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Abstract
 

Hopfalgebras are an impoirtant area in mathematical research, as Hopf alge
 

bras and their actions unify and generalize diverse areas of mathematics and physics.
 

A Hopf algebra,if is a special type of algebra that combines an algebra structure
 

with a coalgebra structure, and has an antipode. The antipode is an inverse of the
 

identity map under convolution multiplication in'Hom(i?,i?).
 

In this project we state the basic definitions needed to develop a theory of
 

Hopf algebras; in particular, we define algebras and modules, and the dual concepts:
 

coalgebras and comodules, Additionally,we set forth some classical examples ofHopf
 

algebras: the group algebra kG, the linear dual of the group algebra {kO)*, and
 

the universal enveloping algebra U{L)of the Lie algebra L. We then focus on finite
 

dimensional semisimple Hopf algebras.
 

Semisimple algebras are algebras that can be decomposed into a direct sum
 

of simpler, better understood, pieces; these are simple algebras. Thus it is very
 

useful to know when an algebra is semisimple. In particular, Maschke's theorem is an
 

important tool in understanding the structure ofgroup algebras. The theorem states
 

that a finite dimensional group algebra is a semisimple algebra ifand only ifthe order
 

of the group is not zero in the field A:[M 1898]. This theorem has been generalized
 

to Hopf algebras[LS 69]. We give proofs of both theorems and show how the Hopf
 

algebra proof generalizes the classical one. A key toolin the proof ofthe generalized
 

theorem was the space of integrals in iL.
 

Along the way, we study the concept of Semisimplicity in general,to see that
 

every semisimple algebra can be written as a direct product of simple algebras and
 

that this direct product is unique up to isomorphism. Finally, we describe the dual
 

concept, cosemisimplicity,and see that this leads to a "dual Maschke Theorem."
 

Ill
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1 Modules and Algebras
 

The fundamental concepts of abstract algebra were laid out between 1920
 

and 1940. In the following years, homological algebra was formed through methods
 

of algebraic topology. It was through Heinz Hopf's work in the late 1930's and early
 

1940's on the homology and cohomology of topological groups that the basis for
 

Hopf algebras was formed. Heinz Hopf did not formalize the concept himself, as he
 

was considering Poincare duality on compact manifolds to turn the comultiplication
 

into a multiplication. However it can be seen that the homology or cohomology ofa
 

topological group forms a graded Hopf algebra.([H 41], [Be 85], [Kp 75],
 

[BM 89])
 

In this paper we rhainly consider a special type of Hopf algebra, a finite
 

dimensional semisimple Hopf algebra. We will first go over some ofthe basic
 

definitions and theorems of semisiniplicity and Hopf algebras. Then we will study
 

the property ofsemisimplicity in a finite dimensional group algebra, and extend this
 

concept to Hopf algebras through a generalization of Maschke's Theorem to finite
 

dimensional Hopf algebras. We are following the formulation and notation of
 

[Mo 93]and [S 69B]for Hopf algebras, and [FD 93]for general ring theoretic ideas
 

and theorems.
 

We first define a module; this is a generalization of a vector space over a field
 

where the base field is replaced by a ring. Modules first became important in
 

algebra during the late 1920's due to Emmy Noether's insight as to the potential of
 

the module concept[J 74]. Now let us look at a formal definition of a module.
 

Definition 1.1 Let i? be a ring. A left i?-module is an Abelian group M,written
 

additively, on which 72 acts linearly; that is, there is a map R x M M,called the
 

action ofR on M,and denoted by {r,m) r • m for r G R,and m^ M,for which
 



 

1. {r+s)• m — r • m+s• m,
 

2. r ■ {m+n)=r'm+r • n, 

3. (rs)• m=r(s • m),
 

4. 1 • m — m
 

\/r,s e R axid m,n E M.
 

Next, let us review some basic examples of modules.
 

Example 1.2 	The set ofcomplex numbers,C,is a module over the set of real
 

numbers,R,via left multiplication. That is r ■ {a+bi)=ra+rbi V r e R and 

a bi E C.
 

We know that R is a ring, and that C is an additive Abelian group,so all
 

that needs to be shown are the remaining four properties of a module. Let
 

a+bi,c+di E C,where a,b,c,d E R,and let r,s6R. Then:
 

(r+s)•(a+bi) 	= ra+rbi+so4- sbi
 
= r •{a+bi)+s•(a+bi),
 

r •[(a+bi)+(c+di)\ = r •[(a+c)+{b+d)i]
 
= r{a+c)+r{b+d)i
 
= ra+rcT{vb+rd)i
 
= ra+rc+rbi+rdi
 

= ra+rbi+rc+rdi
 

= r •(a+bi)+r • {c+di),
 

(rs)•(a+bi) 	= rsa+rsbi 
= r ■ (sa+sbi) 
= r •[s •(a+bi)], 

1 •(a+bi) 	= la+Ibi
 
= a+bi.
 



 

Thus C is an E-module.
 

Example 1.3 The set of n x n matrices over a field k, Mn{k),is a fe-module via
 

left scalar multiplication. That is V r G k and M G where
 

rriij e k y i,j e {1,2,,..,n},
 

(rmii rmi2 rmin \
 
rm2i rm22 rm^n
 

r • M=
 

\ rm„i rm„2 •• • /
 

The set ofn x n matrices Mn{k)is an (additive) Abelian group and since A: is a
 

field, k is in particular a ring. So allthat needs to be shown are the remaining four
 

properties of a module. Let M,N G M„(A:), where mij,nij e k M i,jG {1,...,n},
 

and let r,s G k. Then:
 

1.
 
C 	(r+s)mii (r+s)mi2 (r+s)mi„ \
 
(r+s)m2i (r+s)m22 (r+s)m2n
 

(r+s)• M =
 

V (r+s)7n„i (r+s)m„2 •• * (^+s)mnn)
 

f rmii+smii rmin+smin \
 
rm2i+sm2i rrn2n+SWl2n
 

rrrini+sruni • •• 	 /
 

rmii • • • rmin \ (stn.li smin \
 
rm2i •• • rm2n sm2i • • • sm2n
 

+
 

V rm„i ••• rmnn) \	 /
 

r • M+s• M,
 



(^11+^11 ^12+^12 ^In "I" ̂ In ^
 

Tn2l+Tl21 ^22+^22 ^2n "t" ^2n
 
r'(M+N) — r
 

\. TTly^l ^^7i2 ~^'^n2 * * * ~^~ ̂ nn /
 

r(mii+nil) ''("^12+"12) r{mxn+nin) \
 
r{m2i+n2i) r{m22+n22) r{m2n+n2n)
 

r{mnl+Unl) r(m„2+"n2) * • • r{mnn+Tlnn) J
 

(	rrriii+rnn rmi„+rni„
 

rm2i+rnsi rm2n+rn2n
 

rruni+runi • • • rm„„+rn„„ /
 

rmii rmin \ rn\i rriin \ 
rm2i rm2n rn2i rn2n 

+ 

\ rrUni • • • rmnn J rUni rrinn}
 

— r • M+r • N,
 

(rs)mii (rs)mi2 • • • (rs)rni„ \
 
(rs)m2i (rs)m22 • • • (rs)m2n
 

(rs)• M =
 

V(rs)TO„i (rs)mn2 ••• (rs)mnn /
 

f r(smii) r(smi2) ••• r(smin)\
 
•(sm2i) r(317122) • • • r(sm2n)
r
 

r{smni) r{smn2) ••• r(smnn)/
 

f smii smi2 ••• smin \ 

sm2i sm22 ■ • • sm2n 
r • 

sruni sm„2 • • • STYlnn /
 

r ■ (s• M), 

4
 



 

4.
 
(	Irriii lmi2 ••• Imin \
 

lm2i lm22 • • • lm2n
 
1-M =
 

V lm„i lm„2
 

/' mil "Zi2 • • • mi„ \
 

"^21 1^22 • • • rn^n
 

\ Wn2 ''' ^nn /
 

Thus Mn(k)is a fc-modulc.
 

A module can be defined equivalently using "map diagrams." We want to
 

redefine this concept here in this way. Similarly, after defining an algebra in the
 

traditional way, we will redefine an algebra using map diagrams so that we may
 

dualize the map diagrams(or turn all of the arrows around). This dualization will
 

yield more structures such as comodules and coalgebras, which are used to form
 

Hopf algebras.
 

Note that the following definition of a module uses an algebra A,whereas
 

Definition 1.1 used a ring R. The algebra A is required here so that the tensor
 

product may be used. If we used the ring R,this tensor product would not be
 

possible.
 

Definition 1.4 For a /^-algebra A,a (left) A-module is a A:-space M with three
 

A:-linear maps: multiplication fx:A ® A —> A,unit rj: k A,and the action
 

j:A® M —>• M such that the following diagrams commute:
 



1.
 
jjL^id


A <^ A® M A®M
 

A ® M- ■M 

2. 
Ti0id
 

k® M A®M
 

scalar mult. 

To see that this defihition is equivalent to Definition 1.1 for a module when 

R = A is ah algebrav we Mil first show that Definition 1.4 implies Definition 1.1. 

Note that Definition 1.4 always implies Definition 1.1 since an algebra is a ring. But 

when we show Definition 1.1 implies Definition 1.4 we need R = A a. fc-algebra so 

that the tensor product is defined. 

From Definition 1.4 we know that M is a fc-space, so in particular M is an 

Abelian group (by the definition of a vector space). We also have a fc-linear map 

^ : A® M M giving the action. Using this linearity we get 

(a +b) •m = a •m+b-m 

and 

a • (m+n) = a - rh+ a • n, 

6 



the first two properties of a module in Definition 1.1. Using elements on the
 

commutative diagrams, where a,6 G A,and m G M,we get
 
^7 ^ Afc(8)id 1 ^
 
a®b®m — * ab®m
 

a®h - m- a - {h- m)=(ab) - m
 

Thus {ah)• m=a •{b - m),property three in the original module definition. From
 

the second diagram we get
 

Ifc0rn — —— 1^0m
 

m=1a-fn
 

Thus 1a - m=m,the fourth property of a module. So, Definition 1.4 implies
 

Definition 1.1.
 

To show Definition 1.1 implies Definition 1.4, consider the following. From
 

Definition 1.1 we know that M is an additive Abelian group, plus the additional
 

four properties:
 

1. (r s)• m=r ■ m+s -m, 

2.T •(m+n)=r • m+r ■ n, 

3. (rs)• m — r{s • m).
 

4. 1 • m=m
 



V r,s G R, Tn,n £ M. Together these facts make M a vector space and meet the
 

criterion for the two diagrams to be commutative. Notice that i? is a ring, thus all
 

that needs to be shown is that^is a A:-module. But i? is a A:-algebra(we will
 

recall this defihition of an algebra in Defiriition 1.5). Therefore, j? is a fc-module.
 

Thus Definition 1.1 implies Definition 1.4, and the two definitions are equivalent.
 

The concept of an algebra has been known longer than that ofa module: in
 

1903 the American Leonard Eugene Dickson (1874-1954),the first person to recieve
 

a doctorate in mathematics from the University of Chicago, published an axiomatic
 

definition of a linear associative algebra over an abstract field[EM 89]. The
 

following is a generally accepted definition of an algebra today.
 

Definition 1.5 An (associative) algebra over a field k is an (associative) ring A
 

which is also a module over k,such that the ring and module multiplication are
 

"associative" in the following way: :
 

x{ab)={xa)b=a(xb) ^x G k, a,b G A.
 

A is also called a A:-algebra.
 

Note that one can also define an algebra over a commutative ring R in the same
 

Next let us look at two basic examples of algebras; these continue the
 

examples(1.2 and 1.3) of modules given previously.
 

Example 1.6 The set ofcomplex numbers C is an algebra over the real numbers E.
 

From Example 1.2, we know that C is an E-module. So, all that needs to be
 

shown is the "associativity" of multiplication ofC and E.
 



Let a-f 6i,c+dz € C where a,b,c,dE K,and let x eR. Then,
 

x[{a+hi){c+di)] 	= rr[(ac — bd)+{ad+bc)i]
 
= x{ac — bd)+x{ad+bc)i
 
= xac — xbd+xadi+xbci
 

= {xa+xbi)(c+.di)
 
= [a;(a+bi)]{c+di)
 

and
 
[x{a+bi)]{c+di) 	= {xa +xbi){c+di)
 

= xac+xadi+xbci — xbd
 

= axe+axdi+bixc — bxd
 

= (a+bi){xc+xdi)
 
= {a+bi)[x{c+di)].
 

Thus C is an E-algebra.
 

Example 1.7 The nx n matrices over the field k, Mn{k),is an algebra over the
 

field k.
 

Prom Example 1.3, we know that Mn{k)is a A:-module. So, all that needs to
 

be shown is the "associativity" between Mn{k)and k.
 

Let M,N e Mn{k) where rriij,riij e k V z,jG {1,2,...,n},and let x e k.
 



Then,
 

mil fni2 min \ nil ni2 ^In ^
 

m2i m22 •• • n2i n22 • • • n2n
 

x{MN) = X
 

_ \ TTlnl ^n2 * * * ^nn / \ Ttjil 1^n2 ''' Tl'nn /.
 

z' E"=l Ei=i ^
 
Er=l'^2i?^il E"=l"T'2ini2 Et:=l f^2if^in
 

= X
 

\ Ei::=l Ei=l'^ni^i2 ''' Ei=l /
 

XE"=1"iiinii X E"=1 miini2 xEi=i'miinin ̂ 
 

XE"=i^2^1 XEr=i m2ini2 X Er=i m2inin
 

\ X5^j=i"m/jiiTlii X Xji=l'^ni'^i2 * * * X 53i=:l /
 

E"=i xmiiUii ELixmiini2 ELixmuUin \
 
EiLi xm2inii Er=i xm2ini2 Er=i xm2inin
 

\ ̂^^=1 XTflyiiTlii ^3j=i Xm/fiiTl^2 ''' ^Zj—i XTTljiiTliji j
 

(xmii xmi2 xmin ̂  nil ni2
 

xm2i xm22 xm2n Xl21 ^22 * •• ?22n
 

xmnl xmn2 xm^ifi)\ n^ji n,j2 '■ * ^nn / 

{xM)N,
 

10
 



and
 

"^1	xmuUii E"=ixmuni2 EfeixmiiUin S
 
xm2inix Er=i xm2ini2
e:	 ELixm2inin


{xM)N =
 

\ Ei=l XTTlniTlii ^1=1 3^nT.jij7T.j2 Ei=l XTflniTlin)
 

\
Er=i miixriii E?=i miixni2 Er=i muXUi^
 
Er=i m2ixnii I^im2ixm E"=l mziXUin
 

E"=i mnixriii E"=i mnixni2 Ei=l TfljiiXTlin)
 

(mil ^12	 mxn \ xnix xni2 xriin \
 
77I21 ^22 m2n xn2i xn22 xn2n
 

V ̂ nl ^n2 rUnn / \ XUnl Xnn2 XUnn /
 

■■■"■ ■= M{xN). ■ 

Thus Mn{k) is a A:-algebra. 

Note: Throughout the rest of this paper we will make the convention 

that k will denote a field and A will denote an algebra over k. 

Just as a module may be defined by maps, so can an algebra. An equivalent 

definition of an algebra using maps is the following: 

Definition 1.8 An (associative) fc-algebra is a A;-vector space A together with two 

A:-linear maps: multiplicationjLi: A<S) A—> A, and unit r] : k A, such that the 

following two diagrams commute: 

1. 	Associativity
 
A 0 A ® A -A0 A
 

id®11 

A0 A	 -A 

11 

http:3^nT.jij7T.j2


2. Unit
 

A® A
 

r}®id id^T]
 

k® A A® k
 

where the two lower maps in part two of the definition are given by scalar
 

multiplication. The unit diagram gives the usual identity element in A by setting
 

U=
 

To see that this definition of an algebra is equivalent to Definition 1.5, first
 

assume A satisfies Definition 1.8. Since A is assumed to be a A:-vector space
 

V a,b G A and r,s G A: the following are true by the definition of a vector space
 

(Definition A.l):
 

1. {r+s)a=ra+sa,
 

2. r(a+b)=ra+rb,
 

3. {rs)a=r{sa),
 

4. 1 • a=a,
 

5. a+b= b+a,
 

6. £i T d — 0H" ct — o,
 

7. —a=(—l)a,
 

8. 0• a=0,
 

12
 



 

9. (tt+6)H"c — (I+(&+c).
 

The first four are the properties for A to be a A:-module. The next five properties
 

ensure that A is an additive Abelian group,so it remains to show the multiplication
 

properties of A.
 

Applying the associativity map to a,6,c G A we get the following:
 
j u^id 7
 

a®0® c — ab® c
 

{ab)c
 
a® be a{bc)
 

Commutativity of this diagram gives (ab)c=a(bc).
 

Applying the unit map to a E A we get the following:
 

1a ®
 

Ak® a
 

1a • a
 

\k • 0,=a
 

and
 

a ® 1a
 

a(2)Ik
 

a • 1
 

a'lk =a
 

13
 



 

 
 
 

The commutativity of these diagrams gives the equalities 1a• a=a and a • 1a=a.
 

Next, using the fact that /li is a fc-linear map we get the distributive
 

properties of rings. Let a,6,c e A,then
 

a{b+c) = p{a,b+c)
 
= fj,{a,b)+ij.{a,c)
 
= ab+ac,
 

and
 
(a+b)c 	— p{a+b,c)
 

= ̂ (a,c)+/i(6,c)
 
= ac+be.
 

Thus A is a ring and a fc-module.
 

For the ring and module compatiblity properties, use the fact that 77 is a
 

Jj-linear map. Let a; G A: and a,6 € A,then
 

x{ab) = xlA{ab) definition of unit
 
= xr]{lk){ab) definition 77(1^)=1a
 
= r]{x){ab) linearity of 77
 
= [77(a:)a]6 associativity in A
 
= {xa)b linearity of 77 and fact 77(1^)=1a
 

and
 
{xa)b 	= [(a:a)lA]& definition of unit
 

= [(a;a)77(lfc)]6 definition 77(lfc)=1a
 
= [x{ar){lk))]b associativity of A as a /:-vector space
 
= [ar](x)]b image of 77 is in the center of A[Ks 95]
 
= a[r]{x)b] associativity in A
 
= a(a;6) linearity of 77 ahd fact 77(1^)=1a­

Thus Definition 1.8 implies Definition 1.5.
 

To show Definition 1.5 implies Definition 1.8, consider the following from
 

Definition 1.5. We know that A is a module over k, a field, thus A is a fc-vector
 

space. Since A is an associative ring from Definition 1.5, we know that for
 

a,b e A, (ab)c=a{bc) and Ia^ — a=uIa,thus the associativity and unit
 

diagrams hold. So,Definition 1.5 implies Definition 1.8 and they may be considered
 

equivalent.
 

14
 



Next let us look at an example using this new definition of an algebra. This
 

example is the group algebra fcG which Arthur Cayley (1821-1895)introduced in a
 

paper he w;rote in 1854[W 85].
 

Example 1.9 For any group G the group algebra is a fc-algebra.
 

First, let us define the group algebrai:G. Let G be an additive group. The
 

group algbebra /cG is the set of all formal finite linear combinations of elements of
 

G. That is,
 

kG=l'^agg \ ag e k
 
UeG
 

with formal addition and component-wise multiplication; these behave similarly to
 

addition and multiplication of polynomials.
 

Here is an example offormal addition:
 

aig+a2g+o(3h^(ai-\-a2)g+a3h
 

V ai e k, and g,h G G. The following is an example of component-wise
 

multiplication:
 

{oiig;^ oi2h}{cx3,g = cxioc^g^+cxicx^gl 0i20i4hl
 

V Q!j G A:, and 5,A,Z G G.
 

To show that kG is an algebra, first note that A:G is a vector space, as kG is
 

the set oflinear combination of elements of a group G over a field k. Next define
 

multiplication on kG as the map g,:kG ® kG kG given by
 

P- 1 Yj ® YPhh)= Y '^gPhdh

\gGG heG J h,g&G
 

and Tj •. k kG via
 

ri{lk)=lG
 

15
 



 

where la is the identity ofG. Note is bilinear since Va,(3 € k,and g,h,I e kO:
 

)j,{ioig+Ph)0j) = {ag+ph)j defof/^
 
= (cxg)j+iPh)j distributivity
 
= o:{gj)+Pihj) a,Pek
 
= aiJi{g0j)+PiJ,{h0j) defof/i,
 

and
 
p{g0icxh+pj)) = g{ah+pj) defof/x
 

— g{o!h)+g{Pj) distributivity
 
~a{gh)fp{gj) a,Pek
 
= afi{g0h)+pn{g0j) defoffi.
 

Tosee that the associativity and unit mapscommute,let g,h,l G Gand
 

a,P,yE k.Then
 

13Phh0^Ti^ 53<^9ph9h053 53 {oi9ph)li{gh)l.
 
qGlG hE:G IGlG q^HGlG IeG g,h,lG:G
 

In the other direction,
 

Y.^99®53i^hh0Y 53^99® 53PhuhiA-53 (^9^Phii)g{hi).
 9eG heG l^G 9eG h,l£G g,h,lsG
 

These mapscommute,since
 

Yi^9Ph)li{9h)l=Y^9iPhli)9{hl)
 
9,h,l 	g,h,l
 

by the 	associativity ofthefield feand the group G.
 

For the unit map,the left-hand side yields:
 

Ifc ®53 ®53 • 53
 
qGlG gEiG qEG
 

and in the other direction,
 

U®Yo^g9^Y<^99­ geG geG
 

And the right-hand side ofthe unit diagram yields:
 

53 53 ® (53
 geG geG Xg^G J
 

16
 



 

and in the other direction,
 

^ (g)lfc453
 
g€G gea
 

These diagrams commute since 1g is the unit in kG. Thus
 

1g • OigQ =^(Xgg=Y,oigg • la-

g€G geG geG
 

So kG is a A:-algebra.
 

To complete this section On algebras, we need the following definition.
 

Definition 1.10 Let A and B be algebras over a field k. A map/:A B is an
 

algebra morphism if the following properties are true V ai,a2 G A,anda e k:
 

1. /(oiaa)=f{ai)f{a2),
 

f{o>i+0,2)= +f{0,2),
 

3. /(aoi)=Q;/(ai).
 

We will see examples of algebra morphisms in Chapter 4.
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 2 Semisimplicity
 

Semisimplicity allows us to decompose a structure such as an algebra or a
 

module into a direct sum of simpler, better understood pieces. Before we can define
 

semisimplicity we need to look at the definitions ofthe pieces.
 

Definition 2.1 A subset iV ofa module M is called an12-subniodule ofM if AT is
 

an (additive)subgroup of M arid ifr-n G AT V r G i?, n e AT.
 

A basic example is the following:
 

Example 2.2 A ring R is an i2-module over itself via left multiplication,and the
 

i?-submodules of i? are the (left) ideals of i2.
 

The "simpler" pieces we mentioned above are defined as follows:
 

Definition 2.3 A non-zero module M is simple if it contains no proper non-zerb
 

submodule,that is the only submodules ofM are {0} and M itself.
 

Let us look at some examples of simple modules.
 

Example 2.4 The ring of real numbers R is a simple module over itself, where the
 

module action is left multiplication.
 

This is true since the R-submodules ofR are the left ideals ofR. ButR is a
 

field, and the only ideals in a field are {0} and the field itself. Thus R has no
 

non-zero proper submodules and is therefore simple. This is a particular case of the
 

following example,since R is also a field-


Example 2.5 Any field jfc is a simple niodule.
 

The only submodules ofa field are{0}and the field itself. Therefore any
 

field is a simple module over itself.
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Before we move onto the next example, we need the following definition.
 

Definition 2.6 A ring is simple if it has no non-triyial two-sided ideals.
 

Example 2.7 The ring (A:) is a simple ring.
 

To verify that this is true, we prove the following more general proposition.
 

Proposition 2.8 is a simple ring if and only if i? is a simple ring.
 

To help prove this proposition, we first need the following lemma.
 

Lemriia 2.9 A subset J o{:Mn(:H)is a (left/right/two-sided) ideal of if and
 

Only if J= for some(left/right/two-sided)ideal/of ii.
 

P'roof:(^)Let I be a left ideal of that is, ri €I V r E R, iE l. Let ikj € I
 

and Tfcj e i?. Then
 

/ rii ri2 ri3 '^In ^ (ill ii2 iiz ixn \
 
^21 r22 r23 • •• r2n ^2l «22 ^23 ••• 1'2n
 

V '^nl ^n2 ^n3 * * * '^nn)\ ^n2 ^n3 * * * ^nn)
 

^j=l \
 
^2jijl ^j=l'f2jij2 Sj=i'^2jijn
 

eMn{l)
 

\ J2j=l'fnjijl ^j=ifnjij2 ''' J2j=zi fnjijn)
 
since.Tkjiim ̂ I V k,j,l,m E {1,2,...,n}and l is closed under addition and
 

multiplication. Therefore M„(/)is a left ideal of A similar calculation shows
 

that if/is a right ideal ofJ? then is a right ideal of Mn{R). Hence, if/is a
 

left/right/two-sided ideal ofR then Mn{I)is a left/right/two-sided ideal of Mn{R).
 

{^)Let J C Mn{R)be a left ideal of This means Mn{R)J C J. Define
 

IC R to be
 

/={a; G i? I a; is an element in some matrix of J}
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then yX E J,x=(xij),
 

^ 0 0 0\ f a^ii Xi2 Xxn \ /0 0 0\ 

0 0 0 X2l X22 ^2n 0 0 0 
e J 

1 X 

VO 0 07 \ ^n2 * * * / V 0 0 oy 

since J is a left ideal of Mn{R)- This means each element in I can be written in a
 

matrix in J with just that element and all other elements 0. We claim that I is an
 

ideal of ii. Let r e J? and €/,then
 

(	0 0 0\ 0 0 0\ /O 0 0\
 

0 0 0 0 0 0 0 0 0
 
e J.
 

Xij	 rx.
 

0 0 oy V 0 0 ••• 07 0 0 oy 

Thus rxij El yr E R,so I is a left ideal of R. A similar calculation shows that if 

J is a right ideal of Mn{R)then/is a right ideal of R. Hence if J is a 

left/right/two-sided ideal of M„(i2)then/is a left/right/two-sided ideal of R: □ 

Now we are ready to prove Proposition 2.8. 

Proof of Proposition 2.8: {=^) Let Mn{R) be a simple ring, and letIbe an ideal 

of R. Then Mn{I) is an ideal of Mn{R) by Lemma 2.9. But is simple, that is 

Mn{R) has no non-trivial ideals. Therefore Mn{I) must be {0} or Mn{R). Hence, 

the only possible ideals of i? are {0} or R by Lemma 2.9. Thus R is simple. 

(<t=) Let J? be a simple ring. This means that R has no non-trivial two-sided ideals. 

Let J be an ideal of Mn{R)- By Lemma 2.9, the only ideals of are of the 

form whereIis an ideal of i2. So, J= M„(/), for some idealIof R, but the 

only ideals of i? are {0} and ii. Thus J= Mn(0) = {0} or J=Mn{R). Hence 

Mn{R) is a simple ring. □ 

Using Proposition 2.8 to verify Example 2.7, we see that Mn{k) is simple if 

and only if k is simple. But k is a, field, and so by Example 2.5 k is simple. 

Therefore M„(A:) is also simple. 
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Now that we have the definitions ofsubmodule and simple module/ring,we
 

are ready for the definition of a semisiiiiple module/ring.
 

Definition 2.10 A module M is called semisimple if it is a direct sum (not
 

necessarily finite) of simple modules.
 

For a basic example ofsemisimplicity, consider a vector space.
 

Example 2.11 A vector space y is a semisimple/^-module.
 

Let {ei,62,..•,e„} be a basis for y,where Cj is the vector with 1 in the ith
 

place and zeros elsewhere. Each Ci generates a one-dimensional subspace,
 

Ei= kci Vi G {1,2,...,n}. Since dimfcEj=1 V each Ei has only one basis
 

element,thus no other submodule besides itself may be generated. Hence each. Ei is
 

simple. Next look at the direct sum ofthe Ei's. This direct sum is possible since
 

EinEj={0} Vi,je {1,2,.:.,n}\
 

El ® E2® • • •0Eji={oiCi+0:262+• • •+OijiGn I Oj G A: V i}= y
 

Thus y is semisimple.
 

For the next example we need the definition of a semisimple ring.
 

Definition 2.12 A ring i? is a (left)semisimple ring if R is semisimple as a left
 

i?-module.
 

Example 2.13 Any division ring D is simple,hence semisimple.
 

Recall that the i?-submoduleS of i? are precisely the left ideals of J?
 

(Example 2.2). But the only ideals in D are the trivial ideals since D contains a
 

multiplicative inverse for every non-zero element. So the only D-submodules ofD
 

are D and {0}. Thus D is simple, hence semisimple.
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To prepare for future work with Hopfalgebras we need to know what a
 

simple algebra and a semisimple algebra are; these are defined analogously to rings.
 

Definition 2.14 An algebra is said to be a simple algebra if it has no non-trivial
 

two-sided ideals.
 

Definition 2.15 An algebra is said to be a semisimple algebra if it is a direct
 

sum ofsimple (left) ideals.
 

We state here an important classical example of a semisimple algebra;the
 

result was proven by Maschke (see Theorem 3.1), Recall the definition of the group
 

algebra fcG in Example 1.9. Then:
 

Example 2.16 For any finite group G,the group algebra is semisimple if|G1 is
 

invertible in/c.
 

The following definition and proposition are needed for the next example.
 

Definition 2.17 Let M be an R-module. Then M is called a cyclic module if
 

there exists an element m G M such that M R• m.
 

Proposition 2.18 Let M be an R-module. Then the following are equivalent:
 

1. M is simple.
 

2. M is cyclic and every non-zero element is a generator, that is M=R• m for
 

every 0^m G M.
 

3. M=i?//for some maximal left ideal/of R.
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Proof:(1) (2)Let0 m£ R. Then R-m is a non-zero submodule ofM since
 

1 G R,so 1 rm=rn^0. But M is simple,so R - m=M,which means M is cyclic.
 

(2) (3) Define (p •. R^R - m via p{r)— r • m;then p is a surjective module map
 

by the hypothesis. Let/=keryj. / is a maximal ideal of for if/ were not
 

maximal,there would be a non-generating element of M. By the Fundamental
 

Homomorphism Theorem, which states that for a ring homomorphism p from Rto
 

S,R/keTp= p{R)[Gsi9A],wehayeR/I=R'm=M.
 

(3) (1)Let M'be a non-zero submodule of M.(3)says that M=R/I. The 

Gorrespondence Theorem for Modules states that there is a one-to-one 

correspondence between the set of all submodules of M that contain N and the set 

of all submodules of M/A'"for the natural projection map tt:M —>■ M/iV [AW 92]. 

So there is an idealI' such that / C ButIis maxinial. Thus /' = R, which 

means M' = M. So M is simple. □ 

For the next two examples we need the following definition: 

Definition 2.19 The endonxorphism ring of the i?-module M, denoted 

Endij(M), is the set of jR-module homomorphisms from M to M. That is, 

EndK(M) is the set of maps/: M^M satisfying V m,n g M and r G i?: 

2. /(r • m) =r •/(m) 

EndjR(M) is an Jf2-algebra via composition of functions: 

{f9){m)={fog){m) = f{g{m)). 

The unit of EndK(M) is the identity map id :MM. 

We are now ready for our next two examples. 
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Example 2.20 Any finite dimensional vector space V over a division ring D is a
 

simple EndD(y)-module via/• =f(v) V/€ EndD(F)and v G V>
 

This is indeed an action of End£)(F)on F since
 

f ■ {g -v)=^f - g{v)=f{g{v))={f og){v)={fg)- v, 

and
 

id • V =id{v)= v y v GV,f,gG EiidD(V).
 

To show that F is a simple Endx)(F)-module, we show that part(2)of
 

Proposition 2.18 is satisfied.
 

Let {ci,62,...,e„} be a ba,sis for F. Consider v G V. If v^0,then u is a
 

linear combination of the basis elements of F. Let a; e F,then
 

X = Q!iei+0:262+ •••+ Q:n6„ some Q;i €
 

= ai/(6i)+0:2/(6^)+• • • +Q:n/(eA:) since a basis element is mapped to
 
another basis element by/€ Endo(F)
 

= /(ai6i+0:26^ +• • • +an6fc) homomorphism
 
= f{y) for some w G F
 

j-hy. ;■ ^ " 

So F G EndD(F) • u. And Endjr,(F) • C F since F is a End£)(F)-module. Thus 

Endyj(F) • V =F. So F is cyclic and every v gV is a generator of F as an 

End£)(F)-module. Hence F is a simple End£)(F)-module by Proposition 2.18. 

Example 2.21 Let F be a finite dimensional vector space over a division ring D. 

Then EndD(F) is a semisimple algebra. 

Let {61,62, . . .,6n} be a basis for F, and define a map 

yj :EndB(F)-)-F®F©- - -©F via v(/) = (/(ei),/(e2), • • •,/(6„)). 

We will show that this map is an isomorphism of End£)(F)-modules. This will mean 

that End/)(F) is a semisimple End/)(F)-module since each copy of F is a simple 

End/)(F)-module (Example 2.20). 
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We first show that is additive, that is^(/+£r)=<^(/)+ ^(5^) yf,g£
 

EndniV).
 

<p{f+9) ^ {{f+9){ei),{f+ g){e2),. . .,if+g){en)) def of
 
= {f{ei)+g{ei),f{62)+g{e2),...,f{en)+g{en)) sum offunctions
 

= (/(ei),/(e2),• • •,/(en))+(^(ei),5(62),...,c/(e„))
 
- ¥>{f)+(pig) defof^.
 

The End£)(i^) action on itself is given as usual by left multiplication, which
 

here means composition offunctions. End£)(F) acts on Y ©F®F0•• • © V=
 

"componentwise" (or"diagonally"):
 

f-{vi,V2,...,Vn)=if-Vi,f-V2,...,f-Vn).
 

We now show that g)comniutes with these actions, that is/•(p{g) — (fi(f •g)
 

V/,5G End^(n­

•g) - {{f ■ 9W2),■ ■ ■ ,{!■g){en)) 
= (/(5'(ei)),/(c/(e2)),. . ;,/((/(e„))) by left multiplication 
= f:^{9) defof^. 

So far we have seen that ip is an End£)(y)-module homomorphism. 

Next, consider ken^: 

ker^ = {/I ¥'(/) = 0} 	 def of kernel 
= {/l (/(ei),/(e2),...,/(e„)) = 0} defof(^
 
= {/|/(ei)=0 Vie{l,2,.. .,n}}
 
= {0} since / is 0 on the whole basis.
 

So p is one-to-one. 

To show that p is onto, let {vi,V2, . . . ,Vn) E F ® V © • • • © F. Define "n? 

endomorphisms of V by fij{ei) ■= ep, then {/y} is a basis for Endx)(y), and 

'fiifij) 	~ (/ij(®l)v/ij(®2)) • • • j/ij(en)) 
= (0,. . .,ej, ...,0) 

where is in the position. Since each Vi is a linear combination of basis 

elements, there is a linear combination of {(0,. . .,e^, . . .,0)} that equals 
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L, U2,... ,Vn). That is V a^- € k,
 

{Vi,V2,...;Vn) -(^auei,.. . ,̂ aniSi}
 
i=l i=l 
n n 

— V C^l)?'• • j^nifnii^n)) 
i=l i=l 
n ■ • ' n 

'4=1 ; i=l ' " '
 

Thus(p is ontQ and we are done showing that^ is an isomorphisin. So End£)(V)is
 

scniisimple.
 

Next, we will look at two important theorems in the theory ofsemisimplicity.
 

The proofs of these two classical theorems may be found in Noncommutative
 

Algebra hy Benson Farb and R. Keith Dennis as well as in many other places. These
 

two classical theorems for semisimplicity are attributed to Joseph Henry Maclagan
 

Wedderburn (1882-1948) who was the first to develop a general theory of algebras
 

over an arbitrary field [W 85]. Before we state these two theorems we need to
 

define the direct product; this differs from the direct sum in that direct products
 

can involve an infinite number of rings.
 

Definition 2.22 [AW 92] Let Ri,R2,..., be finitely many rings and let
 

U7=iRi=Ri^R2 X • • • X Rn denote the cartesian product set. On the set
 

we define addition and multiplication componentwise,that is,
 

(ai,02,.. . ,(Xn)+(&1)^2) )bn)=(oi+bi,a2+62,...5 Un+6n)>
 

and
 

(fll,02,•.., j^2)• • • )̂ n)~ ^2^2^• • • ■> nnbn) 

to make n"=iRi into a ring called the direct product of i?i,J?2, . . • ,Rn-

Theorem 2.23 (Wedderburn Structure Theorem) Every semisimple ring J2 is 

isomorphic to a finite direct product of rriatrix rings over division rings. If i? is also 

commutative, then i? is isomorphic to a finite direct product of fields. 
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Theorem 2.24(Uniqueness Theorem for Semisimple Rings) If
 

n m
 

i?=n and i?= JJ
 
2=1 j=l 

are two product decompositions of a ring R,where each Ri and Rj is a simple ring, 

then n=m and there is a one-to-one correspondence^:{Ri} —)■ {i?j} such that 

Ri = 

Together these two theorems say that every semisimple algebra can be 

written as a direct product of simple algebras and that this direct product is unique 

up to isomorphism. We will see an example of this later in Example 7.7 where we 

look at the linear dual to the group algebra (A:(j)*. 
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3 Maschke's Theorem for Group Algebras
 

The goal of this chapter is to prove Maschke's Theorem for group algebras,
 

Heinriche MasChke was a German mathemaitician who emigrated to America in 1891
 

in order to work in a university.
 

Heinrich Maschke was born in Breslau, Germany on October 24, 1853. As a
 

child Maschke showed exceptional mathematical talent and in 1872 he entered the
 

University of Heidelberg; Later he went to Berlin to study under Weierstrass,
 

Kummer,and Kronecker. Prom there Maschke went to Gdttingen, where he received
 

a doctoral degree in 1880.
 

Maschke then went back to Berlin to teach at the Luisenstddtische
 

Gymnasium. He was quite a successful teacher. However he felt that he would not
 

be permanently satisfied by teaching arithmetic and the basics of algebra and
 

geometry. Maschke's chances for aquiring a position at the university looked slim so
 

he began to study electrotechnics at the Polytechnicum in Charlottenburg in his
 

free time. He then left his teaching position and spent several months in electrical
 

work before coming to the United States where he hoped eventually to acquire a
 

position at a university. He arrived in New York April 1, 1891 where he quickly
 

found ajob as an electrician for the WeSton Electric Instrument Company of
 

Newark, New Jersey. In the following year he was called to the University of
 

Chicago,then a newly founded university, to become an assistant professor of
 

mathematics. There he was able to teach a multitutde of mathematical subjects as
 

he worked his way up to full professor during his sixteen year career there. One
 

student, G. A. Bliss, stated that Maschke was "brillant but sagacious and without
 

doubt one ofthe most delightful lecturers on geometry of all times" [SG 34].
 

In addition to his fulfilling teaching duties, Maschke continued to study
 

mathematics,especially the theory of finite groups oflinear substitutions and the
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theory of quadratic differential quantics. Maschke developed a symbolic method of
 

treatment for quadratic differential quantics. He also played an important role in
 

bringing the importance ofgroup theory to the American mathematicians. He was
 

active in the American Mathematical Society and he gave an address "On Present
 

Problems of Algebra and Analysis" to the St. Louis International Congress of
 

Mathematicians in 1904. Maschke died on March 1, 1908 as a result of an operation
 

he had due to internal disorders.
 

Maschke proved the following theorem in its matrix form for the case where
 

the field is the field of complex numbers C. The result was published in the article
 

"t/6er den arithmetischen Charakter der Substitutionen endlicher Substitutions
 

gruppen" of Math. Annalen volume 50 in 1898. The validity of his result for any
 

field A: where the characteristic of A: does not divide the order ofthe group G was
 

first noted by Leonard Eugene Dickson([J 80], [Ma 33], [SG 34], [Bo 08]).
 

Theorem 3.1 (Maschke's Theorem) Let G be a finite group, and k a field. The
 

order of G,(Gl,is invertible in k if and only if the group algebra kG is a semisimple
 

ring-


Before we prove this theorem we will establish a lemma and a theorem about
 

general modules. These will be used here and later in proving Maschke's Theorem
 

for Hopf algebras.
 

Lemma 3.2 If M and N are A-modules and/:M —)• AT is an A-module map then:
 

1. ker/is an A-submodule of M
 

2. im/is an A-submodule of A^.
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Proof:
 

1. Take m E kerf, a£ A;then
 

f{a- m) = a•/(m) /is an >l-module map
 
= a•0 m e ker/
 

. =.,0,'
 

So,a•7n e ker/. Next let m,n G ker/; then
 

f{m+n) = f{m)+/(«-) /is linear
 
= 0+0 m,n6 ker/
 

■ ■ ■= 0­

Thus ker/is an additive subgroup and furthermore an ,A-submodule of M. 

2. Let /(to) G im/, a £ A, then 

a- f{m) = fia-m) 

since / is an A-module map. So a • f{m) G im/. Next let /(m),/(n) G im/, 

then 

/(m) +/(n) =/(m+n) 

since / is linear. So im/ is an additive subgroup. Thus im/ is an 

A-submodule. □ 

The following theorem gives equivalent conditions to being a semisimple 

module. This is an essential ingredient in proving Maschke's Theorem both for 

group algebras and for Hopf algebras; The proof of Theorem 3.3 is not included 

here, but it may be found in Algebra - An Approach via Module Theory hy Willi&m 
A. Adkins and Steven H. Weintraub [AW 92]. 

Theorem 3.3 If M is an i2-module, then the following are equivalent: 

1. M is a semisimple module. 
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2. Every submodule of Af is complemented,that is for every submodule N C M
 

there exists a submodule AT'g M such that iV ® =M.
 

3. Every submodule of M is a sum (not necessarily direct) of simple i?-modules.
 

In the following proof we consider kG as a left module over itself via left 

multiplication. Recall that an algebra is called semisimple if it is semisimple as a 

module over itself via left multiplication. We are now ready for the proof of 

Theorem 3.1, Maschke's Theorem, which states that for a finite group G, G k 

if and only if the group algebra is semisimple. 

Proofof Theorem 3.1 [J 80]:(^)Let M be a AG-module,and let iV be a 

AG-submodule of M,that is V n G N,and g G G, g ■ n E N. By Corollary A.8 we 

know that there exists a A-linear projection TT: MA. 

Now let us define a new map A:M^AT by
 

7r(m)=|G|~^^g"': •(7r(5 • m)) V m G M.
 
geG
 

The map A is a AG-module projection onto N since the following conditions hold.
 

First for m,n G M,
 

7r(m-t-n) = \G\~^^g~^Trg•(m+n)
 
gEG
 

= \G\-^^g-'^7T{g ■ m+g• n) 

— \G\~^ ̂ ^ g~^ -{T^{g-'rn)-\-'K{g- n)) linearity of tt
 
9^G
 

= \G\-'^Y1,9''^'^9-m -h g~^TTg-n
 
g&G
 

= \G\-'^.^g~'^ng-m+\G\~^Y^g~'^ng-n
 
geG geG
 

= 7f(m)+7f(n).
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So TT is A;4inear. Moreover, \/h,g E G,
 

h~^Tj:(h-m) = \G\~^^h~^g~^Trig-(h-171)) 
■ g^G , , ■ 

= \G\~^ ^{gh)~^'K{{gh)• m) associativity 
gea ' ' ' 

= \G\~'^^g~'^'!r{g • rn) since E^eG 
geG 

7r(m). 

So 7t(h •m)=h ■ Tt{m) M m E M. Thus# is a A:G-module homomorphism. 

To show IT is onto A'" consider the following. For n G N, Tr(n)=n and since 

is a fcG-submodule gf • n e A/^, so 7r(^ vn)=5• n V. Hence 

g~^ • Tr{g • n)=g~^g • n — n and so 

^n)^\G\-'^ ^' g~'^TT{g-n)=\G\~^^n­
qEG g^G
 

thus showing that A/' C 7r(M). Now,for any m G M,7r(m) GW so 7r{g • m)E N.
 

But N is a submodule so • 7r(p • m)G g~^ • N C N. Hence 7r(m) G N. Thus£ is
 

a projection onto AT.
 

We claim that kerir is a A:G-complement to A/^. Since if is a A:-linear
 

projection onto Af, kerif is a vector space complement to N. Also,since if is a
 

A:G-module map,ker^ is a /cG-submodule by Lemma 3.2. Therefore, Af has a
 

A:G-complement, ker'^, in M,that is M — N0kerif. So by the equivalence of
 

Theorem 3.3(1)and (2), M is semisimple.
 

Consider the element 2:= ^e kG. Then ̂ h E G, hz=z since
 
gea
 

hz=hY,9=^hg=Y^g-z.
 
geG geG geG
 

So k{z} is a left ideal of kG.
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Now look at 2:^:
 

= (IZ9)z since 2:= Y.geG9
 

= gz linearity
 
g^G
 

= 2; since gz= 2: y g E. G
 
g^G
 

= \G\z adding z^ \G\ times
 

This means that 2:^= |G|2:.
 

Assume now that|G|=0. Then 2: is a non-zero central element (that is,
 

hz=zh V h G G)such that 2;^ =0. ThusZ=z{kG)is a two-sided ideal and
 

Z"^=0,since
 

Z^=z{kG)z{UG)=^ikGf=^.
 

To complete the proof, we use the concept of a hilpotent ideal: an ideal/is called 

nilpotent if there exists n GZsuch that /"== 0. We adapt [L 66] Section 3.3 

Proposition 1 and state it for our more special case: If A is a finite dimensional 

semisimple algebra then A has no non-trivial nilpotent ideals. However, we know 

that kG is finite dimensional and semisimple by assumption,so it can have no 

non-trivial nilpotent ideals. SoZ and — 0 is a contradiction. Thus \G\^0, 

and since /c is a field this is equivalent to saying |G|~^ G k. □ 
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4 Hopf Algebras
 

Hopf algebras arose through the work of Heinz Hopf,especially the work
 

described in his paper [H 41]. Algebraic topologists abstracted from his work and
 

derived the concept of a graded Hopf algebra. Later in the 1960's Hopf algebras
 

began to be studied from a purely algebraic point of view, and the abstract concept
 

of a Hopf algebra was defined.
 

Heinz Hopf was born November 19, 1894 in Breslau, Germany where he
 

attended school and started his university career. During World War I his studies
 

were interrupted for service in the military. In 1920 Hopfcontinued his education in
 

Berlin, where he earned his Ph.D.in topological research in 1925 and his
 

"Habilitation" in 1926. In 1931 Hopf became a full professor at the Eidgendssische
 

Technische Hochschule in Zurich.
 

Most of Heinz Hopf's work was on algebraic topology where he used his great
 

geometric intuition. Hopfinspired a variety ofimportant ideas in various fields
 

including topologif,homology,and differential geometry. As a lecturer Hopf was
 

clear, as his voice was well modulated, a,nd his speech was slow and strongly
 

articulated. He was also a fascinating lecturer as he would ask marvelous questions
 

and greatly encourage his students. According to Peter J. Hilton, Hopf gave the
 

impression to his readers that "you could have done this, I'm just setting it out."
 

Henry Whitehead said "For Hopf, mathematics was always a question."[AA 85]
 

Heinz Hopfdied in ZoUikon,Switzerland on June 3, 1971
 

([Ks 95],[Gi 72], p
 

Our definitions and notation will mostly follow [Mo 93]; this is essentially
 

the notation and definitions of [Ab 77] and [S 69B]. The first step in defining Hopf
 

algebras is to dualize the definition of an algebra. Here we see the beauty of the
 

"diagram definitions", and make essential use of them.
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Definition 4.1 A /c-coalgebra (with counit) is a A:-vector space C together with
 

two fc-linear maps,comultiplication A:C C0C and counit e:C k,such
 

that the following diagrams are commutative:
 

1. Goassociativity
 

C c®c
 

A(^id
 

C0C	 ■c®c®c 

2. 	Counit
 

C
 

1®	 (g)l 

k 0C	 C ®k 

e^id	 id(S)£ 

c®c 

The two upper maps in the counit diagram are c 10 c and c c 01, for any 

ceC. 

Note that the image under A of c e G is a sum of tensored pairs: 

Ac = J2i Ci®di, for some Cj, dj € C. This quickly becomes very tedious and 

confusing; for example, using this notation the coassociativity diagram would give: 

35 



SiCj ® di
 

A(^id
 

id^A 
Sij^ij ® t>ij ® di
 

® YliJQ ®
 

That IS Sij =SijQ ® Cij0fij. To solve this problem, Heyneman and
 

Sweedier introduced the following "sigma notation"for a coalgebra C and
 

comultiplication A:
 

Ac=^C(1) ® C(2)= Ci0C2 Vc G C.
 

Now the coassociativity diagram gives
 

0(Ci)20C2=5^Ci0(C2)i0(02)2.
 

This justifies the use of the following convention:
 

Ĉi0C20C3:= ®(^1)2 ® C2=53ci0(C2)i0(02)2.
 

The subscripts are only syinbolic "placeholders", they do not indicate a specific
 

element of C. The original notation included the parentheses on subscripts, but
 

they are often dropped to simplify the notation. We will omit the parentheses in
 

this paper. Sigma notation is also used in physics where sometimes even the
 

summation symbol may be ommitted. Others such as Kassel, use superscript
 

numbers or prime marks in place of the subscripts, that is
 

Ac=^c'0c".
 

In sigma notation the counit diagram implies the following equation:
 

c=53^(ci)c2= X^Cie(c2),
 

36
 



since
 

CA 0C2^H^'^e{ci)0C2=531 ®
 

and
 

cA 10c.
 

Since{1} is linearly independent we now have c=Xe(ei)c2- Similarly for the
 

portion of the diagram:
 

cA ci002'^®53 ® ^(^2)=53 ® 1
 

and
 

cA c01.
 

Thus c=Xci6;(c2)=!E?(c2)ci since £(02) € A:.
 

Analogously to algebra morphisms we define the concept ofcoalgebra
 

morphisms.
 

Definition 4.2 Let C and D be coalgebras, with comultiplications Ac and Ad,
 

and counits £c and Sd,respectively. Then a map/:C —^D is a coalgebra
 

morphism if Ad°f̂ {f0/)Ac and ifec=ez? o/• In map diagrams this means
 

the following two diagrams commute.
 

1. :
 

mf
 
c®c D®D
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2.
 

en
 

Analogously to modules, we define the concept of comodules.
 

Definition 4.3 For a A:-coalgebra C,a (right) C-comodule is a fc-space M with a
 

A:-linear map p:M -4- M ®Csuch that the following diagrams commute:
 

1. .
 

M- -M®C
 

p^id

M®C- M®C®C
 

2.
 

M®C
 

®i id®e
 

M ® k
 

In sigma notation we denote p(m)=Y^mo® mi E M ® C. Then the
 

commutativity diagrams yield the following equations:
 

{id ® A)o p(m)=(p® id)o p{m)=^mo ® mi ® m2.
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So Etoo ® =^(V^o)o ® Emo ® TOi ® m2. And,
 

(id ® e)o p{fn)— g(mi)mo01=m01.
 

SoE'£^('^i)'^o = Originally this notatidn was introduGed as
 

Em"^(0) <0^(1)® "^(2) by Moss E. Sweedler in his 1968 paper Cohomology of
 

Algebras over Hopf Algebras. The parentheses have been dropped for convience as
 

in the sigma notation for coalgebras[S 69A],[S 68].
 

We are now ready to combine the algebra and eoalgebra structures to get
 

bialgebras.
 

Definition 4.4 A A:-space B is a bialgebra if(B,jLt, is an algebra,(B,A,e)is a
 

eoalgebra, and either of the following (equivalent) conditions holds:
 

1. The maps A and e are algebra morphisms. Comultiplication A is an algebra
 

morphism if V 6,c GS and a,P€.k,
 

A{bc)=(A6)(Ac)= 0 ci0C2)=^biCi® 62C2
 

and
 

A{aP)={Aa){A0)={a®l){^®l)=a/3®l.
 

The map e is an algebra morphism if V 6,c G B and q;e A:,
 

e{bc)=e{b)e{c)
 

and
 

£(q;)=a.
 

2. The maps /x and rj are eoalgebra morphisms. Multiplication p is a eoalgebra
 

morphism if V 6,c G B,
 

A o/x(Z)0c)=(/X ®/x)A(6 ® c)= 6̂ici ® 62C2,
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And 77 is a coalgebra morphism if ^a E k,
 

e(a)=eor]{a).
 

We now have one last definition before we are able to define Hopf algebras.
 

This definition defines a new multiplication on Homfc(C,A).
 

Definition 4.5 Let C be a coalgebra and A an algebra. Define convolution
 

multiplication on Homfc(C,A)as
 

(/*9)(c)= ®9)(Ac)= /̂(ci)p(c2)
 

f,g E Homfc(C,A)and,c EC.
 

Then Homfc(C,A)is a A:-algebra under this multiplication and the usual
 

addition offunctions. The unit of Homfc(C,A)is rje. In sigma notation, convolution
 

multiplication is given by(/*g){c)=2/(^1)5(^2)since
 

(/*5)(c) = M/®5)(Ac)
 
= At(/®5)Eci ® C2
 
= I^Efici)(2>g{c2)
 
= E/(ci)5(c2).
 

The unit element in Homjfc(C,A)is rje since,
 

{f*Ve){c) = T,f{ci)ri{£{c2)) by definition of*
 
= E/(ci)e(c2)77(lfc) £{02} ek
 
= E/(ci)£(c2)1a definition: 77(lfc)=1a
 
= E/(ci£(c2))1a linearity of/
 
= /(Ecie(c2))lA linearity of/
 
= /(c)1a c=Eci£(c2)
 
= /(c) /(c)€ A
 

and
 
{r]£*f){c) = E»7(e(ci))/(c2) definition of*
 

= E5(lfe)e(Cl)/(C2) £{C2)Ek
 
= E1a£(ci)/(c2) v{lk)=U
 
= E1a/(£(ci)c2) linearity of/
 
= lA/(Ee(ci)c2) linearity of/
 
= 1a/(c) c=Ee(ci)c2
 
= /(C) /(c)e A.
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Thus(/*r]s){c)=/(c)={rje*f){c).
 

A Hopf algebra is a special type of bialgebra:
 

Definition 4.6 Let {H,fj,,r],A,e)he a bialgebra. Then H is a Hopfalgebra if
 

there exists an element SE if) which is inverse toid/f under convolution
 

multiplication.5is called an antipode for H. In sigma notation, this means
 

(S*idH){h)-^{Shi)h2=sih)lH=^hiiSh2)=(id*S){h)
 

y h E H,since {rie){h)— e{h)r]{lk)=e{h)lH-


Note that the antipode of a given Hopf algebra is unique because it is defined as an
 

inverse function.
 

The following proposition gives an important property ofthe antipode 5: it
 

shows that 5" is an antihomomorphism.
 

Proposition 4.7 [S 69B]Let if be a Hopf algebra with antipode S. Then5is an
 

antihomomorphism;that is S{gh)=S{h)S{g) yg,hEH.
 

Proof: Let if be a Hopf algebra and define the maps E Hom(if ® if,if) via
 

^{g (8> h)=S{h)S{g)and Q(g ® h)— S{gh) where S is the antipode ofif and
 

G ff. We will show that =^.
 

{Q*fji){g®h) = T,g{{g®h)i)iJ,{{g®h)2) de&nitionoi* 
= 12q{9i ® hi)iJ.{g2 ® h2) definition of A 
= US{gihi)g2h2 definition of ^ and/i 
= 12Si{gh)i){gh)2 A is multiplicative 
= s{gh) ■ Iff definition of antipode 

= imKgh)
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{/j,* u){g <Si h) — n{{g ®h)])i>{{g(S)h)2) definition of*
 
= EKgi®hi)u{g2<8)/i2) definition of
 
= 12gifhS{h2)S{g2) definition offj. and u
 
= E9Pi(Eh/^i'S'(/i2))'S'(5'2) associativity
 
= 12ggis{h)S{g2) definition of5
 
= 12giS{g2)£{h) linearity ofe
 
= e{g)e{H)lH definition ofS"
 
= e:(g'/i)lij e is multiplicative
 

: -: {7]€)igh}
 

So Q*iJ,=fj.*u=ge which implies
 

Q*jJ,*U = fi*v*u
 

Q*ge = g£*v
 

Q
 

since 775 is the unit in Hom(iy®if,if). Thus 5'(g'/7) —5'(/i)S'(^) V h,g eH.□ 

Now let us look at some examples of coalgebras, bialgebras, and Hopf 

algebras. 

Example 4.8 The group algebra kG. 

Recall from Example 1.9 that kG is an algebra via the maps // and g, where 

V^i^(^gg®^^hk)^^oigl3hgh 
gG.G h^G h,g 

and 

g{^k) = 1(3­

Now to see that kG is a coalgebra, we need to define A and e. Let 

= g® g and s(g) =1 Vg G G 

and extend these maps linearly, thus for an element XpeG ̂g9 ^ 

^ ) =I] ® 9
 Xgeo j gea 

and 

^[Hoigg = Y. ̂A9) =Yj% 
V96G / gea geG 
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To verify that these maps give a coalgebra, we need to check the
 

coassociativity and counit maps and see that the diagrams commute.
 

Coassociativity:
 

g—— —^ ——-.9 ® g
 

A0id
 

g®g g ® {g ® g)={g ® g)® g
 

Counit:
 

10 01
 

10g=e{g)® g 9® 1=g0e{g)
 

e0id A / 2d0e
 

g®g
 

These maps do commute since =1 G G. For a general element in kO
 

commutativity still holds by linearity. Thus is a coalgebra.
 

Now,since kG is an algebra and a coalgebra, all that needs to be shown is
 

that A and e are algebra morphisms,in order to verify that kG is a bialgebra.
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1. 	A (53q;sp)(53M
 
\	g£G heH
 

= A(y3aQphgh) definition of multiplicatiGn
 
■	 qA ' 

=^agph^igh) linearity of A
 
. • 	9,h ■ , / ; 
= Yj^g^high®gh) since g,heG
 

9,h­

—^̂g0hig ®g)(h ®h) defoftensor product multiplication
 
9,h
 

^g{g ®g)"^Mh®h) defof multiplication in/jG
 
geG heH
 

^j3hh) definition of A.
 
g^G . h^H
 

2. 	A(lfcG)=IfcG ®IfcG for 1eGsince Ifcc =Iq.
 

3. e r(F:ao3
 
g^G h^G
 

= e(53 definition of multiplication
 

= ̂ag^0{gh) linearity ofe
 

= ̂(XgPh -Ifc gk^G,definition ofe
 
:	 ■ g,h 

= Y^ag^h 	agj^hek
 
■ 

= 	(53tTq • lfc)(y3/^fc • ffc) definition of multiplication and unit
 
gQG h^G
 

— 	e(53
 
g^G h^G
 

4. £(1a:g)=Usince Ug=1g^G-


Since the necessary conditionsfor Aand e to be algebra morphisms are met,fcGis
 

a bialgebra.
 

To verify that kOis a Hopfalgebra,we mustshow that kGhas an antipode.
 

Dpfinp ,9(g):=g~^ V^eGand extend linearly,that is
 

S(Y^agg)=Y2g^9^(9)==Y.^9g'~^­
geG geG geG
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Sis the antipode for kG since
 

s{g)lG — ik • Ig =Ig,
 

and
 

arid'.
 

={id®S)Ag=gSig)=gg-'=l^.
 

Thus 1© == ;1g —^{9)9 — 9S{9). So the group algebra A:G is a Hopfalgebra,
 

Coalgebras can have a property analogous to commutativity in algebras; this
 

is called cocommutativity,and means that for any c in the coalgebra,
 

I^Ci ® C2=SC2 <8» C\. When H=kG,we see that comultiplication is indeed
 

cocommutative since
 

geG . geG : g&3
 

Given a vector space V,define its linear dual to be V^* ;== Homfc(V;i:). For
 

the case ofH — kG with G a finite group,the linear dual H*={kG)* gives us our
 

next example ofa Hopf algebra.
 

Example 4.9 The linear dual ofthe group algebra {kG)* for a finite group G.
 

The linear dual ofthe group algebra is defined to be the set
 

{kG)* =Hom(A;G,k). This space has a basis oflinear projections onto the field. This
 

is the "dual basis" to {g}g^G- Define pg:kG —> k via
 

^ I 1 iig= h ■ : 
[0 otherwise
 

and extend linearly. Then {pg}g^G is a basis of{kG)*. The linear dual ofthe group
 

algebra,{kG)*,is a A:-vector space under formal addition, and is an algebra with
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multiplication given by
 

PgPh I 0 	otherwise
 

and extended linearly. Note that(kG)* is a commutative algebra, dual to the fact 

that kG is cocommutative. 

The linear dual ofthe group algebra,(kG)*,is a coalgebra through the maps 

A and e, ■ 

^(Pg) ■'= Y^Pgh-^ ®Ph 
heG 

and 

/ V— J 1 1 _ .^Wg) • ] 0 otherwise | 
Notice that = l(fcG)*- This follows from: 

4^Pg)Ph-^PgPh=Ph since =| J fih 
geG geG f ' 

Similarly, Ph{Y^ Pg) =Ph­
gGG , ' 

To see that (kG)* is a coalgebra, we will show that the coassociativity and 

counit diagrams commute. 

Coassociativity: 

(A (g) id)Apg = (A 0id) ^ Px®Py definition of Apg 

= '^{^Px)®Py 

— Pu®Pv®Py 
xy=g^uv=x 

definition of Apg 

— substitution 
uvy=g 

and 	 _
{id ®A)Apg 	 = (id0 A) z^Px® Py definition of Ap^ 

= Y,p^®{Apy) 
xy=g , 

— Px®Pu® Pv definition of Apg 
xy=g,uv=y 

= ^ Px®Pu®Pv substitution. 
xuv=g 
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But ̂ Pu®Pv®Py= Pa;0 (g) SO we are done.
 
uvy=g xuv=g
 

Counit:
 
(e0id)o Apg = (e0id)^Px0Pj, definition of Apg
 

xy=g
 

= ̂ ^{Px)®Py
 
xy=g
 

= 1 ®Ps £(Pa;)-<5x,l-


Also,
 
{id0e)Apg = {id <^e)^Px0py definition of Ap^
 

xy=g
 

= SPx<^S{Py)
 
xy=g
 

= Pfl®i-


We now verify that A and s are algebra morphisms to see thait {kG)* is a
 

bialgebra.
 

1.
 

1 0 otherwise
 

and
 
(Apg)(Ap/i) = Pgi-l(8>pi)(Y Phm-^ ®Pm)
 

leG m£G
 

= S Pgl-^Phm-^ ®PlPm
 
l,meG
 

YPgi-^Phi-^ ® Pi if I='^
 
l&G
 

0 otherwise
 

iY^Pgi-'^Pi iig= h
 
= < ieG
 
[0 otherwise
 

^ f Apg iig=h
 
1 0 otherwise.
 

So A{PgPh)={Apg){Aph).
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^(1) =
 
geG
 

geG
 

geG leG
 

■ ■ Y,Pgl-' ®Pl 
g,i
 

= E
 
lea \g€G /
 

— ^^^Pi 	 because pq =1
 
IgG g^G
 

= 1 ® 1.
 

3.
 

e(„p.) = / if9='>
\PgP) 1 	Q otherwise
 

1 if^=h=1
 

0 otherwise
 

= e{pg)e{ph).
 

4.
 

^(1) = ^(E^'p)
 

= J^i^iPg))
 
geG
 

= E^9A
 
geG
 

.. '1­

Thus the linear dual ofthe group algebra(kG)* is a bialgebra, as we have shown
 

that it is a coalgebra, algebra,and A and e are algebra morphisms.
 

To show that(kG)* is a Hopf algebra we need an antipode. Define
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S{pg):=Pg-1- To verify that this is an antipode we will compute:
 

{S*id){pg) = ijl{S ® id){Apg)
 
- id)(^Pgl-l ® pi)
 

leG
 

leG
 

= HPig-^Pi
 
leG
{y^^Pi if lg~^=I, that is p=1
 
0 if lg~^^I, that is ̂ ^1
 

r 1 ifp=l
 
\0 ifp^l
 

= ̂iPg),
 

and
 
{id*S)(pg) = p{id0S)(Apg)
 

= p{id0S)(5^Pgi-i0pi)
 
lea
 

= f^^Pgi-^ ® S{pi)
 

= Y.Pgi-'Pi-'
 
leG
 

^Pi-i ifp=l
 
tea
 

0 if p^1
 
^ f 1 if5=l
 

\ 0 if^^1
 
= £{Pg)­

Thus(kG)* is a Hopf algebra.
 

This next example is based on the Lie algebras that are due to the
 

Norwegian mathematician Sophus Lie. Lie was born in December 1842 and is the
 

founder ofthe theory of Lie Groups. Originally Lie called these 'finite continuous
 

groups'. Lie did much of his work during the 1870's and 1880's, well before the
 

concept of Hopf algebras was defined.
 

Example 4.10 The Universal Enveloping Algebra U{L)of the Lie algebra L.
 

Before we see what the Universal Enveloping Algebra ofthe Lie algebra is we
 

need to define some preliminary concepts. These concepts are in fact extremely
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important in their own right.
 

Let L be a vector space. Define T^{L)=k,T^{L)=L and T'^{L)=L®"(the
 

tensor product of n copies ofL)if n > 1. Then the tensor algebra T(L)is defined
 

to be:
 

T(L):= ©„>oT"(L)= A: ® L © L0L© • • •.
 

This is indeed an algebra, where multiplication is defined to be juxtaposition and
 

the unit is 1t(l)= Ifc-


A Lie algebra L is a vector space with a bilinear map[,]:L®L L that
 

satisfies the following two conditions V a:, 2r G L.
 

1. antisymmetry: [a:, y]=—[y,a;]
 

2. Jacobi identity: [a:,[y,z]]+[y,[z,a:]]+[z,[a;, yj]=0
 

An important example ofa Lie algebra is given when A is an associative
 

algebra. We define a Lie bracket on A via
 

[a,b]=ah — ba.
 

The structure thus defined satisfies the two identities and is denoted L — A".
 

To define the Universal Enveloping Algebra of L,denoted U{L), we
 

need a tensor algebra T(L)and an ideal I{L)generated by elements of the form
 

[a,b] — {ab — ba) for a,b E L. Then
 

U{L):=T{L)/I{L)
 

[Ks 95].
 

We are now ready to define the coalgebra structure maps for U(L):
 

A:U(L)^U(L)0f/(L) via
 

A(l):=101
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and £; C/(L) —>■ A: via 

e(l) := Ifc 

e{l) :=0 yieL. 

Extend A and e linearly and multiplicatively to i7(L). 

To verify the coassociativity map, we must show (A 0id)A = {id0 A)A. 

Let I6 L, then 

(A0«d)A(O 	 = (A®id)(/0l+l0O 
= A(/)0l+ A(l)0Z 
= (/ 01+10 /) 01+(101) 0 / 
= /0101+10/01+1010/ 

and 
(i(/0A)A(/) 	= (i(/0 A)(7 01+10/) 

= / 0 A(l) +10 A(/) 
= /0101+10(/01+10L) 
= /0101+10701+1010/. 

Thus (A 07o/)A(/) = (id0 A)A(/). 

To verify the eounit map, we must show / =p-is 0id)A{l) = fj,{id0e)A{l). 

Let / G L, then: 

/x(e 0 id)A(/) 	 = /^(e 0 id)(/01+10/) 
= ju(e(/) 01+£(1) 0/) 
= /i(O0l+l0/) 
= Ovl +1-/ 

= /, ■ 

and 
ju(id0e)A(/) 	 — //(id0 £•)(/01+10/) 

= //(/0e(l) + l0£(/)) 
= //(/01+100) 
= / • 1+1- 0 

■ = /. 

Thus U(L) is a coalgebra. 

The Universal Enveloping Algebra U{L) of the Lie algebra L is now a 

bialgebra, as its algebra structure is inherited from the tensor algebra T{L), and A 
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and £ are defined to be linear and multiplicative,so they are automatically algebra
 

morphisms.
 

For U(L)to be a Hopf algebra, an antipode is needed. Define
 

S(l):=-I lE L and S{1)— 1. Extend S linearly and antimultiplicatively on L,
 

that is S{xy)— S{y)S{x) \/ x,y e L. This extends to antimultiplicativity on U{L)
 

by the nature of multiplication on U{L). To verify that this S is the antipode we
 

must show that £•(/)=fJ,{S ® id){Al)=fj,(id ® S){Al). Indeed
 

£{l)=0 V Z G L,
 

and , ..
 
fjL{S ® id){Al) = /i(S'(Si Zd)(Z ® 1+1 ® Z)
 

= ® 1+S{1)® Z)
 
= ̂ (Z)•1+5'(1)• Z
 
= S{l)+l-l
 
= —Z -|- z
 

= 0,
 

fji{id ® S){Al) = iJ,{id® S){101+1® I)
 
— ij,{l0S{1)+10S{1))
 
= Z • 1+1•(~Z)
 
= Z +(-Z)
 
= 0.
 

So,e{l)=Ijl{S0id){Al)=ii{id ® 5)(AZ). Moreover,
 

e(l)=1,
 

n{S0id){Al) = ii{S0id){l0l) 
= At(5(l)®l) 

= S{1) ■ 1 
= 1-1
 

= 1,
 

fi{id0S){A1) — p{id 0^S^^
 
= ij,{l0S{l))
 
= 1-1
 

= 1.
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So,£(l)=//(S" ® id)(Al)=n{id ® S){A1). Thus5is the antipode for i7(L) and
 

U(L)is a Hopf algebra.
 

Not every set that is a coalgebra and an algebra is necessarily a bialgebra or
 

Hopf algebra. This next example is one such case.
 

Example 4.11 The set of n x n matrices with dements from the field A:, M„(A:), is
 

an algebra and a coalgebra, but not a bialgebra.
 

Consider M„(A:) an algebra as usual, and let Eij denote the matrix with 1 in
 

the place and zero everywhere else. Mn{k)becomes a coalgebra when we define
 

the maps A and e as follows:
 

A{Eij):^^Eik0Ekj
 
- ' k=l
 

and
 

£{Eij) 6ij — I Q j
 
and extend linearly to Mn{k).
 

To verify that these two maps make Mn{k)a coalgebra, we need to check
 

that the coassociativity and counit diagrams commute.
 

Coassociativity:
 

EijA^Eu®Eij'^YLEu^Eik®Ekj,
 
I l,k ■ ■ . 

and
 

Eji 1^ y~!Ejk ® Eki y^:Eii ® Elk ® Ekj.
 
k k,l
 

This diagram commutes since Ylk,i ®^ik ® Ekj= En0Eik® Ekj.
 

Counit:
 

EijA^Eik®Ekj'^Y.^ik®EkjV^
 

53
 



 

 

 

and
 

Eij 1® Eij.
 

Also, . ' ■ " 

EijAY.Eik^Ekj'^^Eii^Skj,
 
k	 . k
 

and
 

Eij^Eij® 1­

These maps commute since Y!,k ̂ ik ® Ekj=Su ® Eij=10Eij and
 

Efc Eik0Skj=Eij0Sjj=Eij01. Thus Mn{k)is a coalgebra.
 

However, is not a bialgebra. To see this we must show that A and/or
 

e are not algebra morphisms. In fact, neither is an algebra map; we show counter
 

examples for both:
 

■	 ' T. . '-' ..'V' : •: ■ ■ ■ ' ■ ' 

s{Ei2E2i)=e{Eii) — 1, 

but
 

s(^E12)£(^E2i)=0•0=0.
 

1^0, thVLS s{Ei2E2i)'/'e{Ei2)s{E2i).
 

' ■ 2.
 

A(^ii£?22)= A(0)=0,
 

but
 

^iEii)A{E22}= Elk ®.^fci)(T^ E210E12)
 
k=l 1=1
 

— {Ell ® Ell T Ei20.£'21 + ■ ■ ■ H"Ein0Enl){E2i0£'12+• • •+E2n0£'n2) 
= £^11^21 ® £'1i£'12+ • ■ ■ +£'12£'21 ® £'2i£'12+ ■ ■ * +£'ln£'2n ® £'nl£'n2 
= 000+000+•••+£^110£?22+• • •+0®0 

■ E\1 0£'22­
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0^£^11 ® E22,so A{EuE22)^A(£^ii)A(£'22). Each ofthese examples is a
 

sufficient test to show that A and s are not algebra morphisms. Thus Mn{k)is
 

not a bialgebra.
 

As the Hopf algebra combines the algebra and coalgebra structure,so the
 

Hopf module combines the module and comodule structures. Notice we are defining
 

a right H-Hopf module which uses the right H-module structure along with the
 

right i^-comodule structure.
 

Definition 4.12 For a fc-Hopf algebra a right H-Hopf module is a k-spa.ce
 

M such that:
 

1. M is a right iy-module, via7:M ® -> M.
 

2. M is a right if-comodule, via/?:M --» Af0i7.
 

3. p is a right if-module map,that is
 

^(m •/i)o0(m • h)i • hi0TOih2 ymEM,heH.
 

This is known as the coherence condition.
 

An important result on Hopf modules is the FundamentalTheorem of Hopf
 

Modules. To understand and prove this theorem we need the following two
 

definitions.
 

IDefinition 4.13 Let M be a left if-module. The invariants ofif on M are the set
 

={rn € M \ h - m=e{h)m, V n G II}.
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Definition 4.14 Let M be a right iy-comodule. The coinvariants ofH in M are
 

the set
 

={m£M \ p{m)— m 1̂}.
 

Theorem 4.15(Fundamental Theorem of Hopf Modules) Let M be a right
 

i?-Hopf module. Then M= ®if as right if-Hopf modules.
 

Proof: Define P:M-> M to be the composite map
 

that is P(m):= mp •5mi for m € M. Next define \
 
m
 

a ■. ® H M via m'®h^m'-h 

and 

(5 :M^M® H via mo-(57711)0^2, 
m 

that is fi = {P ® id)p. 

We w^ill first show that/5(M) C ® 

p(^mo- Smi) = ^' {ruo -Smi)o ® {mo • Srni)i def of p 
m jn 

= ^{mo)o - {Smi)i ® {mo)i{Smi)2 coherence condition 

— ■ Sm2 ®:irno)iSmi S is antihomomorphism 
m 

= y^^mp ■ Sm^ ® miSm2 "coassociativity" of coaction 
m ■■■ 

= mp • Sm2 ® £{mi) def of antipode 
'JZL 

= mp • Smi ® Iff def of counit 
m 

This means that y^mp • Smi 6 M"'^. 
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Next we will show that a and /3 are inverse maps. That is for m e M: 

a/3{m) = a(^mo ■ (Smi)<S> m2) def of/3 
m
 

' — •(Smi))- 7712 defofa
 
m
 

= y^mp •((5'mi)m2) "associativity" of action
 
m
 

= ^mo-e(mi) def of antipode
 
m
 

m counit, def of comodule
 

Also for m'G
 

Pa{m'0h) = P(m'• h) def ofa
 
= {P ® id)p{m'• h) def of ft
 
= (P® id)(^m'-hi ® 1^/12) P Hopf module,m'G
 

h
 

= (P®id)(^m'• hi ® ha)
 
■ ■ 'V h ' y ' y ' 

= ̂ (m'•hi)o • <5'(m'• hi)i ® h2 def ofP
 

= ̂ m'o • hi • ̂ (m'l • h2)® hs coherence condition
 
y h
 

= ̂ m'• hi - S{1h • h2)® ha m'G
 
h
 

= ̂  •(hi(Sh2))® ha associativity
 
h ■ \ 

— m^g(hi)® h2 def of antipode
 

= ̂ m'®e(hi)h2 linearity
 
■/i ■ . 

= rn' ® h def of counit. 

Thus a and/? are both one-to-one and onto. 

Lastly we will show that a and /? are H-module maps. For this to be true, a 

and /? must each be right P-module maps and right P-comodule maps. To verify 

that a is a right PT-module map consider the following V m' G and g,h E H: 

m' ® h ® g°i-4 {m' • h) ® g^{m' • h) • g, 

and 

m' ® h ® g'^^{m' • h) ® g\^{m' < h) ■ g 
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which are equal. To show that a is a right ff-comodule map consider V m'€
 

and h E H:
 

7n'®hA-m'-hA^^m'-hi®lH-h2 — ^m'-hi®h2,
 

and
 

m'0 m'0^hi0h2°'^^̂ mf • hi0h2 
h h 

which are also equal. 

The linear inverse /? is also a right iif-module map and a right if-comodule
 

map. Thus a is an isomorphism ofi?-Hopf modules, which means M= M'^°^0H.
 

Note that a similar proof works for any left ff-Hopf module.
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5 Integrals
 

Before we see how Maschke's Theorem generalizes to Hopf algebras we need
 

to define Integrals in a Hopf algebra i?.
 

Deflnition 5.1 A left integral in is an element t e i? such that
 

ht=e{h)t, y h e H;a right integral in h is an element t'€ H such that
 

t'h=s{h)t', y h E H. We denote the space of left integrals by and the space of
 

right integrals by f^. The Hopf algebra H is called unimodular if In
 

such a case we write jy =/^=/^.
 

Our basic examples of Hopf algebras also contain integrals when they are
 

finite dimensipnal.
 

Example 5.2 Consider the group algebra =kG for a finite group C?(see
 

Example 4.8). Then the element t=^p is both a left and a right integral in i?
 
qEG
 

although G is not necessarily Abelian.
 

To verify that £ is a left integral, let e fcG;then
 

M=h
 
g&G g&G gEG
 

and
 

ff(/i)£= Ifc •Xf= JZP=i­
geG geG
 

Hence 	hi=e{h)t V fi G H,and so £ G Sh
 

For the right integral property, let h G kG and £'=^g. Then
 
geG
 

t'h={^g)h=J29h=^g=t',
 
geG geG geG
 

and
 

s{h)t'= Ifc•^g=^g=£'•
 
geG geG
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Hence 	t'h — £{h)f V h € if,and so t'e
 

Thust= is a left and a right integral in if and so H is unimodular.
 
■; geG '■ vL-': ' ^ 

Example 5.3 For a finite group G, let H= (kG)*, the linear dual of the group 

algebra (see Example 4.9). Then t =pi is a left and a right integral. 

To verify that < is a left integral, let Pg G (kG)* and t =pi. Then 

f Pi if p =1Pg — PgPi ~I0 otherwise, 

£(p»)t=eWft={o' rtLmL.
 
Thus pgt — £{pg)t. In (kG)*, {Pg}geG is a basis. So for a general element 

h = ̂ agPg 6 (kG)*, ht = e{h)t by linearity. 
g£G 

Recall from Example 4.9 that (kG)* is commutative. Thus t =p\ is also a 

right integral for {kG)* since th = ht = e{h)t. So pi is both a left and a right 

integral in H and it follows that H= (kG)* is unimodular. 

This next theorem tells us that every finite dimensional Hopf algebra 

contains a non-zero set of left integrals, and moreover, no integral is unique. 

Theorem 5.4 Let Hbe a finite dimensional Hopf algebra, then the set of integrals 

is a 1-dimensional vector space. 

Proof: First note that M=His a right if*-Hopf module via the action: 

via f = '£{f,hi)h2 = J2fih\)h2 

and the enaction p where {l\,. is a basis of H and /i,..., /„ 6 H* such that 

\/leH,lh=Ei{l,fi)li­

p \ H H® H* via p{h) = 
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For the details of this dualization of an H-action to an if*-coactidn see [Mb 93]
 

■ Lemnia''2-i-4^' 

. \ ^ mr^i . • • ̂ .rwr' ^ ^ /rr^i * t i— %
 

leorem 4.15j,
 

as right /f*-Hopf modules. However =M^. To see this let m € 

'then'- . ■ V 

p{m) = X)mo ® mi def of p (*) 
= m®e defof coinvariants of H*,and e=In*. 

For any h E H, 

h-m = X)fnom-[(h) dualization of action to coaction 
= me{h) substitution (*) above 
= e{h)m e{h) is a scalar 

which means m € M ,the invariants of H. Thus C . 

For the other inclusion, let m € . Then 

h-m = e{h)m def of invariant 
= me{h) e{h)is a scalar. 

But h- rn=^mfim\{h),thus me{h)='^mQmx{h). So 

p{m) = rrio ® nzi def of p 
= m®e.
 

This is [Mo 93]Lemma 1.7.2 applied to the finite dimensional case, where it states
 

that for a finite-dimensional H*\ let M be a left iif-module such that it is also a
 

right i7*-comodule,then This means m € the coinvariants
 

of if*. Thus C so M"=
 

®H*.
 

Now let M=H(an ii*-Hopf module),then
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Notice that the dimH= dimif*,thus dimif^= 1. But
 

H"={heH\ht=e{h)t \l h,t e H}=f
 
. . Jj
 

Thus dim/^=1. □ 
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6 Maschke's Theorem for Hopf Algebras
 

Now that we have the necessary background on Hopf algebras, recall
 

Maschke's Theorem for group algebras from Chapter 3:
 

Theorem 3.1 (Maschke's Theorem)Let G be a finite group. Then kG is
 

semisimple if and only if|G|~^GA:.
 

Let us look at this theorem in terms of integrals. Recall from Example 5.2
 

that for the group algebra A:G, t=525^ / • Next consider £:(t),
 
see
 

=^029)=£ =Eifc = l<^l­
gEiG g^G g^G
 

So e{t) — |G|,the order of G. Since e{t) G k, it follows that|G|E khy
 

substitution, and since A: is a field |G|~^ G A: if and only if s(t)^0.
 

Maschke's Theorem is thus a particular case of the more general theorem for
 

Hopf algebras:
 

Theorem 6.1 (Maschke's Theorem for Hopf Algebras) [LS 69] Let H be
 

any finite-dimensional Hopf algebra. Then H is semisimple if and only if e(/jf)^0
 

if and only if ^0.
 

Before we prove this theorem there are several general lemmas we need to
 

establish in addition to Lemma 3.2 and Theorem 3.3. The following lemma is a
 

particular case of a more general theorem that says that the kernel and image of any
 

algebra morphism are ideals. This lemma also gives an additional proofthat the
 

algebra of n x n matrices is not a Hopf algebra. For Mn{k)is a simple algebra
 

(Example 2.7), hence it has no non-trivial ideals (Definition 2.6). But as we see
 

here, every Hopf algebra must contain at least one non-trivial ideal.
 

Lemma 6.2 The kernel of the counit map,kers, is an ideal ofif.
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Proof: Let h G H,x E kere, then
 

e{xh) = e{x)e{h) e is an algebra morphism 
= Os{h) X € kere 

' ■= o,r 

and 
e{hx) = e(h)e(a;) £ is an algebra morphism 

= e{h)0 X €. kere 
' = 0. 

Thus xh,hx G kere, which means kere is an ideal oiH.n 

Lemma 6.3 Suppose an algebra A can be written as a direct sum A =I® J, with 

7 a left ideal and J a right ideal. Then JI= 0. In particular, if H= 7® kers, then 

(ker£)7 = 0. 

Proof: An algebra A = T® J implies that 7n J= {0}. ButIis a left ideal, and J 

is a right ideal. Thus J7 C Jn7 = {0}. □ 

In the following proof we consider H as a left module over itself via left 

multiplication. Recall that an algebra is called semisimple if it is semisimple as a 

module over itself vialeft multiplication, and that in this context submodules are 

precisely the left ideals of the algebra. We are now ready for the proof of ' 

Theorem 6.1, Maschke's Theorem for Hopf algebras. We follow the proofs in 

[Mo 93] and [S 69B]. 

Proof of Theorem 6.1: (semisimple ^ £(fff) # 0 and £(/^)^ 0) 

Let H be a semisimple finite dimensional Hopf algebra. By Lemma 6.2, we know 

that ker£ is an ideal of 77 and thus a submodule of 77. By Theorem 3.3 condition 

(2) we know that every submodule of 77 is a direct summand, therefore we may 

write 77 = 7® ker£ for some non-zero left ideal 7 of 77. 

Next, we claim that 7 C To show this, let 2; G 7 and h G 77. We want to 
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show that /i^ — V A £ H. Note that h — s{h)• Ih € kere sirice
 

e(A --e(A)•l^r) ; •Ih) linearity ofe
 
= e(h)— s{h)e{lH) linearity ofe
 
= e{h)-€{h)lk ^(Ih)= Ifc
 
= e{h)— e{h) e{h) k
 
— 0 additive inverse property.
 

Using this fact together with Lenania 6.3 we see tha,t
 

: 'y ',h,z == [h — £:(A)]z 4^e(A)^ add and subtract e(^Zj
 
/ = Ih € kere, and Lerhina 6.3
 

0 is additive identity.
 

Thus 2: e by the definition of left integral, and sOIC
 

Applying the DittiensiGn TheOreni(Theorem.A.4)for vector spaces to our 

case, we have dim(kere)+ dihi(ime)=dimif. Now,s is a linear map,so ime is a 

vector space. Also,inaey^0 since s(l)=I ime C k,and dimk=1,so 

dim(ime)=1. Thus dim(kere)= dim(ff)— 1. But 7® kere=H;hence 

dim/+(dim(i7)̂ 1)= dimTf. Therefore dim/=1,that isIis a ohe^dimensional 

space..:-:.v': ;■ ^ ■ ' ■ 

SinceIis one-dimensional J 0, so we take 0 ^ z E I. Now 

e(2:) C e{I) C e(fff). Hence s{Jh) y^ 0. 

The proof to show e(/^) y^ 0 is similar, with changes in that / is a right ideal 

of H, and to show thatIC Jh, we compute for z EIand h E H: 

zh = z[h — e{h)] + ze{h) add and subtract zs(h) 
= 0 + ze{h) h — e{h) • Ih G kere 
— e{h)z 0 is additive identity. 

Thus z E fff, andIis one-dirnensional by the same reasoning as above. So, for 

0 ^ z E I, e(z) y^ 0. Hence s(fff) y^ 0. 

or s(fff) y^ 0 semisimple) 

Let e(fff) y^ 0. Then we may choose t E fj/ such that e(t) = 1, since for any 2 e/n, 
with e(2;) y^ 0, e[e(z)~'z] = e(2;)~^e(2;) = 1. Thus we may set t = e(z)~^z. 



 

 

 

 
 

Next, let M be any (left) i?-module,and let N C M be an if-submodule.
 

We claim that N has an ff-complement in M,that is there exists a submodule
 

X C M such that M=N ® X. By showing iV has an /f-complemeht, we will then
 

know by Theorem 3.3 that M is semisimple as an if-module.
 

To find this jy-complement of N,note that in particular N is a A:-subspace of
 

M and consider tt:M N b. A:-linear projection (Definition A.7 and Corollary A.8
 

for the existence of such a map).
 

Now define a new map tt:M —)■ A by 

Ttjm) = • n{St2 • m) ymeM. 
t 

The map n is a ^-linear projection onto N since, V n G A 

jr(n) — • '7r{St2 • n) substitution 
t 

— ^tiSt2 - n definition of tt and linearity 
' ■ t, • , ■ 
= €{t)n definition of antipode 
— n s{t) = 1. 

And for any m G MyTrim) G A so 7r(5t2 • fn) G A. But A is an A-submodule so 

ti • 7r{St2 • m) Et-NQN. Hence ^(m) G A. So M= A® kerTir as vector spaces. 

Furthermore, # is an A-module map. To see this, let h E H and m G M, 

then 

h • w{m) = ■ 'K(St2-m)] application of TT 

= h • • 7r(5't2 • m) linearity 

= ^hie{h2)ti • 'K{St2 • m) counit diagram 

= '^hiti - n{{St2)e{h2) -m) linearity of tt 
t,h 

= '^hitf 7r{{St2){Sh2)hz-m) definition of antipode 
t,h ^ ■ 

= ^hiti • 'K{S{h2t2)hz • m) antipode is an antihomomorphism 
t,h 

= • Tr{{St2)h • m) (*)-see below 
■ ■ t . 

= Tx{h-m) defintion of TT. 
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Where(*) holds since
 

Y^hiti ® S{h2t2)®h3 = {id®S®id){Y^hiti0 h2t2<Si hz)
 
tfh ■ ' ■ tjh 

= {id®S®id)(^A{hit)® h2) def of counit
 

= {id®S® id)(^A{e{hi)t)® h2) def left integral
 
h;
 

= {id ®S®id)(^At ®e{hi)h2) e{hi)£ k
 
h ' '
 

= {id ® S® id){At® h) def of unit
 
=)^ti ® S{t2)®h. [
 

. ■ \ ■ - .■ ' t ' ' ' '■], 'V . ■ , ' ■ 

The space ker-Tr is an ff-submodule by Lemma 3.2, since tt is an i7-module map. 

Therefore, iV has an if-complement, kerir in M. So by Theorem 3.3 M is a 

semisimple Tf-module. 

The argument for £{Jh) 0 is similar, except that M is a (right) ^f-module, 

and the projection k must be defined appropriately. In this case we take t e with 

e{t) = 1. The map w : M ̂ N is then defined to be: 

7r(m) = ̂ ^{m • Sti) •t2 "im & M. 
t 

To see that is a projection onto N, consider V n 6 iV: 

■^(^) ~ • 5ti) • t2 substitution 
t 

= y~^7r(n) • (Sti) • t2 linearity of TT 
t ' . ■ 

— ' {St-i)t2 definition of tt 
t 

= ns{t) definition of antipode 
= n e{t) = 1. 

And for any m e M,'K{m) e N so 7r(m • 5ti) G N. But N is an il-submodule so 

TT{m ■ Sti) -12 e N-tQ N. Hence Tf{m) e N. 
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Furthermore#is an iJ-module map since
 

7r{m)• h = 7r(m • Sti)•t2] - h application of tt 
t 

= y^^7r(m • 5*^1) • t^h linearity 
t 

= Y^'K{m • Sti) ■ t2e{hi)h2 counit diagram 

= ̂ 7r{m • £{hi){Sti))-t2h2 linearity of tt
 
t^h
 

= ^7r(m • hi{Sh2)iSti))•^2^3 def of antipode
 
t,h
 

= '^'K{m • hiS{tih2))• t2hs antihomomorphism
 
t,h
 

- ^7r(m • hS{ti))• t2 (**)- see below
 

= 7r(m -h) definition of tt.
 

Where(**) holds because
 

'Ŷ hi® S{txh2)® t2hz = {id ® S®id)(^hi ® tih2 ® t2h^)
 
t,h ^5^
 

= (id® S®id)(^hi® A{th2)) def of counit 
h
 

= {id® S®id)(^hi® A{s{h2)t)) def of rt integral
 
h
 

= {id® S® id){J2hhi€{h2)® At) e{h2) 6 k 
— {id®S® id){h® At) def of unit 

= '^h® Sti012 
t
 

Hence M is semisimple. □ 
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7 Cosemisimplicity
 

lieity, the
 

dual of semisimpliGity. In duaUzing algebras to coalgebras usually the algebra needs
 

to be finite dimensional; whereas this is not necessarily the case for dualizing
 

coalgebras to algebras. Coalgebras have a property called "local finitcness" where
 

every element ofa coalgebra belongs to a finite dimensional subcoalgebra.
 

To see how to dualize in general,look at a vector space V,then the linear
 

dual V*=Homfc(y,fc). In constructing dual maps,consider the map/:V U
 

where V and U are vector spaces. The dual map /*:U* V* is defined by
 

We will use this fact throughout this section.
 

First let us define some ofthe "dual" concepts to subalgebra, simplicity and
 

semisimplicity.
 

Definition 7.1 [S 69B]Suppose C is a coalgebra and D is a subspace with
 

A{D)CD® D. Then D is a subcoalgebra of C.
 

Definition 7.2 Let C be any coalgebra.
 

1. C is simple if it has no proper subcoalgebras.
 

2. C is cosemisimple if it is a direct sum ofsimple subcoalgebras.
 

The following proposition shows us how an algebra is related to a coalgebra.
 

Proposition 7.3 IfC is a coalgebra then C* is an algebra.
 

Proof: Let(C,A,e) bo a coalgebra. The linear dual C*= Homfc(C,k). Define
 

ix = A*:(C0Cy C*. Note that C*0C* (̂C0C)* by ' ;;i
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(/(g)5)(c(8> d)=f{c)g{d) ^f,g6C* and c,de C. So we can restrict /j,to C* <Si C*
 

'■wrhere: 

: 9)(c) -^ (/ ® p)(A(c)). 

This gives the niultiplicationmap on C*, the "dual algebra structure." Next define 

rj = e* : k* C*. But k*, so r] can be restricted to k where 

c) := 

Bbr C?* to be an £dgeba:a tlie a.ssociativity and must Commute, 

First check the associativity diagram, ^f,g,h^C* : 

if ® g 0 

and 

if® g ® ® {gh)^figfi^. 

These are equal since coiiipbsition of functions is an associative operation. 

Tb check the unit diagram, ; V/€ 

: : Ifc ® ® / 

.r 

'Also,'' ' :: ':■ ' ' ■■' : ■■ : 

' : y 

:and-'' . 

/■ • ■■."' ■A,. -/?■ 

which are also equal. Thus the associativity and unit diagrams commute, and C* is 

an algebra. □ 
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The following proposition gives us the correlation between ideals in algebras
 

and subcoalgebrasin ebalgebras. This correlation is ittipprtant in proving 

Proposition 7.:5> ■ V ^ 

Proposition 7.4 [S 69B]Let C be a coalgebra. Then:
 

1. IfD CC is a subcoalgebra,then D-^ C C* is a two-sided ideal of C* where
 

={/eC*|/(d)=o Vde
 

2. If/C C* is any two-sided ideal, then CC is a subcoalgebra where
 

I^={ceC\ g{c)=0
 

We follow [S 69B]in the proof of this propostion.
 

Proof:
 

1. Let DCC he a subcoalgebra. Let i:D Cto be the inclusion map
 

(Definition A.9). The inclusion map is a coalgebra map,as V d G D:
 

(Aoi)(d) = A(i(d))
 

v ., d\ ®(^2
 

= Y^i{d-i)® i{d2)
 

= {i®i)Y^di® d2
 
d
 

= (i0«)A(d),
 

and
 

(e o i){d)=e{i{d))=e{d).
 

This coalgebra map induces an algebra map i*:C* D* given by
 

i*(.T)(cl) ■■= :TWd)} = 
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The set ker(r)-{/€ C*|i*{f)=0}={/ G C* \ fid)=0 V rf G D}=D-^.
 

Moreover, ker(i*) is an ideal of C*., since VfE C*g G ker(i*) and d G D:
 

and
 

i*(p/)(cf)=9/(«(<^))=5/W=0.
 

Thus = ker(i*) is a two-sided ideal of C*.
 

2. Let IC C* be a two-sided ideaL Let ={c E C \ g{c)=0 Vp G /}. Take
 

X E and say A(a:) — T,i Vi ® Zi where {?/i} C C. Assume {zi} is
 

linearly independent. Then if A(a:;)^ ®C this means yj0 for some i.
 

Without loss of generality we may assume i=1; then yi ̂  that is there
 

exists h EIsuch that /i(yi)^0. Next choose/G C* such that fizj)=5ij.
 

Since Iis an ideal, hf E I. Thus hf{x)=0. But hfix)—(h(g> /)A(rE) by the
 

dual algebra structure. Hence
 

0 = hf{x) = {h®f)A{x)
 

= [h® Zi
 

= Y^hiv^® fi^i)
 
i
 

^ 0 since/i(yi) 0 

This is a. contradiction. Thus A(rc) G /■'" ® C. Similarly A(a;) & C ® This 

means 

A(a;) G iI^®C)niC®I^) =I^®I^. 

Hence is a subcoalgebra of C. □ 

This next proposition allows us to see that some properties are carried 

through the dualization process. 

Proposition 7.5 If C is a coalgebra, then: 
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1. C is simple if and only if C* is a simple algebra.
 

2. IfC is cosemisimple then C* is a semisimple algebra.
 

3. IfC is finite dimensional and C* is a semisimple algebra,then C is
 

cosemisimple.
 

Proof:
 

1. (=^) Assume that C is a simple coalgebra. This means that C has no proper
 

subcoalgebras, that is the only subcoalgebras ofC are {0} and C itself. Let
 

IC C* be a two-sided ideal of C*. By Proposition 7.4(2)this means there
 

exists a subcoalgebra ={c G C j /(c)=0 V/G /}C C. But C is a
 

simple coalgebra,so ={0} or - C. If ={0},then I=C. If =C,
 

then 7={0}. Thus/7* is a simple algebra.
 

(<^=) Assume that C* is a simple algebra and let D CC be a subcoalgebra. By
 

Proposition 7.4(1) ={/ G C* \ f{d)=0 V d G D}is a two-sided ideal of
 

C*. But C* is simple,therefore ={0} or =C*. If — {0}then
 

D=C. If D-^ — C* then D={0}. ThusC is a simple coalgebra.
 

2. Assume that C is cosemisimple. Then C=®iCi where each Ciis a simple
 

subcoalgebra for every i. By(2)Cf is a simple algebra for every i. However,
 

c*= ^®iC*
 

Thus C* is a semisimple algebra.
 

3. Is proved similarly. □ 

Together the next two examples show Proposition 7.5 in action. 
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Example 7.6 The group algebra/cG is cosemisimple.
 

Let {g}g^a be a basis of kG. Then every g E G generates a one-dimensional
 

subcoalgebra kg,as dim^^=1. Each kg is simple since there is only one basis
 

element, which means that there are no non-trivial subcoalgebras. Since is a
 

basis for kG,
 

kG=k^g=^kg.
 
geG geG
 

Also n56G^^={0}- Thus A:G= HenceJjG is cosemisimple.
 

Example 7.7 The linear dual ofthe group algebra(kG)* is semisimple.
 

By Example 7.6 the group algebra kG is cosemisimple. So according to
 

Proposition 7.5 part(2)the linear dual ofthe group algebra(kG)* is semisimple as
 

an algebra. We write {kG)* explicitly as a direct sum ofsimple algebras as in
 

Example 2.11. A basis for(kG)* is {pg}g^G- So(kG)*= ®geGkpg where kpg is a
 

simple algebra for every g E G. Notice that each kpg is an algebra because
 

PgPg =Pg, whlch meuus multiplication is closed and Pg is its own unit.
 

The space of left integrals in i? is 1-dimensional and is an ideal in H. Any
 

Hopf algebra with a finite dimensional ideal is finite dimensional itself. So this
 

definition of left integrals in if won't help in the infinite dimensional case. This
 

next definition for a left integral on if will work for the infinte dimensional case.
 

Definition 7.8 Let H he a Hopf algebra. An element T E H* is a left integral on
 

H if V/e h*,
 

/T=/(1h)T.
 

We denote the space of left integrals on by C H*.
 

Compare this definition of a left integral on H with Definition 5.1, a left
 

integral in H. Notice that when H is finite dimensional,an integral on H is the
 

same as an integral in H*. This is because eH*{f)=/(Iff), the unit in H*.
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We now dualize Maschke's Theorem for Hopf Algebras(Theorem 6.1) to a
 

dual theorem for coalgebras. Recall that Maschke's Theorem for Hopf algebras says
 

a finite dimensional Hopf algebra H is semisimple ifand only if 7^ 0. The
 

concept ofsemisimplicity has a dual concept of cosemisimplicity. For e(/^)^0to
 

dualize, consider what this means for an integral on if. In i?*,
 

Eh*(T)=T{1h)= Ifc- Thus we have the following Dual Maschke Theorem.
 

Theorem 7.9(Dual Maschke Theorem) Let if be any Hopf algebra and
 

T£ H*. Then if is cosemisimple(as a coalgebra) if and only if there exists a left
 

integral T on if satisfying T{1h)=1^.
 

We will prove just the finite dimensional case here as it is just a direct
 

application of Maschke's Theorem for Hopf algebras.
 

Proof:(=^) Let if be a finite-dimensional cosemisimple Hopf algebra and T G if*.
 

By Propositions 7.5 (2),if* is semisimple, which means ejy(/^.)7^0 by Maschke's
 

Theorem for Hopf algebras(Theorem 6.1). Thus e^'iT)' T{1h)= Ia:­

(4=) Let if be a finite-dimensional Hopf algebra where there exists a left integral
 

T6if* on if such that T(Iff)= 1^. Notice that £h*{T)=T(l^)=1^ 7^ 0. Thus
 

^h*{Sh*) 0- Therefore by Maschke's Theorem for Hopf algebras(Theorem 6.1), 

if* is semisimple, which means if is cosemisimple by Proposition 7.5 (2). □ 
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A Linear Algebra
 

The following section contains some classical linear algebra definitions and
 

results used throughout this paper. The sources that were used for this section were
 

[Ga 94], [An 84], and[WT 79].
 

Definition A.1 A set V is said to be a vector space over a field k ifY is an
 

Abelian group under addition and if V a e k, v £ Y,there is aii element av €V
 

such tha:t the following conditions hold a,b G k and u,vEV:
 

1. a(y+u)=av+au,
 

2. (a+b)v =av+bv,
 

3. a(bv)={ab)v,
 

4. IkV = V.
 

Proposition A.2 Let Y be a finite dimensional vector space. Any linearly
 

independent set {tti,U2, ■ ■ ■ ,ut} in Y can be extended to a basis of Y. 

Proof: Let {ui,U2,. ■ ■ ,Uf} be a linearly independent set in Y. Either 

{ui,U2, ■ .• l Ut} spans Y and is itself a basis of Y or there exists u G Y that is not a 

linear combination of{ui,U2,• • • ) We claim that {ui,U2,...,%,u} is linearly
 

independent. To see this, let Oj G fc V 1,...,i+1 such that
 

OiUi+02^2+ T =0.
 

If Ot+i 0 then we may solve for u to get
 

—Oi ol2 at
 
v =- Ui-——U2-•• —Ut-


at+\ Ot+i Ot+i
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But V was not a linear combination of{ui,U2, Thus Q!(+i =0,and since
 

{mi,U2,...,ut} is linearly independent, we know cti =0 V i G {1,2,...,t}. If
 

{ui,U2,...,ut,u} does not span V,then there is av'eV that is not a linear
 

combination of • • •,ft,u}. Repeait the process as we did for u. Continue
 

adding basis elements in the same manner until we get a set that spans F. This
 

process must end after a finite number ofsteps, since F is finite dimensional. The 

result is a basis of V containing the original linearly independent set. □ 

Theorem A.3 Let 	f:V IT be a linear map of vector spaces. Then: 

1. ker/ is a subspace of T, 

2. im/is a subspace of IT. 

Proof: 

1. 	Let u,u G ker/and a,/3 e A:. Then
 

f{au+Pv) = oif {u) +Pf{v) / is linear
 
— aO + PO u,vEkeTf 
= 0. 

Tims au+Pv E kevf, so kevf C v. 

2. Let u,v eV and x,y E imf such that f{u) = x and /(u) = y. Let a,P E k. 

Then 

ax Py 	 = af{u) +Pf {v) substitution 
= f{au+Pv) linearity of/. 

Thus aa: +/?y G im/, SO im/G W. □ 

Theorem A.4 (Dimension Theorem) Let V and IT be vector spaces, and 

/ : T —> IT be a linear map. Then: 

dim(ker/)H-dim(im/) — dimT. 

77 



 

  
 

 

 

 

 

 

Proof: Denote dimV=n,and let {fi,W2> • •.,Ur} be a basis for ker/. By
 

Proposition A.2, this basis may be extended to form a basis ...,Vr,. Vn} of
 

V. We will show that B={/(Ur+i),/(t'r+2),• • • ,fivn)} is a basis for im/.
 

First we will show that B spans im/. Let 6£ im/;then b=f{v)for some
 

V eV. Let ai£k V i e {1,2,...,n}. Then
 

h = /(?;) as defined
 
n
 

— fCy.cgvi) is a linear combination of basis elements
 
2=1
 

n ■ ' 

= '^aif(vi) linearity of/
 
- ' 2=1.
 

r n
 

= ^Q!j-0+ 53 ocifivi) £ ker/
 
2=1 2=r+l
 

= Oiif{Vi).
 
izzr+l
 

Thus B spans im/.
 

Next, we must show that B is linearly independent. Suppose
 

0= 5^ Q;i/(Ui)=/(53
 
i=r-\-l 2=r+l
 

n
 

which means 53 G ker/. Therefore
 
2=r+l
 

n r
 

5Z = ̂ mvi
 
i=zr-\-l 2=1
 

r n
 

so 0 = "^aiVi— 53
 
■ 2=1 ■ . 2=r+l 

But the UfS are linearly independent. Thus Oj=0 Vi£ {1,2,...,n}. In
 

particular Oj=0 Vi£ {r+l,r+2,...,n}. So B is linearly independent, which
 

means B is a basis forim/.
 

Thus dim(ker/)+ dim(im/)=r+(n — r)=n — dimF. □ 

Definition A.5 Suppose V is a vector space and [/ is a subspace of V. The 

subspace U is said to have a (linear) complement W if there exists a subspace 

W CV such that t/© W = y. 
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Proposition A.6 For any subspace U of V,U has a linear complenlent.
 

Proof: Let U CF be a subspace with basis ni,U2,. By Proposition A.2
 

{ui,^2,• • •)nt} niay be extended to form a basis of F. Call this basis
 

B={ui,U2,. ■ ■ ...,Wr}. Set IF=sp{wi,W2, ■ ..Wr}. Since B is a basis of F,
 

for any element n 6F there exist ai,/3j e k for i G {1,2,.. . jG {1,2,• • •,?'}
 

such that
 

v =(^a^i}+(^pjWj)^U+W.
 
' ■ ■i=l ■ ' ■ ; i=l ■ 

Thus V C U+ W and similarly1/ +IF C F, so F= U+ W-

All elements of1/ are of the form aiUi, and all elements of IF are of the 
■■ ■ . . . ■ ■
 

r t
 

form Take x G UHIF, which means that x = ̂ cuiUi, and also 
j=l i=l 
r 

X = 5^ Thus 
j=i ■
 

t r
 

j=l 

which implies 
t r 

= 0. 
. . . i=i j=i 

But Uj and form a basis of F. Thus they are linearly independent. So, 

ai = fij = 0 V which means a; = 0. Hence U Ci W = {0}. So 17 has a linear 

complement W in F. □ 

Definition A.7 Let M be an A-module and N a submodule of M, A map 

TT : M ̂ iV is called a fc-linear projection onto AT if TT is linear and 

n{n) —71 y n E N. 

Corollary A.8 For any subspace U of F there exists a fc-linear projection 
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Proof: Let U CV he a, A:-subspace. By Proposition A.6 there exists a subspace W 

such that V=U ®W.This means we may choose a basis 

{ui,U2, ■ ■ ■ ,Ur,Wi, W2, ■ ■ ■ ,Wg} of V. Next define a map tt:V U via 

TT{ui)=Ui Vz G {1,2,...,r}
 

7r(wj)=0 Vz G {l,2,...,s}
 

and extend linearly. The map tt is A:-linear by its definition, and a projection since
 

u E U,u= aiUi, so
 
i=i
 

ft \ 

7r(M) = 

r ^ ^ 
= ̂ Q;i7r(zti) linearity 

i=l 
r 

OjUj def of TT 
i=l 

= U. 

□ 

Definition A.9 For sets A and B with A C B, the function i:A-^ B, defined by 

z(a;) = X M X E Ais called the inclusion map. 
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B List of Symbols
 

SYMBOL 


G
 

R
 

M
 

A
 

k
 

V
 

D
 

IJ'
 

V
 

id
 

7 ,
 

C
 

Mn{k)
 
'^ijj'^ij
 

kO
 

A
 

s ■ 

p
 

B
 

* ­

Hom((7,A)
 
S
 

H
 

{kO)*
 

^ij
 
U{L)
 

!h
 
Ih
 

MEANING
 

group
 

ring
 
module, unless otherwise noted
 

algebra
 
ground field
 
vector space
 

division ring
 

multiplication
 

unit
 

identity map
 
module map
 

the set ofreal numbers
 

the set of complex numbers
 
the n X n matrices over a field/i:
 

elements ofa matrix in (z,ji)-place
 
the group algebra
 
order of a group G
 

tensor product
 
comultiplication
 

counit
 

coalgebra
 
comodule map
 
bialgebra
 
convolution product
 

homomorphismsfrom C to A
 
antipode
 
Hopf algebra
 

linear dual of the group algebra kO for a finite group G
 
Kronecker delta
 

Universal Enveloping Algebra of the Lie algebra L
 

space of left integrals in a Hopf algebra H
 
space of right integrals in a Hopf algebra H
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