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ABSTRACT

The f1eld of chaos has been hailed as one of the most important

ff‘breakthroughs 1n this century. The study of nonllnear dynamical

" systems and fractals has 1mportant applications in a variety of

‘ nsciences. Benot Mandelbrot and others have shown that cloud

_Tformatlons, radio static, the motion of molecules the holes in swiss
:,cheese and even the shape of galaxies can be modeled by fractals..v
Fractal boundarles, called Julla sets, can be formed by an |
,valgebralc lterated process 1n the complex plane. Some Julla sets look
;vﬁ llke clrcles that have been p1nched and. deformed While others are
unconnected reglons that resemble part1cles of dust. A Julla set 1s i
' _either connected or it is a totally d1sconnected set of points.
In 1979 Mandelbrot Tooked in the complex parameter plane for
vr‘nquadratic polynomials of the form 22 + c.  He plotted _
-computer plctures of those c- values for which the orbit of 0 rema1ned
v'v bounded. A solution set of c—values;represent1ng.these~connected
| Julia séts'is cdnstructed in the complex plane. . The set M that
results is called proved that the H-set is connected
» Based on the work done by Robert Devaney, John Hubbard, and Adr1en
Douady, 1t will be shown that study1ng the H-set is equ1valent to
analy1z1ng the 1teration of all quadratic polynom1als at once. The
fact ‘that the H-set has an 1nf1n1te boundary, g1ves one the 1mpress1on

vythat the mathemat1cs beh1nd the set must be immense and abundant.

i



© TABLE OF CONTENTS
RBSRACT .+ o e e e e e e e e e e e
CINTRODUGTION.  + v v o o e v e e e e e e e e e e 1

© ITERATION OF THE LOGISTIC EQUATION ax(1-x) . . . « + . . . 5

FIXED POINTS AND ORBITS FOR X2 + €. o o v & o o o o « o 9

JULiA.SETé> ;'.;‘wy,i.-,, .  .' f.‘. . ;!.; ,._ .o ‘; D 14
THE MféET Aﬁﬁ MISfﬁREwIéZ‘éOiNfS;. .* ;; L ;J;» o . Q';'zo:"

- EXTERNAL‘RA*S .. . .‘1;' L‘_,:i.__;“‘, BRI .,. '., ; i; . 25
. ‘RAfIONAL.AﬁéLéS. N .V;‘»,:ﬁ..:._f.", - : ‘,'f.'!;‘ . éo |
ff>"THt M-séf 1SVCoNNgchﬁ } _;;'. SR ‘;:‘;  .}:;, . ~;3 . v}  .33

REFERENCES ) . .. .. 0 ‘cv . o‘ o 3 o : . 0 o . ] n . ‘o . . 36



. INTRODUCTION

There are many dynamicai systems that have iong term behaviors
"that are chaotic. Since the work of Poincare the study of dynamica]
systems has made use of the. resuits of iterating functions. One such
functionai operator is cailed the Togistic equation £(x)= ax(l-x),»
which is used in»bioiogy and ecoiogy to model growth. In ‘ecology, the
initiai seed xo for the iteration is a percentage of some iimiting
popuiation, o) xo is chosen between 0 and 1.

As the parameter changes, the quadratic function f(x) =ax(1-x)
exhibits fairly compiicated behavior.‘_A great deal of interest is

attached to invariant points, that is, initial seeds for which

o f(x)=x.

In addition to fiXed points there can,beicycles;'definedfby |
| Fxg)= xq41 for 1=1,2,3,..0,k,Xk41= Xg.

‘The orbit of x, is the sequence}of nOints such that xn=f"(x6).
»Depending‘on the parameter, the iteration ofkthese initial seeds,couid
tend to infinity,'have‘a‘finite‘cycie, be completely chaotic within an"
»intervai "‘k | | |
| Graphicai iteration on the 1ogist1c function w111 exhibit one of -
vtwo forms._ If a is greater than four “then the iteration of zero
gives-a sequence of vaiues that -escapes t0>1nfin1ty. If we restrict a
between one and tour;‘thenfthe sequencevof vaiues:wiii be contained
within‘the inuariant interval [0,1]. ‘Eyen‘Without reference to the -

value of the parameter, it is possible to’determine'which of these two



- outcomes w111 occur [3].

The Mandeibrot set and its Juiia sets are generated in the
comp]ex piane from the functionai operator f (z) zz+c._ where z is a
:'compiex variable and ¢ is a compiex constant. The iogistic equation,
'*f(x) ax(x 1), can be transformed into 22+c form by a sequence of three
geometric transformations. The image paraboia has the equation

f(x)= x2 + (a/2 -a/a), where c=(a/2- al/a).

" Each setting of the parameter c defines a singie function of the
,form w-zz+c. For certain values of ¢ the iteration of -the function
remains finite and bounded within a circle of radius two, whiie other
va]ues of ¢ will produce‘functions that iterate“to,infinity.

- If the parameter value c and the initial point are restricted to
vthevreai numbers, then the coiiection of’Orbit points, P., is either a
‘connected invariant interval or a totally disconnected set of points
caiied Cantorian "dust“ [71.

CIf the parameter value ¢ and the initial point are complex
‘ numbers,‘then the.co]iection of orbit points, P., is either a
connected region or a totaiiy disconnected set of»points. Suppose A,
iis.an'arhitrary set of points in the complex plane and A; is the set
. of ooints_set of points z such that 22+c belongs to A,-. ~ This is
written as Al “1(a,), and in general Ap=fe1(Ap21) . Thus, A, is a
'décreasing sequence of points, each contained in its predeceSSOr, and
the 1imit of this sequence is a bounded orbit‘ Pc. The boundary of P
~“§s called the Juiia set vJ ~ The Julia sets that are generated by

1teration have very different forms depending on the 1n1tiai parameter



”A°'fva1ue of c.f These different;f[dm,

j&J¢ fall into two different
k ‘cJasses they are either connected or disconnected.3ef
| | The JuTia set of a compiex function is named for the French
mathematician Gaston Juiia who discovered many of the ba51c
fiproperties of this set in the ear]y twentieth century. A more precise
definition of the Ju]ia set of a poTynomiai, is that it is the
t boundary of the set of points that escape to 1nfin1ty.h In other
,words,‘a point in ‘the JuTia set has an orbit that does not escape to
1nfinity, but arbitrari]y nearby there are points whose orbits do
escape to infinity. ' s |

The Mandelbrot set denoted M-set identities those parameter .
vaTues C, of the function f =22+¢ for thCh 1teration of the criticai
: point zero yields an orbit that faiTs to escape to infinity. Such
parameter va]ues are associated w1th connected Julia sets. Points
out51de of the Mande]brot settreiatevto parameter~va1ues that iterate
to infinity. These ¢;va1aes'¢o}}éspand to‘disconnected'JuTia Sets.'
‘The irregular boundary of the M-set forms a barrier between these two

behav1ors. The M- set is a topoTogicalTy connected set whose

‘ lcompiicated boundary is of infinite Tength -and contained within a

circle of radius 2 in the c-plane [1] |

The M-set corresponds to the coTTection of all connected |
Julia sets for fe The Juiia sets of the quadratic family 22+c have
the fracta] property of be1ng se1f 51m11ar If the orbit of zero
’escapes to 1nf1n1ty ‘then the assoc1ated Juiia set 1s fractai dust and

’totally‘disconnected.-fZero 1syca11edfthekcritica1 pownt because the



: derivative of f vanishes on]y at zero. The orbit of zero is called

ff the critica1 orbit. Please note the difference between these two sets~

~ the M-set 1s a picture in parameter space that records the fate of the -

orbit of zero, while the Julia set 1s a picture in the dynamical plane
lhthat records the fate of a11 orbits. | ‘

| In other words, the M—set 1s the set of c-va1ues for which the
fcritical orbit of f does not tend to 1nf1n1ty. Therefore the M-
: :set is a 1arge co11ection of all connected Ju]ia sets. The M-set _
| contains descr1pt10ns of a]] the different dynamics that occur for thes |

| fquadratic famﬂy [9]



 ITERATION OF THE LOGISTIC EQUATION ax(1-x)

‘ Iteration can be viewed as a recurs1ve process that 1s used as an

o 1mportant mathemat1ca1 tool to mode1 natura] phenomena in the rea]

wor]d. Iteration is often refered to as a feedback loop. Let's
:‘; c]osely,study;the 1teration process for the reaI number case of'x2+c,
by exanining‘thev1ogist1c‘eeuation:for}different parameter values.
| heb dtagnams:are'usedeto visua11y d1sp1ay the iteration of a
fnnctton. The web dtagram is obtafned by a simple processiof drawing‘
verttca] and’honiientéi 1ine>segments”starting'from an initial seed to
" the graph of‘a»function and then tb y=x which reflects back to the
function. “This process repeats and generates a continuous path of
a]ternating vertica] and horizontal 11ne segments.
| Fixed points of a funct1on are found by 1ocat1ng 1ntersections of
hhthe graph with the d1agona1 11ne, y=x. By exam1n1ng the web,d1agram
in the neighbqrhood of a f1xed‘p01nt'we:are ab]evto c]assifykthe fixed -
'bpoint as‘attracttng,‘repe111ng, on'indifferent. These c1assif1cations.

/ are determ1ned by the slope of the function at the fixed points..

| S1oge,m |  Behavior
| L If: m is TeSSchan -1 - :repe111ng, spirel out
m iS»betweenv-l and 0 - }attraeting,,spiral in
m is.betneen 0 and 1 “‘v ._ attrecting, staircase‘in _
. m‘is gneaten than 1 - repelling, staifease.out [71.

. If our initial input 1s“a_smal]’subintehva]:,then the web diagram



‘ WOuid'exhibit"either an interVai"eXpansion or ‘an interval

compreSsion. Intervai compre551on shows that small errors contract
and converge to zero, whiie interva] expansion show that small errors
'iexpand into iarge errors. Hence, the iteration process could exhibit

sensitive dependence on initial seeds [6]

Sioge, m "__ ~ Behavior
lml is greater than 1 vintervai expansion

! ]ml.is'between 0and 1 . interval compression

- The iterationubenaviOrs ot‘i(x)=ax(14x)»Changes”as the paraneter’
value changes from 1 to 4. | |
Examgie 1: Consider f(x) 2. 8x(1 x) for vaiues in the interval
~(0,1). Each x, converges on the point 0 6429....- This po1nt is
"caiied an attractor. This behavior of convergencevon'some single
| value occurs for ali‘parameter values between 1 and 3.
: i‘Exampie 2: Iterating f(x)=3.2x(1-x)vhas the long term behavior of
 oscillating between two values, 0.799455... , and 0.513044... This

behavior 1s called a period two attractor and occurs for parameter

. vaiues"betneen 3.449;..vand 3. Infthis case, iteration paths Spiraii
towards'aibox-that is defined by tnese_vaiues. The fixed point of the
..function:serves as a repellor, and the attractor consists of the two
points.vlThese exampies have predictable behaviors that always lead to
~ the same stabie'orbits'[7]; ‘ - | ,‘

- *5E*amgie 3 Iterating f(x)=4x(1-x) produces a cnaotic orbit for

~ initial yaiues'taken-fromjtne‘intervai [0,1]. Two points, very close



‘:to:one‘another; Willrgenerate~yery dﬁfferent unstable orbits; This_is

g a~con$equence:of~the“sensjtive.dependence condition:of chaos (related

o to small errors‘ofbour innut).'hlnvfact,<as the‘narameter value

{approaches 4, a larger portion oftthe'input 1ntervaihhas avsfope‘less
B 'than -1 or greater than 1. Hence much of the 1nterva1 exhibits an ‘*

'irinterval expansion and very sma11 errors magnify greatly mak1ng any-

'57;nk1nd of output prediction 1mpossib1e.vfff

The quadratic function f(x)-ax(l-x) exh1b1ts a variety of -

‘ behaviors as the parameter 1ncreases 1n va]ue from 1 through 4, For

".'IOW,V31UES of &,;the behavior.is a stabTe-predictab]e orb1t in them<

‘:form'of'a fined pOinttattraotor. As a 1ncreases the orb1ts experience |

S period doub]ing route to chaos., The sequence of per1od doub]ing En
”'] bifurcations are. p]otted on a graph of parameter values [1,4] to the '
":rtattractors within the interval (0 1). The first six bifurcation

'1points (parameter va]ues) are listed be1ow.

_jf cation po1nts PR S t?erioqiéiOrbit‘->
| ;az-s soa0...  ecycle

a3=3. 544090...; o geyele
© 24=3.564407... PEEAN -':',,:1'6-’-'c‘yc'|» e
Cage3.568759... f f'32"-éyc1e |
g, 569692...'_": ' TS cyc1e

| The ratio (ak’ak 1)/(ak+1'ak) converges to a number d ca]]ed the

o Fe1genbaum constant. In 1975 the number, d= 4, 669202...‘, was shownf

to be a un1versa1 constant 1n the fie]d study of chaos by M1chea1



o Feigeenbaum. ‘For'éxampie }the~constant is“aiso-associated'With theft

‘iiteration of the transcedentai function g(x)-'ax251n(pi x) [7] The~-~

'»‘fFeigenbaum constant can be found in the bifurcation graph of the

'tdifferential equations that are associated with the Rossler system.

when performing graphica] iteration on the iogistic equation, the | s

prisoner set is either an invariant intervai or a tota]iy disconnected B

i set of points._ The prisoner set consists of the invariant intervai N

"[0 1], when the parameter has a vaiue within [1, 4] A totaiiy

*4’disconnected set of points occurs when the parameter vaiue is greater -

‘than 4.. Even without reference to the vaiue of the parameter, it is .

':possibie to determine which of these two outcomes wiil occur.- If-the

S iteration of x-O gives a sequence of points that escape to infinity 5' f f,

then the prisoner set wii] be disconnected otherwise the set 1s'
connected. | | % | | | R =
The corresponding parameter va]ues that represent the invariant ,

'-,"intervai for the rea] valued function f(x) x2+ c is [-2, 1/4] [8]



* FIXED POINTS AND ORBITS FOR X2 + ¢

Chaos is a condition of extreme unpredictabiiity which occurs in a f;g-\'

‘:dynamical system, just as fractality is a condition of extreme s
irreguiarity in a geometric configuration. Chaotic behavior is found*‘”

,vin discrete dynamicai systems, such as the Juiia sets that are o

",,1i associated with the M-set.}f},q”f

Iterated mappings are the simpiest form of a discrete dynamicai -

vffsystem. There are many different types of orbits that are associated.;ﬁl,]; :

~ with an' iterated mapping. The most important kind of orbit is ca]]ed[f‘.;j‘“'

'f'a fixed point (f(x) x) A fixed point, x, is caiied attracting

o ;provided that the orbits of aii points 1n some smai] neighborhood

tf,ftthe orbits of aI sufficient]y nearby points move away from x.~ i

f, ciose to x converge to x.‘ A fixed point, x, is calied repe]]ing if

If the magnitude of f (x) IS Iess than one, then x 1s attracting.f}‘_"

’-5If the magnitude of £ (x) is greater ‘than one, then X is repeIIing.f;'
CIf f (x)-~1 then x is caiied neutrai and no conciusion can be drawn,
| ”since X couid be attracting, repeliing, or neither. If f (x) 0, then _”"

X is caIIed super attracting 51nce nearby orb1ts are attracted to ftﬂc‘

‘,{*; these fixed points quickiy [5]

Another 1mportant orbit 1s caiied a periodic orbit. The point x.i:'ty~=,.f

s called periodic with prime period n 1f f"(X) =x (where n is the

"‘*vgieast such vaiue that is greater than zero) . Notice that if X has .;fT

'“f,prime period k then f“k(x) =X (where nk is the period of the orbit)

~7I,H_A point x 1s caiied eventuai]y periodic if X 1tse1f 15 not fixed or



r-ﬁng‘periodic but some po1nt n,the orb1t 1s f1xed or per1od1c.;ﬁ

i Example 1° f(x) X -I 1s‘eventua11y per1od1c for f(l),,vt,‘
 xgel %0, xz--l, x3—0, x4--1...fcf;¢”" o ; j |
':Q%e_ Examg1e 2°‘ f(x) x2 1s eventua11y fixed for f( 1),' o

Ca ’ _Xo-l ’ X1 =l.... _Y |

EA Most orbits are ne1ther fixed nor periodic, but rather “tend to ahcjx

""‘~fh.gfspec1f1c 11m1t.

Eéémﬂlé_i G1ven f(X)'x “one. finds that 1f the in1t1a1 seed has*‘

- :lxol 1is 1ess than 1 then the orbit of xo converges to zero.5 If the

]xol 1s greater than 1 then the orbit converges to 1nf1n1ty.

| Last]y, some orbits are ca]]ed chaot1c s1nce their sequence
}vhappears to have a random order. ; . S

ﬁ Examgle 4: f(x) x2 2 has an eventua11y f1xed orbit for xo-o

'f'since we have 0 -2 2 2 2,.... ‘However, if we 1ook at the orbits of

B 7*fp01nts near zero, x= 0 1 x= 0. 01, or x= 0. 001, we' 'n QEt orbits that’,

o are different and random]y Jump with1n the 1nterva1 [2 -2] ThiS

| 'fﬁfunct1on exh1b1ts chaot1c behav1or. ) waf*:'

ﬁ{:Def1niton of Chaos Let (X d) be a metric space, and 1et f Xtox be a
'ffffifunct1on., The map f 1s chaotic prov1ded that the fol1ow1ng hold:.
A ,.l f has sensit1ve dependence on 1nit1a1 cond1t1ons.v ' .
1,2 f is trans1t1ve | |

"@ffjf3tf Per1od1c points 1n f are dense 1n Xr

't; However, 1t was shown 1n 1992 by J Banks that the sens1t1ve '

dependence cond1t1on 1s redundant since the second and th1rd |



'fdconditions imp]y the f1rst It can aTso be shown by us1ng the Ba1re
‘flcategory theorem from metr1c space theory, that if the metric space 1s f
| f’complete, then the trans1tiv1ty cond1t10n 1mp11es the existence of a L
~ dense orb1t [11] ' _’ |
Theorem 3.1 Let (x d) be a complete metric space such that T Xtox -
fis a contract1on mapp1ng._ Then there ex1sts a f1xed point Xk that
' Tsatisfies T(xk)—xk.f The f1xed point 1s unique.‘ Moreover o |
.athe 1terat1ve mapping of an arbitrary point xo 1n X converges to the -
| fixed po1nt Xg- ' | _‘ SRR B
Web diagrams are conven1ent way to graphicaTTy disp]ay the orbit -
~dynamics of the rea]-va]ued function X2+ Ce . For any reaT value of ¢,
‘ the f1xed points can be found by solv1ng x2+ c = x.v The fixed points‘:‘}
',are real numbers if and onTy 1f 1-4c is greater than or equaT to 0. |
- If we con51der the two roots rl, r2, [ where r1- (1+discr1m1nant)/2
~ and rz—(l-discriminant)/z ] we'll f1nd that if c 1s less than or
'equal to . 25 then r2 1s between -rl and ris where f(-rl) ri{. vThe,;

orb1ts of the xo-va1ues that are greater than r1 and less than -rq

v,tend to positive 1nf1n1ty Therefore, consider the values of Xq

: fbetween -r1 & rl where c 1s less than or equa] to 0. 25.

| v Let I denote the c105ed intervaT (- rl,r1] If c is between -2 & _e

.25 and x° 1s chosen from I, then f(xo) is aTso 1n I. Hence the whoTe

o orb1t 1s trapped in I.; If ¢ 1s less than -2 and x0 is taken from I,

hthen either the orb1t is trapped 1n I or eventuaTTy some xn drops

""f' beTow 1 x I and the orb1t tends to pos1t1ve inf1n1ty. |

e when c 1s between -0 75 and 0 25 then the f1xed po1nt rz is.

Eb!



| :attracting since the 1f! (r2)l is less than 1, and all: orbits beginning
inl converge to r2. As c decreases through -3/4, the absoiute value
of fv(rz)'increases through 1 and r2 becomes repe]iing. At the same
'time the second iterated function acquires a pair of new attracting o
1sf1xed points that exhibit a period two cyc]e for f. In other;words,
~the system experiences a period doubiing bifurication [71.
- Example 5: Consider f(x)= x2-1 the two fixed points, rl, rz‘are
(1+ sqrt 5)/2 and (1-sqrt 5)/2. Both roots are repe]]ing‘since_
1f! (r1)1 ' (rpo)1 are greater than one. However, when we consider
the dynamics of the second iteration £2(x)= (x2 1)2 -1 one discovers a
periodic point of period two. The two new Fixed points are 0 and -1.
‘The iteration yieids an orbit of 0, -1, 0, -1, e
- As ¢ decreases through -5/4, another period bifurication occurs
and the orbits are attracted to a period four cycle. As [ continues
to decrease, attracting period. orbits of 8, 16, 32,..., 2",.... are
found, This process is referredato.as a period route tokchaos;k
Examgievs; Consider f(x)= x2-2, then the7ciosed‘ihterva1‘l is
: [-2,2]. The graph of the web for f(x) when x is taken from I appears
| to.fiii up the space va I. The Tine y= X intersects the graph of f(x)
exactiy 2‘n times‘within the space'I x'I Each of the crossings
represents a fixed p01nt of f"(x) and hence a periodic point of f(x)
'hav1ng a period of n (not necessariiy a least period) This 1mp11es
that there ex1sts infiniteiy many orbits of f(x) hav1ng periods of
lengthl 2, 3, 4 ... D91 " |

Theorem 3.2 Suppose c is 1ess than -2 ~ Then the set of points,

12



B P, whose orbits under f -x2+c do!not tend to 1nfin1ty 1s a nonempty fii“ y.ﬁ}‘

Iclosed set 1n I that conta1ns no;interva]s.isk.;*jfa‘*v :
A disconnected set that contains no 1ntervals 1s ca]led a Qggtgg h’
‘f';g_;; The Cantor set 1s closed totally disconnected uncountab]e
"‘set. In fact 1t can be shown that the defined set P that was
‘-Tgenerated from our quadratic map of the theorem is homeomorph1c to a SN

5‘Cantor m1dd1e third set. . The set is se]f s1m11ar and has a fractal

""dimension of 1092/1093.. The tota] length of the rema1n1ng line ]M

d:_h;dsegments approaches zero as n goes to 1nfin1ty, which 1mp11es that the |

v"topological dimension of the set 1s zero. [8]

13



© JULIA SETS

The birth of Julia sets has origins that begin in the nineteenth
'uicentury; Mathematicians-SUCh as Leau, Schroder, .KOenigs, and Bottcher
) became interested in iterating compTex functions. They studied the
T behavior of iterations near a fixed. point.,‘
In 1918, Gaston JuTia and Pierre Fatou expanded on the earlier
~'work by considering the behavior of the iterations of comp]ex
functions outside the neighborhood of fixed points. They discovered
k dynamicai ‘behavior thatiwas sometimes stable andaatfother times
chaotic. * The dynamics of these two‘radically different sets were
furtherlinvestigated by Ju]iagand Fatou and they discovered}many new
prouerties. But, ithey'were unabTe to classify aTT'of the pOssible
dynamics that were reTated to: ‘the stab]e set. They could not exc]ude :
the possibility of wandering domains from the stabTe set, nor could
they prove that connected SiegeT disks exists for certain c- vaTues.
~In 1940, C. L Siegel showed that Siegel disks exist w1th1n a
complex dynamicaT system. In addition, I.N. Baker extended much of |
the earlier work by showing other types'of stable behaviorvcould oCcur
- for entire and meromorphic functions
In 1980, Benot MandeTbrot discovered the M-set. ‘bennis
Sullivan introduced the use of quasi conformai mappings which aTTowed
‘.h1m to prove the No Wandering Domain Theorem ThTS compieted'the
c1a551fication of stabTe dynamics for rationai maps begun by . Fatou and

Julia. The stab]e region of a complex dynamicaTvsystem is called the

14



- Fatou set, and the.cheotic regioo is called the Jd]ia set [4].

Definition Suppose z is a f1xed po1nt. Then z is
1. attratting ,'.yﬂ AT | the modulus of f.'(2)
| e 1s_between 0 and 1.
2. SUperattracting | . RRITI eif) f-r(z)'s‘d
3. repelling . . . . .ot . “if  the modulus of f¢ '(z)
| | is greater than 1
4. neutral . . . .‘..' . .« . if modulus of f.'(z) =
Recall that the<orbit of zero 1svca11ed'our crﬁtioal»Orbit since
f¢'(0)=0. In fact, 0 is the on]y critical point of fe -22+c in the
comp1ex plane. If zo is either superattract1ng or an attract1ng f1xed
'point then there is an open ne1ghborhood U of z, hav1ng the property

that f"(z) tends to zo_as n goes to infinity for each z in U. The set -

of all points that converge to z, is called the basih of attraction.

: If z, is a repelling fixedvpoint, then there is a neighborhood U
of zd in whiCh there exists an ana1yt1e branch‘of thetinverse of fe.
Since f(zy) is an attracting fixed point for this inverse, it follows.
then that the orbits in U are attracted to f(zo) under f -1,
Therefore, a11 of the orbits for z in U are repe11ed from z4 by fe.

If one studies the dynamios of f on the Reiman sphere, then the

~ point at 1nf1n1ty becomes a superattract1ng fixed po1nt for fe (since

fe'(infinity)= 0), this can be shown by chang1ng the coordinates to
h(z)=1/z) Therefore, the second basin of attraction is associated

‘with the point at infinity [10].
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‘A complex ana]yt1c map a1ways decomposes the plane into two B
disaoint subsets: the stable set on which the dynam1cs are calm, and

the Julia set where the mapping fis ehaot1c.v

Definition of Julia set: The Julia set of fc, denoted J., is the set

of all points at which f. exhibits sensitive dependence. The
complement 6f this chaotic sethc, 1s”ca11ed the stable set, denoted
| S¢ [71. | |

Let s reca]] a few facts from complex analysis, a co]]ection of
functions_[(T1): $=1,2,3,..., where (T4) are the iterated functions
for the different values of c] is said to be normal on an open set, U
in the complex plane if the functions, (T;), form a equieontinuous
family on U. If the functions, (Tj), are holomorphic functions then
normalify'of the family (T;) on U is equivalent to the‘follqwing:
Every sequence of‘the (T1) has‘a subseqhence that converges uhiformly
on compact sets either to an analytic function‘onvu or to 1nfinity. '

Montel's Theorem: Suppose the family of analytic functions, (T;),

is not normal on U. Then the family (T;) assumes all values in the

comp]ex plane except at most two.

~ This theorem tells us that if the family of iterated functions,
does not‘form a normal family in any neighborhood of z,, then z, is
within the Julia set, J.. | |
| Theorem 4.1 The JuTia set, J. = [z4 in C: (fc)" is not a normal

family in any neighhorhood'of z,] [10].
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Theorem34 2 The JuTia set Jc, is the cTosure of the set of

: threpeTT1ng per1od1c po1nts of fc.v

-Definition The f111ed JuT1a set of fes denoted Kc, 1s the set of

‘points whose orb1ts are bounded under the 1terat1onof fc.
- Theorem 4.3: The Julia set, J¢ is the boundary of Ke.

, Two mapp1ngs, F G C to C are said to be conJugate if there
exist a homemorphism, h:C to C such that h 0 F=G © h
| Note that h maps orbits of F to 6 since h © F“-Gn 0 h. In addition,
h-1 takes orb1ts of G to those of F and ‘we have a one- to -one
vcorrespondencevbetween the orbits of F and G. ,
Theorem 4. 4: ‘Suppose'g(z)=a22+bi+c' with a not eqnal to zero and

b,c* in C. Then g(z) is conJugate to f.(z)= 22+c for some ¢ in C.

. The aff1ne conJugacy, h(z) az+b/2, sat1sf1es

h(z) ° g(z) =f (z) 0 h(z), where c= ac'+ b/2 - b2/4

Therefore “the genereT quadratic equation 1s‘dynam1ea]1y‘
equ1va]ent to an equat1on in the fam11y of fc [10]

The. dynam1cs on the JuTia set are chaot1c. Al Julia sets exh1b1t
the three propert1es of sens1t1ve dependence, trans1t1v1ty, and dense
 periodic POTDtS- The bas1n of attract1on for the critical po1nt at
zero is a stab]e set, and. aTT of the po1nts w1th orbits that escape.

-~ to the superattract1ve po1nt at 1nf1n1ty are po1nts in the other

stable set. The po1nts on the Ju11a set are a sequence of po1nts
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“that lie on the boundary between the two basins of attraction. vThere .
are two values for c of fe (z) 22+c that are ‘not fractals. They are
' when e-O or c=-2. The first case f (z) 22 has dynamics on the Ju11a
Set that;are:chaot1c. Let R/Z be the unit circle, so that the points
“on the'Unit circle are defined mod 1. Then the orb1t of any point on
Jo js obtained by 1terat1ng the doubling funct1on, D(theta) 2 (theta)
mod 1. 1If (theta) p/q (where p/q is in 1owest terms with q odd),

then (theta) lies on a periodic orbit and we have dense periodic

points on the unit circle. If (theta) = p/(2“q) then (theta) is
~ eventually periodic under D(theta) and these points w111‘a1so be dense
in Jg. N |
| The function operator, D(theta), exhibits the property of -

sensitive dependence. If one chooses any point in an open

- neighborhood of a point on the unit circle and repeated]y app]y
fo" 22, one would find that ‘the 1teration of the open nejghborhood
vwod]d‘grow in size and eventua]]y contain any point in C except O and _—
infinity.
The\doubling function‘expands arc)engths‘on the unit circle‘by a
factor'of‘two; Thus, any'segment ofnthe unit circle is eventually

mapped onto the entire circle. This'gives the third condition of o

transitivity. Therefore fo (z) 2hvas dynamics on the Julia set
(the unit circle) that‘are chaotic [6].

~The second case, f_p(2)=22-2 also has-dynamics onpits Julia
set'that~are chaotic. The crittca] orbit is eVentua]]y fixed stnce

the second iteration gives f_2(0)=2, which is a fixed point. The map
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f_o is similar to f,. Consider h(z)=t£ + 1/z (for all z such that 121
s greater than or equal to 1). The fuﬁction,»h(z),‘maps'the exterior
of the open disk onto the ent1re‘p1ane.- | |

.The unit ciré]e has a 2-to-1 mapping onto a closed interval [-2,2]
(where the straight ray§ of the circle are mapped onto‘pieces of
hjpékbo]as of the 1nterva1-[§2,2]) [101. | | v

~The Julia set thaf is generated by z2 - 2 is a line, [-2,2].

The two previous cases represent the simplest of the Julia sets to
compute. The computer algorithms ﬁhat generate picturés of the Julia
sets for‘the'remaining c-values will require numerical techniques.

The Julia set that is generated for ¢ = -1 has a fractal

boundary. The critica] orbit is a two cycle: 0,‘-1, 0, =1, Oyecee
The following two theorems show a dichotomy that is related to the

critical orbit of fe.

Theorem 4.5: 1f the orbit of 0 escapes under the iteration of f.,

then K. = J. is a Cantor set.

~ Thereom 4;6: If the orbit of 0 does not escape under the

iteration of f., then both K. and J. are connected sets [1].
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THE M-SET AND MISIUREWICZ POINTS

The dynamics of comp]ex anaiyticai functions has made considerabie

T“progress in recent years., A complex anaiytic map aTways decomposes 1. -

- v_vthe p]ane into two disjoint subsets~ -the~stab1e.set~on.which the

| ;dynamics are caim, and the Juiia set where the mapping is. chaotic.‘
-?Quadratic maps in the compiex piane share many of the features of one-
deimen51ona1 systems. But the dynamics of quadratic maps in the form .
.fc 2+c (where c is a complex parameter) will be more complicated
: than the previous reaT—vaTued map f x2+ c.
In 1979 Mandeibrot Tooked in the compiex piane for those
vaTues of c for thCh the orbit of zero remained bounded One couid
e;.say that the M-set is a soiution set within the parameter piane where
'the iterations of 22+c remain bounded and represent connected Ju]ia *'Ti”
‘ sets. Studying the M set 1s Tike studying the iterating dynamics of
alv quadratic poTynomiaTs at once.,-. | | | '
| | The M- set s contained within a circle of radius 2 It is‘a'very;
Tcomp]icated fracta] that 1s not a seif simi]ar set., The computer
wf.generated pictures show regions of bounded orbits, co]ored biack and ?

'"regions of unbounded orbits,'coiored white. The cToser we,zoom invon‘

'._.the M set s boundary, the more detaii appears. As we'bioweUp the

boundary of the Mande]brot set dark 1sTands appear that resembie baby_] |
.;"mandeibrot sets [2] | | ‘ o

In 1982 Adrien Douady and John Hubbard proved that the M- set 1s o

R connected (those isiands off the edges are actua]]y connected to the
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whoTe set by th1n connected fiTaments) Currently; therelis‘work
"being done on a conJecture concerning the poss1b1e property of the M- )
vset being Tocally connected.~ In 1990, J. C. Yoccoz gave an almost
'.compTete answer by show1ng that for each po1nt c 1n M which is not
»1nf1n1te1y norma]ized there 1s a neighborhood base of closed

connected sets.

o Definition of the M-set"

“The MandeTbrot set is [c' f“c(o) does not go to 1nf1nity]
EquivaTentTy, The M-set is‘the set of c-vaTues for which K(fc) 1s a
connected set [2] | | |

- The JuTia sets are either connected or not connected The v

,disconnected Julia sets. are all homeomorph1c to a Cantors set. The tlh

rconnected Julia sets have one of two forms: e1ther the set has a

",t connected stabTe 1nterior, or the JuTia set has no 1nter1or where

K(f )= J(f ) and is caTTed a dendrite.__,,“_( .
" The. M-set 1s a computer generated p1cture of the parameter plane.

;In order to give a p1ctor1a1 descr1ption of the M-set we need to

” anaTyze the cr1tica1 orbits - if the cr1t1ca1 orb1t ~does not escape to v"

v"'l’infinity then the JuTia set 1s connected and [ is part of M. If the L

‘ ’l;forb1t of zero goes to 1nf1n1ty then c is. not in M.

Theorem 5.1: If f has an. attractlng per1od1c orb1t then the ’

”h orb1t of zero must be attracted to this orb1t 'fﬂ :

f Iherefdfetéffﬁonesis‘fabie'tO*Tocatefé'c-yaTue such that fo has an i
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“attracting periedic orbit, then we are guaranteed that the criticaT
~orbit nill be attached to this orbit. Our function, f¢, can have at
most one attract1ng cyc]e and the: critica] orbit can be is attached to
one of these attract1ng,cyc1es, Some iterating functions have
infinitely many periodic orbits.

Example 1: Consider f(x)= x2 42, then our functionihas 2n
distinct periodic points that are‘figed. At most one of these orbits
can‘bevattracting.

~ Critical orbits will determine much of the dynamics and structure
of the stable set, S(fc). Every quadratic po]ynomia] that has
infinitely many periodic points, can have at most one point that is an
attracting cycle. Consider the following two cases:

1. If f¢ that has a rationally neutral cycle, then the critical
orbit must again be attracted to it.

2. If f¢ has a critical orbit that is pre- per1odic (see next
definition), then there is no attracting or neutral cyc]es(fc =1)
associated with f. and we have a Julia set where K(fc)=J(fc). This
form of cdnnected Ju]ia_set has an empty interior and is called a
dendrite. | The example above, when ¢=-2 gives have a connected Julia
set with no interior, where K(f-2)=J(f_2) [10].

The similarity between Julia sets and the M-set is well-understood

in the neighborhood of certain points called Misiurewicz points.

Definition of pre-periodic: An initial point, z,, is called pre-

periodic if there exist m and p that are greater than or equal to 1,
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‘such that zn;zi+ﬁ,;nliizn,

aDefdnitionsof Misiurewicznboint‘ A va1ue of c for which the orb1t of "
iNO'underjf 1s pre per1od1c (but not periodic) 1s ca]]ed a Misiurewicz
:,; 'point. '_ L | o
If c is a Misiurewicz point then ‘the orbit does not escape. v
:Therefore a11 Misiurewicz po1nts are in the M-set. Douady and Hubbard
vproved the fo11ow1ng properties' v |
1. If cisa M1siurew1cz point then the- periodic cyc]e
z-’ z-+1 seees zl|+p 1 is a repe]]1ng orb1t.

2. If c is a Misiurewicz point then K(fe y=d(f¢) and we have a
dendr1te,

Misiurew1cz points are -dense at the boundary of the M-set.

Iw .
o . R

(th1s means if we take any arb1trary point on the boundary of
~ the M-set and construct a small disc around that point then

. there exist a M1s1urewicz point in the disc) [1]

" Examg1e 2: Consider fi(z)=22+i. The critical orbit is pre-
periodic: z°=0,,zl=1,‘zé=-1fi,n23;-i, z4=-1+i,....- (where m=2 and
p=2, we have 22=22+2). The Julia set; Jis is an infinitely branched

‘connected fractal Ca1Ted'd,dendrite.
‘Exémg1e 3: Consider f(Z)?ZZ-Z. Again the critical orbit is pre-

- periodic: zo=0,vzlé-2,‘zé=2, 23250000 (where m=2 and p=1, we have

2p=2241) -
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_Ih 1989, fah*Lei brdved‘thatfif § 15 aiMiSiuréwici:point, then:
;; Théldﬁlia set and the'M-set5éfe both asymptotically R
| 'vself;§imi1ar‘fn,thé pbihfv;éc-uéing-thg mu]tiplief.p;

2. ‘Then the asSbcfaﬁed ($hapes)fIimit objects Lj-éhd Lp are
| ;_esééntially,théwsamef ’They_di%fer only by a scéiingl

and a rbtation} (LméaLj,_Whéré'a is inlc) [11.
 since the Misiurewicz points are dense in the M-set we have a

powerful methOd;for'viéually seeing the shape of the corresponding

© Julia sets.
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EXTERNAL RAYS

Ii is hard tb‘find s&fffcient superiatives to déscribe the
'v geometric cqmp1eX1ty and_péauty of the‘JuliazsetS that are generated
és‘c varies along‘thé‘bouhdary ofﬁthe Mahde]brot set."Recall that tﬁe-
shape of the Jdlia set is the_boundary‘betWeen‘attractor points: zero
and infinty. A1l Jhlia sets ére symmetric about the origin and fall
within a circle of radius twb."ExCépt for‘the attractor at infinity,
the numﬁer;and Tocation of‘the attractors depends on c. In some cases
there are no attractors except infinity and no "inside" to the Julia
set. When we choose a value for ¢ fhat is outside the M-set we get a
disconnected Julia set. If we choose our starting point for iteration
as one 6f thé pbints of thé Julia set, the iteration of the point will
hop around locally from pbint to pofnt in the set. But if we don't
'stért onva point in the Julia set; then our point will escape to
infinity. | | |

Each of the various parts of the M-set represents dynamically
différent Julia sets. The largé cardibid-shaped region of M. The
eQuation for the curve that bounds the large cardiod‘region of M can
be determined by sb]ving two,equatﬁonS'simu]tanebus]y: 22 +¢c=12
and the derivatiﬁe 1221 is gréater than or equal to 1, which yields
¢ = ply)= iéiy - &eziy (where y is an angle in [0, 2pil). If c=p(y),
then the,deriVative at the fixed point is eiy;v thice that the
deriiatﬁVe Wraps once around the unit circle as c travels fhe boundary

of the gardioid [llj!

25



In 1983, Denn1s Su]livan showed that the foT]owing four casesv
descr1be some of the possible connected Julia sets that are associated |
| with the M- set (the only one remaining is called a herman ring).
CASE #1: The c-values that are in the interior of the M-set are
called hyperbelic points.‘ The cardioid main body contains all values
of ¢ for which f. has one attracting fixed point and the associated J¢
is a deforned circle (a Jordan curve). Each‘bnd on the M-set
corresponds to a cyclical attracton bf a particular period.
CASE_#2: When ¢ is a Misurewicz point we have a dendrite.
CASE #3: When c is a point of M where the bud is connected (called a
root point) we acquire avJu11a set with a germination point of a bud
for an n-cycle. The n-points of these cycles split off from the thick
dot when ¢ moves into the bud. The boundary has tendrils that reach
up to the marg1na11y stable attractor._ At the branch point, the J.
becomes a stable attractor called the parabolic case. e
CASE #4: 1If c is any other houndary point of the cardioid or a bud,
then the J. is associated nith‘a Seigel disk. Unlike the parabolic
case, where the boundary extends to the fixed pOint, the Seigel disk
has invariant concentric circles in the dc that surround the fixed
point. There are some technical conditions regarding the
irrationa1ity of the fixed point for thevSeige1 disk [1].
~The theory‘df external rays that was developed by Douady and

Hubbard supply a method for understanding the structure of both the M-
set and related du]ia sets. A complex analytic map with a

supenattracting fixed point (infinity) is locally conjugate in a
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‘neighborhoods"ﬂé,_ of this tiXed poiht of z to 2N, for some n greater
“than or equal.to 2. The point at infinity is superattracting. Since
'~f¢(z)=22+c haé'degree two our‘map is conjugate of z to‘zz‘near
1nftnity. Let Vp= [z in C lzlis greater than or equa] to R, where R
is greater than 1].
- Theorem 6. 1 Let c be in C. Then theregexist a neighborhood U, of
‘1nf1n1ty 1n C, R is greater than 1, and an analytic isomorphism |

Pcﬁ U. to Vg such that Pc(fc(z))=(Pc(z))2

Definition of externa1_rays: The external ray of argument y is the-

curve gy(t)= pc-l(teZ(pi)iy)

'Recall that the eventually fixed orbit of z2-2 had a map

h(z)= z + 1/z, and this gave a uniformization, | '
| H: [z: 121 is greater than 1] to c-[-2 2]

which conjugates the map (z to z2) to the map (z to 22 - 2).
This mapping determines the external rays, which turn out to be pieces
of hyperbo1as.‘ | |

If our Julia set tsf1oca11y'connected, then each external ray will
1;have‘a 11mit that lands on a unique point of the JC;_,We will get
: information about the topology and the dynamics on the J. by studying
the 1andtng points of. the externa1‘rays.' However, not all J.
,are loca11y connected, S0 our externa] rays are not always . guaranteed
to land [10]

Theorem 6.2 If the crittca1‘orbit‘of zero under fe= 22+¢ is
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n eventua11y per1od1c or f has an attract1ng cycle then Jc is Toca11y |

connected

Consequent]y, for a 1arge number of cases, the externa] rays do
: :1and on Jc'- Julia sets that have attract1ng cyc1es are part of the M— f
vset.' If f —zz+c has an attracting cycle of period n, then there .ht
f exists a neighborhood “c’ for which the fo]lowing ho]ds- if ¢! is 1n :
“c' then f + also has an attracting cyc]e of period n which remains
close to the cyc]e of fc. Therefore any such c- va]ue liestin the
'1nterior‘of the M-set. The interior of M consists of c- va]ues for
which the corresponding fe has an attract1ng cyc]e of some period. ,f
These components are ca]]ed hyperbolic.
‘;The»region of the M-set where f. has an attracting cycle of period

two . is the'boundary of the circle that'is given;by Tc+11 = 1/4.
(which fs derived by so1v1ng two equations simultaneously: fcz(z)éz,
and 1(fC2)']'1s less. than 1). This region meets the'main body

cardioid at a unique point, c=-3/4. ‘This‘hu]bfrepresentsvan‘area‘of M
where the atractive cycle fis per1od two [6]

A11 of the decorat1ve bu]bs of the M set have a rat1ona1 number'

associatred with them ca11ed the rotat1on number (p/q'). Each of the
p/q' -bulbs 15 decorated with a antenna. Each antenna is unique fn its
topolog1ca1 structure “and features a "junction po1nt" from which
different spokes emanate The degree ofvth1s vertex_(Junct1on po1nt)
has a va]ue of q' for each p/q -bulb. The numerator, P> gives,
~va1uab1e 1nformation about the dynam1cs that are related to the c-

value of fC in the.p/qv-bu1b. The filled Julia set, Kc,vfor fe
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contains a fixed point p at whichvexaétly q' components of'K(fc)—[p]
meet. The iteration of the mahping,‘fc=zz+é rotates about these
| comppnents-centéred at p by an angle 2(pi)(P/qf).

The 1océl structure of the M-set around hyperbolic points is
cohp]icated but predictable. Recall, that the set of Misiurewicz‘
points is dense in the boundary of M. In addition, the accumulation
points of hypefbolic components will give the entire boundary of the
Mandelbrot set. In other WOfds; the bbundary of M is contained in the

“closure of the set of centers of'hyperbo1ic'componehts, (where the |
gggggg is definned to be the uniqug c-value for which the attracting
cycle is a super-attracting cycle). This is a consequence of Montel's
theorem [10]. | |

Douady and Hubbard showéd,that the M-set has infinitely many small

copies of the M-set embedded within the connected M-set [11].
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QP_fﬂéfjhﬁtibhjafféxie;haIffafj¢fyl The. externa] ray\of M w1th ang]e y .

Ejterm field 1ine._11t 1s known that a]] field 11nes w1th rationa1

:}fangles do, 1nffact land on the boundary'of the M-set.' Furthermore,‘




land at the root 'p'oint’v(c-—3/4?)"oi"‘ the period 2 bulb. The field lines

o of angle y-p/7 give: Binary expan51ons B(1/7)-001001...., o

B(2/7)-010010...., 8(3/7) 011011...., etc.' So the field lines of

Zi ang]e p/7 land at root p01nts for period three components. Two of
these are: buibs that are attached to the main cardioid where -
._ ptrifurcation takes pTace., The other must be a root point of a baby M- k
. yset with period 3 that is within ‘the main M-set. Period three bulbs

: Acan oniy be attached to the main cardioid by direct bifurcation, and
_fy not to buibs with other periods. Hence the fie]d lines of 3/7 and 4/7

o :.,must terminate at the baby M set of period 3 that is 10cated on the

.negative reaT axis.: o v

Sch]eicher s aTgorithm prov1des a procedure that 1s used to
ﬁa:Ldetermine the binary expansions of fier Tines that land at root |
| *tfpoints of p/q' bulbs attached to the cardioid. |
' §tgp_l_ Using Farey addition determine the Targest p/q

| bulb p/q + r/s -(p+r)/( a' +S)

:i,(Note that the ray 0 or 1 Tand at the cusp ofthe cardioid and the raysfffif:j

01 and 10 Tand at the root p01nt of 1/2 bulb. i e. 0/1+1/2 = 1/3) .
Step 2 Find the rays closest to the (p+r)/(q +s) bu]b 1‘ _ |
- o Let 51"'5n bbe attached to the p/q’ bulb and Tet

‘ t1...t ‘be attached to the root point of the r/s buib.
Step 3 The ray attached to the (p+r)/(q +s) bulb cTosest to the

p/q bulb is 51 ..sntl...tm. The ray attached to the

(p+r)/(q +s) buTb cTosest to the r/s buTb is ty...tpsy. eeeSp.
' (the ray that is attached to. the 1/3 bulb, ciosest to the 0 ray, canfh

,be found in the foi]owing way use‘thernearest ray-O-then g]ue
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the farthest ray 01 to get 001).

Using this inductive procedure one could f1nd all of the rationa1
rays that land on the root po1nts of the decorative bulbs of M.
There is an extension to this a]gorithm that a11ows one to determine
all of the rational rays that land on the sma11er bu]bs attached to
the decorative bulbs of M [10],
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*-THE;HeSETYIS;CONNECTED;

"The Mandeibrot setﬁistthe”set of c such”that'the filled Julia set

'e.‘1s connected. Every such polynomia] from the fam11y 22+c has a

uf111ed Julia set that 1s formed of 1terated points with bounded
orbits. Reca]] that 1f the critica1 potnt 0 is in the fi]]ed Julia,
’-t; set X .‘then'J is connected If the critical point is not in Kg
“ithen e is a Cantor set. ‘\' | |

Hubbard and Douady used electrostatics to developed their theory )

’”7'hf;of externa1 rays. S1nce M s connected they thought of M as a

'Qfﬁ,ucharged region and gave M an e1ectric field to create equipotentia] '

Tevel sets. These Tevel sets are re1ated to the different speeds at S

'[_,»which the orb1t of [ escapes to inf1nity under 1terat1on for each c-

s ,'va]ue-outside~of M..' The c]oser c is to the boundary of the M- set

‘1;hfthe 1onger 1t takes for the 1terat1on of 0 to escape. Reca]] that o

the map z t° 22 15 ConJugate to a neighborhood VR, near 1nf1nity, R
””V.where 1nf1n1ty 1s a super- attract1ng f1xed po1nt.

Prev1ous1y, we. defined a map Pc U to V such that

o pc(fc(z)) (Pc(z))  This mapping conJugates the dynam1cs of f (z)

‘near 1nf1n1ty to (z to 22) outs1de of some 1arge c1rc1e. If c 15 not'
in the M set then the 1terat1on f n(z) goes to 1nf1n1ty as n- goes toﬁ
'_1nf1n1ty. o ' A y B |

| It can be shown that Pc is ana]yt1c in. both P and z The map."P'c
i 1s def1ned 1n a ne1ghborhood of 1nf1n1ty 1n the Re1man sphere. The

maps Pc’ extends to a 1arger doma1n via the conaugacy by the fo]ow1ngbv:”
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‘method. - SupposeO'is not-in,the"bonndary,of.uca:.Let z be
- bd(Uc)‘ Then’thene exists z' in the bd(U¢) such thatvz'does not
equal z' and fc(z) fc(z ) are in Uc. Choose a neithorhOOd W of
h'xf (z) so that ‘the pre image of H consists of two open sets "1 and Hz
,satisfying.,, | '
1. 2z is in Hl, and z is in Hz N
'724, The intersection of Wy and Wy is empty.
‘ ‘The intersection of H1 and H2 is guaranteed to be empty provided
h;.:that fc(O)-c, where ¢ is not in V. o
One can extend Pc to ai] of "1 and H2 by requiring.
1. (Pc(Z))z-Pc(fc(Z))

2. Pe is continuous.

“va'our Criticai onbit (the onbit-of Zero)*esbapes to infinity then
" this method allows. us to extend Pe to an open neighborhood of
_’infinity that contains the critical point (zero) Otherwise, the
method ‘above aliows us to define Pc on an open neighborhood U of

infinity such that zero is contained in bd(u)

Theorem 7 1: Q: E-;‘H'to f-- [z' lzl'é‘l], where Q(c)#Pc(c),

7 for ¢ in C - Mis an anaiytic 1somorphism onto C- [z' 121 = 1]

oroiiary°’ The Mande]brot set 1s connected

- Let D denote the Open unit disc, and let QM C -Mto c - D be
the conformai mapping which maps infinity ‘to 1nf1nity and is- tangent

: to the 1dentity at 1nf1n1ty. The.proof 1s not obyious., First assumehii'



connectedhif-its;compjement 1sha simply connected open subset;’ The
Riemann mappingvtheorem says that a simply connected open subset of
’the Sphere;;that,dosenft represent the entire_plane, is eouivalent to
‘homeOmrphic and analytic to'the unit disc;'D. 'Hubbard.and Douady
showed that there must exist a homeomorph1c and analytic map from the
: ‘unit disc to the complement of M., wh1ch showed that the complement

of M was simp]y connected and consequent]y M 1s connected. ’

Their map- T 0 to T-M T(z) 1/z + b * blz + b2z2 $oo h .'

The 1/z term maps the interior of the unit disk onto the exterior
of D (where the origin 15 sent to inf1n1ty) ~ The power series terms
add a sma]] distortion to make the 1mage of the map T the exterior of |
. therﬂ (rather than thevexterior Of_D)i The 1mage under T (as r tends |
to 1)'of-a circTe(lzl=r,‘where'r’is less than 1) is sent to a simple
cTosed curve bound1ng M. | A o

There ‘are sti]] many open questions and conJectures concern1ng M.
For example the map T is a homemorphism that sends the open d1sk to
the comp]ement of M, however the map does not extend to a
| homeomorph1smvon the bonndar1es.. It is still unknown whether or not
»’T'w1TT extend>to a continuons map., There is avconJecture concern1ng
whether or not H is TocaTTy connected If M isrlocaTTy
connected then one. cou]d show that T would extend to a cont1nuous
“map. In add1t1on, onevcould show that all irrational external rays
land on the boundary"of M. CurrentTy‘there_is,much work being: done

on this conjecture.
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