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ABSTRACT
 

The field of chaos has been hailed as one of the most important
 

breakthroughs in this century. The study of nonlinear dynamical
 

systems and fractals has important applications in a variety of
 

sciences. Benot Mandelbrot and others have shown that cloud
 

formations, radio static, the motion of molecules, the holes in swiss
 

cheese,and even the shape of galaxies can be modeled by fractals.
 

Fractal boundaries, called Julia sets, can be formed by an
 

algebraic iterated process in the complex plane. Some Julia sets look
 

like circles that have been pinched and deformed. While others are
 

unconnected regions that resemble particles of dust. A Julia set is
 

either connected or it is a totally disconnectedl Set of points.
 

In 1979, Mandelbrot looked in the complex parameter plane for
 

quadratic polynomials of the form + c. He plotted
 

computer pictures of those C'-values for which the orbit of 0 remained
 

bounded. A solution set of c-values representing these connected
 

Julia sets is constructed in the complex plane. The set M that
 

results is called proved that the M-set is connected.
 

Based on the work done by Robert Devaney, John Hubbard, and Adrien
 

Douady, it will be shown that studying the M-set is equivalent to
 

analyizing the iteration of all quadratic polynomials at once. The
 

fact that the M-set has an infinite boundary, gives one the impression
 

that the mathematics behind the set must be immense and abundant.
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INTRODUCTION
 

there are many dynamixal systems that have long term behaviors
 

that are chaotic. Since the work of Polncare, the study of dynamical
 

systems has made use of the results of iterating functions. One such
 

functional operator is called the logistic equation, f(x)= ax(l-x),
 

which is used in biology and ecology to model growth. In ecology, the
 

initial seed Xq for the iteration is a percentage of some 1imiting
 

population, so Xq is chosen between 0 and 1.
 

As the parameter changes, the quadratic function f(x)=ax(l-x)
 

exhibits fairly complicated behavior. A great deal of interest is
 

attached to invariant points, that is, initial seeds for which
 

f(x)=x.
 

In addition to fixed points there can be cycles, defined by
 

f{x|)- x^^^j for i®1,2,3,...,k,X|^4.2=
 

The orbit of Xq is the sequence of points such that Xn=f"(Xo).
 

Depending on the parameter, the iteration of these initial seeds could
 

tend to infinity, have a finite cycle, be completely chaotic within an
 

interval.
 

Graphical iteration on the logistic function will exhibit one of
 

two forms. If a is greater than four, then the iteration of zero
 

gives a sequence of values that escapes to infinity. If we restrict a
 

between one and four, then the sequence of values will be contained
 

within the invariant interval [0,1]. Even without reference to the
 

value of the parameter, it is possible to determine which of these two
 



outcomes will occur [3]>
 

The Mandelbrot set end its Julia sets are generated in the
 

complex plane from the functional operator fp(z)=z?+c. Where z is a
 

complex variable and c is a complex constant. The logistic equation,
 

f(x)=ax(x-l), can be transformed into z^+c form by a sequence of three
 

geometric transformations. The image parabola has the equation
 

f(x)-x2+ (a/2 -a^/4). Where c=(a/2-a2/4).
 

Each setting of the parameter c defines a single function of the
 

form w-z^+c. For certain values of c the iteration of the function
 

remains finite and bounded within a circle of radius two, while other
 

values of c will produce functions that iterate to infinity.
 

If the parameter value c and the initial point are restricted to
 

the real numbers, then the collection of orbit points, P^., is either a
 

connected invariant interval or a totally disconnected set of points
 

called Cantorian "dust" [7]♦ 

If the parameter value c and the initial point are complex 

numbers, then the collfiction of orbit points, Pj., is either a 

connected region or a totally disconnected set of points. Suppose Aq 

is an arbitrary set of points in the complex plane and is the set
 

of points set 0^^^^ that z^+c belongs to Aq,
 
written as Aj^fQ-l^CAQ),and in generaT * Thus, Ap is a
 

decreasing sequence of points, each contained in its predecessor, and
 

the limit of this sequence is a bounded orbit, Pq. The boundary of Pq
 

is called the Julia set, Jq. The Julia sets that are generated by
 

iteration have very different forms depehdlng on the initial parameter
 



value of c. These different forms of fall into two different
 

classes: they are either connected or disconnected.
 

The Julia set of a complex function is named for the French
 

mathematician Gaston Julia, who discovered many of the has
 

properties of this set in the early twentieth century. A more precise
 

definition of the Julia set of a polynomial, is that it is the
 

boundary of the set of points that escape to infinity. In
 

words, a point in the Julia set has an orbit that does not escape to
 

infinity, but arbitrarily nearby there are points whose orbits do
 

escape to infinity.
 

The Mandelbrot set, denoted M-set, identifies those parameter
 

values c, of the function f^=z^+c for Which iter the critical
 

poirit zero yields an orbit that fails to escape to infinity. Such
 

parameter values are associated with corinected Julia sets. Points
 

dutside of the Mandelbrot set relate to parameter values that iterate
 

to infinity. These c-values correspohd to sets.
 

The irregular boundary of the M--set forms a barrier between these two
 

behaviors. The M-set is a topologicaliy connected set whose
 

complicated boundary is of infinite length and contained within a
 

circle of radius 2 in the c-plane [1].
 

The M-set corresponds to the collection of all connected
 

Julia sets for f^.. The Julia sets of the quadratic family z^+c have
 

the fractal property of being self-STmilar. If the orbit of zero
 

escapes to infinity then the assoctated Julia set is fractal dust and
 

totally disconnected. Zero is called the critical point because the
 



derivative of f^. vanishes only at zero. The orbit of zero is called
 

the critical orbit. Please note the difference between these two sets:
 

the M-set is a picture in parameter space that records the fate of the
 

orbit of zero, while the Julia set is a picture in the dynamical piane
 

that records the fate of all orbits.
 

In other wbrds, the M-set is the set of c-values for which the
 

critical orbit of f^. does not tend to infinity* Therefore the M-


set is a large collection of all connected Julia sets. The M-set
 

contains descriptions of all the different dynamics that occur for the
 

quadratic family |"9].
 



ITEW^TIOH OF THE LOGISTIC EQUAtlOH Ml-x)
 

Iteration can be viewed as a recursive process that is used as an
 

important mathematical tool to model natural phenomena in the real
 

world. Iteration is often refered to as a feedback loop. Let's
 

closely study the iteration process for the real number case of x^+c,
 

by examining the logistic equation for different parameter values.
 

Web diagrams are used to visually display the iteration of a
 

function. The web diagram is obtained by a simple process of drawing
 

vertical and horizontal 1ine segments starting from an initial seed to
 

the graph of a function and then to y=x which reflects back to the
 

function. This process repeats and generates a continuous path of
 

alternating vertical and horizontal line segments.
 

Fixed points of a function are found by locating intersections of
 

the graph with the diagonal line, y=x. By examining the web diagram
 

in the neighborhood of a fixed point we are able to classify the fixed
 

point as attracting, repelling, or indifferent. These classifications
 

are determined by the slope of the function at the fixed points.
 

Slope.m Behavior 

If: m is less than -1 repelling, spiral out 

m is between -1 and 0 attracting, spiral in 

m is between 0 and 1 attracting, staircase in 

m is greater than 1 repelling, staircase out [7]. 

If our initial input is a small subinterval ,then the web diagram
 



would exhibit either an interval expansion or an interval
 

compression. Interval compression shows that small errors contract
 

and converge to zero, while interval expansion show that small errors
 

expand into large errors. Hence, the iteration process could exhibit
 

sensitive dependence on initial seeds [6].
 

Slope, m Behavior 

Iml is greater than I interval expansion 

1ml is between 0 and 1 interval compression 

The iteration behaviors of f(x)=ax(l-x) changes as the parameter
 

value changes from 1 to 4.
 

Example 1; Consider f(x)=2.8x(l-x) for values in the interval
 

(0,1). Each Xq converges on the point 0.6429.... This point is
 

called an attractor. This behavior of convergence on some single
 

value occurs for all parameter values between 1 and 3.
 

Example 2: Iterating f(x)=3.2x(l-x) has the long term behavior of
 

oscillating between two values, 0.799455... , and 0.513044... This
 

behavior is called a period two attractor and occurs for parameter
 

values between 3.449... and 3. In this case, iteration paths spiral
 

towards a box that is defined by these values. The fixed point of the
 

function serves as a repellor, and the attractor consists of the two
 

points. These examples have predictable behaviors that always lead to
 

the same stable orbits [7].
 

Example 3; Iterating f(x)=4x(l-x) produces a chaotic orbit for
 

initial values taken from the interval [0,1]. Two points, very close
 



to one another, win generate very different unstable orbits. This is
 

a consequence of the sensitive dependenee condition of chaos (related
 

to small errors of our input). In faict, as the parameter value
 

approaches 4, a larger portion of the input interval has a slope less
 

than -1 or greater than 1. Hence, much of the interval exhibits an
 

interval expansion and very small errors magnify greatly making any
 

kind of output prediction impossible.
 

The quadratic function f(x)=ax(l-x) exhibits a variety of
 

behaviors as the parameter increases in value from 1 through 4. For
 

low values of a, the behavior is a stable predictable orbit in the
 

form of a fixed point attractor. As a increases the orbits experience
 

a period doubling route to chaos. The sequence of period-doubling
 

bifurcations are plotted on a graph of parameter values [1,4] to the
 

attractors within the interval (0,1). The first six bifurcation
 

points (parameter values) are listed below.
 

Bifurcation points Periodic orbit
 

03^=3 2-cycle
 

02=3.449490... 4-cycle
 

03=3.544090... 8-cycle ,
 

04=3.564407... 16-cycle
 

05=3.568759... 32-cycle
 

05=3.569692.V. 64-cycle
 

The ratio (ak-ak-l^/C^k+l'^k) converges to a number dl called the
 

Feigenbaum constant. In 1975, the number, d= 4.669202... , was shown
 

to be a universal constant in the field study of chaos by Micheal
 



Feigeenbaum. For example, the constant Is also associated with the
 

iteration of the transcedental function g(x)=ax2sin(pi x) [7]. The
 

Feigenbaum constant can be found in the bifurcation graph of the
 

differential equations that are associated with the Rossier system.
 

When performing graphical iteration on the logistic equation, the
 

prisoner set is either an invariant interval or a totally disconnected
 

set of points. The prisoner Set consists of the invariant interyal
 

[0,1], when the parameter has a value within [1,4], A totally
 

disconnected set of points occurs when the parameter value is greater
 

than 4. Even without reference to the value of the parameter, it is
 

possible to determine which of these two outcomes w111 occur. If the
 

iteration of x=0 gives a sequence of points that escape to infinity
 

then the prisoner set will be disconnected, otherwise the set is
 

connected.
 

The corresponding parameter values that represent the invariant
 

interval for the real valued function f(x)=x2+c is [-2, 1/4] [8].
 



FIXED POIMTS AND ORBITS FOR + c
 

Chaos is a condition of extreme unpfedictability which occurs in a
 

dynamical system> just as fractaiity is a conditioh of extreme
 

irregularity in a geometric configuration. Chaotic behavior is found
 

in discrete dynamical systems» such as the dulH^^^ 3 that are
 

associated with the M-set.
 

Iterated mappings are the simplest form of a discrete dynamical
 

system. There are many different types of orbits that are associated
 

with an iterated mapping. The most important kind of orbit is called
 

a fixed point (f(x)=x). A fixed point, x, is called attracting
 

provided that the orbits of all points in some small neighborhood
 

close to X converge to x. A fixed point, x, is called repelling if
 

the orbits of al sufficiently nearby points move away from x.
 

If the magnitude of f*(x) is less than one, then x is attracting.
 

If the magnitude off(x) is greater than one, then x is repel1ing.
 

If f'(x)= 1, then X is called neutral and no conclusion can be drawn,
 

since x could be attracting, repel1ing, or neither. If f'(x)=0, then
 

X is called super attracting since nearby orbits are attracted to
 

these fixed points quickly [5].
 

Another important orbit is called a periodic orbit. The point x
 

is called periodic with prime period n if f"(x)=x (where n is the
 

least such value that is greater than zero). Notice that if x has
 

prime period k, then f"'^(x)=x (where nk is the period of the orbit).
 

A point X is called eventually periodic if x itself is not fixed or
 



 

periodic, but some point on the orbit is fixed or periodic.
 

Example 1; f(x)=x2-l is eventually periodic for f(l),
 

Xq-1, * ** *
 

fxampTe 2; f(x)=x2 is eventually;fixed
 

Xq~X,X:'^'*'l
 

Host orbits are neither fixed nor periodic, but rather
 

:epecifi-ny:l:i:mjt.
 

Example 3; Given f(x)=x2 one fi^s thdt if the initiW seed has
 

IXqI is less than 1, then the orbit of x^ converges to zero.
 

IXqI is greater than 1, then the orbit converges td infinity.
 

tastiy, some orbits are called chaotic since their sequence
 

appears to have a random order.
 

Example 4; f(x)= x^-2 has an eventually fixed orbit for Xq=0
 

since we have 0,-2, 2,2,2,.... However, if we look at the orbits of
 

points near zero, x= 0.1, x= 0.01, or x= 0.001, we'll get orbits that
 

are different and randomly jump within the interval [2,-2]. This
 

function exbibits chaotic behavior.
 

Definiton of Chaos Let (X.d) be a metric space, and let frXtoX be a
 

function. The map f is chaotic provided that the following hold:.
 

1. f has sehsitive dependence on initial conditions.
 

■ 2. f is transitive 

;3..; Periodic poihts in f are dense in X.
 

However, it was shown in 1992 by J. Banks that the sensitive
 

dependence condition is redundant since the second and third
 

10
 



conditions imply the first. It can also be shown by using the Baire
 

categdry theorem from metric Space theory, that if the metric space is
 

complete, then the transitivity condition implies the existence of a
 

dense''erbit--Illl.^' ';^::. ­

Theorem 3.1 Let (X,d) be a Complete metric space such that TcXtoX
 

is a contraction mapping. Then there exists a fixed point X|^ that
 

satisfies T(X|(.)=X|(. The fixed point is unique. Moreover
 

the iterative mapping of an arbitrary point Xq in X converges to the
 

fixed point xj^.
 

Web diagrams are convenient way to graphically display the orbit
 

dynamics of the real-valued function x^+c. For any real value of c,
 

the fixed points can be found by solving c = x. The fixed points
 

are real numbers if and only if l-4c is greater than or equal to 0.
 

If we consider the two roots r^, r2» C where r|= (l+discriminant)/2
 

and r2=(l-discriminant)/2] we'll find that if c is less than or
 

equal to .25, then r2 is between -r^ and r^, where f(-r2)=ri. The
 

orbits of the XQ-values that are greater than r^ and less than -r^
 

tend to positive infinity. Therefore, consider the values of Xq
 
between -rj & rj where c is less than or equal to 0.25.
 

Let I denote the closed interval [-ri,r3^]. If c is between -2 &
 

.25 and Xq is chosen from I, then fCxg) is also in I. Hence the whole
 

orbit is trapped in I. If c is less than -2 and Xq is taken from I,
 

then either the orbit is trapped in I or eventually some Xp drops
 

below I X I and the orbit tends to positive infinity.
 

When c is between -0.75 and 0.25, then the fixed point r2 is
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attracting since the If(r^)! is less than 1, and all orbits beginning
 

in I converge to r2. As c decreases through -3/4, the absolute value
 

off(r2) increases through 1 and r^ becomes repelling. At the same
 

time the second iterated function acquires a pair of new attracting
 

fixed points that exhibit a period two cycle for f. In other words,
 

the system experiences a period-doubling bifurication [7].
 

Example 5; Consider f(x)= x^-l, the two fixed points, rj, r2 are
 

(1+ sqrt 5)/2 and (1-sqrt 5)/2. Both roots are repelling since
 

If'(rj)!, IfV(r2)l are greater than one. However, when we consider
 

the dynamics of the second iteration f2(x)= {x^-l)^ -1 one discovers a
 

periodic point of period two. The two new fixed points are 0 and -1.
 

the iteration yields an orbit of 0, -1, 0, -1
 

As c decreases through -5/4, another period bifurication occurs
 

and the orbits are attracted to a period four cycle. As c continues
 

to decrease, attracting period orbits of 8, 16, 32,..., 2",.... are
 

found. This process is referred to as a period route to chaos.
 

Examole 6; Consider f(x)= x^-2, then the closed interval 1 is
 

[-2,2]. The graph of the web for f(x) when x is taken from I appears
 

to fill up the space I x I. The line y=x intersects the graph of f(x)
 

exactly 2" times within the space I x I. Each of the crossings
 

represents a fixed point off^fx) and hence a periodic point of f(x)
 

having a period of n (not necessarily a least pehiod). This implies
 

that there exists infinitely many orbits of f(x) having periods of
 

length 1, 2, 3, 4, ... [9].
 

Theorem 3.2 Suppose c is less than -2. Then the set of points.
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P, whose orbits under fj.=x2+c do not tend to infinity is a nonempty
 

closed set in I that contains no intervals.
 

A disconnected set that contains no intervals is called a Cantor
 

dust. The Cantor set is closed, totally disconnected uncountable
 

set. In fact, it can be shown that the defined set P that was
 

generated from our quadratic map of the theprem is a
 

Cantor middle third set. The set is self-similar and has a fractal
 

dimension of 1og2/log3. The total 1ength of the remaining 1ine
 

segments approaches zero as n goes to infinity, which implies that the
 

topological dimension of the set is zero
 

m:
 



JULIA SETS
 

The birth of Julia sets has origins that begin in the nineteenth
 

century. Mathematicians such as Leau, Schroder, KOenigs, and Bottcher
 

became interested in iterating complex functions. They studied the
 

behavior of iterations near a fixed point.
 

In 1918, Gaston julia and Pierre Fatou expanded on the earlier
 

work by considering the behavior of the iterations of complex
 

functions outside the neighbbrhood of fixed points, they discovered
 

dynamical behavior that was sbmetimes stable and at other times
 

chaotic. The dynamics of these two radically different sets were
 

further investigated by Julia and Fatou and they discovered many new
 

properties. But, they were unable to classify all of the possible
 

dynamics that were related to the stable set. They could not exclude
 

the possibility of wandering domains from the stable set, nor could
 

they prove that connected Siegel disks exists for certain c-values.
 

In 1940, C.L. Siegel^^^^^ Siegel disks exist Within a
 

complex dynamical system. In addition, I.N. Baker extended much of
 

the earlier work by showing other types of stable behavior could occur
 

for entire and meromorphic functions.
 

In 1980, Benot Mandelbrot discovered the M-set, Dennis
 

Sullivan introduced the use of quasi-conformal mappings which allowed
 

him to prove the No Wandering Domain Theorem. This completed the
 

classification of stable dynamics for rational maps bdguh by Fatou and
 

Julia. The stable region of a complex dynamical system is called the
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Fatou set» and the chaotic reqion is called the Julia set [4].
 

Definition; Suppose z is a fixed point. Then z is
 

1. attr^atting . . . . . . . if the modulus of fc'(z)
 

is between 0 and 1.
 

2. superattracting . . • • . if f^'tz) = 0
 

3. 	repelling . * . . > . . if the modulus of fc'(z)
 

is greater than 1
 

4. neutral . . . . . . . . if modulus of fc'(z) =1
 

Recall that the orbit of zero is called our critical orbit since
 

fj.'(0)-0. In fact, 0 is the only critical point of f^'Z^+c in the
 
complex plane. If Zq is either superattracting or an attracting fixed
 

point, then there is an open neighborhood U of Zq having the property
 

that fl(z) tends to Zq as n goes to infinity for each z in U. The set
 

of all points that converge to Zq is called the basin of attraction.
 

If Zq is a repelling fixed point, then there is a neighborhood U
 

of Zq in which there exists an analytic branch of the inverse of f^.
 

Since f(zQ) is an attracting fixed point for this inverse, it follows
 

then that the orbits in U are attracted to f(zQ) under fc"^­

Therefore, all of the orbits for z in U are repelled from Zq by fg.
 

If one studies the dynamics of f^ on the Reiman sphere, then the
 

point at infinity becomes a superattracting fixed point for f^ (since
 

fQUinflnity)-0), this can be shown by 	changing the coordinates to
 

h(z)=l/z). Therefore, the second basin 	of attraction is associated
 

with the point at infinity [10].
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A complex analytic map always decomposes the plane into two
 

disjoint subsets; the stable set on which the dynamics are calm, and
 

the Julia set where the mapping is chaotic.
 

Definition of Julia set: The Julia set of f^, denoted J^., is the set
 

of all points at which f^. exhibits sensitive dependence. The
 

complement of this chaotic set J^., is called the stable set, denoted
 

Sc [7].
 

Let's recall a few facts from complex analysis, a collection of
 

functions [(T^): i=l,2,3,..., where (T^) are the iterated functions
 

for the different values of c] is said to be normal on an open set, U
 

in the complex plane if the functions, (T^), form a equicontinuous
 

family on U. If the functions, (T|), are holomorphic functions then
 

normality of the family (T^) on U is equivalent to the following:
 

Every sequence of the (T^) has a subsequence that converges uniformly
 

on compact sets either to an analytic functidn on U or to infinity.
 

Montel's Theorem; Suppose the family of analytic functions, (T^),
 

is not normal on 0. Then the family (T^) assumes all values in the
 

complex plane except at most two.
 

This theorem tells us that if the family of iterated functions,
 

does not form a normal family in any neighborhood of Zq, then Zq is
 

within the Julia set, J^..
 

Theorem 4.1: The Julia set, J(. = [Zq in C: (fc)" is not a normal
 

family in any neighborhood of Zq] [10].
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Theorem 4.2; The Julia set. is the closure of the set of
 

repelling periodic points of fp.
 

Definition: The filled Julia set of fp, denoted Kp, is the set of
 

points whose orbits are bounded uhder the iterationof fp.
 

Theorem 4.3: The Julia set, Jp is the bdundary of Xp.
 

Two mappings, F, G: C to C are said to be conjugate if there
 

exist a homemorphism, h:C to C such that h ° F=6 ° h.
 

Note that h maps orbits of F to G s4nce h ° F"=G" ° h. In addition,
 

h"s takes orbitP of G to those of F and we have a one-to-one
 

correspondence between the orbits of F and G.
 

Theorem 4.4: Suppose g(z)-ai^-<'bz+c' with a not equal to zero and
 

b,c' in C. Then g{z) is conjugate to fp(z)®z-+G for sonie c in C.
 

The affine conjugacy, h(z)=az+b/2, satisfies
 

h(z) ° g(z)=fp(z) ° h(z), where c= ac'+ b/2 ­

Therefore, the general quadratic equation is dynamically
 

equivalent to an equation in the family of fp [10].
 

The dynamics on the Julia set are chaotic. All Julia sets exhibit
 

the three properties pf sensitive dependence, transitivity, and dense
 

periodic points. The basin of attraction for the critical point at
 

zero is a stable set, and all of the points with orbits that escape
 

to the superattractive point at infinity are points in the other
 

stable set. The points on the Julia set are a sequence of points
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that lie on the boundary between the two basins of attractioh. There
 

are two values for c of f(.(z)=z^+c that are not fractals. They are
 

when c=0 or c=-2. The first case fQ(z)=z^ has dynamics on the Julia
 

set that are chaotic. Let R/Z be the unit circle, so that the points
 

on the unit circle are defined mod 1. Then the orbit of any point on
 

Jq is obtained by iterating the doubling function, D(theta)=2*(theta)
 

mod 1. If (theta) = p/q (where p/q is in lowest terms with q odd),
 

then (theta) lies on a periodic orbit, and we have dense periodic
 

points on the unit circle. If (theta) = p/(2"q), then (theta) is
 

eventually periodic under D{theta) and these points will also be dense
 

in Jq.
 

The function operator, D(theta), exhibits the property of
 

sensitive dependence. If one chooses any point in an open
 

neighborhood of a point on the unit circle and repeatedly apply
 

fgS z^, one would find that the iteration of the open neighborhood
 

would grow in size and evehtually contain any point in C except 0 and
 

infinity.
 

The doubling function expands arclengths on the unit circle by a
 

factor of two. Thus, any segment of the unit circle is eventually
 

mapped onto the entire circle. This gives the third condition of
 

transitivity. Therefore, fo(z) = z^ has dynamics on the Julia set
 

(the unit circle) that are chaotic [6].
 

The second case, f_2(z)=z^-2 also has dynamics on its Julia
 

set that are chaotic. The critical orbit is eventually fixed since
 

the second iteration gives f_2(0)=2, which is a fixed point. The map
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f_2 is simnar to fg. Consider h(z)- z + l/z (for all z such that Izl
 

is greater than or equal to 1). The function, h(z), maps the exterior
 

of the open disk onto the entire plane.
 

The unit circle has a 2-to-l mapping onto a closed interval [-2,2]
 

(where the straight rays of the circle are mapped onto pieces of
 

hyperbolas of the interval [-2,2]) [10].
 

The Julia set that is generated by z^ - 2 is a line, [-2,2].
 

The two previous cases represent the simplest of the Julia sets to
 

compute, the computer algorithms that generate pictures of the Julia
 

sets for the remaining c-values will require numerical techniques.
 

The Julia set that is generated for c = -1 has a fractal
 

boundary. The critical orbit is a two cycle: 0, -1, 0, -1, 0,....
 

The following two theorems show a dichotomy that is related to the
 

critical orbit of f^.
 

Theorem 4.5: If the orbit of 0 escapes under the iteration of f^,
 

then Kg = Jc is a Cantor set.
 

Thereom 4.6: If the orbit of 0 does not escape under the
 

iteration of fj., then both K^. and J^ are connected sets [1].
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The M-SCT AMD HisiuREwiGZ poiirrs
 

The dynamics of ccmplex analytical functions has made considerable
 

progress in recent years. A complex analytic map always decomposes
 

the plane into two disjoint subsets: the stable set on which the
 

dynamics are calm, and the Julia set where the mapping is chaotic.
 

Quadratic maps in the complex plane share many of the features of one-


dimensional systems. But the dynamics of quadratic maps in the form
 

fj.= z^+c (where c is a complex parameter) will be more complicated
 

than the previous real-vaTued map f(.= x^+c.
 

In 1979, Mandelbrot looked in the complex plane for those
 

values of c for which the orbit of zero remained bounded. One could
 

say that the M-set is a solution set within the parameter piane where
 

the iterations of z^+c remain bounded and represent connected Julia
 

sets. Studying the M-set is like studying the iterating dynamics of
 

all quadratic polynomials at once.
 

The M-set is contained within a circle of radius 2. It is a very
 

complicated fractal, that is hot a self-simi1ar set. The computer
 

generated pictures show regions of bounded orbits, colored black, and
 

regions of unbounded orbits, colored white. The closer we zoom in on
 

the M-set'sbpundary, the more detail appears. As we blow-up the
 

boundary of the Mandelbrot set, dark islands appear that resemble baby
 

mandelbrot sets [2].
 

In 1982, Adrien Douady and John Hubbard proved that the M-set is
 

connected (those islands off the edges are actually connected to the
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whole set by thin connected filaments). Currently, there is work
 

being done on a conjecture concerning the possible property of the M-


set being locally connected. In 1990, J. C. Yoccoz gave an almost
 

complete answer by showing that for each point c in M which is not
 

infinitely normaTized, there is a neighborhood base of closed
 

connected sets.
 

Definition of the M-set:
 

The MandeTbrot set is [c: f"c(0) does not go to infinity].
 

EquivalentTy, The M-set is the set of c-values for which K{fj.) is a
 

connected set [2].
 

The Julia sets are either connected or not connected. The
 

disconnected Julia sets are all homeomorphic to a Cantors set. The
 

connected Julia sets have one of two forms either the set has a
 

connected stable interior, or the JuTia set has ho interior where
 

K(f(.)-J(fc) and is called a dendritei
 

The M-set is a computer generated picture of the parameter plane.
 

In order to give a pictorial description of the M-set, we need to
 

analyze the critical orbits: if the critical orbit does not escape to
 

infinity then the Julia set is connected and c is part of M. If the
 

orbit of zero goes to infinity then c is not in M.
 

Theorem 5.1: If f^ has an attracting periodic orbit, then the
 

orbit of zero must be attracted to this orbit .
 

Therefore, If one is able to locate a c-value such that f^. has an
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attracting periodic orbit, then we are guaranteed that the critical
 

orbit will be attached to this orbit. Our function, fc» can have at
 

most one attracting cycle and the critical orbit can be is attached to
 

one of these attracting cycles. Some iterating functions have
 

infinitely many periodic orbits.
 

Example 1; Consider f(x)= -2, then our function has 2"
 

distinct periodic points that are fixed. At most one of these orbits
 

can be attracting.
 

Critical orbits will determine much of the dynamics and structure
 

of the stable set, SCfj.). Every quadratic polynomial that has
 

infinitely many periodic points, can have at most one point that is an
 

attracting cycle. Consider the following two cases:
 

1. If f(. that has a rationally neutral cycle, then the critical
 

orbit must again be attracted to it.
 

2. If fc has a critical orbit that is pre-periodic (see next
 

definition), then there is no attracting or neutral cycles(fc'=l)
 

associated with f^. and we have a Julia set where K(fQ)=J(fc). This
 

form of connected Julia set has an empty interior and is called a
 

dendrite. The example above, when C=-2 gives have a connected Julia
 

set with no interior, where K(f_2)=J(f_2) [lO]*
 

The similarity between Julia sets and the M-set is well-understood
 

in the neighborhood of certain points called Misiurewicz points.
 

Definition of pre-periodic: An initial point, Zq, is called pre­

periodic if there exist•and p that are greater than or equal to 1,
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such that Zp,=z^p
 

Definition of Misiurewicz point: A value of c for which the orbit of
 

0 under f is pre-periodic (but not periodie) is cal1ed a Misiurewicz
 

■point., ; 

If c is a Misiurewicz point then the orbit does not escape. 

Therefore all Misiurewici points are in the M^set. Douady and Hubbard 

proved the folTowing properties: 

1. 	 If c is a Misiurewicz point, then the periodic cycle 

Zp^ Z|i+I z^+p-l a repelling orbit. 
2. If 	c is a Misiurewicz point then We have a 

■ ' . ■■^■■' ■ ,;'dendrite. ,■ ■ ' '; • • ' ■■ 

3. Misiurewicz points are dense at the boundary of the M-set. 

(this means if we take any arbitrary point on the boundary of 

the M-set and construct a small disc around that point, then 

there exist a Misiurewicz point in the disc) [1]. 

Example 2: Consider f|(z)-z^+i. The critical orbit is pre­
periodic: Zo=p, Zj^^^i, Z2=-T+i, Z3--I, Z4=-l+i,..,. (where ■=2 and 

p=2, we have Z2=Z2+2T* The Julia set, J|y is an infinitely branched 
connected fractal called a dendrite. 

Example 3: Consider f(z)=z^-2. Again the critical orbit is pre­

periodic: Zq=0, Zi='2, Z2=2, Z3=2,.... (where ■=2 and p=l, we have 

Z2=Z2+i). , 
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in 1989, Tan Lei proved that if c is a Misiurewicz point, then:
 

The Oulia set and the M-set are both asymptotically
 

self-similar in the point z-c using the multiplier p.
 

2. Then the associated (shapes) limit objects Lj and are
 

essentially the same. They differ only by a scaling
 

and a rotation. (L^=aLj, where a is in C) [1].
 

Since the Misiurewicz points are dense in the M-set we have a
 

powerful method for visually seeing the shape Of the corresponding
 

Julia sets.
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EXTERNAL RAYS
 

It is hard to find sufficient superlatives to describe the
 

geometric complexity and beauty of the Julia sets that are generated
 

as c varies along the boundary of the Mandelbrot set. Recall that the
 

shape of the Julia set is the boundary between attractor points: zero
 

and infinty. All Julia sets are symmetric about the origin and fall
 

within a circle of radius two. Except for the attractor at infinity,
 

the number and location of the attractors depends on c. In some cases
 

there are no attractors except infinity and no "inside" to the Julia
 

set. When we choose a value for c that is outside the M-set we get a
 

disconnected Julia set. If we choose our starting point for iteration
 

as one of the points of the Julia set, the iteration of the point will
 

hop around locally from point to point in the set. But if we don't
 

start on a point in the Julia set, then our point will escape to
 

infinity.
 

Each of the various parts of the M-set represents dynamically
 

different Julia sets. The large cardioid-shaped region of M. The
 

equation for the curve that bounds the large cardiod region of M can
 

be determined by solving two equations simultaneously: + c = z
 

and the derivative T2zT is greater than or equal to 1, which yields
 

c = p(y)- ie^y - ie^^y (where y is an angle in [0, 2pi]). If c-p(y),
 

then the derivative at the fixed point is e''y. Notice that the
 

derivative wraps once around the unit circle as c travels the boundary
 

of the cardioid [11].
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In 1983, Dennis Sunivan showed that the fonowing four cases
 

despribe some of the possible connected Julia sets that are associated
 

with the M-set (the only one remaining is called a herman ring).
 

CASE #1; The c-values that are in the interior of the M-set are
 

called hyperbolic points. The cardioid main body contains all values
 

of c for which f^. has one attracting fixed point and the associated J^.
 

is a deformed circle (a Jordan curve). Each bud on the M-set
 

corresponds to a cyclical attractor of a particular period.
 

CASE #2; When c is a Misurewicz point we have a dendrite.
 

CASE #3; When c is a point of M where the bud is connected (called a
 

root point) we acquire a Julia set with a germination point of a bud
 

for an n-cycle. The n-points of these cycles split off from the thick
 

dot when c moves into the bud. The boundary has tendrils that reach
 

up to the marginally stable attractor. At the branch point, the J^.
 

becomes a stable attractor called the parabolic case.
 

CASE #4; If c is any other boundary point of the cardioid or a bud,
 

then the J^. is associated with a Seigel disk. Unlike the parabolic
 

case, where the boundary extends to the fixed point, the Seigel disk
 

has invariant concentric circles in the J^. that surround the fixed
 

point. There are some technical conditions regarding the
 

irrationality of the fixed point for the Seigel disk [1].
 

The theory of external rays that was developed by Douady and
 

Hubbard supply a method for understanding the structure of both the M-


set and related Julia sets. A complex analytic map with a
 

superattracting fixed point (infinity) is locally conjugate in a
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neighborhood, !)(., of this fixed point of z to z", for some n greater
 

than or equal to 2. The point at infinity is superattracting. Since
 

f(.(z)=z^+c has degree two our map is conjugate of z to z^ near
 

infinity. Let Vr=[z in C: Izlis greater than or equal to R, where R
 

is greater than 1].
 

Theorem 6.1 Let c be in C. Then there exist a neighborhood U^. of
 

infinity in C, R is greaiter than 1, and an analytic isomorphism
 

Pj.: U(. to Yr such that Pc(fG(z))=(Pc(z))^
 

Definition of external ravs; The external ray of argument y is the
 

curve gy(t)= PG"^(te2(pi)ly)
 

Recall that the eventually fixed orbit of z^-2 had a map
 

h(z)= z + l/z, and this gave a uniformization,
 

H: [z: Izl is greater than 1] to C -[-2,2]
 

which conjugates the map (z to z^) to the map (z to z^ - 2).
 

This mapping determines the external rays, which turn out to be pieces
 

of hyperbolas.
 

If our Julia set is locally connected, then each external ray will
 

have a limit that lands on a unique point of the J^.. We will get
 

information about the topology and the dynamics on the by studying
 

the landing points of the external rays. However, not all J^
 

are locally connected, so our external rays are not always guaranteed
 

to land [10].
 

Theorem 6.2 If the critical orbit of zero under f(.= z^+c is
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eventually periodiG or f(. has an attracting cycle, then Jq is locally
 

connected. ';­

Consequently, for a large number of cases, the external rays do
 

land on Jq. Julia sets that have attracting cycles are part of the M*
 

set. If fq-z^+c has an attracting cycle of period n, then there
 

exists a neighborhood, Uq, for which the following holds; if c' is in
 

Uq, then fqV also hajs an attracting cycle of period n which remains
 

close to the cycle of fq. Therefore any such c^value lies in the
 

interior of the M-set. The interior of M consists of c-yalues for
 

which the corresponding fq has an attracting cycle of some period.
 

These components are called hyperbolic.
 

The region of the M-set where fq has an attracting cycle of period
 

two is the boundary of the circle that is given by Ic+ll =1/4.
 

(which is derived by solving two equations simultaneously: fq2(z)=z,
 

and l(fq2)'1 is less than 1). This region meets the main body
 

cardioid at a unique point, c=-3/4. This bulb represents an area of M
 

where the atractive cycle is period two t6l«
 

All of the decorative bulbs of the M-set have a rational number
 

associatred with them called the rotation number (p/q'). Each of the
 

p/q'-bulbs is decorated with a antenna. Each antenna is unique in its
 

topological structure and features a "junction point" from which
 

different spokes emanate. The degree of this vertex (junction point)
 

has a value of q' for each p/q'-bulb. The numerator, p, gives
 

valuable information about the dynamics that are related to the c-


value of fq in the p/q'-bulb. The filled Julia set, Kq, for fq
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contains a fixed point p at which exactly q' components of K(f(.)-[p]
 

meet. The iteration of the mapping, f(.=z^+c rotates about these
 

components centered at p fay an angle 2(pi)(p/q').
 

The local structure of the M-set around hyperbolic points is
 

complicated but predictable. Recall, that the set of Misiurewicz
 

points is dense in the boundary of M. In addition, the accumulation
 

points of hyperbolic components will give the entire boundary of the
 

Mandelbrot set. In other words, the boundary of M is contained in the
 

closure of the set of centers of hyperbolic components, (where the
 

center is definned to be the unique c-value for which the attracting
 

cycle is a super-attracting cycle). This is a consequence of Montel's
 

theorem [10].
 

Douady and Hubbard showed that the M-set has infinitely many small
 

copies of the M-set embedded within the connected M-set [11].
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RATIONAL ANGLES
 

Definition of external ray of M; The external ray of M with angle y
 

is the curve Ry(t) » Q"l(te^^^P^^^y^).
 
(see definition of mapping in next section)
 

When we refer to the external rays of the M-set, let's use the
 

term field line. It is known that all field lines with rational
 

angles do, in fact, land on the boundary of the M-set. Furthermore,
 

the dynamics of f(.(z)=z2+c at the landing point is effectivelly
 

determined by the argument of the field line. However, it is not
 

known whether all field lines with irrational angles will land on the
 

boundary of M. If it were proved that the M-set is locally connected,
 

we would be allowed to say that all field lines land on bd(M).
 

Theorem 7.2; Suppose the angle y = p/q', in lowest terms. Then
 

the field line of M with angle y lands at a point Cy in the bd(M):
 

1. If q' is odd, then Cy is a root point of a
 

hyperbolic component.
 

2. If q* is even, then Cy is a Misiurewicz point.
 

When q* is odd, p/q' is an infinitely repeating binary expansion,
 

B(p/q')=b^...bj, , where bj=0 or 1 for each j. Then the root point at
 

which the p/q' ray lands separates a hyperbolic component of period n
 

from a lower period component (usually a period dividing n).
 

For example, B(l/3)=010101.... and B(2/3)=101010.... These rays
 

land at the root point (c=-3/4) of the period 2 bulb. The field lines
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land at the root point (c=-3/4) of the period 2 bulb. The field 1ines
 

of angle y=p/7 give Binary expansions B(l/7)=001001.i..,
 

B(2/7)=010010,..., B(3/7)=011011...., etc; So the field lines of
 

angle p/7 land at root points for period three components. Two of
 

these are bulbs that are attached to the main cardioid where
 

trifurcation takes place. The other must be a root point of a baby M-


set with period 3 that is within the main M-set. Period three bulbs
 

can only be attached to the main cardioid by direct bifurcation, and
 

not to bulbs with other periods. Hence the field lines of 3/7 and 4/7
 

must terminate at the baby M-set of period 3 that is located on the
 

negative real axis.
 

Schleicher's algorithm provides a procedure that is used to
 

determine the binary expansions of field lines that land at root
 

points of p/q' bulbs attached to the cardioid.
 

Step 1 Using Farey addition determine the largest p/q'
 

bulb, p/q' + r/s5(p*r)/(q'^^^
 

(Note that the ray 0 or 1 land at the cusp Ofthe cardioid and the rays
 

^and 10 land at the root point of 1/2 bulb. i.e. 0/1 + 1/2 =
 

Step 2 Find the rays closest to the (p+r)/(q'+s) bulb.
 

Let S2...Sp fjbe attached to the p/q' bulb^ and let
 

H...tm be attached to the root point of the r/s bulb.
 

Step 3 The ray attached to the (p+r)/(q'+s) bulb closest to the
 

p/q' bulb is sj...Spt^...t^. The ray attached to the
 

(p+r)/(q'+s) bulb closest to the r/s bulb is ti...t^si...Sp.
 

(the ray that is attached to the 1/3 bulb, closest to the 0 ray, can
 

be found in the fol1owing way: use the nearest ray 0 then glue
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the farthest ray 01 to get 001).
 

Using this inductive procedure one could find all of the rational
 

rays that land on the root points of the decorative bulbs of M.
 

There is an extension to this algorithm that allows one to determine
 

all of the rational rays that land on the smaller bulbs attached to
 

the decorative bulbs of H [10].
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THE M-SET IS COimECTED
 

The Mandelbrot set is the set of e such that the filled Julia set
 

is connected. Every such polynomial from the family z^+c has a
 

filled Julia set that is formed of iterated points with bounded
 

orbits. Recall, that if the critical point 0 is in the filled Julia
 

set, Kj,, then Jj. is connected, if the critical point is not in K(.
 

then J(. is a Cantor set.
 

Hubbard and Douady used electrostatics to developed their theory
 

of external rays. Since M is connected, they thought of M as a
 

Charged regiori and gave M an electric field to create equipotential
 

ievel sets. These level sets are related to the different speeds at
 

which the orbit of 0 escapes to infinity under iteration for each c-


value outside of M.. The cTdser c is to the boundary of the M-set
 

the longer it takes for the iteration of 0 to escape. Recall that
 

the map 2 to is conjugate to a neighborhood Yp, near infinity,
 

where infinity is a super-attracting fixed point.
 

Previously, we defined a map P^t Uq to Vj. such that
 

This luapping conjugates the dynamics of f(.(z)
 

near infinity to (z to z^) outside of some large circle. If c is not
 

in the M-set, then the iteration f(."(z) goes to infinity as n goes to
 

infinity.
 

It can be shown that is analytic in both c and z. The map P^
 

is defined in a neighborhood of infinity in the Reiman sphere. The
 

map, Pj., extends to a larger domain via the conjugacy by the folowing
 

33
 



 

method* Suppose 0 is not in the boundary of U(.. Let z be
 

5d{Uc). Then there exists z' in the bdCU^.) such that z does not
 

equal z' and "c* Choose a neighborhood W of
 

f(.(z) so that the pre-image of H consists of two open sets Hj and Wg
 

satisfying:
 

1. z is in Wi» and z' is in II2*
 

2. The ihtersection of Hi and H2 is empty.
 

The intersection of Hj and H2 is guaranteed to be empty provided
 

that fj.(0)-c, where c is not in H.
 

One can extend Pq to all of Hj and H2 by requiring;
 

K {Pc(z))2=Pe(fcU))
 
2. Pg is continuous.
 

If our critical orbit (the orbit of zero) escapes to infinity then
 

this method allows us to extend Pg to an open neighborhood of
 

infinity that contains the critical point {zero). Otherwise, the
 

method above allows us to define P^ on an open neighborhood U of
 

infinity such that zero is Contained in
 

Theorem 7.1: 0: C - M to C -[z: Izl - 1], where Q(c)=Pc(e),
 

for c in C - M is an analytic isomorphism onto C -[z: Izl - 1].
 

CorolTarv: The Mandelbrot set is connected.
 

Let D denote the open unit disc, and let Qj^i|: C - M to C - D be
 
the conformal mapping which maps infinity to infinity and is tangent
 

to the identity at infinity. The proof is not obvious. First assume
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connected if its complement is a simply connected open subset. The
 

Riemann mapping theorem says that a simply connected open subset of
 

the sphere, that dosen't represent the entire plane, is equivalent to
 

homebmrphic and analytic to the unit disc, D. Hubbard and Douady
 

showed that there must exist a homeombrphic and analytic map from the
 

unit disc to the complement of M. Which showed that the complement
 

of M was simply connected and consequently M is connected.
 

Their map T: D to C - M. T(z)=l/z + bg + b^z + b2Z^ +*•*
 

The 1/z term maps the interior of the unit disk onto the exterior
 

of D (where the origin is sent to infinity). The power series terms
 

add a small distortion to make the image of the map T the exterior of
 

the M (rather than the exterior of D)v The image under T (as r tends
 

to 1) of a circle(lzl=r, where r is less than 1) is sent to a simple
 

closed curve bounding M.
 

There are still many open questions and conjectures concerning M.
 

For example, the map T is a homemorphism that sends the open disk to
 

the complement of M, however the map does not extend to a
 

homeomorphism on the boundaries. It is still unknown whether or not
 

T will extend to a continuous map. There is a conjecture concerning
 

whether or not H is locally connected. If Mis locally
 

connected then one could show that T would extend to a continuous
 

map. In addition, one could show that all irrational external rays
 

land on the boundary of M. Currently there is much work being done
 

on this conjecture.
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