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ABSTRACT 

The eggshell of reptiles is essential for not only protecting the embryo, but 

can also serve as source of calcium for embryonic skeletal development. 

Whereas embryonic lepidosaurs and chelonians rely on their yolk sac for calcium 

during development, embryonic archosaurs mobilise eggshell calcium supply to 

both the embryo and the yolk sac. By the time archosaurs hatch, their residual 

yolk sacs have a calcium content equal or greater than at time of oviposition, 

which is used to support post-hatching growth. To date, no study has looked into 

how removal of the calcareous eggshell affects embryonic development in 

archosaurs. I tested how the removal of the calcareous eggshell affects 

embryonic and hatchling growth and biomechanic function of the skeleton in 

embryos and hatchlings of the American alligator (Alligator mississippiensis). 

Experimental eggs had their eggshell manually peeled, while control eggs were 

sham handled but otherwise not altered. Sampling of eggs occurred on a weekly 

basis until the end of incubation. Embryos, yolk sacs, and eggshells were 

removed and analyzed for morphological, histological and biomechanical 

parameters. Results show that at the time of eggshell peeling yolk sac calcium 

reserves were sufficient for experimental embryos to develop, but animals 

hatched in diminutive state. Serial clearing and staining of embryos revealed that 

onset of bone mineralization was similar for both treatment groups. Growth 

trajectory of experimental hatchlings parallelled that of control animals, without 

compensatory growth. Experimental hatchlings were observed to have flexible 
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lower jaws and produced a weaker bite force than control hatchlings. Cross-

sections of the mandible and femoral mid-diaphysis had a significantly reduced 

cross-sectional area in experimental hatchlings. I conclude that loss of the 

calcareous eggshell during incubation leads to severe constraint on growth and 

biomechanics of the alligator skeleton. 

 

 

  



 
v 

ACKNOWLEDGEMENTS  

I would like to express my sincerest gratitude to my thesis advisor Dr. 

Tomasz Owerkowicz. It is from taking his graduate course in vertebrate 

physiology during my first year that I realized that it was the field of biology I 

wanted to focus on. Before taking his class I wanted to become a geneticist and 

now I am excited to continue to explore the world of whole organismal biology. I 

am also very grateful for our numerous discussions on science, work, and life in 

general. Under his tutelage I have gained a better understanding of how science 

works and feel that I have grown as a biologist. 

I would also like to thank my committee members, Dr. Stuart Sumida, Dr. 

Angela Horner, and Dr. Kris Lappin — Dr Sumida for letting me TA lower division 

human anatomy and physiology lab and learn how exciting teaching anatomy 

can be, Dr. Horner for her helpful insights into biomechanics, and Dr. Lappin for 

providing the bite-force transducer I needed to measure my hatchlings’ max bite-

force. I would also like to thank Dr. Ruth M. Elsey for providing the alligator eggs. 

I of course would like to thank my fellow lab mates, Johnny Yang, Jessica 

Joneson, Krista Felbinger, Elisabeth Cook, and Dorothy Skates as well as the 

numerous undergrads that assisted me in acquiring and prepping my specimens 

for this project. Lastly, I would like to give a special thanks my family members 

and best friends Roger Portillo, Albert Sierra, and Terry McBride for being 

supportive and pushing me forward. 



 vi 

TABLE OF CONTENTS 

ABSTRACT  .........................................................................................................  iii	

ACKNOWLEDGEMENTS  ....................................................................................  v 

LIST OF TABLES  ..............................................................................................  viii 
 
LIST OF FIGURES  .............................................................................................. ix 
 
CHAPTER ONE: INTRODUCTION1	

The Cleidoic Egg  ......................................................................................  1 

Calcium Mobilization  .................................................................................  6 
 

Aims  ..........................................................................................................  9 
 

Animal Model  ..........................................................................................  10 
 

Hypotheses  .............................................................................................  11 
 
CHAPTER TWO: MATERIALS AND METHODS 
 

Acquisition of Eggs and Care  .................................................................  13 
 

Experimental Setup and Sampling  .........................................................  14 
 

Ashing  .....................................................................................................  16 
 

Eggshell Measurements  .........................................................................  16 
 

Post-hatching Sampling  ..........................................................................  17 
 

Bite-force Testing  ...................................................................................  18 
 

Clearing and Staining  .............................................................................  19 
 

Bone Histology  .......................................................................................  21 
 

Data Analysis and Statistics  ...................................................................  22 
 
 
 



 vii 

CHAPTER THREE: RESULTS 
 

Embryo and Yolk Measurements  ...........................................................  24 
 

2012 Season  ................................................................................  24 
 

2013 Season  ................................................................................  30 
 

Eggshell Thickness  .................................................................................  31 
 

Yolk Ash Mineral Content  .......................................................................  32 
 

Progression of Skeletal Mineralization  ...................................................  34 
 

Post-hatching Growth  .............................................................................  40 
 

Biomechanic Performance  .....................................................................  44 
 

Histology  .................................................................................................  46 
 
CHAPTER FOUR: DISCUSSION  ......................................................................  53 
 
APPENDIX A: AVERAGE LENGTH OF TOTAL BONE AND 

  MINERALIZED BONE FOR HUMERI (A) AND FEMORA  
  (B) DURING EACH TIME POINT ...............................................  62 

 
APPENDIX B: COMPARISON OF GROWTH RATES FROM 

  EXPERIMENTAL AND CONTROL HATCHLINGS TO A 
  56-DAY GROWTH PERIOD OF HATCHLING ALLIGATORS 
  RAISED UNDER NORMAL OXYGEN CONDITION  ..................  64 

 
REFERENCES  ..................................................................................................  66 



 viii 

 
LIST OF TABLES 

 
Table 1.  Summary of clearing and staining steps with the amount of time 

specimens will spend in each solution  ................................................  20 
 
Table 2.  Table describing the embryological stage during which different 

mineralized bones were observed  ......................................................  37 
 
Table 3.  ANCOVA p-values for length of mineralized humerus (A) 

and femur (B) against total bone length  .............................................  40 
 

  



 ix 

LIST OF FIGURES 

Figure 1.  A character matrix comparing several eggshell characteristics 
of amniote groups over a cladogram depicting the evolutionary 
relationship of oviparous amniotes  ......................................................  3 

 
Figure 2.  Photograph of a peeled experimental egg  ........................................  15 
 
Figure 3.  Schematic drawing of an alligator egg  ..............................................  17 
 
Figure 4.  Graph of alligator embryonic wet mass (A and C) and yolk wet 

mass (B and D) against time  .............................................................  25 
 
Figure 5.  Lateral view of representative hatchlings from the control (top) 

and experimental (bottom) groups  ....................................................  27 
 
Figure 6.  Graph of alligator embryonic growth trajectories during incubation  

(A-D)  ..................................................................................................  29 
 
Figure 7.  Changes in eggshell thickness from the polar and equatorial  

regions of the control eggs during incubation  ...................................  32 
 
Figure 8.  Dry mass of ash mineral from yolk sacs from alligator embryos  
 (2012 season) against incubation time (post-shelling)  ......................  33 
 
Figure 9.  Graph of dry mass ash plotted against dry yolk with added linear 

regressions  ........................................................................................  34 
 
Figure 10.  Photographs of cleared and stained embryos from the  
   2012 season  ....................................................................................  36 
 
Figure 11.  Graph of mineralized bone plotted against total length  
   of humerus (A) and femur (B) with added linear regression  ...........  39 
 
Figure 12.  (A-D) Growth of experimental (n=29) and clutch-matched control 

  (n=24) alligator hatchlings from the 2013 season  ...........................  42 
 
Figure 13.  (A) Maximum voluntary bite force in three months-old alligator 
   hatchlings from control and experimental eggs  ...............................  45 
 
Figure 14.  Lateral view of (A) an experimental hatchling (body mass=35g) 
   and (B) control hatchling (body mass=59g) biting on a wooden 
   dowel  ...............................................................................................  46 
 



 x 

Figure 15.  Graph of hatchling femoral cross-sectional area (CSA), second 
   moment of area (Ix), and polar moment of inertia (J) plotted 
   against femur length with added linear regression (A-C)  ................  47 
 
Figure 16.  Cross-sectional view from the femoral mid-shaft of a control 
   hatchling (left) and experimental hatchling (right)  ...........................  48 
 
Figure 17.  Plot of femoral lacunar density from control (n=23) and 

  experimental (n=26) hatchlings  .......................................................  49 
 
Figure 18.  Graph of hatchling lower jaw cross-sectional area (CSA),  

  second moment of area (Ix) and polar moment of inertia (J)  
  plotted against jaw length with added linear regression (A-C)  ........  50 

 
Figure 19.  Cross-sectional view of a control (right) and experimental (left)  

  hatchling lower jaw taken from the middle of the dentary and  
  splenial bone  ...................................................................................  52 

 
 



 1 

CHAPTER ONE 

INTRODUCTION 

The Cleidoic Egg 

The vertebrate egg can be defined as cleidoic or non-cleidoic depending 

on the materials it exchanges with its environment. Needham (1931) defined the 

cleidoic egg as a closed box in which all of the nutrients needed for embryonic 

development are contained within and the embryo primarily exchanges 

respiratory gasses with the surrounding environment. In contrast, a non-cleidoic 

egg exchanges gases, water, and other molecules with its environment. The 

eggs of most oviparous amniotes are cleidoic and are generally composed of an 

outer eggshell (calcified to variable extent, depending on the species), inner 

fibrous shell membrane, and egg contents: embryo, albumen, and yolk (Stewart, 

1997). Monotremes are the only known extant mammals to lay eggs. The 

eggshell of the platypus, Ornithorhynchus anatinus, lacks a calcareous layer but 

has a thin shell membrane consisting of an inner basal layer, a middle rodlet 

layer, and an outer matrix layer (Hughes, 1984). 

The eggs of oviparous amniotes are different from those of fish and 

amphibian eggs, which consist of an outer jelly capsule, an inner vitelline 

membrane, perivitelline space and yolk (Packard and Seymour, 1997). The 

morphology of the amphibian egg requires that it be laid in or near water for the 

embryos to develop. Without a source of water, amphibian eggs will desiccate. 

The total size of the egg is limited due to the jelly capsule which needs to be thick 
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enough to support the egg but not so thick as to hinder diffusion of respiratory 

gases (Seymour and Bradford, 1995). The appearance of the eggshell allowed 

for limited water loss and helped free amniotes from being confined to reproduce 

near sources of water. The amniote extraembryonic membranes also 

compartmentalized various aspects of the egg contents. The embryo resides in 

the fluid filled amnion, most of the nutrients for development are stored in the 

yolk sac, waste products are stored in the allantois, and the chorioallantoic 

membrane (fusion of the chorion and allantois) facilitates gas exchange between 

the egg and the environment (Stewart, 1997). The eggshell itself not only 

protects the embryo from desiccation and mechanical damage but can also 

prevent pathogens from infecting the egg as seen in the eggs of mound building 

birds (D’Alba et al., 2014). Finally, the eggshell (along with the yolk sac) serves 

as a source of calcium for the developing embryo. 

The calcareous eggshell layer of oviparous reptiles varies in the degree of 

mineral content, the arrangement of mineral crystals, and nature of mineral itself. 

The eggshell is composed of an outer inorganic layer and an inner organic 

fibrous membrane with fiber orientation varying among species (Packard and 

DeMarco, 1991). Depending on the species, eggs can be divided into one of two 

main categories: (1) flexible eggs with little to moderate mineral content and (2) 

rigid eggs with high mineral content (Packard and Packard, 1980). Figure 1 

provides an overview of the following oviparous amniote eggshell characteristics. 

Among squamates (lizards and snakes) and archosaurs (crocodilians and birds), 
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the mineralized outer eggshell is mainly composed of calcium carbonate in the 

form of calcite, whereas in the chelonians (turtles, tortoises and terrapins) the 

eggshell is mainly in the form of aragonite, which is a less stable crystal 

polymorph of calcium carbonate (Packard et al., 1982). Tuatara are the sister 

lineage to squamates, but their flexible eggshell is a composite of calcite crystals 

embedded in the fibrous shell membrane (Cree et al., 1996). 

 

 

Figure 1. A character matrix comparing several eggshell 
characteristics of amniote groups over a cladogram depicting the 
evolutionary relationship of oviparous amniotes. Calcite and 
aragonite rows refer to the mineral state of calcium carbonate. A (+) 
symbol represents the characteristic is present in the oviparous 
amniote group and a (-) symbol represents the characteristic is 
absent. Depending on the species, some squamates and chelonians 
will lay flexible eggs while other species will lay rigid eggs. 

 
 
Squamates deposit eggs with flexible eggshells that contain little or no 

mineral content with the exception of two subfamilies of geckos 

(Sphaerodactylinae and Gekkoninae) that lay eggs with rigid eggshells (Packard 
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and Packard, 1988). In eggs of the six-lined racerunner lizard (Cnemidophorus 

sexlineatus), the eggshell seems to lack an outer mineral layer of calcite (Trauth 

and Fagerberg, 1984). Similarly, the eggshell of the snake Coluber constrictor 

also lacks a thin crust, but it does contain nodular calcite crystals dispersed 

throughout the outer eggshell layer (Packard et al., 1982). The green anole, 

Anolis carolinensis, lays eggs that possess a thin outer calcareous layer 

composed of an open network of calcite spheres (Packard et al., 1982). 

Depending on the species, chelonians lay eggs with varying degrees of 

mineralization, ranging from very flexible to rigid eggshells (Hirsch, 1983). The 

sea turtle, Lepidochelys kempii, deposits eggs with a thin calcareous layer. The 

shell unit that makes up the calcareous layer is described as a short and wide 

column that is slightly spaced from other units, allowing for some flexibility 

(Packard, 1999). The calcareous layer of the eggs of the snapping turtle, 

Chelydra serpentine, has shell units that are as wide as they are tall, and they 

are more closely arranged with some space in between groups of units (Hirsch, 

1983). This arrangement of shell units makes the egg moderately flexible. The 

softshell turtle, Trionyx spiniferus, produces eggs that have rigid, heavily 

mineralized eggshells. The shell units are much taller than they are wide and 

closely adjacent to each other (Packard and DeMarco, 1991). Thus, eggshell 

flexibility or rigidity is dependent on how closely arranged shell units are to one 

another (Packard and Demarco, 1991). 
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All species of extant archosaurs (birds and crocodilians) lay rigid eggs with 

heavily mineralized eggshells (Packard, 1994).  Bird eggshells have a highly 

conserved structure: a thin outermost non-calcified cuticle layer, a vertical crystal 

layer, the palisade layer, and the innermost mammillary layer immediately 

adjacent to the fibrous shell membrane. Each eggshell unit is a column with the 

palisade layer comprising the greatest portion of the eggshell thickness (Hincke 

et al., 2012). The tip of each mammilla is cone-shaped and is the site of calcium 

mobilization from the eggshell (Hincke et al., 2012). The mammillary layer is first 

formed from small organic cores within the fibrous shell membrane that then 

serve as nucleation sites for calcite crystal formation.  The outgrowth of the 

crystals forms the shell units (Packard and DeMarco, 1991). Air-filled vesicles are 

found in the palisade layer and their numbers can vary depending on the 

species. Thicker shells, like those seen in the eggs of the ostrich, Struthio 

camelus, have smaller numbers of vesicles. In contrast, thinner shells like those 

of the parrot, Agapornis roseicollis, have a larger number of vesicles (Board and 

Sparks, 1991). Also, thin eggshells have single, uninterrupted pore canals, 

whereas thicker eggshells may have pore canals that fork (Board and Sparks, 

1991). 

The structure of crocodilian eggshells is similar to that of birds in that it 

also includes an outer compact mineral layer, a middle palisade layer, and an 

innermost mammillary layer. Marzola et al. (2014) provides a description of 

eggshell characteristics for three extant crocodilian species: American alligator 
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(Alligator mississipiensis), Philippine crocodile (Crocodylus mindorensis), and 

Cuvier’s dwarf caiman (Paleosuchus palpebrosus). In the American alligator the 

eggshell is composed of wedge-shaped shell units. The surface layer of the 

eggshell is not smooth and is described as anastomotuberculate (wavy 

interconnecting ridges) followed by a compact crystal layer, a palisade layer, and 

a mammillary layer with conical tips. Vesicles are also present in the palisade 

layer as seen in bird eggshells (Ferguson, 1985). The shell units of the Philippine 

crocodile and Cuvier’s dwarf caiman are wedge-shaped with a wider top than 

bottom. The surface layer of both species is not smooth and is described as 

rugosocavate (golf ball-like appearance) followed by a compact crystal layer, a 

palisade layer, and a mammillary layer with conical tips. The formation of the 

mammillary layer is similar to that of birds with an organic core serving as a 

nucleation site and crystals forming and radiating outward to make each eggshell 

unit (Packard and DeMarco, 1991). 

Calcium Mobilization 

 It is clear that oviparous reptiles lay eggs with varying degrees of 

mineralization. However, reptilian eggs can be placed in one of two categories 

based on embryonic mode of calcium mobilization. Embryonic squamates rely 

mostly on yolk as their source of calcium, whereas chelonians and archosaurs 

main source of calcium derives from the eggshell (Packard, 1994). Embryonic 

lizards can sequester up to 60% of the calcium required for skeletal development 

from the yolk, and snakes can sequester more than 70% (Packard and Clark, 
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1996). In contrast, more than 70% of skeletal calcium derives from the eggshell 

in chelonians and archosaurs, with some archosaurs (such as the yellow-headed 

blackbird) mobilizing up to 90% of skeletal calcium from the eggshell (Packard 

and Clark, 1996). 

The two sources of calcium the embryo can utilize for skeletal 

development come from the eggshell and yolk. The embryonic tissues 

responsible for mobilizing and transporting calcium are the chorioallantoic 

membrane (CAM) and yolk sac membrane (Packard and Packard, 1984). The 

current model for transcellular calcium transport involves calcium channels on 

the apical surface, a calcium binding protein in the cytosol, and plasma 

membrane calcium ATPase (PMCA) on the basolateral surface (Hoenderop et 

al., 2005). Original work on calcium transport via the CAM or yolk sac was done 

mostly on embryonic birds, primarily galliform species (Tuan et al., 1991). 

Eggshell calcium is first solubilized by the enzymatic action of carbonic 

anhydrase, which acidifies the calcite in the mammillary tip. Carbonic anhydrase 

is primarily located in the villus cavity cells, one of two common chorionic cell 

types. Free calcium is bound to an apical calcium binding protein (transcalcin), 

and then absorbed via pinocytosis. The concentration of calcium inside the 

endosome is increased via the action of a PMCA imbedded in the endosome. As 

the endosome travels across the cell it is acidified internally which unbinds 

calcium from transcalcin. Eventually, the calcium rich vesicle fuses with the 

basolateral membrane and releases the calcium into the serosal space. The 
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calcium then enters the blood vessels, and is transported (presumably bound to 

a carrier protein) to the embryo and/or yolk sac (Tuan et al., 1991). 

It has been shown in chicken eggs that calcium is stored in the yolk in the 

form of spherocrystals composed of multilayered lecithin liposomes with vaterite 

crystals (a polymorph of CaCO3) in between the layers (Tong et. al, 2008). The 

exact mechanism for how calcium is mobilized by the yolk sac is not known. 

However, it is believed that the yolk sac endothelial cells absorb yolk via 

phagocytosis (Packard and Clark, 1996). Histological cross sections of 

embryonic chicken yolk sacs have shown vacuoles containing yolk material in 

endodermal epithelial cells (Tuan et al., 1991). The yolk material in the vacuoles 

is then digested and the contents are released into the vitelline circulation. It has 

been shown in bird embryos that yolk calcium mobilization is regulated by vitamin 

D3, which promotes the expression of a calcium binding protein (calbindin D28K). 

Calbindin D28K is found in the yolk sac endodermal cells and is believed to assist 

in transcellular transport of calcium (Tuan et al., 1991). Although calcium 

mobilization studies focused on bird embryos, the process of calcium 

mobilization is believed be similar in non-avian embryonic reptiles. For instance, 

calbindin D28K expression has been shown in CAM and yolk sac epithelial cells in 

the corn snake, Elaphe guttata (Ecay et al., 2004), as well as in the 

reproductively bimodal viviparous lizard Zootoca (former Lacerta) vivipara 

(Stewart et al., 2011). This suggests that calbindin D28K has been evolutionarily 
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conserved only in bird yolk sac endodermal cells, and transcalcin (found in the 

CAM) may possibly be unique to archosaurs. 

One way to categorize eggs of oviparous reptiles can be based on how 

embryos mobilize and utilize calcium. Packard (1994) reviewed the mode of 

calcium mobilization among oviparous reptiles. During incubation, squamates 

mobilize calcium from the yolk and virtually deplete it of calcium by the time they 

hatch, at which time they are entirely reliant on their diet for their calcium supply. 

The same pattern is observed among chelonians, despite notable differences in 

eggshell structure among clades (Packard and Packard, 1991). Archosaurs, 

however, mobilize egg calcium reserves in a different manner. During the 

differentiation phase, embryos mobilize calcium from the yolk. During growth 

phase, eggshell calcium is mobilized and yolk calcium stores are replenished 

(Packard and Packard, 1989). Thus, archosaur hatchlings have residual yolk with 

enough calcium that they are not initially reliant on their diet for their calcium 

needs. For example, it has been estimated that hatchling alligators can 

potentially rely on the energy stores in the residual yolk sac and body fats for 

more than four months (Fischer et al., 1991). Presumably, hatchlings can utilize 

the calcium stored in the residual yolk sac if prey are not available. 

Aims 

Packard and Seymour (1997) suggested that embryos from early 

oviparous reptiles that could not utilize the eggshell as a source of calcium would 

have hatched in a diminutive state compared to those that could have used the 
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eggshell. To date, no study has looked at the effects of removing the eggshell as 

a source of calcium in archosaur eggs. How the removal of the calcareous 

eggshell layer may affect embryonic skeletal development is not known. 

Therefore, this study aims to address the following questions:  

- Does removal of the calcareous eggshell layer reduce embryonic growth? 

- Does loss of eggshell calcium supply affect the onset of bone 

mineralization in embryos?  

- Does calcium mobilization occur evenly across the inner surface of the 

eggshell?  

- Do experimental hatchlings show compensatory growth?  

- Are maximum bite forces similar between experimental and control 

hatchlings?  

- Does eggshell removal affect cross-sectional geometric properties of the 

hatchling skeleton?  

To address these questions experimentally, I used eggs, embryos and 

hatchlings of the American alligator (Alligator mississipiensis Daudin 1801) as a 

non-traditional animal model. 

Animal Model 

 Prior studies on shell-less chicken egg cultures techniques have been 

done, however there are some drawbacks to this approach. First, the removal of 

the fibrous shell membrane requires cultures to be incubated in a sterile 

environment with increased humidity to minimize evaporative water loss. Second, 
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embryos must be rocked to redistribute fluids in the egg compartments and help 

promote embryonic growth. Third, mineral supplementation must be provided to 

help improve embryonic survivability (Dunn, 1991). Despite being of similar egg 

mass (55g for chicken and up to 70g in alligators), alligator eggs have a much 

thicker eggshell (~0.5mm) than chicken eggs (0.3-0.4mm) (Marzola et al., 2014; 

Hincke et al., 2012), and their wedge-shaped shell unit allows for less packed 

mammillary tips attached to the fibrous membrane compared to the more tightly 

packed tubular shell unit of the chicken egg. Alligator eggshells should be easier 

to physically peel by hand, which means a lower risk of rupturing the fibrous shell 

membrane and infecting the egg during experimental treatment. Also, alligator 

eggs do not need to be turned as do bird eggs. Furthermore, alligator embryos 

do not start to mobilize eggshell-bound calcium until around day 50 of incubation 

(Packard and Packard, 1989). This provides sufficient time to manually remove 

the entire eggshell before the embryo can begin to utilize it as a source of 

calcium for skeletal development. 

Hypotheses 

 H1: Removal of the calcareous eggshell layer during early stage of 

development (Ferguson stage 15) will reduce embryonic growth rate and 

produce diminutive hatchlings. 

 
H2: Removal of the calcareous eggshell layer will affect onset of bone 

mineralization in embryos. 
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H3: The eggshells of control specimens will have a decreasing but uniform 

thickness throughout the eggshell during incubation. 

 
H4: Experimental hatchlings will display compensatory growth with control 

hatchlings. 

 
H5: Voluntary maximal bite force of experimental hatchlings will be lower 

than that of similarly-sized control hatchlings. 

 
H6: Experimental hatchlings will have a reduced bone cross-sectional 

area, second moment of area, and polar moment of inertia in both the mandible 

and femur. 
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CHAPTER TWO 

MATERIALS AND METHODS 

 

Acquisition of Eggs and Care 

 Alligator eggs were acquired from the Rockefeller Wildlife Refuge in Grand 

Chenier, Louisiana. The dorsal side of each egg was longitudinally marked with a 

pencil, which indicated the correct orientation of the egg. Placing the egg in a 

different orientation can potentially kill the embryo. Clutches were placed in a 

large cooler, arranged in columns in damp VermiculiteTM and transported 

overnight via van to California State University San Bernardino (CSUSB). 

Immediately upon arrival at CSUSB, each clutch was wiped clean with a moist 

paper towel, transferred to a plastic container filled with VermiculiteTM, and 

placed in constant temperature cabinet (BINDER APT.lineTM KBW model E5.1, 

Tuttlingen, Germany). Incubation temperature was set to 30˚C (following 

methods of Owerkowicz et al., 2009), so as to ensure female embryos due to 

temperature-dependent sex determination (Deeming and Ferguson, 1989). Trays 

filled with water were also placed in the incubator to keep the relative humidity at 

100%. Eggs were sprayed as needed with tepid water, to maintain water 

potential of the incubating chambers. Egg viability was checked regularly (see 

below) and any dead eggs (assessed by smell, retraction of the CAM, and egg 

discoloration) were removed from the container. 
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Experimental Setup and Sampling 

 Experimental eggs had their calcareous eggshell physically peeled by 

hand, while control eggs were sham-handled but otherwise not altered. Using a 

pair of flat-tipped forceps, a small crack was made near one of the egg’s poles 

and from there the calcareous shell was flaked off in small pieces. Whenever the 

fibrous shell was punctured during the peeling process, a small piece of the 

calcareous shell was superglued to the punctured site. If the puncture was large 

and could not be sealed, the egg was discarded. At time 0 (time of peeling), 

embryonic developmental stage was back-calculated from staged control 

embryos collected during early sampling periods. Initial embryonic stage was 

determined to be stage 15 following the criteria established by Ferguson (1985). 

 For both experimental and control eggs, the edge of the CAM was marked 

on the eggshell and shell membrane with a pencil. Areas where the CAM 

underlies the fibrous shell membrane appeared white, whereas where it did not 

would appear grey in color (See Figure 2). These markings served as a visual 

reference of the embryo’s viability. If the embryo was alive, then the CAM 

advanced toward the poles past the initial pencil marks. If the embryo was dead, 

however, the CAM did not advance toward the poles past its initial labeled marks, 

and sometimes even retracted toward the equator. 
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Figure 2. Photograph of a peeled experimental 
egg. Red arrows are pointing to the edge 
(outlined with pencil) of the CAM. Areas where 
the CAM has spread will appear white, while 
areas without the CAM will appear grey in 
color. 

 
 
 Sampling of specimens occurred at weekly intervals, starting on the initial 

week of the shelling process and continuing until hatching. Embryos in ovo were 

anesthetized with IsofluraneTM for several minutes before embryos were 

removed. Experimental (n=6) and control (n=6) eggs were opened with a pair of 

scissors, so as to remove the dorsal half of the eggshell. The embryo and the 

yolk sac were carefully dissected out, lightly blotted with tissue paper, and their 

respective wet masses recorded (±0.1mg) on an analytical balance (OHAUSÒ 

Model No. AP110-0 Plus). Early stage embryos were quickly preserved in 10% 

neutral buffered formalin (NBF) while later stage (stage 20+) had their limb and 

tail skin incised longitudinally to allow for better infusion of NBF during fixation. 

Yolk sacs were placed in a 70°C drying oven for three days, or until their dry 

mass had ceased to decrease. They were stored in 50ml Falcon tubes at -20°C 
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until they were ready for ashing in a muffle furnace. The top and bottom halves of 

eggshells from control eggs were rinsed under tap water, blotted lightly with a 

paper towel, and air-dried, while the fibrous shell membrane of experimental 

eggs was discarded. 

Ashing 

Dried yolk sacs were placed in aluminum weighing boats and ashed in a 

muffle furnace (Barnstead Thermolyne 1400) at 600°C for three days. Dry 

mineral ash was weighed on the analytical balance (OHAUSÒ Model No. AP110-

0 Plus). 

Eggshell Measurements 

 The eggshell from control eggs was carefully removed with fine tipped 

forceps from the fibrous membrane. Eggshell thickness was measured with a dial 

caliper gauge (Mitutoyo 209-406, ±0.01mm scale interval) at six locations: both 

poles, and four sides around the equator (dorsal, ventral, and two lateral). Each 

region was labeled with a dotted pattern (Figure 3) before measuring so to avoid 

sampling the same area. A total of six measurements were taken from each 

region, and were then averaged. 

 



 17 

 

Figure 3. Schematic drawing of 
an alligator egg. Letters 
represent sampling areas 
around the egg with “D” 
depicting the dorsal side of the 
egg. The six measurements per 
sampling region are 
represented by the black dots 
(made with a black SharpieÒ 
marker) arranged in a 
pentagonal pattern with the 
sixth dot in the middle. 
 

 

Post-hatching Sampling 

 Some of the eggs (from three different clutches) in each treatment group 

(n=22 control and n=27 experimental) were incubated until hatching. Hatchlings 

had their growth monitored for two months. Each week the following 

measurements were taken: head length, head width, snout-vent length, and total 
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body length (after Deeming and Ferguson, 1989). Each treatment group was 

placed in separate plastic containers (n=10) and housed in the university 

vivarium. All treatment groups were fed gator chow (Lone StarÒ 50% alligator 

food with 3.25% calcium) twice a week. 

Bite-force Testing 

Voluntary bilateral bite force was also measured in three months-old 

hatchlings using a custom-built double-cantilever beam force transducer with 

steel bite plates built around a piezoelectric isometric force transducer (type 

9203, Kistler, Switzerland) connected to a charge amplifier (type 5595, Kistler, 

Switzerland). The metal biting surfaces of the plates were covered with thin 

leather strips to protect the animal’s teeth and provide a naturalistic surface to 

encourage high-effort biting. See Lappin and Jones (2014) for detailed 

information on the apparatus, its preparation for trials, and calibration. For each 

hatchling, the maximum voluntary bilateral bite force was measured in triplicate 

within a span of three minutes, and the maximum force was recorded. Core body 

temperature was 30±1°C, confirmed with a cloacal thermocouple. Additionally, 

hatchlings were video recorded (at 30 fps) using a Cannon EOS Rebel T3i digital 

camera. Using Image J (version 1.50e), still frames from the recordings were 

used to measure the lever arm distance between the quadratoangular jaw joint 

and the point of contact on the lower plate. Bite torque was calculated as a 

product of maximum bite force and lever arm. 
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Clearing and Staining 

 To determine the onset of mineralization of individual skeletal elements, 

embryonic specimens underwent a clearing and staining process with alizarin red 

and alcian blue. The following protocol was adapted from Song et al. (1995), 

Wassersug (1976) and Vickaryous and McLean (2011), with time per solution 

dependent on specimen size. 

 Depending on the developmental stage, specimens were skinned post-

cranially and eviscerated. Embryos from stage 23 and below were not skinned, 

but stage 24+ embryos and hatchlings were skinned to allow for better cartilage 

staining. Paraxial skin tracts on the dorsal aspect of the specimen, which later in 

ontogeny develop osteoderms (Seidel, 1979), were left intact. Table 1 

summarizes the amount of time each specimen spent in a solution during each 

step. After skinning, the specimens were washed in de-ionised water (de-I H2O) 

in order to remove formalin. Next, specimens were dehydrated using ethanol 

(EtOH) solutions of increasing concentration. Embryos were placed in 70%, 95%, 

100% and then another 100% EtOH. 

 After dehydration, specimens were placed in an Alcian Blue solution to 

stain for cartilage. Each solution was made with 160ml of 100% ethanol, 40ml of 

glacial acetic acid and 20mg of Alcian Blue 8GX. Embryos were then placed in a 

100% ethanol solution to fix the cartilage staining. Afterwards, specimens 

underwent rehydration using a series of EtOH solution of decreasing 

concentration (70%, 50%, 25% EtOH), and finally 100% de-I H2O. 
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Table 1. Summary of clearing and staining steps with the amount of time 
specimens will spend in each solution. 
Step Time 
 Early (stage 21-) Late (stage 22+) 
Washing 1 hour per wash overnight 
Dehydration 1 hour per wash 1-2 days 
Cartilage staining overnight 2-3 days 
Cartilage fixation overnight 2-3 days 
Rehydration 2 hours per wash 2 days 
Neutralization overnight 2-3 days 
Bleaching overnight 3-5 days 
Tissue digestion 1-2 hours 2-5 days 
Bone staining overnight 2-3 days 
Clearing 1 day per solution 2-4 days per solution 
 

 

After rehydration, specimens were placed in a saturated solution of 

sodium borate to prevent the loss of calcium during the bleaching process. Next, 

each bleaching solution contained 250ml of 0.5%KOH with 5 drops of 30% H2O2 

added daily until the specimen was bleached. Extent of bleaching was assessed 

visually by the lightening of cranial and dorsal dark skin pigment. Specimens 

were then transferred into a trypsin solution for muscle digestion. Each solution 

was made with 60ml of saturated sodium borate, 140ml of de-I H2O, and 2g of 

trypsin powder. Depending on the duration of muscle digestion, solutions were 

changed every two days until bones were clearly visible. 

After trypsin digestion, specimens were placed in an alizarin red S solution 

to stain the bones. 50mg of alizarin red S powder was added to a 200ml solution 

of 0.5% KOH. Specimens were next transferred into a series of 

0.5%KOH/glycerin 200ml clearing solutions. Embryos were transferred into a 3:1, 
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2:1, 1:1, 2:1, and 3:1 KOH/glycerin solution. Finally, specimens were stored in 

100% glycerin and imaged with a Cannon EOS Rebel T3i digital camera. The 

first appearance of the alizarin stain in individual cranial and post-cranial bones 

was recorded as indicative of ossification. 

Further, the humerus and the femur were imaged in lateral view at higher 

magnification. Their total lengths were measured in Image J (version 1.50e). The 

extent of ossification (stained with alizarin red S) was expressed as % of total 

bone length. 

Bone Histology 

 The left femur and the lower jaw of hatchlings were excised and 

dehydrated in a series (70-100%) of EtOH solutions. Specimens were then 

vacuum-pumped at -635 mmHg for two hours to allow proper infusion of ethanol. 

After dehydration, the femora and jaws were air-dried overnight and embedded in 

epoxy (Epo-TekÒ type 301, Epoxy Technology, Inc., Billerica, MA) and osteobed 

(Osteo-Bed Resin Solution A, Polysciences, Inc., Warrington, PA), respectively. 

Following polymerisation, three 1mm- thick serial sections were taken from the 

femoral midshaft on a low speed saw (Buehler IsoMetÒ Low Speed Saw). Three 

1mm-thick section were also taken from the caniniform tooth bearing region of 

the mandibular ramus. Sections were mounted on slides with epoxy, ground to 

approximately 100 μm thickness on a grinder-polisher (Buehler MetaservÒ 3000 

variable speed) and coverslipped with PermountTM. Slides were imaged under a 

zoom stereomicroscope (Nikon SMZ800) at 35-63x magnification. Non-osseous 
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tissue, including the marrow, periosteum, as well as any teeth, Meckel’s cartilage 

and mandibular nerve (in the lower jaw), was digitally removed in Adobe 

Photoshop CS6. Femoral cross-sections were orientated by using pre-marked 

dorsal and medial-anterior regions. Jaw cross-sections were orientated by 

placing the two dorsal edges of the tooth socket level. The cross-sectional area 

(CSA) of bone was measured and second moment of area (Ix), and polar 

moment of inertia (J), calculated using ImageJ software with MomentMacroJ 

v1.4B plugin. 

Data Analysis and Statistics 

 To assess whether there was an effect of experimental eggshell removal 

treatment on body mass and yolk mass, a one-way analysis of variance 

(ANOVA) was conducted for each independent time point. An ANOVA was 

conducted for each independent time point for all growth trajectories. An ANOVA 

was conducted on each independent time point for ash content. Eggshell 

thickness was tested with an ANOVA for each independent time point and a 

Tukey-Kramer HSD post-hoc was used to test for differences between regions. 

Femur and jaw cortical bone thickness were compared between experimental 

and control embryos/hatchling’s with a ANOVA. An analysis of covariance 

(ANCOVA), with treatment group as factor and individual bone length as 

covariate, was used to test for differences in geometric properties (e.g. I and J) of 

the femur and the lower jaw. Difference in mean lacunar density between 

experimental and control hatchlings was tested with a Wilcoxon ranked sums 
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test. A power regression line was used to best describe embryonic growth and a 

second-order polynomial regression line was used to best describe a decrease in 

yolk wet mass and ash mineral mass. A linear regression line was used for all 

other variables. A p-value of 0.05 was chosen to detect significance. 
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CHAPTER THREE 

RESULTS 

 

Embryo and Yolk Measurements 

2012 Season  

During the first seven days post-shelling (Ferguson stage 19), embryo wet 

mass was similar between both groups (Figure 4a). At 14 days (Ferguson stage 

21), however, experimental embryos were 13% smaller than control embryos 

(ANOVA, F1,10=8.177 P<0.01). The difference in wet mass continued to widen 

throughout incubation. At hatching, experimental alligators were 42% smaller 

than their control siblings (ANOVA, F1,27=79.526, P<0.0001, Figure 4a and Figure 

5).  Yolk sac wet mass was similar between both groups for the first 35 days 

post-shelling (Figure 4b). At 42 days (Ferguson early stage 28), yolk sacs of 

experimental embryos were 36% heavier than control yolk sacs (ANOVA, 

F1,10=20.751, P<0.001). The difference in wet mass continued to widen until 

hatching. At hatching, yolk sacs of experimental animals were 113% heavier than 

yolk sacs of control hatchlings (ANOVA, F1,27=26.597, P<0.0001). 
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A 

B 

Figure 4. Graph of alligator embryonic wet mass (A and C) and 
yolk wet mass (B and D) against time. Black symbols represent 
data from control eggs (with eggshell intact), and red symbols 
represent data from experimental eggs (with eggshell 
removed). Time 0 is the day of eggshell removal. Each pair of 
time points represents an average of eggs (n=6) from the same 
clutch; asterisks represent a significant difference (ANOVA, 
p<0.05). Different time points report data from different 
clutches. Least-square regression lines are based on power 
equations for embryo wet mass and second order polynomial 
equations for yolk wet mass. 
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C 

D 

Figure 4. (continued) Panels A and B are based on data from 
eggs collected in summer 2012, and panels C and D are from 
summer 2013. Significant difference in embryo wet mass is 
observed on day 14 and continues to increase throughout 
incubation (A, C). Control embryos grew at a faster rate than 
experimental embryos. B) Significant differences in yolk wet 
mass appear at day 35 (B) or 32 (D) post-shelling, and 
continue to increase until hatching, control yolk sacs are 
significantly lighter than experimental. 
 
 

D a y  p o s t-s h e llin g

E
m

b
ry

o
 w

e
t 

m
a

s
s

 (
g

)

0 1 0 2 0 3 0 4 0 5 0
0

1 0

2 0

3 0

4 0

5 0

6 0
C O N

E X P

*
*

*
*

*

*

* *

y =  -0 .3 8 5 3 x 1.485

R2=  0 .8 4 1

y =  -0 .3 5 0 5 x 0.8259

R2=  0 .6 9 8

D a y  p o s t-s h e llin g

Y
o

lk
 w

e
t 

m
a

s
s

 (
g

)

0 1 0 2 0 3 0 4 0 5 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0
C O N

E X P

y =  -0 .0 0 6 9 9 6 x 2 -  0 .4 3 3 8 x  +  3 4 .8 3

R2=  0 .9 3 6

y =  0 .0 0 8 2 5 9 x 2 -  0 .7 7 1 0  +  3 5 .7 0

R2=  0 .8 2 7

*

*

*

*



 27 

 

Figure 5. Lateral view of representative hatchlings from the 
control (top) and experimental (bottom) groups. Both animals 
are clutched-matched siblings. 
 
 

At seven days post-shelling, total body lengths of experimental embryos 

were similar to control embryos (Figure 6a). However, at 14 days post-shelling 

experimental embryos were 6% shorter than control embryos (ANOVA, 

F1,10=25.589, P<0.001). At hatching, experimental animals were 13% shorter 

than control animals (ANOVA, F1,20=35.143, P<0.0001). At seven days post-

shelling, the snout-vent lengths of experimental embryos were 6% shorter than 

2 cm 

2 cm 



 28 

control embryos (ANOVA, F1,10=7.629, P<0.05; Figure 6b). At hatching, the 

snout-vent length of experimental animals was 15% shorter than control animals 

(ANOVA, F1,20=76.181, P<0.0001). At seven days post-shelling, the head length 

of experimental embryos was 8% shorter than control embryos (ANOVA, 

F1,10=16.653, P<0.05; Figure 6c). At hatching, the head length of experimental 

animals was 11% shorter than control animals (ANOVA, F1,20=59.227, P<0.001). 

At seven days post-shelling, the head width of experimental embryos was similar 

to control embryos. However, at 14 days post-shelling experimental embryos 

were 4% shorter than control embryos (ANOVA, F1,10=13.234, P<0.01; Figure 

6d). At hatching, the head width of experimental animals was 17% shorter than 

control animals (ANOVA, F1,20=13.067, P<0.001). 
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A 

B 

Figure 6: Graph of alligator embryonic growth trajectories 
during incubation (A-D). Least-square regression lines are 
based power regression equations. Black symbols represent 
data from control eggs (with eggshell intact), and red symbols 
represent data from experimental eggs (with eggshell 
removed). Each pair of time points represents an average of 
eggs (n=6) from the same clutch; asterisks represents a 
significant difference (ANOVA, p<0.05). Different time points 
report data from different clutches. 
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C 

D 
Figure 6 (continued). All panels are based on data from eggs 
collected in summer 2012. A and C) No initial difference in 
growth was observed at 7 days post-shelling. Significant 
difference was first observed 14 days and persisted up to 
hatching. B and C) Significant difference was first observed at 
7 days post-shelling and persisted until hatching. 

 
 
2013 Season  

Eggs collected in the summer of 2013 were slightly older in development 

than those collected in the summer of 2012, however, the repeat experiment 

D a y  p o s t-s h e llin g

H
e

a
d

 le
n

g
th

 (
m

m
)

0 1 0 2 0 3 0 4 0 5 0 6 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

C O N

E X P

*

*

*
* * *

* *
* *y =  3 .4 6 9 x 0.5172

R2=  0 .9 8 6

y =  3 .9 7 0 x 0.4578

R2=  0 .9 7 0

D a y  p o s t-s h e llin g

H
e

a
d

 w
id

th
 (

m
m

)

0 1 0 2 0 3 0 4 0 5 0 6 0
0

5

1 0

1 5

2 0

2 5

C O N

E X P

*

*
*

* *
* *

*
*y =  1 .6 4 0 7 x 0.6531

R2=  0 .9 7 5

y =  2 .0 7 4 7 x 0.5543

R2=  0 .9 5 5



 31 

yielded similar results. For the first week post shelling (Ferguson early stage 22), 

embryos showed no difference in wet mass (Figure 4c). At 14 days post-shelling 

(Ferguson late stage 24) experimental embryos were 13% lighter (ANOVA, 

F1,10=11.983, P<0.01). The difference in wet mass continued to increase 

throughout incubation with experimental animals being 64% lighter than control 

animals at hatching (ANOVA, F1,9=52.419, P<0.0001). At 28 days post-shelling, 

there was no difference in yolk sac wet mass (Figure 4d). However, at 32 days 

post-shelling (Ferguson late stage 27) experimental yolk sac wet mass was 70% 

greater than control yolk sacs (ANOVA, F1,10=19.579, P<0.001). The difference in 

yolk wet mass continued to increase until hatching. At hatching, experimental 

animals had yolk sacs that averaged 112% heavier than those of control animals 

(ANOVA, F1,9=26.390, P<0.001). 

Eggshell Thickness 

 Measurements of control eggshells taken at time 0 of the experiment 

showed a significant difference (ANOVA, F3,8=11.553, P<0.01) in thickness 

among polar and equatorial regions (dorsal, ventral, and lateral), and that the 

poles were significantly thinner than the equator (Tukey-Kramer HSD, P<0.05). 

At time 0 (time of shelling), poles were 14% thinner than the equatorial regions 

(Figure 7). However, there was no significant difference among the equatorial 

regions. At hatching, poles were 26% thinner than the equator (ANOVA, 

F3,32=10.966, P<0.0001). Overall, there was a general decrease in eggshell 

thickness throughout incubation with the poles being consistently and 
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significantly thinner (Tukey-Kramer HSD post hoc test, P<0.05) than the equator 

(Figure 7). 

 

 

Figure 7. Changes in eggshell thickness from the polar and 
equatorial regions of the control eggs during incubation. At each 
time point, data represent average (n=6) values from the same 
clutch; different time points sample are from different clutches. 
Note that eggshell at the poles is significantly thinner than at the 
equator (ANOVA, p<0.05). There are no significant differences 
between three equatorial sites (ventral, lateral and dorsal). 
Further, eggshell thickness shows a steady decrease with 
duration of incubation at all sites (ANCOVA, p<0.05). Linear 
regression equation: y= -2.113x +383.1, R2= 0.732 (Poles); y=-
1.575x + 438.2, R2= 0.537 (Dorsal Eq.); y= -1.578x + 432.4, R2= 
0.538 (Lateral Eq.); y= -1.407x + 431.1, R2= 0.478 (Ventral Eq.). 

 
 

Yolk Ash Mineral Content 

 From seven to 35 days post-shelling, there was no difference in yolk ash 

mineral mass between treatment groups (Figure 8). However, a significant 

difference (ANOVA, F1,7 =6.681, P< 0.05) was first observed from samples taken 
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on day 42 post-shelling. Yolk sacs from experimental eggs contained 37% more 

mineral ash than that from the control eggs. This difference in mass continued up 

until hatching. At hatching, yolk sacs from experimental eggs contained 70% 

more mineral ash than that from the control eggs. Plotting ash mineral mass 

against dry yolk mass showed that ash mineral mass decreased with lower dry 

yolk mass (Figure 9). Dry yolk from experimental eggs had similar ash mineral 

mass compared to control eggs sampled between Ferguson stage 19 and late 

stage 25. From Ferguson stage 27 until hatching, however, dry yolk from 

experimental eggs had lower ash mineral mass than that from control eggs. 

 

 

Figure 8. Dry mass of ash mineral from yolk sacs from 
alligator embryos (2012 season) against incubation time 
(post-shelling). Black symbols represent data from control 
animals and red symbols represent data from experimental 
animals. Least-square regression lines are based on 
second order polynomial equations. Each pair of time 
points represents an average of ashed yolk sacs (n=6) 
from the same clutch. An asterisk represents a significant 
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difference (ANOVA, p<0.05). A significant difference is first 
observed at 42 days post-shelling, with experimental yolks 
sacs containing greater mass mineral, and increasing 
toward time of hatching (56 days). 
 

 
 

 
Figure 9. Graph of dry mass ash plotted against dry yolk 
with added linear regressions. Black symbols represent 
data from control animals and red symbols represent data 
from experimental animals. Data points from the upper 
right hand region of the graph represent yolk taken at early 
incubation. Data points from the lower left hand region 
represent yolk taken during late incubation and hatching. 
There is a significant difference (ANCOVA, p<0.0001) for 
amount of ash mineral over dry yolk between experimental 
and control yolk ash as represented in the lower left-hand 
corner. 

 

 

Progression of Skeletal Mineralization 

No visible mineralization of bone (stained with alizarin red S) was 

observed at seven days post-shelling (Ferguson stage 19) in either experimental 

or control embryos (Figure 10a and 10b). At 14 days post-shelling (Ferguson 
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stage 21), parts of the cranium and lower jaw began to mineralize in both 

experimental and control embryos (See Table 2 for the list of visibly ossified 

bones). In addition, the mid-shafts of the long bones of the limbs began to 

mineralize (Figure 10c and 10d). At 21 days post-shelling (Ferguson stage 23), 

the mineralization of the cranium continued to proceed along with both jaws. 

Teeth were now mineralized in both experimental and control embryos. At this 

stage the vertebral column, specifically the centra, began to mineralize except for 

the distal caudal vertebrae (Figure 10e and 10f). Mineralization of the pectoral 

girdle, pelvic girdle, ribs, metacarpals, and metatarsals had also commenced. 

Furthermore, by day 21, gastralia had appeared in both experimental and control 

embryos. 

At 28 days post-shelling (Ferguson late stage 24), most of the caudal 

vertebral centra had been mineralized. Neural spines in the cervical region also 

began to mineralize but were not observed in other regions of the vertebral 

column. Mineralization of the phalanges (manual and pedal) began in both 

experimental and control embryos (Figure 10g and 10h). At 33 days post-shelling 

(Ferguson early stage 25), the vertebral zygapophyses began to mineralize in the 

thoracic region. The radiale and ulnare were now visible in both experimental and 

control embryos (Figure 10i and 10j). At 35 days post-shelling (Ferguson late 

stage 25), the thoracic transverse processes began to mineralize along with the 

lumbar zygapopheses. The calcaneum was also visible in both experimental and 

control embryos (Figure 10k and 10l).  
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Figure 10. Photographs of cleared and stained embryos from the 2012 season. 
Panels A, C, E, G, I, K, M, O, and Q are control animals. Panels B, D, F, H, J, 
L, N, P, and R show experimental animals. Bone was stained red and cartilage 
was stained blue. Embryos from panels A and B are at stage 19. Embryos from 
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panels C and D are at stage 21. Embryos from panels E and F are at stage 23. 
Embryos from panels G and H are at late stage 24. Embryos from panels I and 
J are at early stage 25. Embryos from panels K and L are at late stage 25. 
Embryos from panels M and N are at stage 27. Embryos from panels O and P 
are at late stage 28. Panels Q and R show hatchlings. All red scale bars are 
10mm long. Note that bone does not begin to mineralize until stage 21. From 
stage 21 onwards, time of bone mineralization in experimental embryos is the 
same as for control embryos. 
 
 
Table 2. Table describing the embryological stage during which different 
mineralized bones were observed. Time of bone mineralization in experimental 
animals was the same as for control animals (see Fig. 10 for visual comparison). 
The appearance of carpalia (wrist bones) was only observed in control hatchlings 
and not in experimental hatchlings. 

Embryonic Stage Mineralized Bone 
19 None 

21 

angular jugal pterygoid 
dentary maxilla radius 
femur oticcapsule splenial 
fibula postorbital surangular 
frontal prefrontal tibia 

 humerus premaxilla ulna 

23 

basi-occipital lacrimal ribs 
caudal centrum lumbar centrum scapula 
cervical centrum metacarpal squamosal 
coracoid metatarsal sternum 
gastralia nasal teeth 
hyoid parietal temporal 
ilium phalange (pes) thoracic centrum 

 interclavical quadrate  
 ishium quadratojugal  
 cervical neural spine phalange (manus) 

Late 24 cervical ribs pubis 

Early 25 radiale  ulnare 
thoracic zygapophyses  

Late 25 calcaneum thoracic transverse process 
lumbar zygapophyses 

27 
astragalus  lumbar neural spine 
caudal chevron thoracic neural spine 
caudal zygapophyses pisiforme 

Late 28 caudal neural spine  
Hatchling carpalia (only in controls)  
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At 44 days post-shelling (Ferguson stage 27) the last remaining caudal 

vertebral centra had finished mineralizing. The thoracic and lumbar neural spines 

and caudal zygapophyses were now visible. Caudal chevrons also began to 

appear in the first half of the tail. Additionally, the pisiforme and astragalus were 

now visible in the manus and pes of both experimental and control embryos, 

respectively (Figure 10m and 10n). At 47 days post-shelling (Ferguson late stage 

28) caudal neural spines began to form (Figure 10o and 10p). At hatching, the 

appearance of a carpal bone was observed in control specimens but not in 

experimental specimens (Figure 10q and 10r).  

Using total humeral length as covariate, length of the mineralized humerus 

in experimental embryos was significantly greater (ANCOVA, F3,80 =1596.738, 

P<0.0001) than in control embryos (Figure 11a). Similarly, length of the 

mineralized femur in experimental embryos was also significantly (ANCOVA, 

F3,80=1149.924, P<0.0001) greater than in control embryos when plotted against 

total femoral length (Figure 11b). Plotting separate time points showed a 

significant difference (ANCOVA, F3,8=11.374, P<0.05) in total humerus length at 

33 days post-shelling between experimental (n=6) and control (n=6) embryos 

and continued until hatching (Table 3A). However, treatment group had no 

significant effect for all sample points. A significant difference (ANCOVA, P< 

0.05) in total femoral length was seen in only 28, 35, 47 and 53 days post-
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shelling between experimental (n=6) and control (n=6) embryos (Table 3B). 

Treatment group did not show a significant effect after 21 days post-shelling. 

 

A

B 

Figure 11. Graph of mineralized bone plotted against total 
length of humerus (A) and femur (B) with added linear 
regression. Black symbols represent data from control 
animals and red symbols represent data from experimental 
animals. A and B) For similar length of total bone, 
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experimental animals show a significantly (ANCOVA, 
p<0.0001) higher proportion of mineralized bone than 
control animals. 
 
 

Table 3. ANCOVA p-values for length of mineralized humerus (A) 
and femur (B) against total bone length. Each sample point 
represents a different clutch and an n=6 for control and n=6 for 
experimental embryos. A) Group effect had no significant 
difference on length of mineralized humerus. B) Group effect had 
a significant difference on 21 days-post shelling but afterwards no 
difference was found. 

  p-Value 
Days post-

shelling Total humerus length  Group Interaction 
21 0.09966 0.10487 0.35908 
28 0.1009 0.27551 0.73394 
33 0.0132 0.25818 0.11132 
35 0.01304 0.85909 0.53564 
44 0.03792 0.53103 0.19319 
47 0.00072 0.2993 0.42334 
53 0.00589 0.21719 0.25743 

A 
 

  p-Value 
Days post-

shelling Total femur length  Group Interaction 
21 0.19624 0.00265 0.55657 
28 0.00743 0.59868 0.02384 
33 0.16733 0.82744 0.68219 
35 0.00133 0.20280 0.00705 
44 0.25341 0.63780 0.85107 
47 0.00011 0.36572 0.41855 
53 0.03714 0.20602 0.94324 

B 
 
 

Post-hatching Growth 

 At hatching, total length of experimental animals was on average 7% 

shorter than of control hatchlings (Figure 12a). This difference in length 

decreased slightly (6%) by day 56. Average growth rate of total length for 
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experimental and control hatchlings was 0.406 mm/day and 0.388 mm/day, 

respectively. The initial snout-vent length of experimental hatchlings was on 

average 6% shorter than control hatchlings and then decreased to 5% by day 56 

(Figure 12b). Average growth rate of snout-vent length for experimental and 

control hatchlings was 0.222 mm/day and 0.223 mm/day, respectively. The initial 

head length of experimental hatchlings was on average 6% shorter than control 

hatchlings and then decreased to a 4% difference by day 56 (Figure 12c). 

Average growth rate of head length for experimental and control hatchlings was 

0.077 mm/day and 0.067 mm/day, respectively. Finally, the initial head width of 

experimental hatchlings was on average 9% shorter than control hatchlings 

which then decreased to a 6% difference by day 56 (Figure 12d). Average growth 

rate of head width in experimental and control hatchlings was 0.047 mm/day and 

0.038 mm/day, respectively. Overall, the growth trajectories were parallel and 

body dimensions between treatment groups maintained a significant difference 

(ANOVA, p<0.01) in length with an average growth rate of 1% per week for all 

measured variables in both experimental and control hatchlings (Figure 12).



 42 

A

B 

Figure 12. (A-D) Growth of experimental (n=29) and 
clutch-matched control (n=24) alligator hatchlings from 
the 2013 season. 
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C

D 

Figure 12 (continued). Data points are mean values, 
and errors bars are s.e.m. A significant difference 
(ANOVA, p<0.05) between groups is seen throughout 
the post-hatching measuring period. Experimental 
alligators did not exhibit compensatory post-hatching 
growth, despite an ad libitum diet. 
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Biomechanic Performance 

Maximal voluntary bite force in experimental hatchlings was 81% lower 

than in control hatchlings (ANOVA, F1,30=21.333, P<0.001; Figure 13a). 

Maximum bite torque (calculated as maximum bite force x lever arm) revealed 

that most experimental alligators produced significantly lower torque than similar-

sized control alligators (ANCOVA, F3,28=12.823, P<0.001; Figure 13b). Videos of 

voluntary biting also revealed that most experimental hatchlings had relatively 

compliant lower jaws (Figure 14). Upon biting, the lower jaw of experimental 

hatchlings deformed near the suture of the dentary and post-dentary bones. 

Similar deformation was not seen in control hatchlings.
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A 

B 

Figure 13. (A) Maximum voluntary bite force in three months-old alligator 
hatchlings from control and experimental eggs. Bars are mean, whiskers are 
s.e.m. Experimental animals generated an 81% lower bite force than controls 
(ANOVA, p<0.001). (B) Maximum bite torque (=bite force x lever arm) in the 
same two groups of alligators. Most experimental animals produced significantly 
lower torque than similar-sized controls (ANCOVA, head length p<0.001).
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A   B 
Figure 14. Lateral view of (A) an experimental hatchling (body mass=35g) and 
(B) control hatchling (body mass=59g) biting on a wooden dowel. Both hatchlings 
are age- and clutch-matched.  The red arrow points to a pronounced flexion in 
the lower jaw of the experimental hatchling, but is not noticeable in the control 
animal. 
 
 

Histology 

Experimental hatchlings had a significantly (19%) smaller cross-sectional 

area (CSA) of the femoral diaphysis than control animals (ANCOVA, 

F3,44=91.776, P=0.001; Figure 15a and Figure 16). Similarly, the second moment 

of area about the x-axis (Ix) (ANCOVA, F3,44=98.846, P<0.02) and the polar 

moment of inertia (J) (ANCOVA, F3,44=36.095, P<0.02) were also lower in 

experimental hatchlings (Figure 15b and 15c). Mean lacunar density of 

experimental hatchlings was significantly lower by 21% than control hatchlings 

(Wilcoxon ranked sums test, p<0.05; Figure 17).  

Lower jaw CSA of experimental hatchlings was significantly lower (20%) 

than in control hatchlings (ANCOVA, F3,45 =91.638, P<0.01; Figure 18a and 

Figure 19). However, lower jaw Ix and J reveal that there was no significant 

difference between treatment groups (ANCOVA, p>0.05; Figure 18b and 18c), 
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although Ix approaches significance (p=0.075). In contrast to control animals, 

most experimental hatchlings had large vascular spaces within the alveolar bone 

of the dentary (Figure 19). 

 

A 

B 

Figure 15. Graph of hatchling femoral cross-sectional 
area (CSA), second moment of area (Ix), and polar 
moment of inertia (J) plotted against femur length with 
added linear regression (A-C). 

F e m u r ln g th  (m m )

F
e

m
u

r 
C

S
A

 (
m

m
2

)

1 6 1 8 2 0 2 2 2 4 2 6
0 .0

0 .5

1 .0

1 .5

2 .0

C O N

E X P

y =  0 .1 1 9 8 x  -  1 0 9 8

R2=  0 .7 7 2

y =  0 .1 4 0 9 x  -  2 .0 2 4

R2=  0 .8 6 7

F e m u r le n g th  (m m )

F
em

u
r 

Ix
 (

m
m

4
)

1 6 1 8 2 0 2 2 2 4 2 6
0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

C O N

E X P

y =  0 .0 4 7 6 8 x  -  0 .6 8 3 9

R2=  0 .7 6 6

y =  0 .0 5 1 6 6 x  -  0 .7 9 7 9

R2=  0 .8 9 5



 48 

C 
Figure 15 (continued). Black symbols represent data 
from control hatchlings and red symbols represents 
data from experimental hatchlings. A) Experimental 
hatchlings had significantly smaller CSA than controls 
(ANCOVA, p=0.001). B) Ix of experimental hatchlings 
was significantly lower than control hatchlings 
(ANCOVA, p<0.02). C) J of experimental hatchlings 
was significantly lower than control animals (ANCOVA, 
P<0.02). 

 
 

 
Figure 16. Cross-sectional view from the femoral mid-shaft of a 
control hatchling (left) and experimental hatchling (right). Cross-
sections are from clutch-matched hatchlings with similar femoral 
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length. Note the difference in cortical thickness with experimental 
(right) being thinner than control (left). 
 
 
 

 
Figure 17. Plot of femoral lacunar density from 
control (n=23) and experimental (n=26) 
hatchlings. Black symbols represent control 
animals and red symbols represent 
experimental animals. Horizontal colored lines 
represent the mean value. Mean lacunar 
density from experimental animals was 
significantly lower than mean lacunar density of 
control animals (Wilcoxon ranked sums test, 
p<0.05). 
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A 

B 
Figure 18. Graph of hatchling lower jaw cross-
sectional area (CSA), second moment of area (Ix) and 
polar moment of inertia (J) plotted against jaw length 
with added linear regression (A-C). Black symbols 
represent data from control hatchlings and red 
symbols represent data from experimental hatchlings. 
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C 
Figure 18 (continued). A) Experimental hatchling 
jaw CSA was significantly smaller than controls 
(ANCOVA, p=0.011). B and C) No significant 
difference in Ix and J between control and 
experimental animals (ANCOVA, p=0.075 and 
p>0.05, respectively). 

 
 
 
 
 
 
 
 
 
 

J a w  le n g th  (m m )

J
a

w
 J

 (
m

m
4

)

3 0 3 5 4 0 4 5 5 0 5 5
0

1

2

3

4

5

6

7

C O N

E X P

y =  0 .2 5 0 3 x  -  7 .8 4 1

R2=  0 .8 5 3

y =  0 .2 9 5 7 x  -  1 0 .0 4

R2=  0 .8 2 7



 52 

 
Figure 19. Cross-sectional view of a control (right) and 
experimental (left) hatchling lower jaw taken from the middle 
of the dentary and splenial bone. Cross-sections are from 
clutch-matched siblings with equal jaw lengths. Note that the 
dentary bone from the experimental hatchling contains large 
vascular spaces as indicated by the red arrows. Vascular 
spaces in jaws from control hatchlings were much less 
prominent 
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CHAPTER FOUR 

DISCUSSION 

 

 Despite experimental removal of the calcareous eggshell, embryos of the 

American alligator were able to develop and grow to hatching. Absence of the 

calcium reservoir resulted in significantly reduced embryonic growth, which 

produced diminutive hatchlings compared to clutch-matched control animals. 

This suggests that at the time of peeling (Ferguson stage 15) the calcareous 

layer there is sufficient calcium reserves in the yolk sac for skeletogenesis. My 

experimental results support the hypothesis by Packard & Seymour (1997) that 

loss of calcium source (the eggshell) constrains embryonic growth rate and leads 

to diminutive hatchlings. The reduction in growth explains the consistently 

heavier yolk sacs in experimental hatchlings during incubation after eggshell 

removal (Figure 4b and 4d). Owerkowicz et al. (2009) reports a similar 

observation with their hypoxic incubated hatchling alligators having large 

internalized yolk sacs. They posit that the low oxygen concentration reduces 

embryonic metabolic rate and therefore the embryos cannot catabolize yolk 

material to the same extent as normoxic incubated embryos. In my study, 

metabolic rate was not measured and as to why experimental embryos did not 

just deplete the yolk sac of calcium for normal skeletal growth remains to be 

further investigated. Although experimental embryos had more yolk ash mineral 

mass towards the end of incubation (Figure 8), when taken as proportion of total 
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dry yolk mass, experimental embryos have significantly lower ash mineral 

content than controls (Figure 9), i.e., lower mineral concentration. This is 

consistent with Packard’s (1994) observation that alligator embryos mobilize 

eggshell calcium into the yolk sac towards the end of incubation. 

Measurements taken from eggshells show a general decrease in 

thickness. Thickness at the poles is significantly lower than at the equator 

throughout incubation (Figure 7). The linear regression equation for the poles 

shows that the polar regions decrease faster than the equatorial regions. This is 

counterintuitive since the chorioallantoic membrane (CAM) spreads from the 

equatorial region to the polar region, and therefore should mobilize more calcium 

from the equatorial region of the egg. Whether there is a disproportion of calcium 

transport pumps around the CAM remains to be investigated. Therefore, these 

result reject the hypothesis that eggshell thickness decreases uniformly 

throughout the egg. Furthermore, this observation is different from that of chicken 

eggs whereby the poles are thicker than the equator (Tyler and Geake, 1965). 

Generally, bird eggs have one pole that is narrower than the other which helps 

prevent it from rolling out of the nest (Smart, 1991). Additionally, most birds 

incubate their eggs by sitting on them. These eggs can resist more mechanical 

loading across the long axis (pole-to-pole) than the equator (Hahn et al., 2017). 

In contrast, alligator eggs are elliptical and are deposited on top of each other in 

a mound of vegetation (Ferguson, 1985). Having a thicker eggshell around the 

equatorial region may help prevent the eggs from mechanical damage when 
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being deposited. Megapode birds are the only known birds to incubate their eggs 

in a similar manner to crocodilians. Most eggs of megapode birds have an 

elliptical shape and all eggs are incubated in mounds of vegetation or sand 

(Jones et al., 1995). Compared to similar sized eggs from other bird species, 

megapode eggshell is 31% thinner (Booth and Thompson, 1991). Unlike 

crocodilians, megapode birds do not lay their eggs simultaneously but rather 

individually over the span of their breeding period (Seymour and Akerman, 

1980). Therefore, megapode eggs may not experience much mechanical 

damage regardless of having a thin eggshell when deposited in the nest. 

The series of cleared and stained embryos from the 2012 summer season 

reveal that removal of the calcareous eggshell did not affect the onset of bone 

mineralization in experimental embryos. These results reject the hypothesis that 

eggshell removal delays onset of bone mineralization. No bone is observed to 

have started mineralizing by stage 19 (Figures 10a and 10b). In contrast to my 

results, Rieppel (1993) reported that some bones of the alligator dermatocranium 

(e.g. pterygoid) begin to mineralize as early as stage 18. Dermal bones such as 

the pre-maxilla, maxilla, and dentary begin to mineralize during stage 19. 

Additionally, the mid-diaphysis of the stylopodium and zeugopodium also start to 

mineralize during stage 19 (Rieppel, 1993). In contrast to Rieppel’s (1993) study, 

Vickaryous and Hall (2008) show that most bones of the alligator 

dermatocranium mineralize a stage earlier than what was previously known. For 

example, the pterygoid is seen to start mineralizing at stage 17. The surangular 
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and lacrimal are the only bones shown to mineralize at the same stage as 

reported in Rieppel’s (1993) study. 

In this study, mineralization of these same bones are observed by stage 

21 in both experimental and control embryos (Figure 10c and 10d). It is possible 

that mineralization of these bones would have been observed during early stage 

20 but no embryos were sampled at that stage. The remaining post-cranial 

skeleton is mineralized in subsequent embryonic stages. The only difference in 

time of bone mineralization is observed at hatching, when carpal bones show 

mineralization in control animals but not in experimental animals. Presumably 

experimental animals would have mineralized this bone a little later after 

hatching. One possible explanation as to why bone mineralization is seen later 

than what is previously reported may be due to staining with Alcian blue. 

Vickaryous and Hall (2008) stated that their specimens stained better for Alizarin 

red when Alcian blue was omitted. The glacial acetic acid found in the Alcian blue 

solution may serve as source of decalcification. In both this study and Rieppel’s 

(1998) study, all specimens underwent double staining with Alizarin red and 

Alcian blue. In this study, all specimens were first stained with Alcian blue and 

then later stained with Alizarin red. 

During the latter half of incubation, experimental embryos have 

significantly shorter humeri and femora than control embryos (See Appendix A). 

Despite lacking the calcareous eggshell, experimental embryos are able to 

mineralize similar proportion of their bones compared to control embryos. At 
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hatching (53 days post-shelling), experimental alligators have on average 88% of 

their humerus and 90% of their femur mineralized, compared to control alligators 

which have on average 90% of their humerus and 92% of their femur 

mineralized. However, the difference in percentage between experimental and 

control hatchlings is not significant for percent-mineralized humerus (ANOVA, 

F1,10 = 4.7468, P>0.05) and percent-mineralized femur (ANOVA, F1,10 =0.1114, 

P>0.05). This would suggest that timing of mineralization is under genetic control. 

Furthermore, whether this slight difference results in biomechanic and 

behavioural differences remains to be studied. 

Packard and Seymour (1997) suggested that embryos which are denied 

access to eggshell calcium will hatch smaller in size than those that can utilize 

eggshell calcium. This prediction is supported by the results of this study. 

Furthermore, experimental hatchlings in this study did not show compensatory 

growth by the end of a two-month post-hatching period (Figure 12), which allows 

me to reject the hypothesis that experimental hatchlings will match control 

hatchlings in size. Over the span of two months, both treatment groups grew an 

average of 1% per week for all measured variables. This same rate of growth 

may explain why experimental hatchlings remained consistently smaller 

throughout the experiment. A 56-day growth period of normoxic hatchling 

alligators from Owerkowicz et al. (2009) reported a two to three times faster 

growth rate for total length, snout-vent length, head length, and head width than 

hatchlings from this study (See Appendix B). This considerable difference in 
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growth rate may be due in part to the feeding schedule and type of food 

hatchlings received in both experiments. Hatchlings in this study were fed 

crushed pellets (Lone StarÒ alligator food) twice a week. In contrast, hatchlings 

from Owerkowicz et al. (2009) were fed lean ground beef sprinkled with 

powdered mineral/vitamin every other day. Having access to food more 

frequently may have allowed the normoxic hatchlings to grow faster. 

Bite forces in Alligator mississippiensis had been shown to scale with 

positive allometry with respect to increasing body size (Erickson et al., 2003). In 

this study, maximal bite force for experimental hatchlings is 81% lower than max 

bite force from controls. Therefore, these results support the hypothesis that 

experimental hatchlings will produce a weaker bite force than controls. Using the 

linear regression equation y=2.75x+(-0.65) from the Erickson et al. (2003) study 

provides the predicted bite force (N) for a given head length (mm). No significant 

difference (ANOVA, p=0.1445, F-ratio= 2.2371) is shown when comparing actual 

bite force versus predicted bite force in control hatchlings. In contrast, 

experimental hatchlings produce a significantly lower (ANOVA, p=0.0016, F-

ratio=12.4598) bite force than what is predicted for a given head length. 

Interestingly, most experimental hatchlings have flexible lower jaws, which may 

suggest that their lower jaw is not yet mineralized to the same extent as that of 

control animals. Having a flexible lower jaw would have reduced maximal biting 

torque of experimental hatchlings. Ventral flexion of the lower jaw was not 

observed in control hatchings, and I have not been able to quantify stiffness of 



 59 

the mandible. Erickson et al. (2003) reported flexion on the balancing side of the 

lower jaw in wild hatchling alligators during voluntary biting of a force transducer. 

These hatchling alligators, however, were biting the force transducer unilaterally. 

Hatchlings in this study bit the force transducer bilaterally and no flexion is 

observed besides that in the post-dentary region of the lower jaw of experimental 

hatchlings. In the wild, the main diet of hatchlings consists of insects and small 

fish (Dodson, 1975). An experimental hatchling from this study may find it difficult 

to successfully capture prey due to its reduced bite-force capability and flexible 

lower jaw. 

Histological cross-sections taken from the middle of their lower jaw reveal 

experimental hatchlings have a reduced cross-sectional area (CSA) with large 

vascular spaces in the dentary bone. This may be another reason why 

experimental hatchlings could not produce stronger bite forces. No difference in 

Ix and J is observed between experimental and control hatchlings. Both Ix and J 

are a function of the cross-sectional area and its distribution around the neutral 

axis (Vogel, 2003). However, the theoretical location (calculated by Image J) of 

the neutral axis may be different from its actual location in the jaw, which varies 

with magnitude and orientation of forces acting on it during dynamic biting. It is 

possible that the distribution of material in the lower jaw of experimental 

hatchlings may have slightly shifted during the embedding process or grinding of 

the slide, thereby increasing bone distribution from the neutral axis in cross-

section, and thus artificially augmenting Ix and J. This may be a reason why no 
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significant difference is observed in Ix and J between experimental and control 

hatchlings. 

Cross-sections taken from the mid-diaphysis of hatchling femora also 

reveal that experimental CSA is significantly reduced compared to controls 

(Figure 15a). In contrast to the Ix and J of the lower jaw, experimental hatchlings 

had a significantly reduced femoral Ix and J compared to control hatchlings 

(Figure 15b and 15c). This suggest that the femora of control hatchlings have a 

higher resistance to bending and torsion. These results partially (with exception 

to Ix and J of the lower jaw) support the hypothesis that experimental hatchlings 

will have a reduced CSA, Ix and J compared to control hatchlings. How this 

affects actual bone mechanical performance (e.g. mechanical failure) remains to 

be tested. 

When looking at mean lacunar density, experimental hatchlings have a 

21% lower concentration of lacunae than controls (Figure 17). In compact bone, 

osteoblast can lay down concentric layers of bone in the form of lamellae. As the 

osteoblast continue to lay successive layers of lamellae they become trapped in 

spaces called lacunae (Wheater et al., 1987). A reduced number of lacunae may 

indicate a reduction of mineral density. Whether femoral mineral density in 

experimental hatchlings is lower than in similarly-size control animals remains to 

be determined. 

The results of this project support the overall hypothesis that removal of 

the calcareous eggshell would produce small hatchlings with reduced 
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biomechanic performance. The results suggest that eggshell calcium is important 

for proper embryonic growth in the American alligator, but sufficient calcium 

reserves are found in the yolk. The evolution of the calcareous eggshell not only 

serves as a protective barrier against desiccation and infection, but also as an 

essential source of calcium for producing a large hatchling with a well-

mineralised skeleton. 
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APPENDIX A 

AVERAGE LENGTH OF TOTAL BONE AND MINERALIZED BONE 
FOR HUMERI (A) AND FEMORA (B) DURING EACH TIME POINT 
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Table 4. Average length of total bone and mineralized bone for humeri (A) and 
femora (B) during each time point. A different clutch of eggs (experimental=6 and 
control=6) was sampled at each time point. 

A  
  Average total humerus 

length (mm) 
  Average mineralized 

length (mm)    
Days 
post-

shelling 

       

Control Experimental   Control Experimental 
21 7.39 7.22  3.53 3.79 
28 10.35 9.58  7.16 7.03 
33 10.80 9.97  7.99 7.26 
35 12.07 11.14  9.82 9.00 
44 14.39 13.25  12.81 11.58 
47 16.44 13.36  14.62 12.29 
53 16.11 14.04   14.50 12.29 

 
B 

  Average total femur 
length (mm) 

  Average mineralized 
length (mm)    

Days 
post-

shelling 

     

Control Experimental   Control Experimental 
21 8.30 7.96  4.06 4.59 
28 11.48 10.56  8.23 7.64 
33 12.22 11.21  8.65 8.08 
35 12.94 12.42  10.49 9.69 
44 15.97 15.03  13.75 12.53 
47 17.22 14.26  15.71 13.23 
53 17.30 14.83   15.90 13.28 
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APPENDIX B 

COMPARISON OF GROWTH RATES FROM EXPERIMENTAL 
AND CONTROL HATCHLINGS TO A 56-DAY GROWTH PERIOD OF 

HATCHLING ALLIGATORS RAISED UNDER NORMAL OXYGEN CONDITION 
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Table 5. Comparison of growth rates from experimental and control hatchlings to 
a 56-day growth period of hatchling alligators raised under normal oxygen 
condition. (*) Data on growth measurements for the same post-hatching period 
was acquired with permission from Owerkowicz et al. (2009). Experimental and 
control hatchlings have similar growth rates for all measured variables. However, 
growth rates of hatchlings from this study are slower than those of the control 
hatchlings from the Owerkowicz et al. (2009) study. 
 TL (mm/day) SVL (mm/day) HL (mm/day) HW (mm/day) 
Control 0.388 0.223 0.067 0.038 
Experimental 0.406 0.22 0.077 0.047 
Normoxic * 1.2 0.52 0.138 0.071 
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