealities of software
engineering and simply fomaﬁzes the concepts and techniques already used by engineefs‘. T

While the recursiﬁfe/paraﬂel life-cycle is a “top-dOWn’; approach, which Bera_rd :
states is very often a noticeable flavor to the overall approac‘h’for projecfé, it ‘d<‘)e's supﬁort_
compositional, or bottom-up, techniques. The systematick steps in the recursive/parallel
life-cycle are:

(1) “Systematically decompose a problem into highly-independent components,

(2) re-apply the deComposition process to each of these components to decompose |

them further (if necessary)—this is the ‘recursive’ part,
(3) accomplish this re-application of the process si_rﬁultaneously oneach ofthe

components—this is the ‘parallel’ part, and
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(4) continue ';Ilis process until some completion criteria are met.” [Berard-93].
The analysis step requires that the system requirements be understood, propose a
“high level” solution for the requirements, and demonstrate that the proposéd solution
meets the user’s needs. The design step involves the definition of the component
interfaces, making decisions about how each component will be implemented, the
identification of any ne_cessai'y additional components, and describing any necessary
programming langﬁage relationships. The implementation step requires the implementation
of the component interfaces, the implementation of the algorithms describing the “
~component interactions, and the implementation Qf the internals of components which can
not be further decomposed.
While this life-cycle addresses many of the fundamental requirements of object-
oriented life-cycles (outlined in chapter one), it lacks the detail necessary for the direct
application to a project, leaving too much of the process organization up to the developer
to define. For example, it does not address the management or organization of the
“recursive” or “parallel” elements of the life-cycle, risk managemeht, or planning activities.
2.6 Fountain Model
The fountain model is an object-oriehted séﬁware life-cycle that supports a high
degree of overlap and iteration during development [Hehderson-Sellers—90]. The genefal
| flow though development activities proceeds froin anélysis through desigh to
imblementation, with iterative cycles across several or all of these phases. Development
during any phase may iterate back to any previous phase. The system life-cycle may be

composed of a number of separate class, or clusters of classes [Meyer-89], life-cycles: The
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" number of development phases included in each model varies upon the applicatioln‘ of the
life-cycle. Forexample, the fountain model for module develepment may consist
speciﬁcatioﬁ, design, coding, and testing phases while system development contain
additional design, requirements analysis, and testing phases. Because the system view of
the life-cycle may be composed of many other class life-cycles,b class 'chisters may be
developed independently of and in parallel with other class clusters. |

Like the recursive/parallel life-cycle, the fountain model accommodates the
iterative and incremental requirements of object-or‘ien"ced projects, but it is lacking in
detaﬂed descriptidns of how the o&e_rall development activities and team rrie’mbers‘.are
organized. It is almost tod flexible. The danger of such ﬂeXibﬂity is that the development
process can become undisciplined where developers proceed almost raﬁdofnly between
phases. This makes project management and progress monitoring very difﬁeult, if not

impossible.
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2.7 Chaos Model/Life-Cycle

Raccpon [Raccoon-95] believes that because of the complex nature of developing
software, simple models can not be imppsed upon it. To represent the realistic nature of
software development, the chaos model describes software development as a linear
problem-solving loop combined with fractals. The linear proiolem—solving loop consists of
four stages: problem definition, technical development, solution intégration, and status
quo (i.e., the currént state of the system). In theory, the fractal problem-solving loop is
simply the linear problem-solving loop where each phase contains an identical problem-
solving loop. In reality, however, there are a number of influences during development
that make the localization of recursive problem-solving loops to higher-level problem-
solving loop phases difficult. Each phase in the chaos life-cycle is expressed as a fractal. -
Because of the recursive nature of fractals, Raccoon points out that each phase occurs in |
all other phases and that each phase is a complete life-cycle itself. The life-cycles i)hases
then blend together resulting in an “amorphous flow of emphasis” [Raccoon-95] rather
than separate; distinct phases. |

From the perspective of understanding the nature of software 'developmeﬁt, the
chaos model and chaos life-cycle provides developers with a better understanding of the
complexities of software development and the factors influencing development. For
applicatibri to real world projects, however, the chaos life-cycle is impractical because it
does not provide enough organization of development activities. This makes progress
mon’rtdring, planning, coﬁmuﬁcatiom etc. difficult for developers because there is a very

complex and unorganized structure to the life-cycle phases or activities.
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2.8 McGregor and Sykes

McGregor and Sykes [McGregor-92] have proposed a software life-cycle that

emphasizes reuse and the support for the object-oriented paradigm. They divide the

development life-cycle into two independent, and orthogénal, life-cycles; the application

life-cycle and class life-cycle. The reason for dividing the two is to produce more reusable

classes. They believe that this division allows for a complete description of the classes to

be built without regard for the system being developed, making the classes more reusable.

The class life-cycle is very similar to the fountain model, but accounts for. the reuse of.
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‘existing classes, evolution from an existing class, and the development 6f a class from
scratch; The detaile.‘d represeﬁtation of }the‘ appiicétibn 1ife-.cy§le consists of a Qéries» linear
steps, although the actual development process is not (figure 2.5).‘ The visualization of the
overall process is describéd by the “fractal model.” (ﬁg’uré 2.6) which’is based upon Brian

Foote’s “fractal model” proposed at an OOPSLA >91 research workshop on reuse.
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Figure 2.5: McGregor and Sykes‘ Application Life-Cycle.

25



®

aupay

Reahze

Figure 2.6: McGregor and Sykes Fractal Sofiware Development Process.
While the application and class life-cycle descripti_cns suggest that they are
‘ iterative in nature, the iterative or incremental steps in the process are ohly detailed inthe

class hfe-cycle and not in the application life-cycle. Even though the activities in the

o apphcatlon hfe-cycle phases are discussed, the overall apphcatlon of the hfe-cycle is not

presented, leavmg the life-cycle deﬁmtlon vague and mcomplete The central focus of the

McGregor and Sykes process is to build reusable objects, Wh1ch requires that two verswns -

of a class to be implemented when developing classes from scratch; an abstract class and a
concrete class. The intent is that the abstract class embodies the essence of ~the class,
mdependent from an apphcatlon specific details, and the concrete class is derived from the

abstract class and addresses the apphcatlon requlrements While thls may result in more .
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reusé‘ble objects, it requires sigrﬁﬁéant effort to impl'ement; There may be many projectsv
where developing truly reusable classes is"n'ot a piioﬂty, makmg this proéess took |
| exbensive. | |
- 2.9 The Visual Modeling Technii;ue (VMIT) .

The Visual Modeling 'i‘echniqtie (VMT)isa completé 'objeci:-ori‘en'vted :

devélopmerit life-cycle that ié based upon existing and proven methociolbgies and
| techniques. The coré techniques used are the Object Modeling Technique (OMT)
" [Rumbaugh-91], Jacobson’s use cases [Jacobson-92], Wirfs-quck’s Responsibility Driven
Design (RDD) [Wirfs-Brock-90], CRC cards [Wirfs—Biock-90,‘ Wi]kinsbri—95], event trace
diagrams, object types, and pre- and postconditions. The product Hfé-cycle consists of a
business plarining, development, and packaging/deli\}ery phases. The dévelopment phase
of a product er-cYcle is divided irito a mimber of increments, each which may ihrther be
divided into a number of iterations. Each increment consists of a planniiig pefiod folidwg:d
by a production and assessment period. The production period consists of the ‘commbn | “
software life-cycle phases analysis, design, coding, and testing.

VMT supports the iterative and ~inciementa1 nature of object-orierited software
projects. It also supports reuse and project management' activities. The main e’niphasis of B
VMT, however,/is in how the pieviouisly mentioned methodologiesare»applied during |
each of the production periods during the life-cycle. While this may be very useful and
productive for individuals fluent v_vith these methodolo gies, others may not be familiar with
them or may be unwilling to change to these methodologies, makmg VMT an

inappropriate life-cycle.

27



2.10 Methodology for Objeet-oriented Software Ehgineering of Systems (MOSES)

The Methodology for Object-oriented Software Engineering of Systems (MOSES)
is a complete object-oriented software life-cycle that has evolved from previous work
presented by both Henderson-Sellers and Edwards [Henderson-Sellers-94]. In addition‘ to
the delineation of the process phases, it also supports a set of graphical and textual
notations. The MOSES life-cycle recognizes two separate life-cycles: the product life-
cycle and the process life-cycle. The product life-cycle is divided into two distinct periods
of a software system’s ]jfetime, the growth period, where the initial system is constructed,
and maturity period, where the system is maintained and enhanced. Both the growth and
maturity periods consist of three phases. These are the business planning stage, the build
stage,b.and the delivery stage. The build stage is where the software is actually constructed
and involves the application of the process life-cycle.

The process life-cycle is an iterative development process (IDP) that is based upon
the fountain model [Henderson-Sellers-90]. It recognizes five phases of development:
planning, investigation, specification, implementation, and review. Each phase has well
defined goals, performed tasks, and deliverables.

While MOSES hints at the problem of decomposing system development into
smaller problems, it only discusses one level of decomposition by decomposing the entire
system into a number of subsystems which may be developed in paralle]. MOSES does not
advocate the recursive application of the life-cycle upon each decomposed subsystem.b

MOSES also uses a custom notation for diagramming designs which integrates a number
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of other notations. The use of a custom notation may be unacceptable for some
developers.

Maturity
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Figure 2.7: Overall MOSES Life-Cycle

2.11 Common Limitation

| In addition to any individual ﬁmitations or deficiencies noted, each of the object-
oriented life-cycles outlined in this chapter contain a common limitation; they do not
explicitly account for monitoring progréss durihg the development process (ndn-object— |
oriented life-cycles are not considered because they do not address the requirements of |
object-oriented development, and the rouﬁ&-ﬁip gestalt design is excluded because it is
not a life-cycle). Monitoring progress is an important part of managing a projecf because it
helps the project manager determine whether or not t_he bro’ject will meet its schédule (aﬁd
scheduling constraints are a requirement connnén to most all projects). Estimating
progress can be difficult. Without some technique for estimaﬁng ‘progress, estimates are

simply best guesses based upon the opinions of the developers. Personal opinions will vary
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between individuals and the accuracy of the estimate depends upon their cducaﬁon,
experience, "skill, and luck.

Even though estimating progress is not explicitly supported by the mentioned life-
cycles, additional methods could be used. However, the organization of the development
process in each of these life-cycles makes estimating bro gress fundamentally difficult (but
not necessarily impossible) for one of two reasons. The ﬁrsf reason is that some lifé-cycles
are too flexible by allowing development to proceed almost randonﬂy between activities
making it difficult to determine the current state and progress of de\}elobment. The
fountain model, chaos life-cycle, and McGregor and Sykes are examples of this ﬂexibility.

The other difficulty imposed by some life-cycles, such as VMT and MOSES, on
estimating progress is that the smallest unit of management is an iteration, which makes
estimating progress difficult (and potentially inaccurate). An iteration in these life-cycles
represents a version of the entire system. The progress for the overall projecf is based
upon the individual estimates of the many components comprising the overail system.
Each component represents a certain percentage of the overall effort to implement the
system, so the estimate for each component much be weighted relative tb its overall
significance to the system. Because the iteration is the smallest unit of abstraction,
estimates for all the software components have to be evaluated, weighted, and compiled at
one abstraction level to producé an overall progress esﬁmate. Analyzing progress
estimates for all of the software components together forces a developer to analyze too |

many logical entities simultaneously to evaluaté/iriterpret them effectively.
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Chapter Three-The Recursive MultifThreaded1 (RMT) Life-Cycle

The recursive multi-threaded (RMT) life-cycle is deéigned to accoﬁunodatc the
- needs of developihg systems usiﬁg object-oriented techniques and to facﬂjfaté thé :
monitoring of progress during development. The previous chapters discussed the :
motivation and requirements of RMT, and summarized a number of existing software life-
cycles and some of their limitations. This chapter presents the fundamental conéepts_ and
definition of the RMT software life-cycle. |
o Many of the underlying concepts and techrﬁques_ of RMT are also‘ found in existing -
.life-cycles (e.g., the spiral model [Boehm-88] and fhe recursive/parallel model»[Berard- |
93]), but the presentation and implementation of thosé concepté differentiate RMT froin
these life-cycles. Even though techniques used by RMT; such as iteration and recursion,
have also been proposed in existirig life-cycles, what differentiates RMT from existing life-
cycles is the use of a'development “thread” as a conceptual unit to orgahjze dévelbpqent -
| ~ activities and to monitor progress. RMT ié a nﬁlesfone-based, iterative life-cycle that :
supports incremental and pérallel development. It uses a d_ivide-and—conquervtechniciu',e to
sysfem implementation, suppoﬁs multiple l;evélé of information abstraction, and
encourages the use of opeﬁ-ended architectures. The .uée o‘f threads to organize
development helps provide a form of control td the complex nature of objeci-ori_ented |
software development (often interpreted as chaotic).
3.1 Proéess Concepts

In a nutshell, RMT consists of a mimber of threads which implement' some

- software system. Each thread is an abstraction which represents the implementation of
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some portion of the overall software system. A thread coﬁsists of a set of aétivities that
are pefformed in some order to ilﬁplement a software component (which may be a blass,
module, or subsystem), and may be itefated many times. A thread may also spawn child
threads which implement some portion of the software component of its parent thread.
Since a thread may be composed of other threads, there may be many threads executing.
simultaneously at any point of the development process. Because of this hierarchy of
threads, RMT is a divide-and-conquer process and as described in later sections, the
hierarchy of threads divides the system implementation into multiple lcvels of abstraction.
Supporting multiple levels of abstraction provides a framework for monitoring progress
during development.

There are a number of essential concepts that define the RMT process.
Specifically, they are threads, iteration, recursion, and reuse. The following sections
describe each of these concepts in detail.

3.1.1 Threads

The central concept of RMT is a thread. Most everything within RMT is defined in
terms of a thread. Threads are most commbnly discussed in the context of programming
languages and operating systems. In this context, a thread is commonly a single path of
execution within a program, where multiple threads may be executing the same program
simultaneously. This allows for parallel execution within a program. This is different erm
processes within an operating system because each of the threads shareé the same program
instructions and memory. A more detailed discussion on programming threads exists in

[Lewis-96].
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. An RMT thread consists of a set of activities, or phases, that have Well-deﬁned-
goals, inputs, and outputs. These activities are not unique to RMT but are present in many
‘ other software life-cycles. An RMT thiead is compOSed of planning, requirements analysis,
analy51s, de31gn, 1mplementat10n, testing, and quality assurance phases These act1v1t1es are
' generally performed in a sequential order, although there may be overlap between some
phases. Unlike traditional, sequential life-cycle models, certain thread phases may 'be_gin |
| prior to the completion of the preceding phase. The most common overlap of phases -
- occurs in the analys1s design, implementation, testing, and quality assurance phases.

While the analy51s de51gn, nnplementatlon, and testing phases may overlap with -
each other, Berard [Berard-93] pomts out that software quahty assurance (SQA) isan
act1v1ty that occurs durmg the entire hfe-cycle and not Just at the end. SQA does not only .
con51st of testmg, 1t may also mclude requn'ement venﬁcation, insuring conswtency
between analysis, design, and mlplementation, performmg design and code mspections
etc. The Software Engineering Institute [Paulk-93a] recommends a set of SQA aet1v1t1es
~ that should be carried out bv a group independent from the develOpers. Because these
act1v1t1es and the individuals performmg these act1v1t1es are mdependent from (vet closely
tied to) the development act1v1t1es SQA could be con51dered its own process With a
separate life-cycle that occurs in parallel with the development hfe-cycle A sample SQA ’
hfe-cycle- nnght consist of WalkthrOughs and risk ana1y51s dunng the requirements -ana1y31s
phaSe inspections and risk monitorin‘g/managementduﬁng design and implementation.
phases and testing after unplementatlon 1s complete This is not the only or best SQA hfe-

cycle Because the SQA act1v1t1es used by orgamzations may vary greatly, RMT deﬁnes a
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minimum set of SQA activities but allows for additional activities during all development

activities.

KRMT Thread

( AL : ’Tes'ting._“r

| iImplementation

{ | Plann‘ivng.?

Analysis

Figure 3.1: RMT Thread Activities/Phases

Each thread has a team of individuals (ene er more) ‘whd perform activities to
implement software compenents to setisfy the requirements for thet thread. Within a
thread team there is one individual, the thread manager, \&ho is requnsible for the
soﬁware component(s) built by the'thread; Develepers may work on many different
threads and thread managers may managef more than one thread.

The same sfep—by-step processv defined by a thread is applied to meny different
parts of a project by many different developers with different skills énd responsibilities.
For example, the same thread abstraction used by an engineer to implement a single class
is also ﬁsed by the vll)roject architect for the conceptual view of the entire system. This is
analogous to threads in programming languages where multiple threads share the séme set
of instructions. In RMT, these shared instructions are simply the ‘stepé, or activities, that

- are performed during a thread.
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3.1.1.1 Iterative/Evolutionary Development

As .Booch, Gilb, and others .have described, there 1s a need to support iteration and ’
- incremental development Wlthm an object-Oriented development lifej-cycleT There are a
number of reasons why iteration may occur during software development (and why a
soﬁware life-cycle should accommodate 1t) One reason is that it is srmply easier to
partition development into smaller more manageable pieces. A common method for
mcrementally developmg aclassisto nnplement the complete interface with methods that
do nothmg (a stub) then incrementally nnplement (or extend) each of the stubs

then given a set of requirements for a software component (whether they ‘are' f.o_r
~ an entire system or for a single class)? the development of the component should be -

partitioned intoanurnber of incremental releases, 'distr_ib'uting the requirements among the’

incremental releases. The requirements should be prioritized according to an

effectiveness/cost ratio and scheduled s0 that the highest ranked requirements are include.d o

in the earliest releases [Gilb-88]. It is possible that the planned iterations may change |
| durmg the course of development. Planned iterations may be removed because system '
requirements may be deleted or new iteratiOns may be added due to new requirements or
- the modiﬁcatlon of emstmg requirements In addition, if technical problems occur, such as
desrgn or implementatlon flaws, new 1terat1ons may be required to resolve the flaws. |
These incremental releases do not need to be given to the end user or other team
members, but may simply be used as an internal development milestone. FIn fact, an | .‘
incremental release may not even ’satisfy any ‘.of-the given requirements. Early project

increments may simply implement a basic s,ystem’architt:ctureor‘;-ﬁ'amework that the~-
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remainder of the software system will be built on. Thread iterations may also be used asa
way to explore and further define vague or incomplete requirements, evaluate potential
risks, or to prove/disprove crucial design decisions. When given vague requirements or the

design for a critical component, a thread iteration may simply implement a prototype to

clarify requirements or as a proof-of-concept for a design specification. This prototype can

be included as a thread iteration during the planning phase for the thread.

Figure 3.2: RMT Thread with N-Iterations

In addition to ghnply partitioning a problem into smaller piecés, iterative ]jfe-cycles
are well-suited for handling changes during development, help identify differences between
the defined system requirements and the “true” user requirements early in the developmenth
- process, provide a realistic metric for measpring progress, and help prevent defects from
becoming overwhelming.

Changes during the development process require that developers “backtrack” to
some previous point in the develoﬁment process, modify or correct some problerri, then
continue development along the same, or different, path. Many ]j'fe-cycles do not N
‘adequately handle changes in requﬁements, design, etc. during the development process,

viewing them as a negative influences that should be avoided. Brooks [Brooks-95] feels
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l that change is snnply a fact that we should accept and accommodate rather than trv to
1gnore or attribute to poor decision makmg Techmcal problems such as poor de51gn or
unplementatlon dec151ons, and non-techmcal problems, such as misuse of technology and

- per_sonnel conflicts [Raccoon-'95], rnay require development phases be revisited to correct
the errors. In sequentialmethods, revi‘slting previous development activities to correct
errors or accommodate changes tends to incur'signiﬁcant costs ’becaUse it is not part of the :
planned sequence of events. By expecting and plannjng for development phases to be

repeated, iterative life—cycles are more accommodating to change.

Because many time the users (and_ developers) do not»completely understand the |
system requirements at the beginning of the project, the system requirements may change
during development. Incremental releases of the soﬁware can be given to the users to
solicit feedback. Users are able to identify incorrect or missing requirements early in the -
| development process rather than after the final software is delivered. This prevents
developers from expending significant efl‘ort building the software to incorrect
specifications which will require additional effort to modify the software to the new‘
specifications later.

At each incremental release during an iterative life-cycle, the actual development
progress can be compared with the project schedule and the ‘schedule can be adjusted
accordingly. Because this is done frequently, it provides the developers and nlanagers with
a more accurate view of the development and estimated completion based upon the

realities of what has been currently implemented.
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Iteration also help keep soﬁwafe defects at a more manageable number because as
each iteration is implemented, defects are resolved before the iteration is complete. This
prevents a tremendous amount of defects from havihg to be resolved at once, like in a
Single—release approach. Because defects are resolved at the end of each iteration, each
iteration préduces a working/tested component making the software more stable earlier in
the development process.

Because development of the software components is divided into multiple
iterations, most iterations are based upon some existing version of a software component.
Since the majority of thread iterations are based upon existing software, the only |
distinction between the initial thread iteration and subsequent iteration is that there is no
existing analysis/design information, source code, etc. to be taken into consideration
during the initial iteration. In fact, there is no reason why the initial thread iteration can not
be based upon an existing software component, it just requires the developer to review the
existing software component just like during subsequent thread iterations. Because of this,
developers can improve or extend existing software components at any time during a life-
cycle, whether the component is currently under development or has already been
delivéred to the user and is “development-frozen”. In RMT, maintenance of a software
component (or system) is no different than the initial implementation of that component, it
simply requires new iterations to implement additidnal requirements for the existing
component. Even in the normal course of the development of a software component, new
requiremenfs niay be added after devélopment has begun and before it is completed.

Maintenance is no different. Viewing maintenance as part of the system life-cycle-by -
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eontinua]ly repeating development phases (i.e., iteration a thread) makes RMT cyclic in
nature (thus, the term life-“cycle”) because it has no end-point.

Care should be taken when planning the number of iterations a thread_ should have.
Using too many iterations to implement a component can havedetrimentaleﬁ'eets on
productivity, reciuiring more effort to manage the iterations themselves than 1s saved as a
- result of using iteration. Iterations shouldonly be planned when the beneﬁts of dividing |
the, development of some component into a number of iterations is greater than the cost of
managing the iterations themselves. The criteria used for determining how many iterations
to use for a particular thread depends greatly on the nature, ,complexity, and functionality
required of the component to be implemented. ]

~ To help guard against deVelopers making poor judgments and scheduling exoessiVe
‘iterations, a guideline for determining how many iterations to use is that each iteration
should represent a significant portion of either the overall eﬁ'ort to implement the
component ora signiﬁcant portion of tile overall funetionality of the component. For
example, each iteration should represent no less than 15-20% of the overall effort or
ﬁinctionality‘of the‘compon'e_nt (ie.,a maximum of 5 to 7 iterations). Exeeptions may be -
made to this guideline for very complex components. Microsoft, for example, uses three |
or four project milestones (similar to an iteration) for developing products. [Cusumano- |
95] Another safeguard is to have a peer revieW by a group of de\ielopers of the estimated

| number of iterations for a thread during the thread planning phase.
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© 3.1.1.2 Recursion

RMT threads, like threads in prograﬁMng len‘guages, may 'c‘reate ehjld threads.
Within an RMT thread, the iinplemell.tatien phese may simply be the r’ealiZation (coding)
of a simple software eomponent (a class) or a complex software component (a subsystem).
For non-simple software components, the implementation»phase may actually be the
recursive application of a number of more speciaﬁzed threads, where each child thread
implements a particular portion of the complex software colmponent.

Each RMT thread begins with a given set of requirements for a software
component that the thread fnust implement. These requirements may be in varying levels
of abstraction, ranging frorh very high-level (for an entire system) to very specific (for a
single class). As previously mentioned, these requifements may be prioritized and |
implemented in various thread iterations. Within a single thread iteration, the
implementation phase begins when enough design information has been defined from
anélysis and design phases to specify what needs to be implemented (the preconditic)hs of
the implementation phase are specified later). If the design information is the specification
for a small-grained component (a class or gfoup of classes) then the hﬂplementation phase
results in the actual coding of the component. If, however, the design is for a higher-level
' component, then the current design must be further detailed to identify and define all of
‘the classes required to implement the higher-level compenent(s). To make this process of -
specialization more manageable, the design of each higher-level component is decomposed
inte smaller cohesive groups and new, more specialized, threads are spawned to satisfy

each of these groups of requirements (i.e., divide-and-conquer): Each of these child"
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threads fo]loW the same rules as its parent thread; they may iterate many times and they
may have a nﬁmber of child threads themselves. The implerﬁentation phaSe of a given |
thread is completed when all iterations of all its child threads have been comvpleted‘or. it ‘
has been terminated prematurely because of some failure.

Because threads may create other threads, there may be any number of threads that
are being “executed” at any given time, each of which may be in a different phase. In this
sense, an RMT tl;read is similar to a high-level programming language thread. In addition,
all development initiates from a single thread, the root, which represents the entire system.
All other threads are spawned, either directly or indirectly, from the root thread.

While recursion has its benefits, it also has its pitfalls. Anyone who has written
recursive programs has undoubtedly discovered this at one time or another when they
incorrectly code the exit condition and their program fals to terminate. While recursion
can be an eloquent solution to a problem, it adds additional overhead. In programs,
recursion requires additional resources (memory). In RMT, recursion requires additional
eﬁ'ort to manage and coordinate new threads and increases the potential fof
miscommunication between developers. There is also the potential for creating too many
child threads (i.e., an exponential explosion), where the beneﬁts gained by decomposing
the problem into smaller pieces is outweighed by the resources required to manage the
threads.

Because threads incur additional overhead, new threads should only be spawned
when the benefits of decomposing the problem being solved into smaller pieces is greater

than the cost of managing the child threads. Making this determination is up-to-the-
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individual, but some criteria that can be used for determining when to create child threads

are when the problem at hand is too complex to be easﬂy wsuahzed/understood by the B

| de51gner/engmeer when the solutron to the problem at hand contams multlple unrelated S

. ‘components which themselves are of substantlal srze or complexuy, or the solutron to the
' ‘p’r‘oblem'at hand contains a substantial number 'of components that may have -drastlcally‘v
i different hfe-cycles | | | | | |

Even though gulde]mesmay be fo]lowed for determmmg when to create new}
hreads, developers can still make poor decrslons Another techmque to help guard agarnst “
‘ the'mlsuse of thread recursion is to requlre thread managers to have a peer review by .
other developers before bemg allowed to create chlld threads In addltlon, developers .
- -‘ should sunply be educated about the potentral of abusmg recursmn and 1ts consequences
Makmg them more aware of the potentral problems may make them thmk tw10e about s

: spawmng new threads‘.
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Figure 3.3: RMT Thread with Recursion

3.1.1.3 Reusability

Reusability has long been a goal of software engineering methods. It promises to
reduce development costs/effort and improve quality. As mentioned previously, object-
oriented technology was originally promoted as offering a higher degree of reusability that
it has not been able to deliver. People have realized that both building reusable software
components and reusing existing software components is not something that happens
automatically as a result of using a certain methodology or technology, but that it is
something that is a conscious decision that requires planning and significant effort to
successfully employ.

Reusability can take many forms, ranging from high-level design information such

as design patterns to low-level source code reuse. Although reuse is simply a tool to
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perform an activity, such as a design or implemeﬁtation, a devélopment life-cycle should .
make some allowances for it. The following sectioné present a brief .disc,ussion of the

forms of reuse that RMT encourages.

- 3.1.1.3.1 Source Code Reuse

Source code reuse is probably the most efficient and commonly recognized form of
reuse. Reusing existing source code provides perhaps the ultimate benefit of software
development. It greatly reduces development time and costs, and it improves the quality of
the resulting software because the reused coymponents themselves are (or should be) of
high quality. Mili [Mili-95] attribute source code reuse as the only technically feasible
factor to leverage an order of magnitude improvement in programimer productivity. While
source code reuse is, and has been, a highly sought after goal of software development it
has not been achieved to the degree hoped as a result of object-oriented, or any other,
technologies.

Alfred and Mellor [Alfred-95] believe that one reason wide-scale reuse has not
occurred is because the process of reusing software is difficult and time consuming. The
design and implementation of reusable classes is much different than classes designed for
one-time use. The design and implementation of classes for one-time use tends to be
influenced by the system the classes are currently being developed within, and do not take
into consideration other issues which affect their ability for reuse. Truly reusable classes
need to be more generalized than their single use counter parts. McGregor and Sykes
[McGregor-92] believe that to develop reusable software components the life-cycle of

class development should be independent from the application life-cycle. The reason-for
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- this is so 'that"the class can be irnplemented to support a (more) complete description of
vthe entity rather than snnply what is needed for the current system When implementing a
new class, this usually mvolves a ﬁ.tlly—deﬁned base class representing the complete entity
and a specialized derived class for the current systernf
There are also implementation issUes vyith reusing source code. For example, in
C++ the decision to declare a member function in a class as virtual or non-virtual can
effect the behav10r of classes developed by others that mherrt ﬁom that class Other
nnplementatron dlfﬁcultles of reusmg source code are platform portablhty and language
compatibllity. Asa result, desrgnmg and developmg reusable classes involves more effort
(and expense) than 'classesbfor 'one-time reuse. | |
The generation‘ot’ reusable classes is only half of the problem. Once reusable
classes have been created, classes to be reused must be identified during software
development in an efﬁcient manner. Reyiewing source code rnanually to locate candidate
classes is unpractlcal, so some form of catalogmg should be used The ObJect Reuse
Class1ﬁcat10n Analyzer (ORCA) and Automated Hypertext Reuse Search Tool
'(AMHYRST) pI‘OJCCtS are examples of systems that can be used to support searchmg
- reposrtones of reusable soﬁware ObJCCtS [Isakothz-96] Another problem Wlth reusmg
ex13t1ng classes is that it is rare that classes can be reused as-rs wrthout any modlﬁcatlons.
Many times, the effort requlred to modxfy the reused class mvolves more effort than
“developing the class from scratch. |
Regardless of the problems associated with source codereuse, software engineers

- will continue to pursue source code reuse to their advantage, ‘so* a*developmentlifeacycle :
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should accommodate the reuse of existing source code (classes) Durmg the design phase )
of an RMT thread, the desrgners should evaluate ex15t1ng class hbranes to deterrmne if |
there are ex15t1ng components that nnplement the g1ven de51gn specrﬁcatlon Soﬁware
components built as the result of an RMT thread can be mtegrated into a class hbrary after
the thread (component) has been completed. |
3.1.1.3.2 Design Patterns |
| Software systems generally contain recurring patterns of solutions -to problems. v
whether they are real-world problems or soﬂware implementation problems When glven a |
new problem, it would be Wasteful to 1mplement anew solut1on 1f someone else had
already solved it. The ideal situation would be to reuse the existing source cOde used to
| | solve the problem, but this may not be possible in all cases. The next best situation would
‘beto consult the mdlvrdual(s) who had a]ready solved the problem, get a descnptlon of
the solution, and nnplement it. Many times, however the md1v1dual(s) may notbe
available, or they may'have even forgotten how they solved the problem. The existing
source code could be exarnined and the solution extracted, but' this takes valuable time and
may result in an incorrect interpretation of the solution. vIn thrs c'asei it yvouldbe useful for
the original designer to document the solution that was implemented (while they still have =
- a det_ailed knowledge of the design)‘ so that other people could use the same approach‘: B
when they encounter the same problem;.This is what design patterns}do. They docuﬁrent .
the design of a software component that solves a~partlcular pr'oblem. | B
’Because of the many difficulties of reusing sourcel'code, des'ignv patterns are the

next logical step for achieving reuse. Another reason design patterns'are"so significant is
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that object modeling is difficult to get correct the first time, and generally involve several
iterations [Rumbaugh-91]. Design patterns are intended to be solutions that have Been
implemented and proven to work. Tﬁs eliminates the time for others to evolve a design,
which may or may not be correct. While a number of methodologists have defined what
informaﬁon is included in a design pattern, most arev based on what is called the
Alexandrian form [Coplien-94] ‘w'hich. draws from the work by the architect Christopher
Alexander. The Alexandrian form includes the patterﬁ name, a description of the problem,
the context of the pattern, any limitations of the pattern, the solution, examples,
outstanding issues, and the rationale behind the solution. Other formats exist for
describing desigﬁ pattéms, such as [Gamma-95], which are also based on the Alexandrian
form.

During the design and implementation phases of RMT threads, |
designers/developers should review existing design patterns for solutions to problems
identified during these phases.

-3.1.1.3.3 Open-Ended Architectures

Once development of a software syﬁs.tem‘has begun, the cost of making changes to
system requirements can be significant. Three factors thaf may determine the cost of
changes to system requirements are the size of the change, the timé at which the change is
introduced, and the architecture of the underlying software implementationf First, the cosf
of a change is relative to the severity the change; the more significant the change, the
greater the cost [Botting-97]. What may seem to be a small change to a user may require

significant changes and cost to the developers:‘ Second; the cost of change is relative-to the
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time at which it is introduced during the development pfdcess. The later in the
development process that the change is introduced, the costlier the change is [Pressman-
97]. Lastly, the underlying software implementation can drastically influence the cost of a
change independent of the size of the change and the time that it is introduced. Ifa
software implementation is not malleable, even a small change may reqpire significant
modifications to the implementatien.

Developers do not have control over the size of a change or the time a change is
introduced during development, but they can control how the underlying software is
implemented. In Gilb’s [Gilb-88] description of the evolutionary delivery method, a critical
issue that contributes to the success or failure of a project is open-ended architectures.
Because evolutionary development is designed te accommodate change dﬁring the
~ evolution of a system, and changes can be costly, the underlying system should be
designed and implemented in such a way that changes can be made to the system without
incurring significant effort. Open-ended techniques “are quite simply any solution idea
which displays strong attributes of adaptability, hereunder extendibﬂity, portability and
improvability.” [Gilb-88] Table 3.1 summarizes Gilb’s basic principles of open-ended
design. Because Microsoft uses an iterative Efe—cycle for developing software, they have
adopted the use of similar guidelines for developing their product architectures

[Cusumano-95]. Microsoft refers to this as flexible architectures.
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All solution ideas will to some degree allow change in a measurable way.

Each solution idea has multiple ease-of-change attributes.

The expected range of each solution idea’s ease-of-change attributes can
be noted and used to select them for new designs. '

The need for open-endedness is relative to a particular project’s
requirements.

Each open-ended solution idea has side-effects which must ultimately be
the basis for judging the ideas for possible use.

You cannot maximize the use of open-endedness—but must always
consider the balance of all solution attributes against all requirements.

You cannot finally select one particular open-ended design idea without
knowing which other design ideas are also going to be included. =

There is no final set of open-ended design ideas for a system; dynamic
change is required and inevitable because of the external environment
change.

Open-endedness w1]l, by definition, cost less in the long term, but not
necessarily more in the short term.

If you don’t consciously choose an open architecture initially, your
system’s evolution will teach you about it the hard way. ..~

Table 3.1: Gilb’s Basic Principles of Open-Ended Design

Because of the iterative nature of RMT threads, some initial thread iterations and

all subsequent thread iteration are based upon some existing component(s) (in varying
levels of completeness). It is possible that initial thread iterations may be based upon some

existing component that requires modifications or improvements rather than implementing

a software component from scratch. The requirements of an iteration may require

modification, deletions, additions, and modifications, to the underlying system. If the
‘underlying system is not designed and implemented to accommodate change (i.e., open-
ended), it is likely that a significant effort will be required to alter the underlying system to

integrate the modifications for the current thread. Because changes may. occur during each
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iteratioﬁ ofa thvread.,»the software may réquire" fhodiﬁcaﬁons- during each iteration,
| potentially magmfymg the cost of implemcnﬁng fhese changes. |
: 'D.eveloping software is‘much like Gilb’s analogy of a chess game. Your long-terrh

goal is to defeat your opponent, so you could plan a number of ‘mox.fes to carry out that

| goal. .Yo,ur Qppone'nts moves, however, are not»predictable‘ soyyo‘u have .to‘ make
contingency plans. The number of possible c;ombinations kfor your moves énd your
opponents coﬁnter-moves are astronomical, and you can not realistically account for all of
them. Therefore, the only move that really counts is the next one. Since change is
inevitable, it is more effective to put your energy into being éble to respond to your
opponents move While still moving toward your objective than to plan in detail exactly
what you are going to do. The same is true of software development, and open-ended
architectures are one technique for responding to change. Therefore, software developed
using RMT should follow the principles of open-ended architectures to reduce the amount
of effort to accommodate change.

Open-ended architectures are not without their costs. Much like developing truly
reusable software components, they are»mcl')re difficult to design and implement, and take
more time. However, its effectiveness can not be evaluated based upon the initial
development cost because it is a long-term investment (just like software reuse). Initially,
the cost will seem excessive; spending more time/effort than is required to |
design/implement the immediate requirements. However, during later iterations when
changes and enhancements occur, the time and effort saved because éf the flexible

architecture can significantly outweigh the initial overhead:. -
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While open-énded architectures do require additional effort to implement, there ar¢
some elements of object-oriented technology that make it easier: abstraction,
encapsulatibrl, modularity, and hierarchies [Bodch—94]. These elements have long been
promoted as good software engineering techniques for traditional methods and
technologies, but théy are an inherent characteristic of the object-oriented approach,
making it easier for a developer fo design and implement software with open-ended
qualities. Using object-oriented technology does not guarantee that the software producéd ‘
will contain open-endéd qualities, poor designers can still make poor designs, but object-

| oriented technology definitely makes building opeh-ended architectures eésier.

Shaw [Shaw-84] defines abstraction as “a simplified description, or specification,
of a system thaf emphasizes some of the system’s details or properties while suppfessing _
others. A good abstraction is one that emphasizes details that are significant to the_ reader |
or user and suppresses details that are, at least for the moment, immaterial or
diversionary”. Encapsulation is a technique that hides the internal details of an abstraction,
or object, frém the user of the abstraction. This is usually done by séparating the external
view of the object, commonly referred to as its interface, from the implementation of the
object. Modularity is a technique of organizing a system into a number of cohesive and

~ loosely coupled units, or modules. In compiled programming languages, such as C and
Ci++a module is simply a source code file that can be compiled separately. While
modularity helps divide a system into logically related abstractions, a hierarchy allows a

developer to rank and order abstractions. Each of these elements aids in both the
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~ conceptual (i.e., analysis and desién) and physical (i.e., hﬁplementation) construction of
- open-ended aréhiftectures. | | S |
‘Even thqugh open-ended architectures are really a design and implementation
| techniqué, it is of éuch importance that it affects how the life-cycle process is deﬁned
because an evblutionary process can fail horribly if the designed.and.irnplerriented sjrstem
is not_open-ende‘d. For this réasoh, users éf RMT are encburagéd to fo]lOw the principles
of open-ended architectures. |
3.1.2 Benefits of Threads
The purpose of using threads as abstractioﬁs of the development process is to-
provide some form of control or fnanagcnient for a complex process. As a reéult of using
threads as a form of control, they provide a mechanism for monitoring progress during
~ development, allow parallel development, and éupport multiple levels of abstraction. The
following sections discuss these benefits in detail.
3.1.2.1 Monitoring Progress
Perhaps the single greateét benefit of RMT is its ability to monitor progress. RMT
supports the task of monitoring progress dﬁring deVeiopment by providiﬁg a mechanism
that makes the process of eValuating and interpreting progress estimates easier for
developers. Rather than requiring developers to estimate progress for all the softwaré
components of a system at‘ one level of abstraction, RMT divides this estimation into
smaller units of abstractiong iterétions and the thread hierarchy. This mechanism still
requires developers to make their “best guess” (i.e., esthﬁate), but only for a small unit of

abstraction, not for a large system.
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Pro gress"estimation begins at the srnallest unit of abstraction in RMT, a class. The
. nnplementatlon of a class is performed within the. conceptual unit of 2 thread which is
partltloned into a number of 1teratlons Before the nnplementatlon of the class actually
begins, each iteration is assigned a percentage of overall effort required to unplement the ,
class (the sum of the percentages for all iterations is 100%). Progress. is measnred by
'sumrning up the asSigned percentages of iterations that have been completed, bplus the
a551gned percentage of the current (mcomplete) 1terat10n multiplied by its estrmated
progress. For example, con51der the nnplementatlon ofa class that is partltloned into three
iterations with percentages of 40%, 35%, and 25% of the overall unplementatron effort,
respectively, given to each iteration. If the first iteration is cornpleted and the second
iteration is 50% completed, the 0verall implernentation is 57.5% cornplete ((40% * 1.0) +
| (35% * 0.5) + (25% * 0.0) = 57.5%).
Progress- eStilnates need to be updated frequentlys at each iteration, to
accommodate any changes that may occur that would affect the orlgmal estimates. For
: example, if new iterations are added the estunated percentages need to be revised to
reﬂect the new set of iterations.
Once the progress of md1v1dua1 threads can be deterrmned the. progress of
R unplementatlon phases which have spawned child threads can be determmed The progress
of an unplementation phase is s1mply the sum of the Welghted progress estimates of each
of its child threads. In the -same fashion that each thread iteration is assrgned a percentage
of the overall effort for the thread, child threads Fare assigned a weighted value indicating

the percentage of effort of the implementation phase: ofthe‘parent*thread‘that the-child
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thread represents. For example, if the implementation phase of a thread has two child
threads, A and B, where A constitutes 75% of the ‘implementation effort and B constitutes
25% of the implementation effort, wéights 0f 0.75 and 0.25 will be assigned to each of the
child threads, respectively. If thread A is 25% complete and thread B is 75% complete, the
overall progress of the parent threads implementation phase is 37.5% ((0.75 * 0.25) +
(0.25 * 0.75) = 0. 1875+ 0.1875 = 0.375)

While this still requires the developers to estimate the percentage of ovérall effort
that each iteration and child thread represent, it does provide some systematic method for
estimating progress of complex components and an entire system.
3.1.2.2 Multiple Abstraction Levels }

When applying RMT to a particulaf project, all of the threads are organized in a
hierarchy. Each level in the thread hierarchy represents a different level of abstraction.
High-level threads address general overall system requirements while low-level threads
address the requirements for individual classes. Each thread abstraction level is usually
managed and implemented by different developers because each abstraction level requires
a diﬁerent skill set and expertise. While tﬂgre can be any number of abstraction levels in a
particular project, there are three broad classifications: project-level, subsystem-level, and
class-level.

Threads in the project-level category address the high-level (broad) system
requirements. The highest level thread is the root thread, which represents the entire
system being developed. All other threads are spawned from the root thread. Brooks

believes that the project architect “is responsible for the conceptual integrity of all aspects
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of the product perceivable by the user” and réprésehta th;: mtereSts'uf the user _during the
system development. [Brooks-95] It is the project architect who shuuld be responsible for
the management of the root thread. Brooks also feels that the project architect is
responsible for partitioning the overall system ihto subsysterhs. Each of these subaystems
will haVe its own architect, which may or may not be the project architect. Class-level
threada represent the threads that deal with the lowest level of detail (the most
specific),which is the actual implementation of a class. Software engiueers and
programmers are responsible for class-level threads. Subsystem-level threads represent the
intermediate threads between the project-level and class-level threads, which deal with
‘subsystems and modules. Project designers are generally responsible for subsystem-level

-threads, although the project architect may involved for higher-level subsystem threads
and software engineers may be involved for lower-level subsyétem threads, depending
upon the availability of resources.

How the development staff are organiied can influence the quality and timeliness
of software development. Poorly organized teams can have very undesirable effects on
development, making communication betwéen developers difficult or unreliable,
introducing delays, etc. Each thread has a set of assigned team members, and by

: structuring threads as a hierarchy RMT provides an 6rganization to the develupmeut team.
Because each téam member of a thread has well-defined responsibilities, the hierarchy of
RMT thraads provides well-known points of communicatiorl throughout the entire
development team so individuals can identify who to contact when there is a question or -

problem related to a particular component or thread.
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Figure 3.4: Levels of Thread Abstractions and Thread Managers

A thread manager is responsible for implementing the requirements assigned to
their thread. Because this thread may spawn other child threads, the manager is also
responsible for these child threads. The requirements given to a child thread is essentially a
contract between the managers of the parent and child threads for what the child thread
needs to do. This clearly defines the responsibility of each individual in the development
process. In addition, the thread manager is Jresponsible for notifying the manager of the
parent thread when their thread is completed.

The hierarchy of threads can have its disadvantages. First, each new child thread
_ involves the additional overhead of a person to manage the thread. The addition of new
threads can also reduce the conceptual integrity of the project because as the high-level
requirements “trickle” down through the thread hierarchy, the essence of the requirements

may be lost or fade because they have been decomposed into many indépendent pieces”
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(the “can’t see the forest through the trees” syndréme). The thread hierarchy also adds the |
potential for miscommunication simply because there are more mdmduals introduced m o
the development chain from the user to the engineer who irnplements thé software. |
Because of these potential problems, new threads should be created only after careful
consideration. Section 3.1.1.2 discusses some guide]jnes for when to create new threads.
In addition, the requﬁements thaf are péssed to child threads should be as cldse to the -

~ original thfead requirements as possible so that the conceptual integrity of the systein is
maintained.

Within each thread, the distribution of development effort for each phase depends
upon the level of abstraCtion. Project-level threads generally involve more effort in the
planning and requirements analysis phases, subsystem-level threads involve more analysis
and design activities, and class-level threads involves more implementation.
3.1.2.3 Parallel Development

With the overlap between the analysis, design, implementation, testing, and quality
assurance phases and the recursive appljcation of threads, parallel devclopment is
introduced. Paralle] development sirnply Ihéan_slthat the‘rek may be more than one activity
being performed at any given time. In sequentiél life-cycles, parallel develobment is
impossiblekbeca;use the development effort iS required to be in é single phase at any given
time. This results in the inefﬁéieﬁt use of resources because team members specializing in

different areas may be idle while others are not, and vice versa.
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Figure 3.5: Disttibution of Activities, in Practice, of Ti raditionaf Sequential
‘Software Life-Cycles [Berard-93] o
Berard [Berard-93] deécribes that in practice, even in traditional sequential life-
cycle models there is a great deal of overlap between phases (see ﬁgure 3.5). Even though
there is overlap of activities, in many life-cycles a majority of the planning/requirements
| acﬁﬁties héppen early, implementaﬁon happens in the middle, and tésting happens at the
end of the life-cycle. In RMT, a thread may be in multiple phases simultaneously and there
may be any number of threads executing at any given time during a development cycle,
each of which may be executing at a different level of abstraction; therefore, there is a
high-degree of parallel development. As a result of the lﬁgh-degree of parallel
development, there is a very efficient vuse of resources (developers). At a particular
moment during the development cycle project architects may be analyzing high-level
.requirements for one subsystem, project designers may be designing other subsystems,
software engineers may be ‘implementing other components, and quality assurance
specialists may be testing 6ther components all at the same time. At the beginning and end

of high-level threads, such as the root thread, there will tend to be some team members
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performing a majority of the work while others will have very little to do. This can not be
avoided unless team members are qualified to perform different activities of the
development life-cycle (although, there are still only so many people that can have their
hands in the cookie jar at the;same time).

Within programming lvlanguages, a mechanism is usually provided to synchronize
the parallel execution of multiple threads so that they can coordinate their activities to
avoid undesired side-effects (e.g., concurrent access/modification of data). Within RMT,
development threads may also need to be synchrdnized with other threads, although the
reasons are different than those of programming languages. RMT threads neéd to
synchronize with other threads so that the soﬂware components béing implemented by orie
thread will work with soﬁwére components being developed by other threads. Thread
synchronization occurs when all of the phases within a thread iteration have been
completed. This is an important concept because it implies that any child threads that may
have been spawned during tl;1e implementation phase have been terminated and the
software component satisfies the\requirements of the thread iteration (i.e., it satisfies its
contract). |

In order for parent threads to know when child threads have been synchronized,
they must be able to communicate. This is done by the manager of a thread who reports to
the manager of the parent thread that the child thread is completed (this is discussed in
more detail in the following jsection). Thread synchronization occurs at all levels of
abstractions, but is most sigﬁjﬁcant at the root thread which represents the entire software

system. The synchronization of thread iterations at the root thread implies that the-
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incremental version of the entire system is complete and ﬁmctlonal This may involve ab | B
dehvery of the system to the user or internal prOJect teams for evaluation and feedback |

The concepts of 1terat1on and synchromzatlon w1thm RMT is very snmlar to that of
‘milestones. A mrlestone_ is sunply an ev_ent at which tlme a number of objectives are to be
completed. Milestones usually have an associated estimated orv required 'completion date |
| and can represent deadhnes for user deliverables, an mdrcator When certain objectrves have -
been completed or internal goals identifying the completron ofa pamcular component
Within RMT, the synchromzauon (completion) of a thre‘ad is synonymous w1th a
milestone. lf the completion of a particular thread 'iteration 1s deemed signiﬁcant a
milestone may be established at the end of that thread iteration. Microsoft uses a
development life-cycle which d1v1des large prOJects into three to four major milestone R
product releases [Cusumano-95].

Another benefit of thread synchronization (and 1terat1ve development) is that if the
1mplementatron has been done correctly and dﬂ1gently, at each pomt in the development |
-process there is a working, tested (but mcomplete) version of the system that could -
theoretically be shipped to the user. Microsoft uses an incremental technique called the
synch-and-stabilize process, which uses frequent “builds’l (synchronization) and
) stabilization periods of the system to faci]itate this. [Cusumano-95] vThe synchronization |
part of the process involves'the ;fdaily build and'smoke tes‘t”’ [Cusumano-95, Mcconnell-,. |
96]. The daily build involves the compilation and linking of all,source code into executable
programs each day. If the build fails, fixing the build becomes the highest priority. Once

the build is successful, the “smoke test” is run to verify that there are no major probléms
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with the system. It i; not a comprehémive set of tésts, but tests the majbr components of
the software to prevent quality from dégrading and integration problems from becoming
significant. | | |
3.2 RMT Activities/Phases
An RMT thread is divided up into a number of phases that carry out diﬂ’er.ent,v
portions of the development process; Each phase has a well-defined goal with specific
inputs and outputs and may involve a :hlimb_‘er ‘of tasks ﬁ) carry out thesé goals. Generally,
the results of one phase are inputs for the next phase. Thé‘sé phases are not unique to
RMT, and in fact are common to many‘soﬁ\‘vaire ]jfe’-cyc.les':. While the phases are
undertaken in a sequential order, there méy be overlap between phases, especialiy wnh the
quality assurance phase 'Which happens simultaneoﬁsly.vvi"ch all phases of thread but
_ éulminates at the end of the thread. | | |
Most of the RMT thread phases produce documéntatidn (e.g., t‘éxtual and
graphical) as output. This docum¢ntation is critical to applyiﬁg RMT effectively because
the documgnt_ation not only provides developers Wlth a clear and concise devscription of
existing components, but it representsv the étate>o’f a thread. Because many developers may -
work on multiple threads, it is possiBle that some threads may “go to sleep” temporarily
because no one is available to work on thaf thread. At some time later when the
developers become available to resume work on these threads, the developers need tb
‘continuc where they left thread development. The documentation can contain the

information describing what state thread development was in when it “went to sleep”.
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Since these documents can, and probably will, undergo changes during thread
iter.ations,‘some method should be employed to maintain a history, or versions, of each of
these documents. This é]lows developers to consult and compare previous versions of the
documents. If the client wants to know why the project schedule is Behjnd, maintaining
versions of the requirements ddcument may show that a sigpiﬁcant number of system
requirements were added since the initial iteration. |

The following sections describe each of the RMT thread phases. Many object-
oriented methodologies have very detailed definitions of what is done (and how) dufing of
these phases. Because RMT does not require the use of a particular methodology, the
descriptions present the goals of each phase without specifying the details of how the tasks
are performed. -

3.2.1 Requirements Analysis

The first phase of any RMT thread is requirements analysis. The goal of this phase
is to solicit, analyze, and define the requirements for some software component. These
requirements represent a contract between the thread and the client of the thread. Project-
level threads generally require the user to ﬁrovide the developers with an initial set of
requirements. The initial set of requirements may be incomplete, maccurate, inconsistent,
vague, or unnecessary. The developers need to improve these requirements to ensure that
the requirements are what the user really needs, detail any vague requirements, identify
any inconsistencies between requirements, identify any requirements that were not
identified, and eliminate unnecessary requirements. This usually invélves interviews

between the developers and users. The requirements for lower-level threads, subsystem-
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level and class-level threads, are usually specified by the develépers themselves as part of
the system implementation to satisfy higher-level usér requirements. Refinement of these
requirements generally involves discuésion between dgvelopérs to insure that the
requirements are accurate and complete. |

3.2.2 Planning

The planning phase takes a set of well defined réquirenients as input and produces
a development plan for the thread. Since the input is a set of well-defined requirements,
the planning phase can only begin after the requirements analysis phase has been -
completed. The primary goals of the planning phase is to estimate the number of iterations
required to implement the given set of requirements, prioritize the set of given
requirements, and assign each of the requirements to a particular thread iteration. Whiile all
of the requirements will be passed to the next phase, only those requﬁements that are
assigned for the current thread iteration are scheduled for implementation. The other
requirements are included only for evaluation to avoid any conflicts or dependencies with
previous or future thréad iterations.

The requirements can be assigned to thread iterations using any method deemed
necessary by the project manager, but Gilb [Gilb-88] suggests that requirements should be
ranked and prioritized according té the value for the user and the amount of effort
required to implement these requirements. Requirements with the larger value to cost ratio
should be assigned to early iterations. The development plan should include a specification
for each iteration which includes the set of requirements to be addressed in that iteration,

the estimated amount of effort required to carry out theiteration; the-estimated/required
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completion time for the iteration, and the allocation of available resources needed to carry
out the thread iteration.

Each organization has its own technique for estimating development effort and
scheduling projects, but when scheduling the estimated completion date for thread
iterations (é.k.a. milestones) it is suggested that some form of buffering be incorporated
into the estimated schedule. Microsoft incorporates some amount of buffering in each
major product development milestone to accommodate uncertainties that arise during
development to more accurately meet estimated dates [Cusumano-95]. These uncertainties
may include scheduling overruns because of misunderstandings of requirements or
technical issues, unscheduled requiremenfs, or other unexpected problems. This buffer
time should not be used for anticipated tasks such as feature development or testing. In
application products, Microsoft usually allocates 20 to 30 percent of the schedule to buffer
time [Cusumano-95].

Another critical goal of the planning phase is to produce what Microsoft calls a
vision statement [Cusumano-95] and Schach calls a specification document [Schach-96].
This document is based upon the set of sysfem requirements, produced in the previous
phase, and specifies precisely what the resulting system is, what functionality it will
contain, and any system constraints. In additioﬁ to specifying what the product is, the

| vision statement specifies what the system is not. This is equally important as sbecifying
what the system is. Schach views this document as a contract between the developers and

the users as to what constitutes the acceptable criteria for the resulting system.
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- 3.2.3 Analysis
Once the development plan has been completed analy51s of the g1ven requlrements
can begin, which is the ﬁrst step of the actual system unplementatron The input to this
phase is s the set of requlrements, a development plan, and a risk analysis report forthe =
current thread iteration. The risk analy51s report isa , result of the quahty assurance
activity, which is dlscussed in a later section. The goal of this phase is to fully understand
and define the problem to be solved for’the given set of requirements. The output of this
' phase is a clear understanding and definition of the problem, which may take the form of
‘documents and/or dragrams dependmg upon the partrcular methodology belng used. This
document is called the problem specﬁicatlon The problem specification will likely mclude
in addition toa descnptlon of the problem, a descr1pt10n ofa number of ob_]ects/classes -
v »(1 e., thelr name, attributes, and behav10r) that were 1dent1ﬁed dunng the analysrs phase v
| that are problem-specific. These objects or classes may or may not be coded durmg the
b subsequent implementation phase | depending upon their relevance in the design and
unplementatlon phases. It is possrble that an obJect/class identified dunng the analysrs
phase is snnply used to describe and model the problem but have no representatlon in the
resulting software.
The requirements scheduled for nnplementatlon.durmg the current thread 1terat1on o
are the primary focus dunng this phase Related, or potentrally related requlrements may
- also be considered for analysis during th1s phase becausethey may affect the requirements
scheduled for irnplementation during the current thread. Requirements scheduled»for

implementation during the current thread iteration may not have béen implemented yet or
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they may be existing requireménts that have beén imﬁleméhted durmg al previous thréad '
iteration but havebbeen modified. If a requirement is neW; fthen it must 'beb‘analyzecll.and a
new problem specification muét be cohstrﬁcted. If the requireménts is an‘ eXiStihg
requirement that has beeh modified then the previous pfoblem specification fér thé
modified requirement should be cdmpafed With the modiﬁed requirement of the cui‘rgnt '
thread to identify incqnipatibi]ities. A newbproblem specification should be created fof the
modified requirement WMCh accounts for the requirement changes. The‘se‘ pfo,bleni
specifications are used as input fpr the design phaée. |

During subsequent thread iterations, the soﬁ\&are componenfs implerriéhted by
pfévious iterations should be consulted during the analysis of Cuﬁent fequirements. This
may identify simﬂarities or conflicts with the existing software. Similarities may result in
the reuse of design information and/or source code. Conflicts may result in modifications
to the existing software to aécommodate changes required kfor the current requirements‘.

Because many of the input requirements may be unrelated to each other and caﬁ be
analyzed and specified independently, the speciﬁcaﬁon for some problem areas may be
completed before others. Once enough spééiﬁcation information exists for a particular
problem area the design phase for the specified problem area can begin. For problem areas
that are clo‘sely related or dependent on each other, the design of those problems should
be delayed ﬁntil all related problems have been fully analyzed and specified because each -
specification could change due to later analysis of related problems. Because design
activities may begin simultaneously with analysis, the boundary between analysis and

| désign activities is vague. To further cloud the boundary between analysis and ;des’ign;‘ the

- 66



identification and description of analysis objects/classés di;ring the analysis phase may be
considered the beghning of the design phase. This is due t§ the fact‘ that the descripﬁoﬁ of
a class is éommpn to all development phases and the initial spééiﬁcation of a class’
a&ﬁbutes and behavior begins during the analysis phase. |
‘ 3.2.4_Design

Tﬁe goél of the design phase is to specify, in detéil, how the underlying software
components are to be iInplemented. The input to this phase is the problem speciﬁcétion
document which is a detailed deﬁnition of a problem. The output of the design phase is an
implementation plan, or“design docuxhent, which provides a detailed speciﬁcatipﬁ of the
software component(s) to be ixnplemented, and may take the form of textual dqcuments
| and/or'diagrams, depending upon the deSign méthodoiogy‘used. v

On the initial thread iterétion, the design phase involveé reviewing the problem
speciﬁcation and constructing the specification (or design) for the softwafe componeht(s) .
to solve the specified problem(s). During subsequént threa& iferafions, the design |
docuinentation and source code for the existing systeﬁl (irnplemenfed during previous
thread iterations or by other threads) may need to be reviewed to identify any impact that
~ the problem specification of the current tﬁread iteratién will have on thje; existing system. |
Commonly, each thread iteration will require new ﬁmétioﬁalify-to be added to existing
components, which may require modification to the ex15t1ng component.

'As a solution to the broblem specification input from the a.nalysis phase is:outlinéd :

- during the design phasé, new objects/classes that were not idenﬁﬁed in the problem
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specification may be introduced in the ‘design document fo ﬁ.llly-spéciﬁf the solution fo the
problem [McGregor- 92]. These objects éré hidden froﬁ1 the user. -

The design for a software coniponent may begin wﬁen enough anélysis information
exists to fully specify the problem the component needs to solve. Similar t6 the overlap
between the analysis and design phases, the implementation phase may begin‘_be'fore the
design phase is completed. Since a large number of subsystems, modulés, and classes inay '
be identified and specified during the design phase, the design for some compoh¢nts may
be completed before others. In this situation, the actual implementation for these
components may begin before all design activities ha§e been completed. It would be
prudent only to begin implementing components that are eifher independent of other
components, or related to components which have complete design information.

If libraries of design patterns are available to the designer, they should be evaluated
during the design phase to determine if there are existing designs that are applicable to the
problem at hand. If applicable patterns are located, then the existing design information
should be reused and incorporated into fhe design specification. If libraries of reusable
software components are available, they should also be consulted to determine if there are
existing software components or frameworks that could be used during the
implementation of the design specification. This is done because the design specification of
the potential component(s) can be made to conform to the existing software
component(s), if the integrity of the design is not compromised. Theﬁ the existing

components could be reused with little or no software modifications.

68



3.2.5 Implementation

The hnplementétion phase is where the actual software coding occurs. The input to
this phase is a design specification for a particular software component. This component
may be a single class or an entire software system. The output of this phase is a fully
implemented software component that adheres to the given design specification. Since the
design specification generated during the design phase may contain specifications for a |
number of independent software components, it is possible for implementation to begin
before the design specification for all softiware components has been completed. The
implementation of a software compohent may begin when the design specification for that
component has been completed in the design phase.

If the design specification is for a low-level software component (e.g., a class),
then the component is coded according to the given design specification. If the given

| design specification is for a high-level software component (e.g., a modulé or subsystem),
then the design specification is decomposed into a number of smaller, cohesive pieces, and
new threads are spawned to implement each piece. To implement the given design
specification, new classes may be identified that were not specified in the design
specification but are required for implementing the design (see [McGregor92]).

To promote software reuse, a design pattern library and source code library should
be reviewed, if available, for compatible designs and/or source code before implementing
new components. If compatible design information or existing components are located,
they should be reused appropriately. This improves development time and software

quality.
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On the initial thread iteration when there is no existing software cbmponent, the
source code to be implemented will be done from scratch.‘ On initial iterations where a
software component already exists or during subsequent thread iterations, it is possible
that the source code to be implemented durmg thJS ph_ase will néed to bé integrated into
some existing version of the overall system. If this is the case, then the design
speciﬁcationé and source code of the existing system affected by and/or related to the
changes.outlined in the design specification should be‘ reviewed prior to coding. This
review is done to reduce (and hopefully eliminate) potential problems during or after the
required coding. If new components are coded, then the review involves understanding
how the existing system and the new software comﬁonent will interact. If any existing
components require modification, the review involves the identification of any behavioral
changes to existing methods and any “client” components invoking these methods.
3.2.6 Quality Assurance |

Quality assurance ié a broad term which means involves many different activities at
many different times during software development. The quality assurance phase
encompasses all activities required to ensufé the quality of the software produced. It
occurs simultaneously with all other thread phases, but culminates after the
implementation phase.

The most commo‘n form of quality assurance is testing. The type of testing
performed during a thread depends upon the abstraction level of the thread. Unit testing
occurs during class-level threads; integration testing occurs at sjfstem-level threads; and

functional testing occurs during the project-level thread(s). As with the-development of -
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the system source code, the development of test cases should involve reviewing existing
design patterns and source code libraries, reusing designs and/or components for test cases
where possible.

Itis genefally preferred that the person performing testing (design,
implementati_on, and execution) is not the same person who developed the software being
tested. This is because the developer’s view of the software is tainted with ﬁnplementation
details, where an independent test engineer is removed from the implementation details
and is more concerned with behavior. This also allows for a higher degree of parallel
development which results in a shorter development time. Microsoft, forvexample, tries to
pair up a test engineer with each developer [Cusumano-95]. |

Development of test cases can begin as early as the analysis phase. A high-level
design for test cases can begin as soon as enough stable design information exists for a
component, which may occur before the design phase has been completed. It is wise to
only begin a test case design when the system component design is relatively stable and is
not likely to change drastically. When the design specification for a system component has
been completed and the implementation phése begins (note that the design phase may not
yet be completed), the complete test case design can be begin. The final test case design
may vary greatly in formality and detail depending on the complexity of the test and
available resources (e.g., time, budget, etc.). The actual implementation of the test case
may begin once the test case design has been completed. This may occur during the
implementation phase before the component to be tested has been completed. Allowing

for development of test cases to happen in parallel with the system development’
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streamlines the development process. If personnél are not availability during the design
and implementation phases to develop ’;he test éaseé, the test cases can be developed
“following the implementation phase.
~ Testing, however, is not the only task of the quality assurance phase. It may also

involve risk management, verifying that the software meets all of the system reqﬁirements,
and assuring consistency of information between the analysis, design, and implementation
phases. |
3.2.6.1 Risk Management

While not part of the traditional quality assurance activities, risk management is
another task performed during the quality assurance phase, primarily because, like quality
assurance, it occurs sﬁﬁultaneously during all other thread éctivities. As mentioned briefly
in chapter one, risk rﬁanagement is comprised of three distinct tasks: risk analysis, risk
monitoring and mitigation, and risk resolution.
3.2.6.1.1 Risk Analysis

When dealing with problems during software development it is better to prepare
for potential proBléms rather than reacting to them after they happen. That is what risk
analysis is intended to be, a proactive strategy for dealing with problems during software
development. The “risk analysis™ task focuses on the identification, evaluation, and
planning of potential risks associated with developmg_soﬁwaré. |

The ﬁrsf goal of this task is to identify any pofentiél threats to the development of
a thread based upon the given requirements, schedﬁ]jng ‘requiremerilts, development

environment (e.g., personnel, technology, etc.), existing'systems; and-any other-identified
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factors. There are a number of methods and techniques that can be followed for identifying
risks that identify many different types of risks. Pressman [Preésman-97] suggests the use
of a risk item checklist of questions that can be used to identify risks. This checklist is
divided into several sub-categories of known and predictable risks:

“Product size—risks associated with the overall size of the software to be built or
modified

Business impact—risks associated with constraints imposed by management or the
marketplace :

Customer characteristics—risks associated with the sophistication of the customer
and the developer’s ability to communicate with the customer in a timely
manner

Process definition—risks associated with the degree to which the software process
has been defined and is followed by the development organization

Development environment—risks associated with the availability and quality of the
tools to be used to built the product )

Technology to be built—risks associated with the complexity of the system to be
built and the ‘newness’ of the technology that is packaged by the system

Staff size and experience—risks associated with the overall technical and project
experience of the software engineers who will do the work.” [Pressman-97]

While there are other techniques for identifying risks, much of the risk
identification can be attributed to the skill and experience of the individual.

Tﬁe second goal of this task is to rate the potential costs of each identified risk. .
There are a number of methods to do this, but most involve some classification based
upon the probability that the risk will occur and the impact or consequences as a result of
the identified risk. The probability of each risk occurring is specified as a percentage, while
the impact or consequence of each risk is some scalar value assigned by the developer. An

overall risk factor can be calculated for each identified risk by multiplying the probability

by the impact. The identified risks can then be sorted and the highest probability-to-impact
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value should receive the most attention. Pressman [Pressman-97] and Jacobson [Jaeobson-
92] suggest the use of a riak table sorted by probability and impact/consequence. Low
order risks may be deemed not significant enough to warrant further consideration. |
Pressman refers to this as drawing a cut-off line for‘ all identified risks less than some
factor. |

Once risks have been identiﬁed and classified, each risk above .the cut-off line
should be further classified as senere, moderate, or mild risks. Development for the current
thread may continue in one of three ways based upon these sub-classifications. Mild risks
have a lower probability-to-impact value so thread development can continue as normal
but an avoidance and conﬁngency plan is made to manage the risk should it occur.
Moderate risks have enough signiﬁcance to temporarily put the thfead development on
hold until some risk management/resolution technique (See section 3.2.6.1 :3) can either
reduce the pnonty of the risk, eliminate the nsk entirely, or promote the risk to a severe
risk. A severe risk is one that is considered to have potent1a1 nsks SO great that the current
thread must be terminated. This is similar to the spiral model [Boehm-88] in that at the
begmmng of each spiral (and in the case of RMT a thread) some risk resolutlon technique
may be used to evaluate unknown risks before contmumg development.

While the risk analysis task is not a independent phase defined within an RMT
thread, it begins during the planmng phase and must be completed before the analysis
phase can begin. It is not required that the planning phase be completed prior to beginning
risk analysis, but it would be prudent only to analyze risks BaSed upon requirements and |

development plans that are fairly complete and ac_:‘curat‘e;"Analyzing‘p’otential-risks*-for
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requirements and d¢velopment plans that will only change later will result in wasted effort.
When beginning risk analysis, a fully specified set‘ of software cbmponent requirements
and a development plan is required (v;fhich may be complete for the related componeﬁt(s),
but not for the entire thread). The result of this task is a risk analysis report which includes
a list of potential risks, the probability and impact of each risk, any information géined
during prototype threads used to clarify risks, énd contingency plans for each risk.
3.2.6.1.2 Risk Monitoring and Avoidance

The risk monitoring and avoidance tasks occur during all thread phases following
the planning phase. Risk monitoring involves identifying whethef the probability that any |
of the identified risks has increased or decreased based upon a number of factors. Should
the probability of a risk*incréase enough so that the probability-to-impact value becomes
significant, risk avoidance techniques may be employed to decrease the significance of the
risk, or to eliminate it entirely. If the probability that a risk will occur becomes so great
and can not be avoided, it is possible that the current thread development may stop until
the risk is either resolved using the methods mentioned in the previous section or the
thread is immediately terminated.
3.2.6.1.3 Risk Resolution

The risk resolution task is the action taken when a risk has either occurred or is
categorized as being significant enough to put development temporarily on hold. If the risk
has not yet occurred but has been deemed significant endugh to stop development, then
some proof needs to be shown that either reduces the priority of the risk or that the risk

may be addressed using some development or implementation technique: To do-this a*
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prototype, benchmark, or proof-of-concept implementation may be used to clarify and/or
resolve the identified risk, which involves the spawning of a new thread with requirements
to address these issues. After the “prototype” thread has been completed either (1)
another protofype thread will be spawned if the previous prototype was inconclusive, (2)
the risk will be downgraded to a lower priority as a result of the infonnation gained dﬁring
the prototype thread and the current thread development can continue, or (3) the identified
risks will be i)romofed to a severe risk and the thread will be immediately terminated. If
the risk has already occurred, then the contingency plan, Which was créated during the risk
analysis task, needs to be implemented. |
It is important to note that while the ésﬁmated effort for risk analysié can be
reasonably estimated in the developinent plan, risk management may incur additional
‘overhead to the thread. Should such events occur, the development plan should be
modified and re-evaluated accordingly.
3.2.6.1.4 RMT Risks
As part of the risk management activities, there are certain risks inherent to RMT
that can have negative results on the develdbment process that should pe identified and
monitored during development. These risks are the misuse of iteration and recursion,
making incorrect progress estimates, and miscommunication between team members.
As mentioned previously, the misuse of iteration and/or recursion during
development can have detrimental effects on development. Therefore, the use of iteration
and recursion should be carefully monitored to prevent developers ﬁom abusing theée |

techniques. If a thread manager notices that a developer is using what seems to be'an
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excessive number of i iterations and/or chrld threads, the manager should i inquire about the
reasons for usmg the iterations and/or chﬂd threads If they are deemed excessive, then the
developers need to remove the extra 1te‘rat10ns/ch11d threads and adjust the appropnate
development plans accordingly. | |

Another potentlal risk is makmg maccurate estimates for deterrmmng progress of
threads. When estimating the amount of effort requlred for a particular thread iteration or
child thread, developers.can make mistakes. If, at any point during development, an
estimate is discovered to ‘bev incorrect, the development plan for that thread should be
‘updated accordingly and any parent thread should be notified of the changes. Any impact
that such changes have on the schedule should also be made to the development plan, and
the parent should be notified. These modiﬁcations to the development plan is very similar
to what happens at the beginning of each thread iteration when the thread requirements
change. | |

Finally, because development is organized as a hierarchy, there is a potential for
miscommunication between team members simply because there are more individuals
involved in the chain from user requirements (top-level) to actual elas's implementation
(bottom-level) and there are more teams working independently of each other. A possible |
risk :avoidanbce technique for this problem is to have regnlar meetings with developers from
different teams to review the progress and direction of each team. Also, thread managers
should meet with the managers of parentl and child threads to review thread requirements, .

progress, directions, and to voice any assumptions that any teams may have of other
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teams. These techniques can héip’ surface any problems that may occur due to
miscommunication between team members. |
3.2.6.2 Traceability |

Berard defines traceability as “the degree of ease with which a concept, idea, of
- other item may be followed ﬁom one point in a process to either a succeeding, or |
preceding, point in the same process.” [Berard-93] Within RMT traceabi]ity means that
- each of the original System requirements can be traced to the resulting éystem. This aHost
the developers, specifically the quality assurance engineers, to Verify that resulting system
satisfies the origihal requirements. To facilitate traceability, each requirement (and/br
element in the vision statement) should be named or numbered and referenced in a test
plan to verify that the requirement has been met. For the root thread the test plan should
~ contain references to the overall system requirements. For threads‘ 'othgr than the root, |
each requirement input to that threéd shoﬁld be referenced and/or vériﬁed in the testing
phase. |

Rather than simply tracing reciuirerhents from the requirements analysis and
| planning phases directly to the testing phaéé, which may be difficult and or t‘imev |
consuming, tracing requirements sﬁoufd be performed dﬁring intermediate development
activities. Spéciﬁcally_, every specification made 1n the vision statement (which is not an
exclusion spgciﬁcation) should be traceable to a requirement in the requircments_ _
- specification and every aspect of the design document can be tracebd»t‘o fhe vision
statement [Schach-96]. This occurs dﬁring the planning phaSe, when the vision stétement

is being prepared, and the design phase, when the design document- is'prepared. Both the
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vision statement and design document must satisfy this criteria before being considered
complete.
3.3 Documentation
As discussed inthe previous sections, each thread phase takes some input and
-produces some form of output. Most phases produce some form of both textual and
~ graphical documentation, with the exception of the implementation phase which produces

source code. The following table summarizes the documentation generated by each thread

phase.
RMT Thread Phase | Resulting Documentation
Requirements Analysis | Requirements document
Planning I Development plan, Vision statement
Analysis Problem specification document . -

| Design Design document

Implementation Source code
Quality Assurance | Risk analysis report, test plan

Table 3.2: Documentation Generated During Thread Phases
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Chapter FourQApplying RMT

While the previous chapter presented the concepts and definitions of the
components of RMT, this chapter provides a scenario of how to apply RMT to a
particular project. While the sample project is intended to illustrate how RMT can be used
in practice, many of fhe details have been left out, such as the actual design specifications.
Within the description of each thread iteration only the signiﬁcarit differences from
previous iterations w1ll be discussed.
4.1 The Project

The hypothetical project used will be a cﬁent/ sérver application to query, inseﬁ,
and update a database in a multi-user environment. The client portion of the system will be

| an application with a graphical user interface (GUI) that allows a user to query, display,

insert, and update data in a relational database management system (RDBMS) running on
a remote server machine on a local area network (LAN). A single server application will
communicate with a number of client applications across the network and interface
directly with the RDBMS. The server application acts as the liaison between the client
application and the RDBMS. ‘-
4.1.1 Thread Naming Convention

Becausé of the iterative and recursive nature of RMT threads, there may be a large
nuniber of threads that need to be Maged and monitored during development. An
explicit hierarchy of threads helps 0rganize development, but it still may become difficult

to identify and trace the ancestors and descendants of these threads. In order to quickly
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identify the location of a thread and/or thread iteration in the hie;'archy of project thrééds,
| ‘the following thread naming convention will be used. -

There are three elements of a thread iteration .that”identiﬁes ité position within the
project thread hierarchy; its parent thread, the iteratién number, and its sibling threads.
First, to uniquely identify a threéd from its sib]jngs, a thread name contains one or more
letters (e.g., A, B, AA, etc.). Secondly, to identify individual thread iterationé, a thread
name contains a version number which identifies a particular thread iferation (e.g., 1,2,
etc.). Lastly, to identify a threads lineage, a thread name is prefixed with the name of its
parent thread followed by a period (.). The root thread has no parent thread so the prefix
is omitted. For example, the second iteration of a root thread is named A2, with two child
thfeads named A2.An and A2.Bn.

| There are a number of tools that are commonly used during éoﬂWare development
to maintain a history of source code and documents (e.g., SCCS, RCS). These tools
generally use some form of version numbers to identify distinct copies of files. The version
numbers of threads could be assigned based upon the version numbering scheme used by
such tools so that the thread vefsion nu_mbérs would correlate to the version numbers |
assigned to the actual source code files, design documents, etc.

While this naming cohvention uniquely identifies a thread in the thread hierarchy, it
is not very meaningful to developers. Therefdre, an édditional name may also be used in

conjunction with the unique name.
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4.2 The First Iteration

The first thread iteration of an RMT thread is 'unicjue ﬁrom"a‘ll other thread
iterations. The difference is that at thé initial thread iteration there is blevss existing design
information or source code so more must be done ﬁdm scrétch. Subséquent thread
1terat10ns however, usually bulld upon some éx15t1ng component(s) from prev10us |
iterations (unless the existing component is discarded) and developers must take existing |
~ designs and source code into consideration. The unique name of the ﬁrst iteration of the
roo’_f thread for this example is Al.

During the requirements analysis .phase, the fbllowing system requirefmnts are -
ide‘ntiﬁed‘ d@g ﬁser/developer meetings and interviev‘\‘rs:'

(1) The clieht 'appiication must co'mﬁmnica_te with a single server application
across a LAN. | | R ’

(2) The server application must communicate with a number of client appliéations :
across a LAN. | | |

3) The server apphcatlon must mterface with an RDBMS

4) The client apphcatlon must prov1de a GUI for the user to query data i in the
RDBMS through the server apphcatlon (thls is the most common operation
performed by users) ‘

&) The client application must prov1de a GUI for the user to msert data into the
" RDBMS (via the server apphcatlon) '

The above system requirements are then formalized into the reqilirements .
document, which serves as the basis for project development from this point forward. In

reality, there shduld be many more system réquireﬁie‘nts,i such as> hafdware/ s‘oﬁwa:ré »
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specifications, the RDBMS to be used, specific GUI 'requireme‘nts, etc., but were left out
for the sake of brevity for this example.

The first task of the planning phase is to prioritize the requirements in order of
importance to the user. From the above list, requirements (1) through (3) can be grouped
together into a single requirement because they represent the underlying architecture of
the entire system. Even though the implementation of this architecture will not be anything
that the user will see, it should be given the highest priority. Requirement (4) should be
given the next highest ranking of importance. This requirement encompasses both the GUI
design and the most commonly used operation of the system. The last requirement, (5), is
given lowest priority.

‘The next task of the planning phase is to estimate the amount of effort fequired to
irﬁplement each of these requirements. In order to determine these estimates, developers
are consulted for their input. After the estimates are compiled, the developers estimate the
number of iterations that will be required to implement the requirements. For this set of
requirements, three iterations will be used for the root thread. The first iteration will be an
internal milestone that will not be delivered to the user. Requirements (1), (2), and (3) will
be addressed in this iteration and will consist of a basic client (with no GUI), server, and
RDBMS applications. The client application will be able to connect to the server
application, the server application will be able to connect to the RDBMS, and the client
and server applications will be able to send and receive dummy requests and responses to
simulate normal operations. The second and third iterations will address requirements (4)

and (5), respectively, and will both be delivered to the user. At the second iteration, the-
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GUI for the client app]icatibn will be in place and the user will be able to perform basic
queries against the RDBMS. The third iteration will allow the user to insert new data into
the RDBMS. Each of the identified thread iterations will be given an estimated start and
end date. | /

Each iteration for thread A is then assigned some perceﬁtage of the overall effort
required to implement the entire thread. Iteration A1 represents 40% of the overall‘effort,
iteration A2 represents 25%, and iteration A3 represents 35%. |

At some point during the requirements analysis and planning phase, risk analysis
begins. This produces a risk analysis report, which must be completed before the analysis
phase begins. | )

Even though the requirement analysis and planning phases address all of the user
requirements, only the requirements that are scheduled for the first iteration are considered
during the analysis phase; requireinents (1), (2), and (3). Four major modules or
subsystems are identified as part of the problem: the clienfapplication, ihe server
application, av communication subsystem, and a database abstraction subsystem. The »
specific requirements and behavior for each of these subsystems afe analyzed and épeciﬁed
in the problem specification document. In this example, the épgciﬁ§éfions for the
communication subsystem are completed prior to the other subsystems, so the design
phase for the communication subsystem actually begins before the problem specification
for the remaining subsystems is completéd.

As the design}phase of the communication subsystem begins, the developers

identify a number of classes in a class library that contain the functionality required of the
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problem statement, and can be reused in the implemenfation phase. The existing design
documentation for the classes is then incorporated into the design specification for the
communication layer. -

While the design for the communication subsystem is in progress, the analysis
phase is cornpleted and the problem statements for the remaining subsystems were made
available. During the design of the remaining subsystems? the developers are unable to
iden’dfy any existing design patterns or source code for the remaining prohlern '
specifications, so the subsystems must be constructed from scratch.

- The implementation phase hegins with the given design of the four subsystems.
E)nstmg components for the communication subsystem have a]ready been 1dent1ﬁed as
solutions for the design, so no nnplementatlon is required. The nnplementatlon of the
client, server, and database subsystems is performed by creating three new child threads,
Al.A, A1.B, and A1.C. Thread Al.A implements the client subsystem and contains four
iterations (1 e., threads A1.Al, A1.A2, A1.A3, and Al A4) Thread A1.B unplements the
server subsystem and contains three 1terat10ns (ie., thread Al .B1, A1.B2, and A1 B3)
Thread A1.C implements the darabase abstraction subsystem and contains three iterations
(iv.e.,.Al.Cl, Al.C2, and A1.C3). The implementation phase of thread .Al isnot

compieted until threads A1.A, Al1.B, and A1.C have heen oornpleted.
‘To allow the manager of thread Al‘ to monitor the progress of the implementation
phase of thread Al, threads Al1.A, A1.B, and Al.C are each assigned a percentage of the
overall eﬁoﬁ of the implementation phase. Thread A1.A represents 55% of the overall

nnplementatlon effort, thread A1.B represents 25%, and thread A1.C represents 20%
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During this thread iteration the risks identified in the risk analysis repdrt are
monitored but their priorities afe unchanged so no risk management techniques are
necessary. |

The design of the test cases begins during the later part of the design phase, when
the design information is fairly stable. These test cases are both unit tests and functional
tests. Impleméntation of the test cases begins during the implementation phase. After the
initial implementation of the software com}ponentsb for thread Al, the test cases are
exercised, during which time a number of defects are identified. The identified defects are
resolved and the test cases are again executed. This process is repeated until all of the test
cases are performed without generating any errors. It is important to note that the
impleméntation phase is not completed until all defects are resolved.

Once all of the testing is completed, the requirements-of the thread are traced to
the resulting software, verifying that the requirements are met. At this point the basic
architecture of the system is m pléce and a skeletal version of the overall system exists
with the client application being able to connect to the server application, which is able to
connect to the RDBMS, and basic messagés are passed between the client and server
applications.

Halfway through the first iteration, the project manager requests a progress report
for the project. First, the manager of thread A1 asks the managers of threads Al.A, Ai B,
and A1.C for the progress estimates. Al.A reports 40% complete, A1.B reporté 60%
complete, and A1.C reports 75% complete. The manager of thread Al then computes the

overall progress of the implementation phase of Al to be 52% ((55% * 0.4) + (25% * 0.6)
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o+ (20% * 0. 75) 22% + 15% + 15% = 2%) The requlrements analys1s, planmng,

:analysrs and de51gn phases have a]l been completed at thrs pomt and the thread manager o

o »estlmates that these compnse 50% of the overall eﬁ"ort of thread Al The thread manager r B |

o has also estlmated that the unplementatron phase represents 30% of the overall eﬁ'ort of R

o "thread 1teratron Al and the testmg phase (whrch has not yet begun) represents 20% of the : ;, o

v ~ overall eﬁ‘ort of thread 1terat10n Al Therefore, t.he overa]l progress of thread Al is 65 6% | o o

i ((50% *1. 0) + (30% %0, 52) + (20% *0, 0) 50% + 15 6% 0%— 65 6%)
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4. 3 The Second Iteratlon

o The ﬁrst 1teratron of the root thread Al unplemented the basrc archltecture of the )

h o system. The goal of the second 1terat10n 1s to add a GUT to the chent apphcatlon and to

o 1mplement the query operatron The umque name of the second rteratlon of the root thread |

= Because the ﬁrst 1terat10n of the root thread was an mtemal mﬂestone and no S

- dlscrepancles Were 1dent1ﬁed w1th the system requlrements, no modrﬁcatlons to the system



requirements are necessary Because there were no changes to the requirements document
from the prevrous iteration, the deyelopment plan does not need to be modified. It does

- need to be reviewed to determine how the actual progress of the system is relative to the

' development plan. At this time, development progress is on schedule according to the
estimates in the development plan

The analys1s phase of this thread 1teration mvolves spec1fymg the problems for
constructmg the client apphcatlon GUI_to enable the chent to perform quenes against the
~RDBMS. These problems are independent of each other and are analyied separately. The
ana1y51s of the client GUI mvolves the descnption ‘of what user mterface elements (e. g .
windows, buttons, etc.) should ex15t The a.nalys1s of the requirement to query the
RDBMS involves substantially more objects that affect the client, server, and the database
subsystems. | .

The design for the client GUI involves describing, in detail, what user interface
elements should comprise the GUI, how they should look, hoyv they should be orgarﬁied,
and how they should behave. The design for the client, server, and database subsystems
involves identifying all of the classes required to implement the requirements for each
module, and specifying their attributes, behayior, and interactions. Because there is already
an existing system (produced during the ﬁrst iteration, A1) that the new implementation
will be added to, the design documentation and source code for the existing software is
reviewed and the new design is added and incorporated into the design document from the

previous iteration.
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After the second iteration is completed, the system is delivered to the user for
preliminary use and feedback. During this time the user identifies several minor aesthetic
" issues with the client GUI, but also i(ientiﬁes an additional requirement that was not
included in the previous requirements document. After bemg able to query existing data in
the RDBMS, the user realized that they would need to update existing data in addition to
inserting nev§ data. This requirement is added at the beginning of the next iteration.

4.4 The Third Iteration

The original goal of the third iteration was to add the ability to insert data into the
RDBMS from the client application. However, after the .delivery of the software built
- during the second iteration, the user identified a new requiremenf for the software to
update data in the RDBMS. The change of requirements means that system requirements
must be reviewed and re-evaluated before development can continue. The unique name of
the third iteration of the root thread is A3.

After additional meetings with the ﬁser to fully define the new requirement, the
;equirements document is updated to reflect the bhange’s identified by the user. These
changes consist of the new requiremént to ﬁpdate data in the RDBMS from the client
application and several slight changes to the client appligationfs GUI. Because of the
change to the system reqliirements, specifically the addition of new requﬁements, the uSer
is notified to expect an impact to the schedule and cost of the project.

As a result of changing the system requirements, the development plan must be
modified to reflect these changes. This process is essentially the same as the first iteration

with the exception that a number of requirements may have-already been satisfied-by-
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previous iterations (and can be ignored if they are not affected by the changes) and there
may already Be resource estimates for existing fequirements. Each of the remaining
requirements to be implemented must be re-prioritized, the scheduled number of root
thread iterations must be updated according to the new set of fequirements, and the
' remaining requirements to be implemented must be assigned to the remaining iterations.
Because the addition of the reciuirement to update data in the RDBMS does not
affect the exis_ting implemented system or the remaining requirement for inserting data into
the RDBMS, a new thread iteration is added to implement the new requirement. The
requirement for updating data in the RDBMS is deemed more significant to the user, so it
ié scheduled for implementation during the third iteration and the requirement to insert
data into the RDBMS is scheduled for the foufth iteration. |
The remainder of development during the third iteration proceeds similar to

previous thread iterations, without any major difficulties. The résulting system is delivered

to the user for evaluation and no new changes are identified.
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Figure 4.2: Thread Hierarchy of the Third Iteration.
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4.5 The Fourth Iteration
~The primary reqnirement of the fourth itetation- is to lmplement the insertion of
- data into the RDMBS from the client application. The reqnirements for the fourth iteration
are unchanged ﬁom the third iteration, so. the "l'equirements analySis and planning phases
~ are uneventful. The analy51s design, unplementatlon, and testmg are performed w1thout
- any 1n01dents and the resultmg system is dehvered to the user. At this pomt the delivered
~ system satisfies all of the system r'equirements, satisfying the developers contract with the
- user and the project is complete. |
4.6 Additional Considerations
The prewous example shows a typ1cal apphcatlon of RMT to a pro_]ect There are a
| number of s1tuat10ns that may arise during development that require add1t1onal
considerations. | |
4.6.1 Iteratlons and Child Threads
D1v1d1ng the unplementatlon ofa part1cular soﬁware component into a number of
iterations and creating multlple child threads is mtended to make the soﬁware
development process easier. While these teehniques can be very helpful, they can also have
negative eﬁ'eots if they are misused. Each thread iteration or new child thread requires
some amou‘nt of overhead, to manage. If many thread iterations are used to implement a
| | small software component, then the eﬂ'ectiveness of using iterations is diminished becanse
more effort is spent managmg the iterations than is gained by using iterations. The same
applies to chtld threads. In add1t10n the more levels that exist in the thread h1erarchy of a

project, the more potentlal there is for the loss of conceptual integrity of the system
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because of the number of individuals involved in communicating information. Therefore,
thread iterations and the spawning of child threads should be used only when the iteratioﬁ
and/or child threads results in more effo’rt saved than is spent managing the iteration
and/or thread (chapter three discusses the benefits of iterations and child threads).

4.6.2 Early Termination of a Thread (Handling Inconsistencies/Defects)

No matter how good a process or methodology is, or how skilled the developers
are, people still make mistakes. The architect may overlook some obscure detail, designers
may produce poor designs, and engineers may introduce defects durihg implementation.
As a result of these mistakes, the development plan must be altered to resolve these
problems. This may have a relatively small impact, affecting a single phase of
development, or it may have significant repercussions, affecting the entire project.

The RMT life-cycle is designed to help reduce the impact of changes in the
development plan by using incremental development, promoting open-ended architectures,
etc. These techniques do not always accommodate all changes so seamlessly. There aré
situations that may arise after a thread has begun that causes the typical thread life-cycle to
be altered to address these changes or defects. Some of these situations include:

e The identification of incoﬁsistencies, flaws, or defects in the requirements,
development plan, problem specification, design specification, or software
implementation that affects an ancestor thread.

e A risk identified in the risk analysis report that either occurs or the

probability/severity of becomes so great that it must be resolved immediately.
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e A change of requirements occurs.

In all of the above situations, the current thread is immediately terminated and the
parent thread is notified of the problem, and the issue must be resolved by some higher-
level thread. If the problem identified is related only to the parent thread, sibling threads
may or may not continue as planned, depending upon the nature of the problem. If the
problem is not limited to the parent thread, then the parent thread (and all of its child
threads) is also terminated and its parent thread is notified. The problem is then
propagated up the thread hierarchy until it can be resolved by thé appropriate thread. It is
also possible that the identified problem may affect other threads not directly related to
thread that identified the problem.

| Once the situation has been resolved, the thread at which the problem was resolved
begins a new thread iteration. This new thread iteration is similar to the initial iteration
because it needs to re-evaluate the thread requirements because they may have changed as
a result of the resolved problem. This may cause changes to the development plan as well
as child threads. Child threads thétt were previously planned may be eliminated, new child
threads may be required, and previously plénned child threads may continue with different
requirements.
4.6.3 Managing Multiple Abstraction Levels

With the potential for a large number of threads, sub-threads, etc., and associated
development teams, it is important to have good communication between team members
so that questions and problems can be addressed quickly and efficiently. This can be done

by identifying well-known channels of communication between teams. Within'RMT; each
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thread has a manager who, among other responsibilities, is the primary contact for
questions and issues related to that thread. If a team member has an issue with a paﬁ:_icular
thread they can raise the issue with that threads manager. In addition to answering
questions and handling problems, the thread manager is responsible for reporting progress
regularly to the thread manager of the parent thread. This allows the manager of the
parent thread to update own their progress estimates. If problems are identified during a
thread that can not be resolved by the current thread manager, the problem is discussed
with the manager of the parent thread. |
4.6.4 Methodologies

RMTisa development process, not a methodology. The two are orthogonal and
the methodology (or ‘methodelogies), used during development can be choeen
independently of the pro‘cess. RMT does not require or enforce the use of any particular
methodology during development. Information is communicated between RMT thread
phases in the form of documentation, whose form and content is dictated by the particular
methodology (or methodologies) used during each phase. The information input to certain
thread phases may have particular content and format constraints based upon the
requirements of a methodology. If different methodologies are used for two thread pheses
that exchange information, the information must be compatible between methodologies. If |
the information communicated between thread phases is not compatible, is lacking in
detail, or contains too much detail, it must be modified to a format usable by the

methodology used in the receiving thread phase. The conversion of information between
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methodologies can require additional effort and resources, and has the potential for
‘ misinterprétation and loss of information.

While RMT does not advocate the use of one or more methodologies, because of
the additional effort and potential for miscommunication of information during translation
between methodologies, it is suggested that a single methodolo gy be used throughout the
life-cycle, if possible. If more than one methodology is used, great care should be taken in
choosing methodologies that require little or no translation to provide an eﬂﬁcient

transition between development activities.

The Unified Modeled Language (UML) has recently emerged as a language for
specifying, visualizing, and constructing software that is based upon existjng proven
methodologieé [Booch-97]. One of the benefits (and goals) of UML is that it provides a
single “unified” perspective across development phases, eliminating the overhead of
translating information between methodologies and notations. UML is largely based upon
Jacobson’s Object-Oriented Software Engineering (OOSE) method [Jacobson-92], the
Booch method [Booch- .94], and the Object Modeling Technique (OMT) [Rumbaugh-91].
Each of these methods has notably differeﬂt strengths in different development activities:
OOSE provides excellent requirement analysis capabilities, OMT is exceptionally
eipressive for analysis of information systems, and Booch-"93 is expressive during the
design and construction of software. UML incorporates the best aspects of each of these
methods and presents them in a seamless model. This makes UML an excellent candidate

methodology for use within the RMT life-cycle.
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Chapter Five-Conclusions

This thesis has shown that existing software development life-cycles do not
support monitoring progress during tl.le development process and they do not satisfy the
requirements of developing object-oriented software (outlined in chapter one). Object-
oriented life-cycles do not adequately support progress monitoring and traditional life-
cycles do not accommodate the general needs of object-oriented development. Because of
the need for a life-cycle to support these requirements, RMT was developed. RMT is a
complete software life-cycle, borrowing several positive qualities from several existing
life-cycles, which encompasses all the phases during the lifetime of a software system,
from its conception to final delivery and maintenance. The most significant contribution of
RMT is its ability to support progress monitoring through the use of threads as an
abstraction to organize development activities. In addition to defining the components of
RMT (chapter three), the application of RMT to a hypothetical project was presented
(chapter four).

Even though RMT does address the needs: of bbject-oriented development, it is not
Brook’s “silver bullet”, having its own streﬁgths anci weaknesses. The biggest weakness of
RMT is that it is a theoretical life-cycle that has not yet been proven through use on a real-
world project. Even though it has not been exercised in a real-world situation, the core
concepts of RMT are similar to other “proven” life-cycles, so it is anticipated that the
results would be successful. Another weakness of RMT is the potential for an exponential
explosion of threads and thread iterations by misusing recursion and iteration. To help

guard against this problem, guidelines should be established by an organization to help
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- prevent this from happening and to identify, at an early stage, when a problem does occur
so that it can be corrected before the problem becomes unmanageable.

Even though a project is object-oriented, the stability of the system reqﬁirements
can influence the benefits of RMT. David Bond [Bond-95] has presented four major
categories of software development projects based upon the source of the reﬁuirements
. and the number of clien‘ts.’ In order of most stable to least stable requirements, they are:
constrained software, internal client software, vertical market software, and mass market
software. Constrained software has highly constrained requirements at the beginning of
the project that remain unchanged during development and is generally built for one
customer. At the opposite end of the spectrum, mass market software is built for a large
number of customers, has frequently changing requirements, and has high schedu]ing
pressures dictating the functionality that is included at the time of release.

While thread iterations and recursion can be applied to any project, RMT (and
iterative life-cycles in general) is most appropriate for projects where the system
requirements are vague or frequently changing, like Bond’s mass market software
classification. RMT can still be used effecti%zely for the other project types, but the
iteration and recursion techniques can be used as internal development stylgs rather than a
means to accommodate changing reqﬁirements and/or schedules.

In addition to the stability of system requirements, RMT is most useful for
medium- to large-scale projects rather than small-scale projects. This is because for small-
scale projects the benefits of using RMT are Qutweighed by the overhead required to

manage the threads.
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5.1 Relevance to the Capability Maturity Model (CMM)

The current version of the CMM, v1.1 [Paulk-93a, Paulk-93b], was developed by
the Software Engineering Institute (SEI) at Carnegie-Mellon University which defines a
model for process maturity used by an organization. The CMM defines an evolutionary
path f01" process maturity, so that an organization can more easily improve its development
process. Each step, or level, in the evolutionary path is built upon previous steps,
providing additional improvements, and requires the presence of certain key activities,
techniques, and tools called key process areas (KPAs). The five levels of fnaturity, n _

increasing order of maturity, are: initial, repeatable, defined, managed, and optimizing.

Table 5.1 summarizes each maturity level.

Maturity | Name Description
Level |
1 Initial The software procéss is characterized as ad hoc, and

occasionally even chaotic. Few processes are defined,

and success depends on individual effort.

2 Repeatable Basic project management processes are established to
track cost, schedule, and functionality. The necessary
process discipline is in place to repeat earlier successes

on projects with similar applications.

3 Defined The software process for both management and
engineering activities is documented, standardized, and
integrated into an organization-wide software process.
All projects use a documented and approved version of
the organization’s process for developing and

maintaining software. This level indicates all
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characteristics defined for level 3.

4 Managed Detailed measures of the software process and product
quality are collected. Both the software process and
products are quantitatively understood and controlled
using detailed measures. This level includes all

characteristics defined for level 3.

5 | Optimizing Continuous process improvement is enabled by
quantitative feedback from the process and from
testing innovative ideas and technologies. This level

includes all characteristics deﬁned for level 4.

Table 5.1: CMM Maturity Levels [Pressman-97 ]

Some of the KPAs required for various CMM maturity levels are concerned with
organizational and management techniqlies for the software development process such as
software project planning, requirements management, etc. Software life-cycles, like RMT,
address many of these same KPAs. Other CMM KPAs are targeted towards the overall
‘ development approach of an organization that are outside the scope of a software life-

oycle, such as peer reviews, training programs, and technology change management.
‘Because RMT only addresses a subset of the KPAs required for all five levels of maturity,
RMT can not solely satisfy the requirements for all five levels of CMM vmaturity. RMT
supports most (but not all) KPAs of maturity levels two and three, but none of levels four
and five. The RMT process however, does not exclude a developer from any of the
maturity levels (ie., usmg RMT does not prevent a developer from qualifying for a

particular maturity level).
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Simply using RMT does not .imply that an organization will automatically be
compliant with a particular CMM maturity level. When used in conjunction with several
additional software engineering practices, RMT provides a strong foundation for being
compliant with the CMM. For levels three and four, RMT provides the foundation for a
majority of the CMM requifements.

5.2 Future Directions

There are a number of future vdirections and tasks that research for RMT can (and
should) take. The most important step in the evolution of RMT is its application to a real-
world project. A project should be selected that is a medium- to large-scale project with
loosely-defined or changing requirements. It would also be of particular int¢fest to
somehow measure the effectiveness of RMT, possibly éoniparing it with the eﬂ’ectiveness
of other iife—cycles. The successful application ‘of RMT would give it more credibility,
moving it oﬁt of the domain of theoretical life-cycles to a pfactical ﬁfe—cyclg.

Another area of interest would be to develop a computer aided software
engineering (CASE) tool (using the RMT process itself to develop the tool) to model and |
document the RMT development process. Th1s would allow project managers and
developers to easily review and update any aspect of the development process (e.g.,
update resource estimates, revise delivery dates, etc.). The example in chapter four hints at
some requirements for such a CASE tool: being able to graphically display thread
iterations in a project hierarchy, display/edit property information for a thread iteration,

allow multiple users access to the same project information, etc.
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It would also be useful to describe how to apply UML diagrams and notations
during each of the RMT phases. This would provide developers with a practical step-b&-
step “cookbook” on how td apply RMT and UML. to their own project.

Finally, there is interest in developing a sYst¢m for maintaining a repository of
design pattern information (at California State University, San Bernardino) tha£ could be
done in conjunction with the dévelopment of an RMT CASE tool. Because RMT suggests
the use of design patterns, pérhaps an RMT CASE tool could directly interface with such
~ a design pattern repository system. The requiiements of the CASE tool could influence the

requirements and design of such a system.
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Appendix A-Glossary
Because many terms are used by different individuals with different meanings, this
appendix provides definitions for terms used throughout this thesis to avoid any

ambiguities in their interpretation.

abstraction - A view of an object, entity, or other conceptual element that only considers
the characteristics relevant or necessary for a particular purpose while ignoring the
remaining, irrelevant characteristics.

activity - An operation or technique that is performed to complete some goal during a
particular phase in a life-cycle (see also, task).

bottom-up design - The process of designing a system by starting with the most primitive
abstractions or components and progressively building higher-level abstractions to
the highest-level component (contrast with top-down design).

class - An abstraction that represents the logical collection of entities or objects with
similar attributes and behaviors.

cohesion - The degree which functions, prc;cedures, or operations within a given module
are “functionally” related. |

component - A collection of one or more classes, a module, or a subsystem.

coupling - The degree which modules are related to or dependent on other modules.

divide—and-coniquer - A problem-solving technique which “divides™ a problem into a
number of smaﬂer pieces, recursively applies the technique to each piece, then

combines the results into a single solution.
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encapsulation - The process of grouping both the structure and behavior of an
abstraction, usually to separate the interface of the abstraction from its
implementation. |

evolutionary development - The incremental develqpment of a software }system where
each increment produces a version of the software that extends, enhances, or |
improves previous versions of the software. This is similar to the “evolution” of
biological organisms over time.

iteration - The process of repeating a series of development phases during the
development of a software component to extgnd, enhance, or improve the
implementation of the component.

life-cycle - (a.k.a. software life-cycle, development lifé-cycle, development process) A
systematic process that can be applied during the construction of software. A life-
cycle usually divides construction into a number of phases which have very well-
defined goals, tasks, inputs, and outputs (e.g., analysis, design, implementation).

methodology - A particular approach or technique that can be used to solve a particular
class qf problems, such as analysis 6r design. Methodologies are generally used
within a life-cycle phase.

- model - An abstraction that is used to clarify or understand a complex artifact, such as
software systems or real-world scenarios.

module - A program unit which is some logical collection of opérations or objects.

modularity - The property of discrete components that are highly cohesive and loosely

coupled.
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object - A particular instance of a class which contains its own unique attribﬁte values.

phase - A period of time within a life-cycle, during which a number of predefined
activities or tasks are performed to carry out some well-defined goal.

process - The definition and organization of the activities performed during the
development of a software system.

requirement - A capability, condition, or functionality that is needed to achieve some
identified goal. System requirements specify the functionality required by a
software system to satisfy the needs of the user.

software development - The proceés of conceiving and implementing a software system.

structured design - The process of designing by algorithmic decomposition.

task - An operation or technique that is performed to complete some goal during a
particular phase in a life-cycle (see also, activity).

thread - An abstraction which represents the development of a software component to
satisfy some set of requirements. It distinguishes several activities, or phases, thaf
have well-defined goals, preconditions, and postconditions during the actual
component development. A thread inay be iterated any number of times to
incrementally implement the required software component(s). In addition, a thread
iteration may create a number of other threads to implement lower-level
components. The same step-by-step process defined by a thread is applied to many
different parts of a project by many different developers with different skills and

responsibilities.
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top-down desngn- The process of de51gnmg a system by startmg with the h1ghest-level
component and proceedmg to lower-level components through a h1erarchy

(contrast Wlth bottom-up des1gn)
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