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. Abstract '

Hopf algebras are an important area in mathematical research, as Hopf alge-
bras and their actions'unify and generalize diverse areas of mathematics and physics.
A Hopf algebra H is a special type of algebra that combines an algebra structure
w1th a coalgebra structure and has an antlpode The antlpode is an inverse of the ,
1dent1ty map under convolutlon multlphcatlon in Hom(H H )

In th1s project we state the bas1c deﬁmtlons needed to develop a theory of
‘Hopf algebras; in partlcular, ‘we define algebras, and modules, and the dual concepts: H
coalgebras and comodules, Additionally, We set forth some classical examples” of Hopf "
algebras: the group algebra kG, the linear dual of the group algebra (kG)*, and
the universal enveloping algebra U(L) of the Lie algebra L. We then focus on finite
dimensional semisimple Hopf algebras.

Semisimple algebras are algebras that can be decomposed into a direct sum
of simpler, better understood pieces; these are s1mple algebras. Thus it is very
useful to know when an algebra is semlslmple. In partlcular, Maschke’s theorem is an
important tool in understanding the structure of group algebras. The theorem states
that a finite dimensional group algebra is a semisimple algebra if and only if the order
of the group is not zero in the field k¥ [M 1898]. This theorem has been generalized |
to Hopf algebras [LS 69]. We give proofs of both theorems and show how the Hopf
algebra proof generalizes the classical one. A key tool in the proof of the generalized
theorem was the space of integrals in H .

Along the way, we study the concept of semisimplicity in general, to see that
every semisimple algebra can be u/ritten as a direct product of simple algebras and
that this direct product is unique up to isomorphism. Finally, we describe the dual

concept, cosemisimplicity, and see that this leads to a “dual Maschke Theorem.”
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1 Modules and Algebras

The fundamental concepts of abstract algebra were laid out between 1920 -
and 1940. In the folloWing years, homological algebra was formed through methods
of algebraic topology. It was through Heinz Hopf’s work in the late 1930’s ‘and early
1940’sb on the homology and cohomology of topological groups that the basis for
Hopf algebras was formed. Heinz Hopf did not formalize the coﬁcept hiinself, as he
was considéring Poincaré duality‘on compact ‘ma.,nifolds to turn the comultiplication
into a multiplication. However if czin be seen that the homolbgy or cohomologvy‘ of a
topological group fbrms a graded Hopf algebra. ( [H 41], [Be 85, [Kp 75],
[BM 89]) o . o o

In ‘this paper we mainly consider a special type of Hopf algebra, a finite
dimensional semisimple Hopf algebra. We will first go over some of the basic
definitions and theorems of semisimplicity and Hopf algebras. Then we will stﬁdy
the property of semisimplicity in a ’ﬁnite dimensional group algebra, and extend this.
concept to Hopf algebras through a generalizatioh of Maschke’s Theorem to finite
dimensional Hopf algebras. We are following the formulétion and notation of
[Mo 93] and [S 69B] for Hopf ra,lgebras, 5nd [FD 93]for general ring theoretic ideas
and theorems. ' ‘

We first define a module; this is a genefaliZatioh of a vector sbace over a field
where the base field is replaced by a ring. Modules first became important in -

~ algebra during the late 1920’s due to Emmy Noether’s insight as to the potential of

the module concept [J 74]. Now let us look at a formal definition of a module.

Definition 1.1 Let R be a ring. A left R-module is an Abelian group M, written
additively, on Which R acts linearly; that is, there is a map R X M — M, called the

action of R on M, and denoted by (r,m) — r-mforr € R, and m € M, for which



L. (r+-s)-m%r-m+s-m,
2. r-(m+n)=rfm+r-n‘, '
3. (rs)-m=r(s-m),
4. 1-m=m
Vr,seRahdm,neM.
Next, let us review some basic examples of modules.

‘Example 1.2 The set of complex numbers, C, is a module over the set of real
numbers, R, via left multiplication. That is r - (a + b)) = ra+ rbi Vr€R and
a+bieC. | »

We know fhat R is a ring, ahd that C is an additive Abelian group, so all
that needs to be shown are the remaining four propertiés of a-module. Let
a + bi,c+ di € C, where a,b,c,d € R, and let r,s € R. Then:

1.

(r+s)-(a+bi) = ra+rbi+sa+ sbi
T (a+b)+s-(a+bi),

r - [(a+ b)) + (c+ di)]

r-[(a+c)+ (b+ d)i]
r(a+c)+r(b+d)i
ra+rc+ (rb+rd)i
ra+rc+rbi+ rdi
ra+rbi+rc+rdi

7 (a+bi)+7-(c+di),

i

I

(rs)-(a+bi) = rsa+rshi
= 7 (sa+ sbi)
r-[s- (a+ b,

la + 1bs

1 (a+ bi)
‘ = "a+bi.



Thus C is an R-module.

Example 1.3 The set of nxn matrlces over a field k M (k), is a k module via

 left scalar multiplication. That is \7’ rek and M € M (k) ‘where -

"m”ek vi,je{L,2,..., _},
'_ | ._ rmay mﬁm e T
TM= Tmzl v'7‘>m22 Ceee Ty
| "I"’I’I:anl Tﬂ:bnz rm,m

- Thesetof nxn matrices M, (k) is an (addltlve) Abelian group and since k is a
field, k is in particular a ring. So all that needs to be shown are the remaining four
properties of a module. Let M, VN € M,(k), Where mij,nij ek Vi,je {1, N

‘a'nd let r,s € k. Then:
(rmy (rs)mn e (r+s)ma
A(r+s)m T4 8)mgy -+ (T 4+ 8)Man
4 M = (r .) 21 ( .) 2 (r }-) 2

\ (r -I-'_s)mn_l (r+s)mpe - (r + 8)Mpy

TMoj + SMg1  *++ TMaop + SMoy
Ty + SMyy -+ TMpy + SMyy

™My -+ TMi \ [ SMi1 -+ SMi,

TMgy ccc T n S SMigy -+ SMay

( rmy; + 8Smy1 o TMig + SMy

TMp1 . *** TMpy \ 8My1 =+ SMpy

= M5 M,



Mgy Moy gy

2) rlma +np) -

(rmi TR e Mg




1myy Imyy -0 1lmygy,
T S | 1m21 ‘1m22 ].‘mzn
M o= |

\1mp Impe - Imy,

my; Mz - Mg

Mo1 Mgy - Mo

My mn2 Tt Mpn

= M.

* Thus Mn(k)'isa'k-module.

A module can be deﬁned equlvalently us1ng “map dlagrams Weﬂwant 'to

redefine this concept here in thrs way Slmllarly, after deﬁmng an algebra in the

, trad1t1onal Way, we Wlll redeﬁne an algebra using map dlagrams so that we may

dualize the map dlagrams (or turn all of the arrows around) This duahzatlon will

yield more structures such as comodules and coalgebras Wh1ch are used to form

- Hopf algebras

Note that the following deﬁmtlon of a module uses an algebra A whereas

| Deﬁmtlon 1.1 used a rlng R. The algebra A is required here so that the tensor
~.product may be used If we used the rmg R th1s tensor product would not be

- pos31ble..

"Deﬁnltlon 1.4 For a k—algebra A a (left) A-module isa k -space M with three

k linear maps multlphcatlon b A ® A - A, umt n: k— A and the action

YA M —> M such that the followmg dlagrams commute



o AeAeM—— M

To see that thls deﬁnltlon 1s equlvalent to Deﬁnltlon L 1 for a module When S

:R A is. an algebra we W111 ﬁrst show that Deﬁnltlon L 4 1mp11es Deﬁnltlon 1 1.

- Note that Deﬁmtlon 1 4 always 1mphes Deﬁmtlon 1 1 smce an algebra is a rmg But . ‘ '

E .When we show Deﬁmtlon 1 1 1mphes Deﬁmtlon 1 4 We need R A a k-algebra 80 R
: '} -“,that the tensor product 1s deﬁned ' R o | |

From Deﬁmtlon 1 4 We know that M is- a k space s0 in partlcular M 1s an

o Abehan group (by the deﬁnltlon of a vector space) We also have a k lmear map v

L ny A ® M —) M glvmg the actlon Usmg thls hnearlty we. get

(a+b) - _am+bm o




the first two properties of ba;modu’le in Definition 1.1. USing elements on the

commutative ?diva,grams, where a, b € A,and m € M, we get

a®@b®m- ueid ab@m
id®’y-‘ - | ’ ' : i

v . -
a®b-m a-(b-m)=(ab)-m

Thus (ab) - m=a- (b ~m), property three in the original module definition. From

~ the second diagram we get

n®id

1,08m

mzl‘A-m

Thus 14 - m = m, the fourth proper’by of a module. So, Definition 1.4 imblies
Definition 1.1. o
To éhow Deﬁhitipn ‘1“.1 impiiesk Deﬁniﬁion 1.4, consider the following. From
Definition 1.1 we ‘khow‘ that M is dn additive Abelian ‘grbup, plus the additional

four pfopertiés:
L (r+s)-m=r-m+s-m,
9. rr(m+7i7,)=1"-‘m—|-r-n,
3. ‘(rs)-mzr(s-m),

4. 1-m=m



Y, s e R m,n 6 M Together these facts make M a vector space and meet the

cr1ter10n for the two dlagrams to be’ commutatlve Notlce that R is a rlng, thus all

that needs to be shown is that R is a k—module But R= A is a k-algebra (we w1ll . o

recall th1s deﬁnltlon of an algebra in Deﬁnltlon 1 5) Therefore R is a k-module g
' Thus Deﬁn1t10n L. 1 1mphes Deﬁmtlon 1 4 and the two deﬁnltlons are equlvalent |

| The concept of an algebra has been known longer than that of a module in
| ‘_‘1903 the Amerlcan Leonard Eugene chkson (1874-1954) ‘the first person to recieve
'.v a doctorate in mathematlcs from the Un1vers1ty of Ch1cago pubhshed an ax1omatlc |

: .deﬁnltlon of a, hnear assocratlve algebra over an abstract ﬁeld [BM 89] The '

- wl.followmg is a generally accepted deﬁn1t10n of an algebra today

;Deﬁmtlon 1 5. An (assoc1at1ve) algebra over a ﬁeld k is an (assoc1at1ve) ring A
o wh1ch is also a module over k such that the rlng and module multiplication are

assoc1at1ve in the followmg way
z(ab) = (za)b = a(,écb) Vzek abe A
“A'is also called a k-algebra.
" Note that one can also define an algebra over a cornmutatirre ring R.in t'he same b
manner. ‘, '
Next let us look at two bas1c examples of algebras, _these contrnue the h

: examples ( 1 2 and - 1. 3) of modules glven prev1ously

S Example 1.6 The set of complex numbers (C is an algebra over the real numbers R.

- From Example 1.2, we know that C is'an R-module So, all that needs to be

shown is the ¢ assoc1at1v1ty of mult1p11cat10n of (C and R.






Then,

My Myg < Mg Ny Miz ccc Nig
’ Ma1 Mgy -+ Moy M1 Mg 0 Ny
- z(MN) = = '
Mpl Mp2 < Man Npl M2 " Npp /)

[ Tioimuna oy Mg o Xy MaiTlin
Yo Mol Yy MaiTie ~*+ Dieg MaiMin

no o " . n )
\Z@-:l MniNil  Pogeg MniMiz 21 MniTlin

n . : n n

T Zi:l myng T Zi=1 MmNz =+ T Zz‘=1 mMi1iMin
n i n n ’

T MoiNin T X5y Mgz *** T 25 MaiNin

) no . n '
T MaiMil T ojmg Mnifiz * L2501 Mpillin

n n ' noo.
Y TMNG Yy TN Y ieg TMMin
n n n
Y mmgn Y TMoilip Dy TMaifin

n n n ' g '
Zi=1 TMMpiTGy Eizl TMpiMye  c zi=1 Ty M,

Tmi TMig ccc TMan \ [ Man Mz ccc T

TMgy ITMgy -+ TMop || M21 N2z - MNop

IMp1 TMgp - - TMpp ) Np1 Np2 - ) Npn
= (zM)N,

10



D iy TMiThyg = o TMMn )
© 0 Die TMiTlin,

B

1 TMyiN4

o Themna )

21,—-1 mlzmnzn \ - A
N Z 1m2zxnzn et e

Ei'=1 mni?‘.,’f"ﬁ'n“ / L

:cnu Coxngg

L XMy )

’_-:{""'Thus M (k) is a k-algebra

"Note Throughout the rest of thlS paper We Wlll make the conventlon S
o _.{that k Wlll denote a ﬁeld and A Wlll denote an. algebra over k ‘
Just as a module may be deﬁned by maps, so can an algebra An equlvalent S

.'"'_deﬁn1t1on of an algebra us1ng maps is' the followmg
B Deﬁmtlon 1 8 An (assoc1at1ve) k-algebra is a k—vector space A together Wlth tW0 e
N k- hnear maps mult1pl1cat1on /1, A ® A —) A and un1t 17 k —) A such that the |

followmg two dlagrams commute |

1 Assoc1at1v1ty

A ® A ® A ' g @Zd QA



http:3^nT.jij7T.j2

2. Unit
| A®A

n®id

koA

* where the two lower maps in part two of the deﬁnition are givén_ by scalar
multiplication. The unit diagram gives the usual identity element 1n A by sétting

~ To see that this definition of an algebra is equivalent to Definition 1.5, ﬁrst‘
assume A satisfies Definition 1.8. Since A is assumed to be a k-vector space
Va,be Aandr,s €k the fdllowi_ng are true by the definition of a vector space

" (Deﬁniti'on‘A‘.l‘)‘: _
1 (r+ S)ia.:{ ra+ sa, R
2 .r'(va + b)= rd + Tb, |
3(rs)a= r(sa), 3
4 1-a= a o
| 5 a+b=b+va,
6. ak+'0»‘= O+a=a, |
7. fa = (—1)a, |

8.0-a=0,

12



9. (a‘+b)+c=a+(b+c).v

The first four are the prdperties for A to be a k-module. The next five properties
ensure that A is an additive Abelian group, so it remains to show the multiplication
properties of A. |

Applying the associativity map to a,b,c € A we get the following:
: u®id .

a@bRc ~ab® c
idou| o ' , ¥
I : (ab)e
a® bc a a'(bc)

Commutativity of this diagram gives (ab)c = a(bc).

Applying the unit map to a € A we get the following:

14®a
n®id
1 ®a I
la-a
1kv-a:a
and. |
‘ a®1ly
b d®lk

13



‘, The commutativity of these diagi‘ams gives the equalities lyra=aanda-14 =a.
Next usmg the fact that p is a k- hnear map we get the dlstrlbutlve

propertles of rings. Let a,b,c€ A, then

a(b +c¢) = pla,b+c)

wa,b) +pula0)
= ab+ac,

and o

(atd)e = plat+be) |
p(a,c) + p(b, )
= ac + bc.

Thus A is a ring and a k-module.
For the ring and module compatiblity properties, use the fact that 7 is a
k-linear map. Let z € k and a,b € A, then

z(ab) = xla(ab) definition of unit
= zn(1x)(ab) definition n(1l;) =14
= n(z)(ab)  linearity of n
= [n(z)alb  associativity in A
= (xa)b  linearity of ) and fact n(1x) = 14
and .
(za)b [(za)la]d  definition of unit

[(za)n(1x)]b definition (1) =14

[z(an(1x))]b associativity of A as a k-vector space
[an(z)]b  image of 7 is in the center of A [Ks 95]
a[n(z)b] _associativity in A

a(zb) - linearity of n and fact n(lk) = 14.

Thus Definition 1.8 1mp11es Definition 1.5.

To show Deﬁnltlon 1.5 implies Definition 1. 8 consider the following from
‘Definition 1.5. We know that A is a module over k, a field, thus A is a k-vector
space. Since A is an associative ring from Definition 1.5, we know that for
a,b € A, (ab)c=a(bc) and 14a = a = al,, thus the associativity and unit
diagrams hold. So, Deﬁnitien 1.5 implies Definition 1.8 and they may be considered

equivalent.

14



| Next let us look at an e‘xample using this new definition of an algebra" This
example is the group algebra kG Wh1ch Arthur Cayley (1821- 1895) 1ntroduced in'a
». ‘paper he- Wrote in 1854 [W 85] ‘

o Example 1. 9 For any group G the group algebra kG is a k-algebra
| F1rst let us define the group algebra IcG Let G be an addltlve group The E
group algbebra k‘G’ is the set of all formal finite l1near combinations of elements of
G. ‘That is, | L o |
G= {Z 0,9 | oy Gk}
geG o
Wlth formal addition and component-Wlse multiplication; these behave s1m1larly to

add1t10n and multlphcatlon of polynomlals

Here is an example of formal add1t10n
alg —l" Qg + Ol3h (041 'l— Olz)g + Oégh

v o E k, and .‘g,“h €G. The_,followin!g‘ is an ex'ample, of ‘component-wi_se'

| multiplication:
(a_1 g + azh)(dgg + q4l) = alaggg + a1d4gl + agaghg + apaghl

Vo €K, andg,hlGG 7
To show that kG is'an algebra ﬁrst note that kG is a Vector space, as kG is
“the set of linear comb1nat10n of elements of a group G over a field k Next deﬁne ‘ |
: " multlphcatlon on kG as th.e map u: kG ® kG — kG given by |
(Z DY ﬂhh> > agbugh

| - \geG = heG h,geG o
‘andn:k—>kG.Via‘ | |

n(lk)=1G v |

15
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and in the other direction,
Y g @ L Y agg.
g9€eG . geq

These diagrams commuté since 1¢ is the unit in kG. Thus

lo- Y 0gg= agg=>) 0y9-1lc.

geG geG geq

So kG is a k-algebra.
To complete this section on algebras, we need the following definition. .

Definition 1.10 Let A and B be algebras over a field k. A map f: A— Bis an

algebra mofphism if the following properties are true Vai, a3 € A, and a € k:
L. f(aia2) = f(a1)f(az),
2. f(a1 -+ az) = f(al) + f(az),

3. faay) =af(a1).

We will see examples of algebra mdrphisms in Chapter 4. -

17



2 Semisimplicity
Semisimplieity .al‘I'les{us' to -decor'npese a structure such as an algebra or a
“module into a direct sum of simpler, ‘betterunders»tood pieces. Before we can define

semiSimplieity we need to "l‘OOk at the deﬁhitions of the pieces.

'Deﬁmtlon 2 1A subset N. of a module M 1s called an R—submodule of M if N is
an (addltlve) subgroup of M and 1f r-ne N V TE: R ne N

© Abasic 'e‘xample is the 'follo‘Wi’rig":
Example'72..2 A rrng Ris ari R;medﬁle :‘overitse'lf via leftv rnultiplication, and the
R-submodules of R are the "(lef‘t) ideals of R.
The ‘-‘simpler” pieces We"mentioned above are deﬁned as follows:

Deﬁmtlon 2.3 A non-zero module M is s1mple 1f 1t contains no proper non-zero

submodule, that i is ‘the only submodules of M are {0} and M itself.
: "Let us lo‘Qk at some examples of simple modu‘les.'.

Exemple‘ 2. 4 The ring ‘(.)‘f real numbers Risa sim_ple module over it‘self, where the
module actlon is left multlphcatlon | |

~ This is true since the R—submodules of ]R are the left 1deals of R. But Risa"
ﬁeld and the only. ideals in a field are {0} and the field 1tself Thus R has no
non-zero proper submodules and is thereforemmple. ThlS is a partlcular- case of the

following example, since R is also a field:

E‘Xample 2.5 Any field k is a simple modiile |
The only submodules of a field are {0} and the ﬁeld itself. Therefore any

. ﬁeld is a s1mple module over 1tself

18



‘Before we move onto the next examplé; we vineed‘. the follbwif;g deﬁnition.

Deﬁnit’idn 2.6 A ring is éiinplé if it has no ﬁog-triv@al two-sided ideals.
- Example 27 Tile»ring Mn“(k)kis aéimple rmg _f | -‘ v_
. To ,Verify‘ffha.t _this 1s t.rgg,.we p‘}fé".ethev followihg more :general proposition.
Prdi;c;éitibn 28 Mn (R) 'is‘éi éimple ringv"if and 6n'1y 1f R 1sa s'irr;ple'» ring.
TQ help pr‘o?é thivs’; pfopoéitioh,. We ‘ﬁfs't neéd‘ v‘.cher folloi;ving lemma. -
L.‘emr'n'a '2.9‘-1.‘&‘ sublsentyjbl of Mn (R) is a (left/ fight /two-sided) ideal of M, (R) if and
pnly if J : M, (I) for Slomé‘ (left/ right /two-sided) ideal 1 .of R.
Proof: (<) ‘L‘et I be a left ideal of R, that is, m el Vr E R, i€ 1. Let zkj el
and r; € R. Then v |

1. T2 T3 - Tin 11 %120 113t g

To1 T2 T3 **° Top %21 T2 23t l2p

Thnl1 Th2 Tas " Tan Inl n2 3 - Z.'n,n
n : n . . noo, o
25=1Tyt1 5= Tiglie o0 Xie1 T1jtn

o1 T2t Yogeq Toibiz ccc Yor—q T2ibin
= = . =, € M,(I)

| Sy Tnjbjl S Tngijz - 2?:; Tnjljn
since rjim € I YV k,j,l,m € {1,2,... ; n} and I is closed under addition and
multiﬁlication. Therefore M,,(I) is a left ideal‘ of M,(R). A similar calculation shows
that if T is a right ideal of R then M, (I) is a right ideal of M, (R). Hence, if I is a
| left/right /two-sided ideal of R then My (I) is a left /right/ two-sided ideal of M, (R)
(=) Let J C M,(R) be a left ’ideal of M,(R). This means M, (R)J C J. Define
ICRtobe

I={z € R|z isan element in some matrix of J}
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then ,V X e J, T = (-’Em),

0 0 --- 0 T11 .’1312 "’.;'I;ln- 00 0
00 -0 o1 Tag cc* Ton 00 ---0
o1 : : R A T
,O 0o --- 0/ Tnl ZTn2 ' ZTan 00 ----0

since J is a left ideal of M, (R). This means each element in I can be written in a
matrix in J with just that element and all other elements 0. We claim that I is an

ideal of R. Let 7 € Rand Tij € I, then

00 - 0\ /00 -0\ (00 - 0
00--0]l0o0--0] o0 -~ 0]
= e
.ot r . R LTIy "

00 -0 00--0/ \00 -+ 0/

Thus rz;; € I V7 € R, s0 1 is a left ideal of R. A similar calculation shows that if
Jisa right ideal of M, (R) then I is a right ideal of R Hence if J is a
left / right /two-sided ideal of M, (R) then I'is a left / rlght / two-sided ideal of R. O

} Now we are ready to prove Pr0p051t10n 2. 8 ‘ |

Proof of Propos1t10n 2.8: (=) Let M, (R) be a simple ring; and let T be en ideel,
of R. Then Mn(I ) is an ideal of M, (R) by Lemma 2.9. But M, (R) is simple, that is B
M,(R) has no non-trivial ideals. Therefore M, (I) must be {0} or M,(R). He_rl-ce,,
the only ’possible ideals of R are {0} or R by Lemrrra 2. 9 Thus R is simple. |
(= (<) Let R be a 81mple rlng Th1s means that R has no non—tr1v1al two-sided 1deals
.Let J be an 1dea1 of M, (R)- By Lemma 2.9, the only 1deals of M, (R) are of the
form M, (I )s Where I is an ideal of R. So, J M (I ), for some ideal I of R, but the
only 1deals of R are {0} and R. Thus J =M, ( ) {0} or J = My (R). Hence

M, (R) is a 31mple rlng O

' Using Proposition 2.8 to verlfy Example 2 7, we see that My (k) is 31mple 1f
and only if k is 81mple. But £ is a field, and _so by Example 2.5 k is simple. -
- Therefore M, (k) is also simple. | -
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Now that we have the deﬁnltlons of submodule and 81mple module / ring, we

are ready for the deﬁmtlon of a semrslmple module/ ring.

Definition 2. 10 A module M is called semlslmple if it is a d1rect sum (not

' necessa,rrly ﬁmte) of s1mple modules. -
For a vba‘sic exar’ripleof semi'simplicity, consider a veetor space.
Example 2. 11 A vector spa,ce V is a semlslmple k-module
,,Let {e1, €2, en} be a ba31s for V where ‘€ is the vector with 1 in the ¢th
place and zeros elsewhere. “Each ei_,generates a one—_d1mens1onal subspace,
E; =‘kei' Vie {1, 2, . ,n}. Since dimE; =1 V i, each F; has orlly one basis
element thus no other submodule besides -itself‘may be generated. Hence each Ej is

81mple Next look at the drrect sum of the E s. This dlrect sum is possible since

EnE {0} ‘v’zje{lZ }’v
ElfGB E, o v-@E’n = {1 +aéez +’-j--|‘-oznen~j| o E‘k. Vz} =V
'_Thrls' V is sernisimple. -
For the next exanrple we need t_he definition of a semisimple ring.
Defin’ivt:idn 2.12 A rinrg, Ris a (left) isemisirhble ring if R is semisiinble as a left
Remodule. o | |

Example 2.13 Any division ring D is simple, hence semisimple.

R .Recjail that the R-submodules of R are vpreersely the left ideals of R

. (EXample 2.2). But the eniy ideals in D are the trivial ideals since D contains a
_rrrultiplicative inverse for every norl-zero element. So theonl_y D-subm’odules of D

‘are D and {0}. Thus D is simple, hence semisirrrple-'.
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‘To prepare for future work with Hopf ‘algebras we need to.vknow_what a

simplealgebra and. a semisimple algebra are;' these are defined analogously to rings._ , |

Definition 2. 14 An algebra is Sald to be a 51mple algebra if it has no non—trlvral'

B tW0-Slded 1deals

, Deﬁnltlon 2 15 An algebra is sa1d to be a sem1s1mple algebra ifit is'a dlrect

sum of 81mple (left) ideals.

- We state here an 1mportant class1cal example of a semls1mple algebra the
result was proven by Maschke (see Theorem 3. 1) Recall the deﬁmtron of the group -
: ,algebra kG in Example 1 9 Then

. Example 2 16 For any ﬁnlte group G the group algebra kG is semlslmple 1f |G | is

| 1nvert1b1e in k
| The‘fOIloWing -deﬁnition and »-p"roposition are needed for the next e):'(ample. '

. Deﬁmtlon 2. 17 Let M be an R—module Then M 1s called a cychc module 1f

there ex1sts an element m e M such that M R m..

k Prop‘osition_ 218 Let M.,‘be an R-'rnodu_le. ) Then the .»follovlzing-are equivalent:
}1. M is sirnple.v‘ ' | | |

2. M 1s cyc‘lic”and'e_very;non-zer_o”elenrent ie ‘a generator-, _that' isM=R- mvf_or
,' every 0 76 me M. . | |

3. M = R/I for some maxirnal le_ft ideal I of R.
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Proof: (1) = (2) Let OI %* m e R. Then R-m is a non’-zero submodnle of M vsince
l€R,s0l-m= m # 0. But M is simple, so R-m —vM Which mea,nsM is cyché .
(2) = (3) Define o R '——>" R- rn'via' o(r)y =r-m; then pisa surJectlve module map
by the hypothe51s Let I = kerp. I is a max1mal 1deal of R, for if I were not o
maximal, there Would be a non-generating element of M. By the Fundamental .
HomomOrphism TheOrem Whioh states that for a ring homomorphism ¢ from R to
5, Rfkery = o(R) [Ca 94], we have B/I = R-m =M. | |

- (3) = (1) Let M’ be a non-zero submodule of M. (3) says that M = R/I The
Correspondence Theorem for Modules states that there is a one—to-one
_correspondence_between the set of all submodules of M that contain N and the set
of all submbdnles of M/N for the ne,tural projection map 7 : M ‘—> M/N [AW 92].
So there is an ideal I ! such that I C I ! But Iis max1mal Thus I "= R, which |

means M - M So M is 51mple |

For the next two examples we need the followmg deﬁn1t1on

" Definition 2.19 The endomorphism ring of the R-module M, denoted
Endg(M), is the set of R—module homomorphisms from M to M. That is,
EndR(M ) is the set of maps f:M—>M satlsfylng v m,n e M and r € R:

| ‘1-\-f(m'+n.)° fom)+ o)
R (L% m) =r- f(m)
EndR(M ) is a\n‘R—anul‘gel_b1"aT vr@'cornp.osition of fnnetiiOns: o
(fa)m) = (£ 0 9)m) = (o).
_The nnit of ‘End R(M ) is the ‘id'entjt'j mep Iidv: M - M .
‘We ere now ready for our next two‘ example's.: |
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Example 2.20 Any finite dimensidnal vector space V. over a‘ diVision ring D is a |
simple EndD(V)—module via fro=f ('v) Vfe EndD(V) and vev. |

. Th1s is indeed an action of EndD(V) on 14 since 5

AR v) f 9('0) f(g(v)) =‘(f 0‘9)'(0) = (f9) v,
and » ,
id-v=idw)=v VeV, fge EndD(V)
| To show that V is a 51mple EndD(V)-module we show that part (2) of
: Prop0s1t10n 2. 18 is satlsﬁed |
 Let {e1,€2,...,€en} be a ba51s for V. Cons1der veV. If v ;é 0, then visa

" hnear combination of the bams elements of V Let T € V, then

z = alelv—_l— ases + - + Oin€np . some ozz eD
= ayf(e) + Olgf(ej) +---+onf(er) since a basis element is mapped to
- ' ’ another basis element by f € End D(V) »

= f 1(0“16,%'- +onej+ -+ oger) homomorphism
= f(v) R for}_somevve V.
. f v. ) S . S )

So V c EndD(V) v. And EndD(V) ‘v C V s1nce V is a EndD(V)—module Thus

N EndD (V) v= V So Vi 1s cychc and every vEV i is a generator of V as an |

Endp (V)-module Hence Vis a s1mp1e End D(V)-module by Proposmon 2. 18

EXa‘mpIe 2,.21 Let V ,be' a ﬁnite dimensional 've’ctor- space over a division ring D. :
; Th'en‘ Endp(V) is a semisimple algebra. | |
~ Let {ei, €2, .. .,en} be a basis for V, and déﬁne a map

¢:Endp(V) 2 VeVe eV Ve o(f) = (fe) flea), - f(en)).

We will show _th‘a‘t this map is an isomorphism of End D (V)-modules. This will mean |
that Endp(V) is a semisimple Endp(V)-module since each copy of V is a sifnple ‘

' EndD(V)-modnle'(Example 2.20).
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. We first show that ¢ is addltlve that is go(f +g)= (f) + go(g) v f, g €
 Endp(V).

((f +g)(er), (f +g)(ea), .-, (f + g)(en)) ~ defof g N
(f(ex) + g(er), f(e2) + g(e2), .-, f(en) +g(en)) ~ sum of functions

(f(e1), f(e2), - -, fen)) + (g(er), gle2), - -, g(en)) |
o(f) +¢(9) - : ~ defofo.

o(f+9)

The Endp (V) action on itself is glven as usual by left multlphcatlon Wthh
here means compos1t10n of functlons Endp (V) acts omVevVevVe -oV= V(")

» componentW1se (or “dlagonally”)

f (’U17F’U2a‘ v’n) — (f Ula.f V2, . 7fv" 'Un)-

~We now.show' >that %) éommﬁtes _‘Wlthv these actionfs, that is f . o(g) = o(f-9)
Vf,g € EndD(V) | |

(e g)(ez) (- 9)en) ot

o(f-9) = , |
= (fly(e)), f( (e2)), - ,f(g(en))) | by left multiplication
= f- <p(g) s | defofgo_."

So far we have seen that ¢ is an Endp(V)-module homomorphism.
Next, consider kero:

{f‘ | o(f) =0} ’ | ~ def of kernel

Af [ (fler), flea),---, f(en)) =0}  defof 0

{f 1 f(e) =0 VZ€{12 n}} . o
{0} ~ since f is 0 on the whole basis.

kerp

- So ¢ is one-to-one. | _
" To show tha,t <p is onto, let (vl,vz,’.v. ' vn) eV eVe--. 69 V. Define n?
| endomorphlsms of V by fij(e:) = - ej; then { fw} is'a ba31s for Endp(V), and

So(fza) = (f'm(el) fzy(e2) fij(en))
= (0 <5 €jye e 0) v

where e; is in the ™ position. Since each v; is a linear combination of basis

elements, there is a linear combination of {(0,...,e;,...,0)} that equals -
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| (vl,vz,...,‘vn‘)'. That is V:dij‘€ k, :

(’01, 'v27vv- ’ vn) = (Z alzeu Z amez

S : Z qlzflz(el ‘ ’Z ame(en

=1
‘n

= Zalzﬁo(flz) qu(p fm

| Thus L% is onto and we: are done showmg that go is an 1somorph1sm So EndD(V) is

. sem151mple

Next we Wlll look at two 1mportant theorems in the theory of semlslmpl1c1ty
| ,The proofs of these two classmal theorems may be found in Noncommutatwe
Algebm by | Benson Farb and R. Keith Denms as well as 1n many other places These
- two classical theorems for semlslmplmlty are attrlbuted to Joseph Henry Maclagan :
| Wedderburn (1882—1948) who Was-the ﬁrst to develop . a general theory of algebras
over an arb1trary ﬁeld [W 85]. Before we state these two theorems we need to
~define the direct product th1s d1ffers from the direct sum in that direct products
‘can involve an ~1nﬁn1te,number_of rings. |

Definition 2.22" '[AW'92] Let R‘I, R,,.. ,Rn be ﬁn1tely many r1ngs and let.

. R- = R1 ><' R2>< - X Rn denote the cartes1an product set On the set [T, R;
--‘We deﬁne addltlon and mult1pl1cat1on componentw1se, that is,

’ (ai? as, . . ,.,q,‘n)‘ + (bl, b, ..., b,,) = (a1 + bl, a'z + b2, o a,;,_+ by),
and
| (ai,a'z,,. )by, by ) = (albl,azbz,'. . by

-to make H 1R, into a r1ng called the dlrect product of Rl, Rz, ., R,.
Theorem 2. 23 (Wedderburn Structure Theorem) Every semlslmple ring R is

_~1somorph1c to a ﬁnlte dlrect product of matrlx rmgs over lelSlOIl rlngs If R is also

commutative, then R is 1somorph1c to avﬁnlte direct product,\of fields.
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Theorem 2.24 (Uniqueness Theorem for Semisimple Rings) If

R=][R; and R=][R;

i=1 Jj=1
are two product .'decompositiOHS-of a ri'ng R, Where each R; and R; is a»s'imple ring,
»then"n = m and there is a one-to-one oorreSpOndence ¥ : {R:} — {R;} such that

R; = y(Ry).

-Together thesé' two theorems say that ev.ery semisimple algebra can be
written as a direct product of simple algebras and that this direct product is unique
up to isomorphism. We will see an example of this later in Example 7.7 where we

ook at the linear dual to the group algebra (kG)*.
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f 3 Maschke’s.Theorem for Gr‘oup Algebras

The goal of thls chapter is to prove. Maschke s Theorem for group algebras

Helnrlche Maschke was a German mathematlclan Who emlgrated to America i in 1891
in- order to Work in a umver31ty

’ Helnrlch Maschke was born in Breslau Germany on October 24, 1853 As a
child Maschke showed- exceptlonal mathematlcal talent and in 1872 he entered the
University of Heldelberg Later he went to Berlin to study under Weierstrass,
Kummer, and Kronecker From there Maschke went to Gottingen, Where he recelved
a doctoral degree in 1880. - |

Maschke then went back to Berlin t,o teach at the Luisenstddtische
Gymnasium. He was quite a successful teacher. However he felt that he would not
, be perrnanently satisfied by teaching arithmetic and the basics of algebra and
geometry. Maschke’s chanoes for aquiring a position at the university looked slim So
he began to study electrotechnics at the Polytechnicum in Charlottenburg in his
free time. He then left his teaching position and spent several months in electrical
work before‘coming to the United States where he hoped eventually to acquire a /
position at a nniversity. He arrived in New York April 1, 1891 where he quickly
found a job as an electrician for the Weston Electric Instrument Company of
Newark, New J ersey. In the following ‘year he was called to the University of
- Chicago, then a newly founded university, to become an assistant professor of
mathematics. There he was able to teach a multitntde of mathematical subjects as
- he worked his way up to full professor. diring his sixteen year career there. One
student, G. A. Bliss, stated that Maschkerwas “brillant but sagaoious and‘without
doubt one of the most delightful lecturers on geometry of all times” [SG 34].
In addition to his fulfilling teaching duties, Maschke continued to study

mathematics, especially the theory of finite groups of linear substitutions and the
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, vtheofy of (quadratie diﬁerenfial'quantics. Maschke devei'oped a symbolivc method of
' treatment for quadfatic differential quaritiCs He also played an iniportant role in

, brmglng the 1mportance of group theory to the Amerlcan mathematicians. ‘He was
actlve in the Amerlcan Mathematlcal Somety and he gave an address “On Present
~ Problems of Algebra and Analysis” to the St. Louis Internatl_onal Congress of

) Maﬁhematieiaﬁs in"1'904.‘ Mﬁschke died oﬁ March 1, 1908 as a result of an operation
he h.ad'd't‘le to internal disorders. |
Mssehke proved the following theorem in its matriX' form for the case where

the field is the ﬁeld‘of Corhplex numbers C. ’The result was published in the article
“U ber den arzthmetzschen C’hamkter der Substztutwnen endlicher Substitutions
gruppen” of Math. Annalen volume 50 in 1898 The vahdlty of his result for any
field k where the characteristic of k& does not divide the order of the group G was
first noted by Leonard Eugene Dickson ( [J:SO], [Ma 33], [SG 34], [Bo 08]).

Theorem 3.1 (Maschke’s Theorem) Let G be a finite group, and k a field. The
order of G, |G, is invertible in & if and only if the group algebra kG is a semisimple

ring.

Before we prove this theorem we will establish a lemma and a theorem about
general modules. These will be used here and later in proving Maschke’s Theorem

for Hopf algebras. -
Lemma 3.2 If M and N are‘A—modules and f:M — N is an A-module map then:
1. kerf is an A-submodule of M

2. imf is an A-submodule of N.
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Proof:
1. Take m € kerf, d € A; ‘then_ S
- fle-m)

f(m) - f is an A-module map
0 m € kerf L

a -
a-
“So a- mekerf Next letmnekerf, thenr
flmtn) = fm)+f(n) fis linear
' = 04+0 - myné€kerf
=0

‘Thus ker f is an "additlve subgroup and furthermOre an A-submodule of M .
2. Let f(m) € imf,a € A, then —
a- f (m) - f (a m)
~since f is an A-module map. Soa- f (m) € im fv;v Next let_f(m), f(n) € imf,
~ then R “ | o |
 f(m) + f(n) = f(m+n)
o since f is lmear So 1m f is an add1t1ve subgroup Thus im f is an

' “A-submodule EI

R ~ The follow1ng theorem g1ves equ1valent condltlons to bemg a semlslmple
‘module ThlS is an essentlal 1ngred1ent in provmg Maschke’s Theorem both for

| group algebras and for Hopf algebras The proof of Theorem 3.3 is not 1ncluded
here, but 1t may be found in Algebra An Approach via Module Theory by Wllllam
A Adkms and Steven H. Wemtraub [AW 92] |

Theorem 3.3 If M is an-R—module, then;the following are equivalent:
1. Misa ’s‘emi_simplemo_‘dule.
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2. Every submodule of M is complemented that is for every submodule N ¢ M
' there exists a submodule N 'C M such that Ne N "= M.

3. Every submodule of M is a sum __(not necessarilydirect) of simple R-modules.

In the fdlloWing pfoof We consider kG as a Vlef‘t module over itself via left
multiplication. Recall that an algebra is called semisimple if it is semisimble as a
module over itself v1a left multiphcatlon We are now ready for the proof of
‘Theorem 3 1, Maschke’s Theorem, which states that for a finite group G, |G |“1 € k
~ if and only if the group algebra kG is semisimple. _

Proof of Theorem 3.1 [J 80]: (=) Let M be a kG-module, and let N be a
kG-submodule of M ,thatis Vne N,and g€ G, g-n € N. By Corollary A.8 we
know that there exists a lc—linear prejeetion w:M — N.

Now let us define a new map 7 : M — N by

|G|IZg “(m(g-m)) VmeM.
9€G
The map 7 is a kG-modiﬂe projection onto N since the following conditions hold.

First for m,n € M,

w(m+n) = |GI7' Y g 'ng- (m+n)
=S megen)
= |G|_1g§?g_1-(7r(g-m)—|—7r(g-n))' linearity of 7
= |G|_1g€fg“17rg-m+g_17rg-n
= |6 zig mg-m+ (G g7
= #(m) + #(n).
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| So 7 is k-linear. vMoredv.er, Vhg éG»,

ﬁ—ifr(h m) = |G|—l > h"lg‘lvr( (k- m)) |

geq |

= [G]“1 > (g h)~ w((gh) m) associativity
. geaq .
= |G Y. g r(g- m) ~ since Yyeq
geG i i

= 7(m).
So #(h*m) =h-#(m) Vmé€ M. Thus 7 is a kG-module homomorphism.
To show 7 is onto N consider the following. For n € N, 7r(n) = n and since
Nisa kG’~_’submc.>dul‘e‘g_- neN,som(g-n)=g-n V. HeﬁCe o

gl -m(g-m) =g~'g-n=mn and so

#(n) =G 2 g7 (g-m) =161 Yo n =[G |Gln = n,
geG B geG

thus showing that N C»fr(M). 'Now, “for any-m € M, m(m) € N sow(g-m) € N
~ But N is a submodule so g™ - (g - m) € g;1 -N C N. Hence #(m) € N. Thus 7 is
a projection onto N. | ‘ |

We claim that ker7 is a kG-complement to V. Since 7 is a k-linear -
projection onto IV, ker7 is a vector space complement to N. Also, since 7 is a
kG-module map, keﬁr is a kG-submodule by Lemma 3.2. Therefore, N has a
kG—complement kers, in M, that is M = N&® ker7r So by the equ1valence of
| Theorem 3.3 (1) and (2), M is semlslmple
(<) Consider the element z=Y g€kG. Then Vhe G, hz=zsince

9eG
hz—th—Zhg—Zg—z
9€G geG - - . g€eG

So k{z} is a left ideal of kG.
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‘NOW look at z2f:-:'- :

22 = Z g)z since z = EgeGg
L geG@
= > gz llnearlty
‘ geG . - o
= Y z  sincegz=z VgeQq
geG ' ‘

- = |G|z adding z,|G| times .
This meaﬁs that 2* = |G|z. | | »
Assume now that |G | = 0. Then z is a non-zero central element (that is,
hz =zh Vh € G) such that 22 = 0. Thus Z = z(kG) is a two-sided ideal and
72 = 0 since ‘ - .
o 2% = 2(hG)2(KG) = 2(KG)? =
‘To -complete.the pr’oof, we use the concept of a hilpotent ideal: an ideal I is called
nilpotent if there exists n € Z such that I" = 0. We adapt [L 66] Section 3.3 |
Proposition 1 and state it for our more special case: If Ais a ﬁnvite dimensional
semisimple algebra then. A has no non—trivialnilpotent‘ ideals. However, we know
that kG is ﬁmte dimensional and semlslmple by assumptlon so it can have no
’ non-tr1v1al mlpotent ideals. So Z #0, and Z2 = 0 is a contradiction. Thus |G| # 0, |

and since k is a field thls is equlvalent to saying IG | ek O
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4 HOpf- ”Algebras N
Hopf algebras arose. through the Work of Helnz Hopf especially the work

descrlbed 1n hlS paper [H 41]. Algebralc topologlsts abstracted from his work and
' derlved the concept of a graded Hopf algebra. Later in the 1960’s Hopf algebras
‘began to be studled from a purely algebralc point of view, and the abstract concept
‘b vof a Hopf algebra was defined.
| Heinz_'Hopf was born November 19, ‘71894 in Breslau, Germany where he
attended school and started his university career. Durlng World War I his studies
‘were interrupted ‘for‘service in the military. In 1920 Hopf continued his‘ education in
" Berlin, there‘he earned his Ph.D. in :topological research in 1925 and his
“Habilitation” in 1926. In 1931 Hopf becarne a full professor at the Eidgendssische
, .Technische Hochschule in Zurich. |
| Most of Heinz Hopf ’s Work was on algebralc topology where he used his great
geometrlc 1ntu1t1on Hopf inspired a varlety of important 1deas in various fields
1nclud1ng topology, homology, and dlfferentlal geometry As a lecturer Hopf was
clear, as his vorce was-well modulated, and his speech was slow and strongly
artlculated He was also a fascmatlng lecturer as he would ask marvelous questrons
and greatly encourage his students. According to Peter J. Hllton Hopf gave the
impression to his readers that “you could have done this, I'm just setting it out.”
Henry Whitehead said “For Hopf, mathematics was always a Question.” [AA 85]
Heinz Hopf died in Zollikon, Switzerland on June 3, 1971
( [Ks 95], [Gi 72], [P 94], [Ab 77], [AA 8"5]).

Our definitions and notation will mostly follow [Mo 93]; this is essentially
the notation and definitions of | [Ab 77],vand [S 69B]. The first step in deﬁning Hopf
algebrasvis to dualize the definition of an algebra. Here we see the beauty of the

“diagram definitions”, and make essential use of them.
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Definition 4.1 A k-coalgebra (with ‘courﬁt) isl a k-vector space C together with
two k-linear maps, comultiplication A : C — C ® C and counit ¢ : C — k, such

~ that the folloWiﬁg diagrams are commutative:

1. Coassociativity

C A C®C
A ' _ | | Aid
CoC- ea CeCeC
2. Counit -
C
1® ‘ ®1
ko C A C®k
‘e®id o id®e
CeC

The two upper maps in the counit diagram are c+—» 1®c and c— c® 1, for any
ceC.
~ Note that the‘image under A of ¢ € C is a sum of tensored pairs:

Ac = Zz ¢; ® d;, for some c;,d; € C. “This quickly becomes very tedious and

confusing; for example, using this notation the coassociativity diagram would give:
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c——t . Ta®d

A L 0 |awid

| S o Zz ai; @ b;; ® d
o idoA g g 2 T
T @d— S eee

That is EH a;; @b ®d; = FZM ¢ ® €;; ® fi5. To solve this _problem_, Heyneman and
Sweedler introduced the following “sigma notation” for a coalgebra C and =

comultiplication A:
Ac = Zc(l) ® c(%) = chl® ¢, Vee C’
" Now the coassociativity diagram gives - |
la)h® ,(cl)é ®vcz' =Y '®‘ (c2)1 ® (c2)2-
" This justiﬁes the use of the fOllowing convention:‘
zcl R 2 ® 03 = Z(cl)l ® (c1)2 ® cz ch ® (c2)1 ® (02)2

The subscripts are only symbolic “placeholders” they do not indicate a specific
element of C. The original notation 1ncluded the parentheses on subscripts but
they are often dropped to simplify the notatlon We will omlt the parentheses in
this paper. Sigma notatlon is also used in physms where sometimes even the
summation symbol ‘ma‘y be ommitted. Others Such as Kassel, use superscript ‘

numbers or prime marks m place of the subscripts, that_is
Ac=) dod.
ln sigma notation' t:he counitildiagram implies the following equation:
| c= ze(cl = chs(cz
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 since | o

cné}z:q@cz Z (cl)®cz Zl@s(cl
and R
: c llgvl ®c.

“ »Slnce {1} is hnearly 1ndependent we now ha,ve' c= Zs(cl)cz Simllarly for the right

portlon of the dlagram
, c’yﬁ Ya® cZidrgst c1 ®e(cr) = chl.s(cz) ®1 ‘_

‘_ and _ o
| c .®;§ c®1.
: Thus c= 2018(02) = Zs(cz)cl since £(co) € k. |
Analogously to algebra morphlsms We deﬁne the concept of coalgebra

morphlsms.

R _“Deﬁmtlon 4 2 Let C and D be coalgebras Wlth comultlphcatlons AC and Ap, .

| and counlts €c’ and ED, respectlvely Then a map f C — D is a coalgebra | |

i morphlsm if AD of =(f®f)Acand ifec = 5D of. In map dlagrams this means
‘the followmg two dlagrams commute |

1.

Ac . o v ‘ AD

cec——2 _ _.peD
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Analogously to niodules, we define the concept of comodules.

Definition 4.3 For a k-coalgebra C, a (right) C-comodule is a k-space M with a
k-linear map p : M - M ®-C such that 'the‘fol-lowi'ng diagrams commute:

-1

M — ——M®C
P » . _ | ; 1d®A
M®C pRid M®C®C

id®e

Mk

In sigma notation we denote p(m) = ¥ mo ® m; € M ® C. Then the

commutativity diagrams yield the following equatidns':‘
(id® A) 0 p(m) = (p ® id) 0 p(m) = 3o ® 1 ® s,
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SO Emo ® (ml)l ® (ml)Z = E(mo)o ® (mo)l ® mr Emo ® m ® M. And
(zd ® 6) o p(m) Zs(ml)mo ® 1 =m® 1

B So Ze(ml)mo m. Orlglnally thls notatlon Was 1ntroduced as
Zm M) ® m(l) ® m(g) by Moss E Sweedler in hlS 1968 paper Cohomology of

‘ Algebras over Hopf Algebms The parentheses have been dropped for convience as

~ in the s1gma notatlon for coalgebras [S 69A] [S 68]

We are now ready to combme the. algebra and coalgebra structures to get v

bialgebras.

. Deﬁniti’on 4.4 A k- space Bisa bialgebra if (B' B ) is an algebra (B A 5) is a

coalgebra, and either of the followmg (equrvalent) condltrons holds

1 The maps ‘A and € are algebra morphlsms Comultlphcatlon A is an algebra

morphlsmlf Vb ceBanda ﬂek

A(be) = (AB)(Ac) = (z he bz)(z 6 ®c) _.z b ® bacs
and “ ‘ , .
| A@B) = (8a)(89) = (@@ DB =afB 1.
| Tlle map ¢ is an algebra,morphrsm it vv beeB and o € ,
| ‘ () = <(b)e(9)
and |

'vs(a) =a.

2. The maps and 17 are coalgebra morphlsms Multlphcatlon W is a coalgebrav -

morphlsm if Vb,ce B,
| Ao,u(b®c) (u®u)A(b® = bici ® bycy.
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' Andnis a coalgebra morphism if V€ &

We new have one last deﬁmﬁon before‘we ‘are able to deﬁne'Honf aléebras. e
b' = ThlS deﬁnltlon deﬁnes a new multlphcatlon on Homk(C’ A) 5
% x;lj,Deﬁmtlon 4 5 Let C be a cealgebna and A an a,lgebra Deﬁne eenvolutlen i
| ‘multlpllcatlon on Homk(C A) as TR SR s ,
S G g)(C) u(f ®g)(AC) Zf (cl)g 62)
’k...Vf,geHomk(C’A)and cec ‘o i

Then Homk(C A) is a k—algebra under thls multlphcatlon and the usual

o addltlon of functlons The umt of Homk(C' A) is. ne In 31gma notatlon convolutlon

o _imultlphcatlon is glven by (f * g)( ) Z f (cl)g(cz) smce R

‘(f*g)(C) & u(f®g)(AC) LT e
= (f®9)201®02 T
wy fla)® g(Cz) '
Zf(cl)g(CZ)

‘The unit element 1n Homk(C’ A) is. 778 smce

(f*ns)(C) S fegee)) by dobuitionctx
A {Ef(cl)e(@)n(lk) e(c) €k RO

Y fle)e(es)la *  definition: n(lk) —1A. o

3 fleie(ez))la - linearity of f :
rf(Ecle(cz))lA - linearity of f -

O f‘..-‘c—chs(ca

T g oA

_‘iin-,.,|'| _, j‘l || yn'ff,f u, : u-;

‘--Z n(s(cl)) f(cz) i deﬁn1t1on of w0
Yn(Le)e(er) flea) e(cz) €k
Slae(e)fles)  n(le) —1y SR
T1af(eler)ey)  linearity of f 0
1Af(25(c1)cz) linearity of f
..1Af(C) R "‘0—26(01)02
fl@) *‘;“"‘f(C) €A

~~

3
(&)

N—

*]II{‘-.I‘I bl n-i_n., e




Thus (f *ne)(e) = () = (e * £)(0).

- A Hopf algebra is a special type of bialgebra:
Déﬁnitibli ‘4.16 Let (H, 1, A, €) be a bialgebra. Then His a Hopf algebra if
the/ré exists an element S € Homy(H, H) which is inverse to idg under convolution

>mult_ip1ic‘ation. S is called an anti_pbde for H . In sigma notatidn, this means
(Swida)(h) = X (Sh)he = e(h)ly = Y hu(Sha) = (id * S)(h)
" VheH, sincé‘ (ne)(h) = e(h)n(1x) = e(h)1g.

Note that the antipode of ,a ‘giveh Hopf é,lgebra is unique because it is defined as an
inverse function. | |
The following prdposition gives an‘important,p,roperty of the antipode S: it

shows that S is an antihomomorphism.

Proposition 4.7 [S 69B] Let H be a Hopf algebra with ahtipode S. Then S is an
: antihqmoinOrphism; that is S(gh) = S(h)S(g) Vg,he H. |

Proof: Let H be' a Hdpf algebra and define the inaps v, 0 e Hom»(Hb QH , H) via
v(g®h) = S(h)S(g) and g(g®h) - S(gh) where S is the antipode of H and
g, he H. We will show that v = p. | - |

(exm)(g®h) = Yo((g®h)1)u((g® h)z) definition of ¥
> 0(91 ® h1)p(g2 ® he) - definition of A

= Y 5(g1h1)g2hs definition of p and pu
= Y 5((gh)1)(gh)2 A is multiplicative
= e(gh)-1g ' 'deﬁnition of antipode

| '(_ne)(gh)-
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To verify that these maps give a coalgebra, we need to check the

‘coaésociativity and counit maps and see that the diagrams commute.

- Coassociativity: .
B
Al : ARid
; id®A | : |
9®g g0 (909)=(9®9)®g
“Counit:

®1

g®1=g®c(g)

yed
These ‘n‘lapxs.-(‘:l‘o"COmmUte since’é‘(’g) =1V g € G. For a general element in kG
commutativity still holds by linearity. Thus kG is a coalgebra.

Now, since kG is an dlgebra and a coalgebra, all that needs to be shown is |

that A_and € are algebra morphisms, in order to verify that kG is a bialgebra.
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S is the antipo‘due '7f0r.r kG sin'ce_‘

Ce@le=lile=1e,

(S*zd)(g) (S®’d)A9 = Sl(g)g’ 97lg= la, e

(Zd *S)( )_.— (Zd®5)Ag ' gS(g)—gg 1

‘ Thus 1G = s(g) 1G = S(g) gS (g) So the group algebra kG i is a Hopf algebra

Coalgebras can have a property analogous to commutat1v1ty in algebras thrs[_, .

‘;1s called cocommutat1v1ty, and means that for any c 1n the coalgebra -
',Z c1 ® cy = Z cz ® cl When H kG’ we see that comultlphcatmn is 1ndeed
- cocommutatlve since- Z_ L . '
| A(Z agg) Zagg®g— Zg®agg
L eeG geG :_‘ S geG : |
leen a vector space V deﬁne 1ts llnear dual to be V* = Homk(V Ic) For
. .the case of H kG Wlth G a ﬁmte group, the lrnear dual H ¥ (kG) glves us our -

i next example of a Hopf algebra

o 1 ,Example 4 9 The llnear dual of the group algebra (kG) for a ﬁmte group G

The hnear dual of the group algebra 1s deﬁned to be the set SRS
o (kG) —Hom(kG k) ThlS space has a bas1s of l1near prOJectrons onto the ﬁeld Th1s., :
,“1s the “dual bas1$” to {g}geG Deﬁne pg kG —> k via S SR

1 1fg R

O otherW1se S

. and extend hnearly Then {Pg}geG 1s a bas1s of (kG) The llnear dual of the group e

‘ algebra (kG’) , 1s a k—vector space under formal addltlon, and 1s an algebra W1th




multiplication given by

[ o ifg=h
P gp h = { 0 otherW1se

i and extended lmearly Note that (kG) is.a commutatlve algebra dual to the fact
that kG is cocommutatlve , o o
The linear dual of the group algebra (kG)*, isa cbalgebra through the maps -
A and g, | | | |
A(pg) = Zpgﬂ‘l.@’ph :
‘ . heG
and } o
l R 1 ifg=1 |
-e(pg) { 0 otherwise } =01

~ Notice that »_ p, = 1(kg)* ThlS follows from

v gEG
O pg)or = Z ngh = Dn since DgPh = 1 =h
o7 h.
© 9€G e ST v

‘Similarly, pa(} pg) = Pn-
geG
To see that (kG) is a coalgebra we will show that the coassociativity and

‘eoumt diagrams commute.

‘Coassociativity: |
(A®id)Ap, = (A ® id) Z Pz @ Dy deﬁmtlon of Apgv
zy=g '
= Y (Bp)®py
- zy=g .
= Z Pu ® pu ® Dy deﬁnltlon of Ap,
TY=g,uv=c
= Z Pu Q@ Dy ® py substitution
wy=g
and | » )
(id® A)Ap, = (zd RA) Y P ® py deﬁnltlon of Apg
o oTy=g
= Z Pz ® (Apy) |
= Z P ® pu ® pv definition of Apg
TY=g,uv=y
= Y p®pu ® Po substitution.

TUv=g
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But Z P@@m@py:' Z Pz @ Py ® Py SO We are done. |

uvy=g ‘ - zuv=g . _
Counit: ‘ o ' '
. (e®id)oAp, = (e®id) > p, ®p, definition of Ap,
g | zy=9 ‘
= Z lg(pm) Q py
Ty=g _ -
= 1®p, - &(pz) = 0p:
Also, o : : :
(id®e)Ap, = (id®e€) > p; ®p, definition of Ap,
Ty=g
= Y p.®ep,)
TY=g .
We now verify that A and ¢ are algebra morphisms to see that (kG)* is a
bialgebra. .
1.
| Apy) ifg=h
Alpgpn) = { 0 otherwise
and | R ,
(Apg)(Aph) = (Zpgl—l ®pl)( Z Phm-1 ®pm)
leG@ meqG
= Z Pgi-1Phm—1 ® DiPm
l,meq@
> Pg-1Pn-1 @ Py ifl=m
= q leG
0 - otherwise
Zpgl—l ® m ifg=nh
= q leG
0 otherwise
_ Ap, ifg=nh
10 ‘otherwise.

So A(peph) = (Apg) (Apn).
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AQ) = ATR)

geG
geG ' :
= Z(Epgl—l m)
. g€G G .
= Zpgl-1®pl
. gal )
=3 (Z pgz-l,) ®p
1eG \geG o o
= 18)m ~ because Y p,=1
. leG . v 9€G '
= 181 '
3 o (py) |
' _ |elpg) ifg=h
€ (pyph) 10 otherwise
_J1  ifg=h=1
f 0 otherwise
| = ¢&(pg)e(pn)-
e() = (3 py)
o geG .
= 3 ()
9€G
N Z 6 1

= 1
Thus the linear dual »df the‘grou‘p. algebra (kG)* is a bialgebra, as we have shown
that it is a coalgebra, algebra, and A,‘ and ¢ are algebra morphisms.

To show that (kG)* is a Hopf algebra we need an antipode. Define
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important in their own right.

Let L be a vector space. Define TO(L) =k, T'(L) = L and T"(L) = L®" (the
tensor pioduct of n copies of L) if n > 1. Then the tensor algebra T(L) is defined |
to be:

T(L) = @®n>oT"(L)=k®LSOLRILSD---.

This is indeed an algebra, where multiplication is defined to be juxtaposition and
the unit is 1T(L) = lk.
A Lie algebra L is a vector space with a bilinear map [, | : L& L — L that

satisfies the following two conditions V z,y,2 € L.
1. antisymmetry: [z,y] = —[y, ]
2. Jacobi identity:v [3:, [y, 2] + [y, [z, 2]] + [2, [z, 9]] = 0

An important example of a Lie algebra is given when A is an associative

algebra. We define a Lie bracket on A via
[a, b] = ab — ba.

The structure thus defined satisfies the two identities and is denoted L = A~.

To define the Universal Enveloping Algebra of L, denoted U(L), we
need a tensor algebra T'(L) and an ideal I(L) generated‘bby elements of the form
[a,b] — (ab — ba) for a,b € L. Then

[Ks 95].

We are now ready to define the coalgebra structure ‘maps for U (L):
A:U(L) = UL)QU(L) via

| A =101
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| AW =101+10l Viel ,‘
and e : U(L) — k via .
- (1) := 14
e(l) ?= 0‘ VieL
Extend A and fe' linearly and multiplicatively td U (L) _
To verifyv thé coassociativity map; We vmu'st show (A ® zd)A = (id® A)A.
Let_l‘eL,‘then_ v - S

(A®idAl) = (A®id)(I®1+1®])
L = A()®1+AQ)®1
= (®1+10)®1+(1®1)®!
= 1l191+1®IQ01+101®1
and . :
([dA)(I®1+1®1)

 (id® A)A(®D)
g @A) +1QA()
191®1+10(®1+1®L)
I9191+1QI91+1Q1®1.

Thus (A ® id)A(l) = (id ® A)A().
| ~ To verify the counit map, we must sho,v_s} = p(e @ id)A(l) = p(id ® e)A(l).
-~ Let [-€ L, then: |

pe®id)(l®1+11)
pel)®1+e(1)®1)
p0®1+1®1)
0-1+4+1-1

I,

ue @ id)A()

and :
pEd®e)(l®1+1Q1)
pl®e(l) +1®e(l)
pl®1l+1®0)
l-1+1-0

.

CTEING

Thus U(L) is a coalgebra. .
The Universal Enveloping Algebra U(L) of the Lie algebra L is now a

bialgebra, as its algebra structure is inherited from the tensor algebra T(L), and A



 uSea) = usedisliiel
S = psmel+swel

= desieitien
plesm+1es@)




S0, £(1) = w(S ® id)(A1) = p(id ® S)(A1). Thus S is the antipode for U(L) and
U (L) is a Hopf algebra.». ' : , |

Not every set that is a coalgebra and an algebra is necessanly a b1algebra or

Hopf algebra This next example is one such case.

Example 4 11 The set of n x n. matrlces with elements from the field k M, (k) is
an algebra and a coalgebra but not a b1algebra
Con81der M (k) an algebra as usual and let E;; denote the matrix with 1 in
' the zyth place and Zero everywhere else. M, (k) becomes a coalgebra when we define -
the maps A and € as follows. | - |
A(EU) = Z Ezk ® Ekj
k=1 »
- and o : .
| 1 i=1j
e(E’J) - ‘5” { 0 i
and extend llnearly to M (k) o
To verlfy that these two maps make My (k) a coalgebra, We need to check
that the coassociativity and coumt d1agrams commute. -
Coassoc1at1v1ty o
Ezj 'a ZEzl ® El] zdgA ZEzl ® Elk X Ek:], o
' Lk
and S c
| Em A Z Ei-lc ®-Ekj A&;dz Eil QFE® Ekj.
"‘,Th1s dlagram commutes smce Ekl il ® Elk ® Ek] 2, rBa® E,k ® Ek].
' ’ Coumt. | B ’ '

E; 8 S Ei® By B Y 6 ® Bijy
. & Ok
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and
Aleo, - . . ‘ |
Eij A > Eq ® Ey; & S Eiy ® 8y,
and o
B; 8 E;01
These maps commute since Zk ik Ek] = 5,1 ® Ei; =1Q® Ej; and
Zk ik ® Ok = Eij ® 6” = FEj; ® 1. Thus M (k) is a coalgebra.

However M, (k) is not a blalgebra To see thls we must show that A and/or
€ are not algebra morphlsms In fact, neither i is an algebra map; we show counter

examples for both:

6(E12E21) = 8(E11) = 1, v

but
6(E12)8(E21) =0-0 : 0

1 7é O, thus 8(E12E21) #»€(E12)6(E21).

A(E11E22) : A(O) :‘0,

but
A(Ell)A(E22) ’? (2": Ei ® Em)(i Ey ® Ep)

: k=1 =1
= (Bu®Eu+Ep®En+-+Ein®Eu)(Bn ®Eip+ -+ + By ® Enp)
= EnFEy @EnEyp+--+ EipEy) Q@ Eg1Erg + - -+ + EipnFEon @ EpiEp
0®0+0®0+---+E1®FEn+---+0®0
= FE;1 ® Eg. ‘
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0 ;é Eu ® Ezg“, .solA(EllE'zz)";é A(Eu)A(Egz) ‘Eéch of these examples isa
+ sufficient test to show that A and € are not algebra morphisms. Thus M, (k) is

not a blalgebra S

_-As the Hopf algebra Vc'ombines the a,lgehre, and coalgebra structure, so the
Hopf module combines the module and eomodule strUCtUres’ ‘Notice vr/e'are deﬁning
aright H -Hopf module which uses the rlght H -module structure along with the

rlght H-comodule structure

Definition 4.12 For a k;HOpf ._algebra; H, a right H-Hopf module is a k-space
M such that: |

| _ ‘1.~ ‘M:isﬁa,ri‘g‘ht H-‘module', via fyM ®H ——) M
2 Misa iightv}f-c'ornodule, via p: M - M QH.
3. p is.';; right H-qudﬁl‘é map, that is |
Z(m +h)o® (m - h); :Zmo -“ by ®?m1:h2» Vme M,heH.
’- ,v Thrs is known as the coherenee Condition. |
An 1mportant result on Hopf modules is the Fundamental Theorem of Hopf

' Modules To understand ‘and prove thls theorem we need the followmg two

~ deﬁnltrons‘.
Definition 4.13 Let M be -e left H-module_. The ‘invar’_»iants of H on M are the set

—{meM|h-m=c(kym, VneH).


http:k-spa.ce

eﬁnitiovn'4’.14v LetM be a right H -co‘modu_lwe.;The .coinvariants of H in M are
~ the set - | |
M‘“"’H {meM|p( )=m®®1}.

.Theorem 4.15 (Fundamental Theorem of Hopf Modules) Let M be a rlght .
H -Hopf module. Then M & M coll ® H as rlght H -Hopf modules

Proof: Deﬁné P M —> M t6 be the 3co‘rhp.osite‘ map.
M—”)M ® H 485 11 @ ‘Hl*M’ |
that is P(m) := Zmo Smy for m € M. N,exf deﬁné o
| a: JM}°°H ® H—)M vig, . ﬁ' ® h;—) m' - h

and I : -
Mo MeH via me Y mg - (Smy) ® ma,
“that is § = (P ® zd)

| We Wlll first show that B(M) C M°H @ H.

p(Zmo S’ml) = Z(mo Sm1)0®(m0 Sm1)1 ~def of p
= E(mo)o (Sm1)1®(m0) (Smi)s coherence condition

= Z(mo) - Sma ® (mo)1Smy S is antihomomorphism
= Zmo Sm3 ® mlsmz “'coassociativity’v’ of ,coactiO'n
= Zmo Sma®e(my)  def of antipode
- Z mo - Smy ® Ly ~ def of counit

- This means that Zmo : Smi € MeH, - g
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Next we will show that o and 8 afe inverse maps. That is for m € M:

| a,B(m) = a(ZmO (Sm1)®m2) def of,B
| Z(mo (Smy)) - mz ‘defofa

Il

= Zmo (( Sml)mz) - “associativity” of aétion
= Zmo ml) ~* def of antipode
.= ,m e counit, def of corﬁodule
Alsoform’EMCé’H:‘-‘ | A | |
Ba(m’ ® h) = B(m'-h) :  defofa
S = (P®id)p(m’ - h) - defof g

(P@zd)(zm I ® Lirhy) 'H Hopf module, m' € M7

- (P®zd)(2m m®h) |
= Z(m h1)0 S(m' 1)1 ® hy defof P

| _ Z my - h1 S(m1 hz) ® hs cdherence conditioﬁ

= S mS(ph)@hy  m e MO

= im’ (hl(Shz)) ®hs  associativity
= 'Zme(hl) ®hy def of a‘ntip’ode

= Zm ®6(h1)h2 T lineaiify |

= _m Qh | | o def of cdﬁnit. :

Thus a and 8 are both or'le—to-'one and onto.
Lastly we w1ll show that o and ,B are H -module maps For thls to be true, o
and 8 must each be rlght H -module maps and rlght H -comodule maps To verify

that « is a right H -module map consider the followmg Vm' e M coH and g,he H:

- & h. o ga@d

(m h)®g'—>(m h) - g,
and

'y®zd (

' m®h®g m’-h)®g£>’(m"‘h)’9,
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which are equal. To show that « is a right H-comodule map consider V m' € M<H

and h € H:

m' @ hSm A m b @1y hy =Y m b @by,

h h ‘
and N :
m/(® hi(ligAml ® Z By ® hZG&d‘Z m - hy ® hZT o
h h ’
which are also equal.
The linear inversé“ﬂ is also a right H —module map and a right H-comodule

map. Thus « is an isomorphism of H-Hopf modules, which means M = M*°H @ H.

d

Note that a similar prbof works for any left H-Hopf module.
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5 Integralé

Before we see llow_Masehke’s Theorem generalizes to Hopf algebras we need -

‘to deﬁne integrals in a Hopf algebra H -

Deﬁmtlon 5 1 A left 1ntegral in H is an element te H such that

ht = e(h)t,‘ Vhe H a rlght integral in his an element teH such that
th=c¢e(h)t, Vhe H. We denote the space of left 1ntegrals by [} r and the space of
right 1ntegrals by Ty The Hopf algebra His called unimodular if I g =Jg In

such a case we write fa=fir = [5.

Our basic examples of Hopf algebras also contam integrals when they are

finite d1men31onal

'Example 5.2 Consider the group algebra H = kG for a finite group G (see

Example 4.8). Then the element ¢ = Z g is both a left and a right 1ntegral in H
geG
although G is not necessarily Abehan ‘

To verify that ¢ is a left mtegral, let h € kG; then

=h(Zg)=Zh9=Zg=t,

geG geG . geq@G
and : : S
et =1x-Y g= g=t.
i : - geG geG

Hence ht = e(h)t Vhe H,andsot € f}q ,

For the right integral property, let h € kG and t' = Zg Then
geG

'th—(Egh Y oh=Yg=t,

9€G geG JeEG

and

h)t’_lk Zg—Zg—t'

geG gEG
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M‘Hence t’ = z-:(h)t’ V h € H and s0 t’ € fH | ‘
| | Thus t= Z g 1s a left and a r1ght 1ntegral 1n H and SO H is un1modular. N
o 9€G " . . N :

" ?}Example 5. 3 For a ﬁmte group G let H (kG) the hnear dual of the group.v"

= algebra (see Example 4 9) Then t= 1 is a left and a r1ght integral.

~To verlfy that t is a left 1ntegral let pg € (kG) and t= Pr Then

‘{fjgr_;h m ﬂg_l" s
2 pgt—pgpl { 0 otherwise, ~
7@d7fff;om

o O | m ﬁg—lb
(Pg)t =€ (pg)pr { 0 otherwrse

SRR - “Thus pgt L (pg) t In (kG) {pg} geG 1s a bas1s So for a general element

‘ h= Z agpg e (kG) ht = 5(h)t by l1near1ty o
_ : Recall from Example 4 9 that (kG) 1s commutatlve Thus t =pis also a
rlght 1ntegral for (kG) since th ht = a(h)t So p1 is both a left and a rrght

| 1ntegral in H and it follows that H (kG)* is- ummodular ’

. ThlS next theorem tells us that every ﬁmte d1mens1onal Hopf algebra -

]contams a non—zero set of left 1ntegrals and moreover no 1ntegral is unlque R

R 'Theorem 54 Let H be a ﬁn1te d1mens1onal Hopf algebra then the set of mtegrals o T

is a 1 d1mens1onal vector space
e Proof Frrst note that M H is a r1ght H * Hopf module via the act1on

H®H*—>H via- kh‘—f* Z(f,h1>h2 Zf(hl)hz

" and the coactlon p where {ll, n} 1s a bas1s of H and fl, o fn € H * such that o

A"WeHm Eﬂﬁﬂ

| p H—>H®H* v1a p(h) Zl@fz




- 'For the detalls of thls dua,hzatlon of an H -actlon to an H *-coactron see. [Mo 93]
‘ ‘Lemma214 “ S e ‘, ‘v : .
| Thus by the Fundamental Theorem of Hopf Modules (Theorem 4 15)

M Mco(H*)®H* o
; as right -H*elflopf modul_es. “Howe.veri.M c,"(ff ). = M H . To see this let m € MeH"),

o j‘p(m) = Zmo ®m; def ofp (*) e
C s = m®ec def of comvanants of H*, and €= 1 B
ForanyheH C d
' h m ,‘: ¥ memy (h)" duahzatlon of action to coactlon
= me(h) -~ substitution (*) above ’ .
= 5(h,)m . s(h) is a scalar -

~ which means m e MH, the mvarlants of H Thus M c"(H ) C M H,.

For the other 1nclu31on let me ME. Then

s h,-m“: = E(h)m def of 1nvarlant
= me(h ) e(h) 1sascalar

- Buth m = Zmoml(h) thus me(h) Emoml(h) So

(m) = Smo®m defofp
="Mme. EEE

~ This 1s ('[Mo 93]‘ Lemma 1 7. 2 applied to the finite dimeusional case, Where it states
that for a ﬁnlte-dlmensmnal H *: let M be a left H -module such that it is also a’ |

‘ | 'rlght H *-comodule then MH = =M co(H"), This mea.ns m e M co(H") the coinvariants. |

i ofH* Thus MHCMC"(H*) so M = MCO(H*)

Substltutmg th1s fact mto the 1somorph1sm of Hopf modules g1ves
. MgMHé@Hf,‘ -

' Now let M H (aln H* Hoof module) then :

“ } H HH ® H*v._ ;



. HT={heH|h=c(hyp Vhrem=[.




6 Maschke’s Theorem for Hopf Algebras

Now that we have the necessary background on Hopf algebras, recall
Maschke’s Theorem for group algebras from Chapter 3: |
Theorem 3.1 (Maschke’s Theorem) Let G be a finite group. Then &G is
semisimple if and only if |G|™! € k. |

Let us look at this theorem in terms of integrals. Recall from Example 5.2

that for the groﬂp‘algebra' kG, t=) g€ / . Next consider &(t),
9€G . kG

M =e(X )= el9) =Y k=Gl
. 9eG 9eG . . ¢g€G -
So &(t) = |G|, the order of G. Since £(t) € k, it follows that |G| € k by
substitution, and since k is a field Tl € kif and only if £(¢) # 0.

,Ma.scihke’s,Th_e_Orem is thus a particular case of the more general theorem for

Hopf algebras:

Theorem 6.1 (Maschke’s Theorem for Hopf A'lgébras), (LS 69] Let H be
any finite-dimensional Hopf algebra. Then H is semisimple if and only if e(f4) # 0
if and only if e(ff) #0.

Before we prove this theorem there are several general lemmas we need to
establish in addition to Lemma 3.2 and Theorem 3.3. The following lemma is a
particular case of a more general theorem that says that the kernel and image of any |
algebra morphism are ideals. This lemma also gives an additional proof that the |
algebra of n x n matrices‘ is not a Hopf algebra. For M, (k) is a simple algebra
(Example 2.7), hence it has no non-trivial ideals (Definition 2.6). But ds we see

here, every Hopf algebra must contain at least one non-trivial ideal.

‘Lemma 6.2 The kernel of the counit map, kere, is an ideal of H.
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Proof: Let h € H,z € kere, then -

~e(zh) = e(z)e(h) ¢ is an algebra morphism
= 0g(h)  z€kere
= 0, I
and , .
: e(hz) = e(h)e(z) €isan algebra morphlsm
' = ¢(h)0 =zE€ ker&: ‘
= 0. o -

Thus :vh, hx € .kere, Whilch.“mearrs kers is an ideal of H. o -

Lemma 6 3 Suppose an algebra A can be ertten as a dlrect sum A= 1&® J, with
I a left ideal and J a r1ght 1deal Then J I 0. In partlcular if H I® kere, then
(kera)I 0

Proof: An algebra A=T GB J 1mpl1es that InJ= {O} But I is a left ideal, and J
is a rlght 1deal Thus JI c Jﬂ I= {0} D

In the followmg proof we con51der H as a left module over itself Vra left
multlphcatlon Recall that an algebra is called sem181mple if it is semlslmple as a
module over 1tself via left multxphcatron, and that in this context submodules are

| precisely the left 1deals of the algebra. We are now ready for the proof of .

- Theorem 6.1, Maschke’s ’_I‘heorem for Hopf algebras. We follow the proofs in
 [Mo 93] and S 69B] | | |
: ‘Proof of Theorem 6 1 (semlslmple = a(fH) # 0 and e(f) # 0)
Let Hbea sem131mple finite drmen81onal Hopf algebra. By Lemma 6.2, we know
that ’kere is an ideal of H and thus asubrnodule of H. By Theorem 3.3 condition
(2) we know that every submodule of H ‘is a direct sumrhahd, therefore we rnay
vwrlte H I® kere for some ‘non-zero left 1deal IofH. B

Next, we clalm that IC I To show this, let z€ I and h € H. We want to

64



o f‘show that hz = s(h)z \7’ h e H Note that h — s(h) 1H € kere srnce

s(h --e(h) 1H) _v-»s(h) —5(5(h) H) hnearlty ofe et
&(h) —e(h)e(ln) hneaf.ltY,.Of5
ce(h)—e(h)ly e(lm) ‘—"I'k‘

s(h)—e(h) . e(h) ek T
0 " RS «’addltlve inverse property SRR

:Il_;lils,

A

P Usmg thls fact together Wlth Lemma 6 3 We see that

hz : [h - 5‘( )]z +5( )Z add and subtract s(h)z R

=0 +€(h) ,' h—¢(h) - 1y € kere, and Lemma 6. 3"'_’ G

L= e(h)z g_ . 0is addltlve 1dent1ty

o :Thus z e f B by the deﬁnltlon of left 1ntegral and 0 I C f H

Applymg the Dlmensmn Theorem (Theorem A 4) for vector spaces to our. : : :,

. case We have dlm(kers)-l- dlm(lms) d1mH Now eisa hnear map, SO 1me isa .

o vector space Also ime 7é 0 smce 5(1) = 1 moreover 1me C k, and dlmk == 1 so

}' dlm(lme) = 1 Thus dlm(kers) dlm(H ) - 1 But I EB kera = H hence

'Wfo¢zef*

- dlmI +(d1m(H ) —»1) dlmH Therefore dlmI = 1 that is I is a one-dlmensmnal | 1_ ;e

Space i I ; . : R . : : .

N : o Slnce I is one-dlmensmnal I 75 O £ We take 0 # z e I NOW O
*’-.'o#s(z) Cel) Celfh). Hamcoc(l)£0. T

: The proof to show 5( f H) ;é 0is srmllar Wlth changes in that I is a rlght 1deal

of H and to show that I C fH, we compute for z e I and h E H

e [ h — s(h)] + za(h) add and subtract zs(h)
0+ ze(h) -~ ooh = s(h) 1g € kere
= e(h)z }- : _' 0 1s addltlve 1dent1ty

"'v"f'vThus z € f B and I is one—dlmensmnal by the same reasonlng as above So for

76 0 Hence s(fH) 76 0

S Let 6(fH) 75 0 Then we: may choose te € fH SllCh that 5(t)" 1 since for any ze fH"v | B

o .Wlth s(z) 7’: 0 e[ (z) lz] = e(z) 5(z) i 1 Thus We may set t —:s(z) 1z




Next, let M be any (left) H-module, and let N C M be an H-submodule.
We claitn that N has an H -complement in M, that ie there exists-a eubmodule
XCM such that M = N @ X. By showing N has an H -complement we will then
know by Theorem 3.3 that M is semlslmple as an H-module. |
To find thls H -complement of N note that in partlcular N isa k-subspace of
M and cons1der m: M — N ak- hnear prOJectlon (Definition A. 7 and Corollary A.8
for the ex1stence of such a map)

Now define a new map T M= N by

The map 7 is a k-linear projection onto N sihee o VneN

T(n) = Ztl (Sty - n) - substitution

= Z t15t2 deﬁmtlon of 7 and hneanty
= -e(t)n deﬁmtlon of antipode - |
= n - gt) = 1

And for any m € M, m(m) € N S0 7T(St2 m) € N. But N is an H-submodule so
ty-m(Sty-m) €t-N C N. Hence #(m) € N. So M = N@& ker#t as vector spaces.
_ ‘ Furthermer_e,' 7~r isen H —module mapv.» To see this, let he Handme M ,
then R - |

h-#(m) = h- [Z t - 7r(St2 m)] application of 7
= Zh t - W(Stg m) b. linearity
= zh18(h2)t1 w(Stg - m) counit diagram

| = Zhltl W((Stz)&'(hz) m) ~ linearity of 7

= Zhltl w((StZ)(Shg)hg m) definition of antipode
= Zﬁltl W(S(hztz)hg m) | antipode is an antihemomorphism_
= Z tom (Stz)h m) (%) - see below

= lyr(h-m) S ‘ defintion of 7.
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Where *) holds since | A
> hit1 ® S(hztz) ® h3 = (zd ® S ®id) Z h1t1 ® haty ® hs) |
Bt = (zd®S®zd (% A(}zlt ®h2) o defilof eounit
= ([d®S® zd) (Z A(e(hl)t) ® hy) def left integral ':
= (id® S@zd)(z At @ e(hi)hs) e_(h.l) €k
= ([d@SeidAteh) " def of unit
L= Zt1®S(t2)®h | o
o The space ‘kerfr is an H ;submodule by Lemma .3.2, s;eee 7 ie ‘an’H -module ma;p'.
: Therefo're, N : 'ha,vsianv'H-COIrI'lplement, ker# in M Suowb‘y. Theorem.'3.3 M isa
'semlslmple H. —module | ‘
The argument for 5( Ii) ;é 0 is 51m11ar except that M is a (rlght) H -module,
‘and the prOJectlon T must be defined approprlately In this case we take ¢t € f o with
et) = =L The map 7 : M — N is then defined to be: » |
7(m) = 271’(7)’1;'3‘15.1) ty YmeM.
e
~ To see thet 7 is a projection onto N ,'- consider V.n € N:
| i(n) = Yom(n-St) -ty -' substitution
= zt:ﬂ'(n) (Stl) to hnearlty of T

= Zn (Stl)t2 - definltlon of E
= ng(t) ~ definition of antipode-
= n o et)=1 -

And for any m € M, m(m). € N so 7r(m Stl) € N. But N is an H-submodule SO
- mw(m - Stl) to € N - t C N. Hence 7r(m) € N.
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Furthermore 7 is an H-module map since

7(m) - h = [Z\&r(m . Stl)‘- to] - h  application of 7
= th(m - St1) - t2h | lineaﬁty
= Et:w(m - St1) - tae(hy)ha counit diagram
= %w(m -€(h1)(St1)) - t2he linearity of m
— 'tz’h:';r(m - h1(Shy)(St1)) - tahs def of antipode
= i w(m - h1S(t1hy)) - tohs antihémomorphism
= tZ,h:'zr(m -hS(t1)) - t2 (**) - see below
= ﬁ't(m - h) definition of 7.

Where (%) holds because

ST hi®S(tihe) @tehs = (id® S ®id)(D_ b1 ® trhy ® tzhs)
t,h t,h
L= ([d®S®id)(D_ h ® A(thy)) def of counit
h
= (id®S®1id)(D_hi ® A(e(ha)t))  def of rt integral

h
= (id®S®id)(Thie(hy) ® At)  e(hy) €k
= (id® S ®id)(h® At) def of unit
= Y h®St @t
t

Hence M is semisimple. O
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7 Cosem151mpllc1ty SE

We contmue along the l1nes of duahzmg by lookmg at cosemlslmphc1ty, the |
dual of sem131mpl1c1ty In duahzmg algebras to. coalgebras usually the’ algebra needs
‘ .to be ﬁmte d1mens1onal Whereas this is not necessanly the case for duahzmg |
coalgebras to algebras Coalgebras have a property called' “local ﬁn1teness Where
: every element of a coalgebra belongs to a ﬁmte d1mens1onal subcoalgebra |
| - To see how to duahze in general look at a vector space V, then the llnear
dual v* '— Homk(V k) In constructmg dual maps cons1der the map f |% — U

'where V and U are vector spaces The dual map VadE U LN V* is deﬁned by
. f*(u*_)‘(vy;: "(uf),(f('v)) Ve U*,fv e v. e

o We.Willuse this fact throughoutthis section.
. First let'ius define some of _the “dual” concepts to subalgebra, simplicity and

' semisimplicity. 2

| ‘Deﬁmtlon 7.1 S 69B] Suppose C is a coalgebra and D is a subspace Wlth |
' A(D) C D ® D Then D is a subcoalgebra of C. ' :

. _Definition 7.2 ’LetvC" be. any ’coalgebra.,‘ &
1. 'C_' is Simple if it has nopropersubcoalgebras.}
1 2 C 1s c'ose"mis»irnplelf }itis a‘ direct"sum of slm’ple subcoalgebras:. |
The folloyving proposltion shows us hovr an algebra is related to a' coalgebra. :
Proposrtlon 7.3 If Cisa coalgebra then C’* is an algebra

| Proof Let (C A 5) be a coalgebra The hnear dual C* < Homk(C k) Define -
 u=A:(CeO) —>c* Notethat o*®c*e—>(0®0) by |



K ®g)(c®d) £(©)0(d) ¥ f,9.€ O" and ¢,d € O. So we can resrict p 0 C* 0 C"
quhere IR B O R T I TR AR S

” u(f ®9)(C) (f ®g)(A(c))

| iThlS g1vee fhe mult1p11cal;1on map on C*‘ the “dual algebra structul'e ? Nex’c deﬁne.

17 k* — C* But k = k* S0 n can be restrlcted to k Where -

n(f)(C) = f(e(C))

.For C’* to be an algebra the assoc1at1v1ty and un1t dlagrams must commute ) :
Flrst check the assoc1at1v1ty dlagram V f, g, h e C’* P

i ;:\(ﬂ‘f"®,9®h),’l§l (fg);eh#»(fg)h; -
~and
(f ®9® h) @»"f ® (gh)*—>f(gh)
g .,These are equal s1nce compos1t1on of functlons is'an assomatlve operatlon
To check the umt d1agram v f € C’* o

1k ® f”@’“‘n(lk) ® f = 10* ® lec*f £
 LefoLf=f
' ‘Alsd; Ll SRS
f ® Ik'dﬁ”f ® n(lk) f ® 10*'—>f10* =f,
and e

f®1ka1k —f,m B

" which are also equal Thus the assoc1at1v1ty and umt d1agrams commute, and C’* is

‘an algebra EI G



The followmg proposmon glves us the correlatlon between 1deals 1n algebras v’
and subcoalgebras 1n coalgebras ThlS correlatlon is® 1mportant 1n prov1ng

Proposrtlon 7 5

) Proposrtlon 7 4 [S 69B] Let C be a coalgebra Then R

1 If D c C is a Subcoalgebra then DJ‘ C C* isa tW0-81ded 1deal of C’* Where D

{feC'*|f(d)—0 VdeD}

2. If I C C* ‘15 any two-31ded 1deal then I - C C 1s a subcoalgebra Where e -

' _.‘.-—{ceC|g(c)—O VgeI}

"We follow [S 69B] in the proof of thls propostlon
: :fProof '

1 Let D C C’ be a subcoalgebra Let i: D —-) C to be the 1nclu510n map -

(Deﬁmtron A 9) The 1nclu81on map 1s a coalgebra map, as V d € D o

A(t(d))
CAdd)

Zdl ® dy " B .
o Zz(dl) ® z(052)
= z ® z)A(d)

(A ° Z)(d)

II ‘Il

N (s o z)(d) = 8(z(d)) — e(d)

Thxs coalgebra map' 1nduces an algebra map z C* — D* g1ven by

*(f)(d) = -f(%(d)) = f(d)



The set ker(i*) = {f € C* | #*(f) =0} = {f € C* | f(d) =0 Vd e D} = D-.
.Moreover, ker(zf*) is an ideal of C*., since V f € C*g € ker(:*) and d € D:

(79)d) = 19(i(d) = £(0(d) = £0) =0,
and
i*(0f)(d) = £ ((d)) = gf(d) = 0.

Thus Dl ker(z ) is a two-sided 1deal of C*.

2. Let I C C’* be a two-sided ideal. Let IJ- {ceClgle)=0 Vg c I} Take
z € I'+ and say A(z) =Y ; Y%i® 2z Where {yz} U {zz} cC. Assume {z;}is |
hnearly 1ndependent Then if A(z) 55' I 1 ® C this means y; & I'* for some i.
»Wlthout 1oss of generahty we may assume ¢ = 1; then Y ¢ I l, that is there |
| exists h e I such that h‘(yl) 7& 0. Next choose f € C* such that f (zj) = 61]
Slnce Iis van.ideal, hf € I Thus hf(x) =0. But hf(z) = (h® f)A(z) hyltl:heb o
dual algebra structure. Hence | |
0 = hf@) = (h®©))AE) ,.

" o= (keNYuen
L Oi since'h(yi) #0

This is a contradlctlon Thus A(a:) elt®C. Slmllarly A(a:) eC®I- L ThlS

" means » : .
A e(t®0)n (C®I+)= rert.

Hence Itisa 'sﬁbéeélgebra of C. O

This next proposmon allows us to see that some propertles are carried -

through the duahzatlon process
, Propovsition.v 7,.5 If C is a coalgebra, then:
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1. C is simple if and only if C* is a si_ﬁiple algebra.
2. If C is cosemisimple then C* is é semisimple algebra.

3. IfCis finite dimensional and C* is a semisimple algebra, then C is

cosemisimple.

Probf: :

‘1. (=) Assume that C' is a simple coalgebra. This means that C has no proper
| suchaigebfas; t‘hét is the only suchalgebfas of C are {0} and C itself. Let
I C C* be a two-sided ideal of C*. By Propositién 7.4 (2) this means there
exists a subcoalgebra [t = {ce C | f(c)=0 VfelI}CC.ButCisa
simple coalgebra, so I+ = {0} or I* = C. If I* = {0}, then I = C. If I* = C,
then I = {0}. Thus C* is a simple algebra.

(<) Assume that C* is a simple algebra and let D C C be a subcoalgebra. By
Proposition 7.4 (1) Dt ={f e C*| f(d)=0 Vd € D} is a two-sided ideal of
C*. But C* is simple, therefore D+ = {0} or DL C*. If D+ = {0} then

D = C. If D+ = C* then D = {0}. Thus C is a simple coalgebra

2. Assume that C is cosemisimple. Then C = @;C; where each C; is a simple

subcoalgebra for every i. By (2) C} is a simple algebra for every i. However,
C* = (@:C)" = @,C;
Thus C* is‘ a Semisimple algebra.
3. Is proved similarly. O

Together the next two examplés show Proposition 7.5 in action. |
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~ Example 7.6 The groﬁp algebra kG is cosémisimple.

‘Let {g}¢ec be a basis of kG. Then every g € G generates a oheJdimé'nSiOnal.
subcoalgebra kg, as dimkg = 1. Each kg is simple since there is only one basis
element, Whiéh means that there are no non-trivial subcoalgebras. Since_v{g}geg is a
‘basis for kG,

kG ng—Zkg

€q €eG

Also ﬂgegkg {0} Thus kG = EBgegkgg Henci kG is cosemisimple.
Example 7.7 The linear dual of the group algebra (kG) is semlslmple

| By Example 7.6 the group algebra kG is cosemlslmple So accordmg to
‘Proposition 7.5 part (2) the linear dual of the group algebra (kG)* is semisimple as
an algebra. We write (kG)* explicitly as 5 direct sum of simple algebras as in
Example 2.11. A basis for (kG)* is {pg}secc. So ’(kG)*‘,——' ®geckp, where kp, is a
simple algebra for every g € G. Notice that each kp, is an algebra because

DgPg = Pg, Which means multiplication is closed and p, is its own unit.

The space of left integrals in H is 1-dimensional and is an ideal in H. Any
Hopf algebra with a finite dimensional ideal is finite dimensional itself. So this
definition of left integrals in H won’t help in the infinite dimensional case. This

next definition for a left integral on H will work for the infinte dimensional case.

Definition 7.8 Let H be a Hopf algebra. An element T' € H* is a left integral on
Hif V f € h¥,
fT=fQm)T.

We denote the space of left integrals on H by 7%, C H*.

Compare this definition of a left integral on H with Definition 5.1, a left
integral in H. Notice that when H is finite dimensional, an integral on H is the

same as an integral in H*. This is because e+ (f) = f(1g), the unit in H*.
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We now. duallze Maschke s Theorem for Hopf Algebras (Theorem 6.1) to a
dual theorem for coalgebras Recall that Maschke s Theorem for Hopf algebras says -
a finite dimensional Hopf algebra H is semlslmple if and only if 6( fk) # 0. The
~ concept of semisimplici:ty has a dual vcovncept ‘of cosemisimplicity. For e( f Il{) # 0 to
dualize, consider 'Wh_atl this vmearrs for an integral on H. In H*, |

eg+(T) =T(1 ") = li. Th\ls‘We have the following Dual .Masehke ‘Theorem.

Theorem 7.9 (Dual Maschke Theerem) Let H be any Hopf algebra and -
T e H *. Then H is cosemisimple (as a}coalgebra) if and only if there exists a left

integral Ton H satisfylng T(1lg) = 1.

We will prove JllSt ‘the finite dimensional case here as it is just a d1rect

B apphcatlon of Maschke’s Theorem for Hopt algebras

- Proof: (=>) Let H be a ﬁn1te-d1mens10nal cosemisimple Hopf algebra and T € H*.
By Prop031t10ns 7 5(2), H" is semlslmple Wh1ch means €g-([;-) 7 0 by Maschke’s

- Theorem for Hopf algebras (Theorem 6.1). Thus ¢ m(T)=T(1 H) = 1.

(<:) Let H be a finite-dimensional Hopf* algebra where there exists a left integral

‘T € H* on H such that T(lH) = 1;. Notice that g~ (T) =T(1g) = 1§ # 0. Thus

eg(f.) #0. Therefore by Maschke’s Theorem for Hepf‘ algebras (Theorem 6.1), |

H* is senrisimple,_ which means H is cosemisimple by Proposition 7.5 (2). O
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A Linear Algebra

The following section contains some classical linear algebra definitions and
results used throughont'thisvpeper, The sources thatwereﬂused for_this; section. were

[Ga 94, [An 84, and [WT 79].

Deﬁnition A 1A set V' is said to be a vector space over a field k if V is‘ an
Abehan group under addltlon and if Va €k, v € V there is an- element av € V

vsuch that the followmg conditions hold ¥ a,bek and u,v € v
1. a(v-l—-u)-iav—l-auf N |
2. (‘a+b)v’# av+be, ‘ -»
3. afby) = (qb)‘pj, S
4 1,91)-‘—#1‘).‘ o
Propositiqn A2 | I';et, V bea ﬁnite dimensional vector space. Any linearly
independentZSet {u1, ug, ey ut}_in,V canbe extended to a b_as‘is.‘of V. |

. ‘Proof Let {ul, uz, ut} be a hnea,rly 1ndependent set in V. Elther :

{us, uz, ut} spans V and is itself a basis of V or there exists v 6 V that is not a

linear combination of {ul, Uz, - ut} We clalm that {1, ug,. .., ug v} is hnearly

Independent To see thls let Q; € k V i=1,. yi41 such that
aiul + a2u2 + “+ agup + o1 =0.

If ayy1 # O then we may solve for v to get
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But v was not a hnear combmatlon of {u1, uz, ut} Thus at+1 = 0 and since
{ul, Ug, . ut} is hnearly 1ndependent we know o = 0 Vie {1,2,. Lt} If
{uy, ug, ..., us v} does not span V, then there isav € 1% that is not a hnear

combination of {u, Ugy -+ - Uty v} Repeat the process as we did for v. Continue

" : ‘addlng ba81s elements in the same manner untll We get a set that spans V. Th1s

process must end after a finite number of steps s1nce V is finite dimensional. The

- result is a basis of V' contalnlng ‘the’ orlglnal lmearly 1ndependent set. O
. Theorern A3Let f : V= W be ahlinear' rnap ef t?ector spaces. Then:
1. kerf is a-subspace of V,
2 imf rs a subspace of W. | '
Proof:

RS Letuvekerfandaﬁek Then

. _f(au + Bv) = af(u) + ﬁf(v) f iStlinear
= a0+p0 u,v € kerf
= 0. ‘

Thus au+,3v € kerf, so kerf C V.

9. LetquVandx ye1mfsuchthatf(u)-xandf('v)—y Letoz,Bek.

- Then o )
ax, + ,B_y = af(u)+p6 () substitution
- = flom + ﬁv) - linearity of f.

Thus ozx—l—ﬂy € imf, so 1mf C w. O

o Theerem_ A.4 (Dimension 'The(')rer.n)' Let V and W be vector spaces, and

[V — W be a linear rnap. T‘h‘en,ﬁ‘
dlm(ker f)+ dlm(lmf ) dlmV
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Preef' Denote dimV = n, " und let {v1, vz, ..,u} bea basis for ker f By
Proposmon A. 2 this bams ‘may be extended to form a basis {vl, vv ry ey Un} Of
V. We will shOW that B = {f(vr41), f (v,+2) ., f(v)} is a basis for imf.

First we will show that B spans un f. Let b E.im‘f; then b = f (v) for some
vGV Letazek Vz€{12 n} Then

b = (v) . as deﬁned
: f(z a,v, | pisa hnear comblnatlon of basis elements
e Za, f(vz - ‘linearity of f
= ZO‘Z 0+ Z ozzf (v:) {'vl,'vz, ., Ur} € kerf
o : n z-'r+1 .
= ‘ Z azf ('vz)
o z_-r+1

Thus B spans im f

Next we must show that B is hnearly 1ndependent Suppose

0= i aif(vi) = f( Xn) Q;V;) |
i=r+1 a i=r+1

Whlch means z aiv; € ker f. Therefore
- i=r+l

n r
Z Q;v; = Z%Ui

B =
" > '» S_o S | o 0 ’: Z o,;U; — Z ;5. !
. S C : _ S i=r4l
But the vz ’s are hnearly 1ndependent Thus o; = 0 Vz € {1 2,...,n}. In
partlcular ;=0 Vie {r +1,r+ 2 n} So B is linearly independent, Whlch
‘means B 1s a basis for im f '

~ Thus d1m(kerf)+ dlm(lmf) =r + (n —r)=n=dimV. O

Definition A.5 Suppose V is a vector spa_ce and U is a subspace of V. The
subspace U is said to have a (linear) 'c,o'mplemvent’W if there exists a subspace

W CV such that U@ W = V.
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Proposition ,A,6 For ahy Subspace'U of V, U has a linear complement.

Proof: Let U - 1% be a“ subspaee‘With b‘as'is @1, U2, .., Ug. By Proposmon A. 2
, {ul', U, . . u,;} may be extended to form a bas1s of V Call this basis o
B= {ul,.uz, ut,wl, . wr} Set W = sp{wl,wz, wr} Since B is a basis of V
for any element vev there exist az,ﬂj €k fori e {1 2,..thie{l,2,...,r}
| such that | _ | N v.
| v= (i o) + (i ﬂ;iu,-) cU+ .
'ThusVCU—l—WandmmﬂarlyU—l—WCV soV=U+W.

All elements of U are of the form Z ;U;, and all elements of W are of the

i=1
- form Z ﬁ]wj Take z € UNW, Wh1ch means that z = z oy, and also
]:1 S i=1
T = Z,ijj. Thus
j=1

Z OU; = Z IBJ Wy,
which implies : ,
t r '
Zaiui — E,ijj = 0.
v ) =1 j=1
But u; and w; form a basis of V. Thus they are linearly independent. So,
a; = f; =0 V4,3, which means z = 0. Hence U N W = {0}. So U has a linear

complement W in V. O

Definition A.7 Let M be an A-module and N a submodule of M. A map
" 1M — N is called a k-linear projection onto N if 7 is linear and

_ 7r(n)=n VneN.

Corollary A.8 For any subspace U of V' there exists a k-iinear p_rojection.,
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Prdof:_ Let U C V be a k-subspace. By Proposition A.6 there exists a subspace W
such that V = U & W. This means we may choose a basis

{ui,us,...,up, w1, wa,...,ws} of V. Next define a map 7: V — U via
m(uw) =u; Vie{l,2,...,r}
n(w) =0 Vie{l,2,...,s}

~ and extend linearly. The map 7 is k-linear by its definition, and a projection since

T.
VueUu=> o so

=1

n(u) = w (Z oziui>
i=1
. T
= Y aim(w;)  linearity
=1 : ‘ B

O

Definition A.9 For sets A and B Wiﬁh A C B, the function i : A — B, defined by

i(x) =2 Vz € Aiscalled the inclﬁSio-n-lmap.
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B List of Symb‘ols
SYMBOL 'MEANING

G group
R ring . »
M module, unless otherwise noted
A algebra o
k ground field
%4 ~ vector space
D division ring.
[T multiplication
n unit
id identity map
¥ module map
R . the set of real numbers
c - the set of complex numbers
M, (k) the n X n matrices over a field k
Mg, Tij elements of a matrix in (i, j)-place
kG the group algebra
|G| order of a group G
® tensor product
A comultiplication
€ ‘counit
C coalgebra
p comodule map
B bialgebra
* convolution product
Hom(C, A) homomorphisms from C to A
S - antipode ]
H Hopf algebra
(kG)* linear dual of the group algebra kG for a finite group G
bij Kronecker delta _ '
U(L) Universal Enveloping Algebra of the Lie algebra L
L . space of left integrals in a Hopf algebra H
H

o - space of right integrals in a Hopf algebra H
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