
California State University, San Bernardino California State University, San Bernardino 

CSUSB ScholarWorks CSUSB ScholarWorks 

Theses Digitization Project John M. Pfau Library 

1995 

Preparation of a site-specific lymphotoxin- mutant to be used in Preparation of a site-specific lymphotoxin- mutant to be used in 

protein characterization and receptor binding studies protein characterization and receptor binding studies 

Derek Andrew Knight 

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project 

 Part of the Cell Biology Commons 

Recommended Citation Recommended Citation 
Knight, Derek Andrew, "Preparation of a site-specific lymphotoxin- mutant to be used in protein 
characterization and receptor binding studies" (1995). Theses Digitization Project. 987. 
https://scholarworks.lib.csusb.edu/etd-project/987 

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has 
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. 
For more information, please contact scholarworks@csusb.edu. 

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F987&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/10?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F987&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/987?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F987&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu


PREPARATION OF A SITE-SPECIFIC LYMPHOTOXIN-p
 

MUTANT TO BE USED IN PROTEIN. CHARACTERIZATION AND
 

RECEPTOR BINDING STUDIES
 

A Thesis
 

Presented to the
 

Faculty of
 

California State University,
 

San Bernardino
 

In Partial Fulfillment
 

of the Requirements for the Degree
 

Master of Science
 

in
 

Biology
 

by
 

Derek Andrew Knight
 

June 1995
 



PREPARATION OF A SITE-SPECIFIC LYMPHOTOXIN-p

MUTANT TO BE USED IN PROTEIN CHARACTERIZATION AND

RECEPTOR BINDING STUDIES

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

Derek Andrew Knight

June 1995

Approved by:

Dr. Richard Fehn, Chair, Biology Date

)r. Lisa Shamansky

Dr. Ching-Hua Wang



ABSTRACT
 

Lymphotoxin (LT) is a cytokine synthesized by
 

eytotpxiG T lymphocytes, B cells and natural killer
 

cells. This cytokine is very similar to tumor necrosis
 

factor (TNF) in both structure and in certain functions.
 

LT has been shown to induce cytotoxic, antiviral and
 

growth enhancing activities in a variety of cells
 

(Andrews et ai., 1990). LT has also been shown to be
 

essential for the proper development of peripheral
 

lymphoid organs in mice (Togni et al., 1994) and is
 

thought to play a role in the pathogenesis of certain
 

autoimmune diseases (Ruddle et al., 1990), but its role
 

in human development and in the immune response is still
 

poorly understood. One method that will help build upon
 

our knowledge of this cytokine involves placing site^
 

specific mutations in regions of the LT gene thought to
 

be important in receptor binding and in protein
 

structure. One such mutation involves an N-linked
 

glycosylation site present on the membrane bound form of
 

LT (mLT) but absent on the soluble form. By preparing a
 

mutant LT-^p gene that lacks this glycosylation site, it
 

will be possible to analyze a proposed model for LT
 

structure and ligand receptor interactions.
 

In this study, such a mutant was prepared using a
 

polymerase chain reaction (PGR) overlap extension
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technique to introduce a site-directed single base
 

substitution that destroyed the consensus sequence for
 

N-linked glycosylation, replacing an asparagine residue
 

with a serine residue. It is believed that this
 

substitution results in loss of the N-linked
 

glycosylation site while not significantly altering
 

protein conformation. The presence of the desired
 

mutation was confirmed using dideoxy DNA sequencing
 

analysis and the mutant cDNA cloned into the pcDNAl-amp
 

plasmid, E. Coll were transformed with this clone and
 

positive transformants used in the preparation of
 

maxiprep DNA. The DNA obtained was transfected into
 

GOS-7 mammalian cells and protein expression analyzed.
 

It was found that neither the mutant or wild-type LT-p
 

transfectants produced protein bands when labeled with
 

monoclonal LT-p antibodies and immunoprecipitated.
 

These results may indicate that LT-p is rapidly degraded
 

when expressed without LT-a.
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Introduction
 

The Gytokines are a diverse group of proteins that play
 

key roles in the effector phases of both the natural and
 

specific immune responses. Cytokines can be produced by and
 

act upon a wide variety of cell types to regulate immune and
 

inflammatory responses, as well as to influence the synthesis
 

and actions of other cytokines and their receptors. The
 

effects of many cytokines can vary depending on when and
 

where they are expressed and upon the presence of other
 

cytokines. It is this extreme variety of effects that helps
 

give the immune system its flexibility This pleotropic
 

response ability, although invaluable to the organism, has
 

made the study and understanding of these proteins rather
 

problematic. The mechanisms used by these molecules to
 

elicit such a wide and apparently very specific variety of
 

cellular reactions are still poorly understood. Over the
 

past decade, molecular and recombinant DNA technology has
 

given us some insight into how these molecules interact with
 

each other and with various receptors to cause the wide range
 

of responses seen in the immune response.
 

One family of cytokines that appears to play a major
 

role in the inflammatory response is the tumor necrosis
 

factor (TNF) family of cytokines. TNF, and the closely
 

related cytokine lymphotoxin (LT), regulate or participate in
 



all major phases of the cytotxic T lymphocyte (CTL) lytic
 

pathway (Ware at al., 1990). The importance of these
 

cytokines in the immune response is illustrated by the
 

mechanisms that viruses such as the Pox, Adeno and human
 

immunodeficiency virus (HIV), have developed to defeat or
 

utilize them (Smith at al., 1991; Horton at al., 1991;
 

Gooding, 1992). There is also evidence that these cytokines
 

play a role in certain autoimmune diseases (Ruddle et al.,
 

1990) and in genetic diseases linked to abnormal immune
 

function (Hollenbaugh at al 1992; Allen at al., 1993;
 

Korthauer at al., 1993; DiSanto at al., 1993; Smith at al.,
 

1993). I
 

TNF is expressed by a wide range of cell types in
 

response to antigens and other inflammatory stimuli (Old,
 

1985). Although the major source of TNF is the
 

lipopolysaccharide (LPS) activated mononuclear phagocyte, it
 

is also secreted by activated T cells, natural killer (NK)
 

cells and mast cells (Abbas, 1991). Both the soluble and
 

membrane-associated forms of TNF are composed of identical
 

subunits that associate to form a homotrimer. The first two
 

exons of TNF encode a region that contains a 76 amino acid
 

residue that functions as a membrane anchoring domain. This
 

26 kDa membrane bound form of TNF is the precursor of the
 

secreted form, which is released from the membrane anchoring
 

domain by proteolytic cleavage as a 17 kDa polypeptide.
 

(Kriegler et al., 1988).
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LT is a protein secreted by Cytotoxic T lymphocytes
 

(GTL)7 B cells and Natural Killer (NK) cells (Paul and
 

Ruddle/ 1988; Ware et al., 1992) as part of the inflammatory
 

and immune response. The predominant species of LT is a 25
 

kDa glycoprotein in humanS/ with a cDNA encoding for a 205
 

amino acid polypeptide. This protein is very closely related
 

to TNF and appears to play a role in the response of CTL
 

against virus infected and malignant cells (Ware et al.,
 

1990). Recently, LT has also been shown to play a role in
 

the proper development of peripheral lymphoid organs in mice
 

(Togni et al.f 1994), as well as being implicated in the
 

pathogenesis of certain autoimmune diseases (Ruddle et al.
 

1990).
 

The genes for TNF and LT have been cloned and are
 

closely linked in'the class III region of the major
 

histocompatability complex (MHC) on human chromosome 6. They
 

share 56% homology at the nucleotide level, 31% homology at
 

the amino acid level (Andrews et al., 1990) and also have
 

very similar intron-exon arrangements (Spies et al., 1986;
 

Nedwin et al., 1985). The secreted form of LT (LT-a) and TNF
 

share similar quaternary structures, assembling as homologous
 

trimers (Jones et al., 1989; Eck et al., 1988, Smith and
 

Baglioni, 1987).
 

Two receptors (TNFR) have been identified with high
 

affinity for TNF and LT^oc (Hohmann et al., 1989; Vilcek and
 

Lee, 1991). One, a 60 kDa protein (TNFRqq) is believed to be
 



sufficient for initiating cytotoxic function and responses
 

controlled by the nuclear binding protein NF-kB (Schultze et
 

al., 1992). The other is an 80 kDa receptor (TNFR90) important
 

in the mediation df T cell responses, the conferring of
 

protective tumor immunity In vivo and is the cause of many of
 

the toxic effects caused by TNF administration (Vandenabeele
 

et al., 1992; Van Ostade et al., 1993). Both receptors can
 

be shed following ip-rotein kinase C activation, causing down^
 

regulation of theicellular response and giving the organism
 

an additional method by which to modulate the immune reaction
 

to TNF or LT-a (Digel et al., 1992)• The binding of TNF to
 

the TNFR occurs at sites within the Cleft created at the
 

suhunit interface (Zhang etai., 1992), as demonstrated by
 

X-ray crystallography studies of LT-a bound to TNFRgp (Banner
 

et al., 1993). The signaling mechanisms used by the TNFR to
 

initiate cellular responses are not yet known, but it does
 

appear that multiple signaling pathways are present. The use
 

of these receptors by both LT-a and TNF explains certain
 

similarities in their biologic activity. In fact, the
 

original biological characterizations of TNF and LT showed LT
 

to be a much less potent cytokine In vitro and to function as
 

a partial agonist to TNF (Browning and Ribolini, 1989;
 

Andrews et al., 1990). This led to a hypothesis that LT was
 

simply a poorly redundant cytokine, although more recent
 

evidence would seem to indicate that this is not the case.
 

Like TNF, LT is also seen in a membrane bound form, but
 



it differs in the method of membrane attachment. Membrane
 

bound LT (mLT) isia heterotrimer containing LT-a subunit(s)
 

associated with the extracellular domain of a 33 kDa protein
 

(p33)(Browning et al., 1991) which also contains
 

transmembrane and cytoplasmic domains. Cloning of the gene
 

encoding p33 led to the discovery that it was homologous to
 

LT-a and TNF and was encoded next to the TNF and LT-a locus
 

on the MHO with similar intron-exon arrangements. These
 

similarities led to the designation of p33 as LT-p (Browning
 

et al., 1993)(Figure 1). The form of mLT most frequently
 

observed is a heterotrimer composed of two LT-a monomers
 

associating early in biosynthesis with a single LT-p monomer
 

(Androlewicz et al., 1992) (Figure 2). Trimers composed of
 

one LT-a and two LT-p subunits have also been observed, but no
 

naturally occurring LT-p homotrimers have yet been discovered.
 

Although little is known about the function of mLT, recent
 

evidence implicates mLT in the killing activity of lymphokine
 

activated killer (LAK) cells towards various tumor cell lines
 

(Horiuchi et al., 1994).
 

The known receptor binding sites on LT-a occur within
 

the cleft formed by the subunit interface (Banner et al.,
 

1993), which implies that up to three TNFR may bind a single
 

LT-a trimer complex (Pennica et al., 1992). This binding of
 

multiple receptors has distinct biological implications,
 

since receptor clustering may lead to a heightened or
 

different cellular response (Engelmann et al,, 1990). This
 



is even more signifleant in the ease of LT and TNF, where
 

different eombinations of TNFRgQ and TNFRqq reeeptors eould
 

potentially lead to a wide, variety of responses. This
 

heteromerie elustering has been found to play a role in the
 

pleotropie eellular respdnses to TNF (Van Arsdale et al., in
 

preparation) where different eellular responses to TNF oeeur
 

when heteromerie receptor elustering takes place versus those
 

seen when elustering of only one receptor type occurs. When
 

receptor clustering'does not occur, a weaker cellular
 

response is observed. This could explain the original
 

observations that LT binding to the TNFR led to a weaker
 

cellular response than that caused by TNF if the predominant
 

form of LT present was mLT, a form that could theoretically
 

bind at most one TNFR at the a-a subunit interface and hence
 

not lead to receptor clustering. A receptor specific for the
 

LT-p subunit interface has been discovered and has been
 

termed LT-pR (Crowe et al., 1994). Like the TNFR, this
 

receptor is a member of the TNF/Nerve Growth Factor (NGF)
 

family of receptors (Figure 3), a family characterized by
 

strong homology in the cysteine rich N-terminal portion of
 

the receptors (Goodwin et al., 1991). There is also evidence
 

to suggest that a receptor specific for the a-p interface does
 

exist (Crowe, personal communication), as evidenced by mLT
 

binding even in the presence of anti-LTpR and anti-TNFR
 

antibodies. This receptor has not yet been isolated and any
 

cellular signals generated by it are still unknown. These
 



discoveries implicate a wider role for LT in both the immune
 

response and in development than was previously thought and
 

demonstrate the importance of learning more about IT and the
 

mechanisms it utilizes by studying it at the molecular level.
 

Current models for the structure of mLT may lead to a
 

better understanding not only of its true function, but also
 

of the immune system in general. A model has been proposed
 

(Ware, unpublished data) in which the binding of the LT
 

ligand with its receptor is dependent upon the type of
 

subunit interface present (Figure 4). In this model, LT can
 

exist as one of four potential trimers. LT-a, the secreted
 

form of LT composed of three identical LT-asubunits (a3) has
 

already been structurally well characterized. Although
 

little is yet known about the 3-D structure of LT-p, its
 

sequence similarity with LT-a and TNF allow for some general
 

assumptions to be made in generating this model. The three
 

Other potential stiructures each contain LT-p subunits as Shown
 

in figure 4 (a2pi, aip2, p3). As the number of LT-p subunits
 

increases, the number Of TNFR binding sites decreases and the
 

number of LT-pR sites increases. Binding of the TNFR has been
 

shown to occur within the a-a subunit cleft and it is
 

theorized that LTr-pR binds within the P-P cleft. These
 

changes in receptor binding specificity would explain the
 

variety of cellular responses seen upon LT exposure and would
 

theoretically allow the organism to modulate its immune
 

response by altering the predominant species of LT or
 



receptor present.
 

One major difference between LT^a and LT-p subunits is
 

the presence of an N-linked glycosylation site on LT-p located
 

very near the region where TNFR binding occurs in LT^d(Figure
 

5). Based upon predictions of the 3-D conformation of the a-p
 

subunit interface, TNFR binding within this cleft may be
 

blocked by the carbohydrate attached to the N-linked
 

glycosylation site. If this is the case, this would be a
 

novel and previously unseen method by which nature has
 

regulated receptor binding by the presence or absence of a
 

carbohydrate.
 

In this study, LT-p was mutated to remove this N-linked
 

glycosylation site so that studies could be carried out to
 

examine the role of this site in LT function. The
 

preparation of a mutant LT-p gene lacking this site will allow
 

for further analysis of the role the sugar residue normally
 

present plays (if any) in stearically hindering the effective
 

binding of the TNFR bound by LT-a, which would potentially
 

lead to a different cellular response. It is also possible
 

that this sugar residue may play a role in trimer
 

construction by preventing three LT-p subunits from
 

interacting to form a trimer. This would explain the lack of
 

finding such a homotrimer in nature. By creating this mutant
 

gene, it will be possible to look at these and other
 

relationships between this residue and LT receptor binding
 

specificity and trimer formation, as well as cytotoxicty.
 



MATERIALS AND METHODS
 

Generatiozi o£ 5' and 3' PGR fragiRents Gontalning the
 

desli^ed mnt&tion. The amino acid consensus sequence for N-


linked glycosylation is aspafagine (N), any amino acid (X) ,■ 

serine (S)/threonine (T) (NXS/T) . The N residue of LT-p was 

substituted through the use of two pairs of PGR primers 

{Figure 6) . In one reaction, a 710 base pair (bp) fragment 

which included the LT-p sequence encoding amino acid residues 

1-225 was PGR amplified with the external 5' primer 

(5'pGDM8/LT-p) and an internal primer (3'LT-PN-S02) containing 

sequences encoding S instead of M in tlie middle region of the 

primer. In a second reaction a 3' external primer (3'LT­

p/Notl) and an internal primer (5'LT—PN-S02) were used to 

amplify LT^P amino acid residues 219 through the stop codon 

and 3' untranslated region (UTR) to yield a 107 bp fragment. 

This internal primer again contained sequences that replaced 

the N with an S and was complimentary to the other internal 

primer. Both sets of primers were obtained from Gruachem and 

diluted to a coneentratioh of 50 pM with distilled water 

(dHjO) . Reaction conditions for both fragments were 

identical, except the 5' reaction mixture contained 10% 

dimethylsulfoxide (DMSO) . Reactions were carried out in 0.6 

ml thin walled microfuge tubes (Midwest Scientific) in a 

thermal cycler (MJ Research Minicycler) . Each fragment was 



generated using 0.5 |xl (338 ng) of wild type LT-p cloned in
 

the pCDMB plasmid as a template. This template was a
 

generous gift from Dr. J. Browning (Biogen, Inc. Cambridge,
 

MA). The reaction also included 4 nl (200 jjM each)
 

deoxynucleotide triphosphate (dNTP) mix, 6 |xl (1.5 mM) MgCl2
 

and 10 |xl lOX PGR buffer (Perkin Elmer). The 5' fragment
 

also had 10 jil of iDMSO added to the tube. One microliter
 

(0.2 pM) of each of the appropriate 5' and 3' primers was
 

added and the reaction vessel brought up to a volume of 99.5
 

pi using dH20. The tubes were placed in the thermal cycler
 

and the temperature increased to 97°C for 1 minute, then 0.5
 

pi (2.5 Units) of DNA Ampli-Taq Polymerase (Perkin Elmer) was
 

added to each tube. The samples were then subjected to 30
 

cycles of denaturation (95°C/1 minute), annealing (58°C/1
 

minute) and extension (72°C/45 seconds). This was followed by
 

a 4 minute 72°C extension and the reactions were then cooled
 

to 4°C. The PGR products were run on a 3% Nu-Sieve agarose
 

(FMG) minigel in tris-acetate^EDTA (TAE) buffer (0.04M tris,
 

O.OOIM EDTA) for one hour at 100 volts and the desired bands
 

excised and purified using FMG Spin Bind columns. The DNA
 

products were eluted from the columns using 50 pi tris-EDTA
 

(TE) buffer (10 mM tris*Gl, 1 mM EDTA), pH 8.0, and stored at
 

-20°G.
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Joining of fragments by PGR Overlap Extension to
 

obtain full length mutant. The 5' and 3' fragments were
 

combined following gel purification to yield the full length
 

mutant DNA via an overlap extension technique (Figure 7).
 

Ten microliters DMSO, 10 |j.l lOX PGR buffer, 6 jil (1,5 mM)
 

MgClj, 4 |i.l (200 pM each) dNTP's, and 200 ng of each of the 5'
 

and 3' fragments obtained above were mixed and the volume
 

brought up to 97.5 p.1 with dH20. This mixture was denatured
 

at 95°C for 1 minute, and 0.5 ml (2.5 units) Tag polymerase
 

added. Five cycles were then carried out using a 95°C/1
 

minute denaturation, 45°C/2 minute annealing and 72°C/3 minute
 

extension step. Following this, 1 pi (0.2 pM) of the
 

5'pCDM8/LT-pII primer and 1 pi (0.2pM) of the 3'LT-p/Not 1
 

primer were added and 25 additional cycles completed with a
 

modification in the annealing step to 50°C/2 minutes. A
 

72°C/10 minute final extension step was performed and the
 

samples cooled to 4°C. Sixty microliters of this reaction was
 

run through the FMC Spin Bind PGR Product Purification column
 

and the product run on a 3% Nu-Sieve agarose gel.
 

Sequence confirmation of mutation. DNA sequence
 

confirmation of the desired mutation was performed using a
 

Sequenase PGR Product Sequencing Kit (United States
 

Biochemical). Three microliters (60 ng) of the mutated DNA
 

was used as a template in each sequencing reaction.
 

Sequences were run from both the 5V and 3' ends using the 3'
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outside primer and a 5' primer (5' Seq)(Figure 6) that codes
 

for an 18 base sequence located 100 bp upstream from the
 

mutation. First, an annealing mix was prepared using the
 

template and 1 |il (0.2 jiM) of the appropriate primer. The
 

volume of this mix was brought up to 10 p-l with dHjO. The
 

mixture was denatured by heating in the thermal cycler at
 

100°C for 3 minutes and then rapidly cooled in an ice-water
 

bath for 5 minutes and kept cool on ice. While cooling, 2.5
 

|j.l of each termina.tion mix (A,C,G and T) were placed in
 

individual microfuge tubes. These tubes were prewarmed to
 

37°C in a water bath. A labeling mix was prepared by making a
 

1:5 dilution of the labeling mix supplied with the kit in
 

dH20. To the ice-cold annealing mix the following was added:
 

2 |il reaction buffer, 1 (j,l 0.IM dithiothreitol (DTT), 2 |a.l 1:5
 

diluted labeling mix, 0.5 nl [^ssjdATP (Amersham, 1000 Gi/mmol
 

specific activity) and 2jil (3.2 units) Sequenase DNA
 

Polymerase. This mixture was allowed to incubate at room
 

temperature for 5 minutes and then 3.5 |j.l was added to each
 

of the four termination tubes and incubated for 5 minutes at
 

37°C. The reactions were then stopped using 4 |j.l of stop
 

solution and the samples briefly heated to 75°C immediately
 

prior to loading onto the gel. The samples were run on a 6%
 

polyacrylimide gel in an IBI Base Runner 100 electrophoresis
 

apparatus. Samples were run at 50 watts constant power for 6
 

hours (three sets of each sample loaded at two hour
 

intervals) maintaining gel temperature at approximately 50°C.
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Following the run, the gel was rinsed in a 5% Acetic Acid/5%
 

Methanol bath for 15 minutes and then transferred to Whatman
 

3MM filter paper and dried on a Labconco gel drier for 1 hour
 

at 75°C, exposed to Fuji X-Ray film for 72 hours then
 

developed and the sequence analyzed.
 

Cloning of mutant DNA in pcDNAl-amp plasmid. Once the
 

mutant sequence was confirmed, the DNA was ligated into a
 

pcDNAl-amp plasmid (Invitrogen) for future amplification and
 

analysis. The pcDNAl-amp plasmid (Figure 7) is an
 

approximately 4.8 kb high copy number shuttle vector
 

expressed in both prokaryotic and eukaryotic systems that
 

confers ampicillin resistance in E. Coli. First, 500 ng of
 

the desired DNA was digested with the restriction enzymes
 

Not-1 (recognition sequence GCGGCCGC) and Hind III
 

(recognition sequence A'^AGCTT)(7 Units each, GIBCO) at 37°C
 

for 6 hours and purified using the Spin Bind PGR Purification
 

System to remove the end fragments and unwanted enzymes. One
 

microgram of pcDNAl^amp was also digested in this manner and
 

gel purified to remove the polylinker and to prepare cohesive
 

ends for ligation. Seyeral ligation reactions were then set
 

up as follows. As a control, a 0:1 insert to vector (vector
 

only) ligation was performed using lOO ng cut pcDNAl-amp, 2
 

10.1 lOX ligase buffer and 0.5 |ol (2.5 Units) T4 DNA ligase
 

(GIBCO). The reaction volume was brought up to 20 ul using
 

dHjO. 2:1 and 3:1 insert to vector ligations were also
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prepared as above. The reactions were allowed to continue
 

for 16 hours at 16°C and then were placed on ice. Twenty
 

microliters of GIBCO JM 109 frozen supercompetent cells were
 

placed in prechilled Falcon 2059 tubes and 1 (il of a 1:5
 

dilution of each ligation mix in dHjO was placed into the
 

appropriate tubes; This mixture was kept on ice for 30
 

minutes, heat shocked at 42°C for 45 seconds and placed back
 

on ice for 2 minutes, then 980 jxl of SOC medium prewarmed to
 

37°C was added to each tube. The tubes were incubated at 37°C
 

with shaking at 225 RPM for 1 hour, then 200 |xl of each mix
 

was plated on Luria Broth (LB) plates supplemented with
 

ampicillin at a concentration of 100 ji.g/ml (amp 100) and
 

incubated overnight at 37°C. Single colonies were selected
 

and grown in 2 ml LB/amp 100 at 37°C overnight. Minipreps
 

were performed on 1.5 ml of each culture using the Promega
 

Magic Miniprep kit. First the cultures were pelleted in a
 

microfuge at 14,000 rpm for 2 minutes and the cells
 

resuspended in 100 |j,l of Promega resuspension buffer, then 1
 

ml of Promega binding resin was added and the solution mixed
 

gently. This solution was then placed in a 3 ml syringe and
 

gently pushed through a Promega Magic Miniprep column,
 

followed by a wash with 2 ml of 80% isopropanol wash buffer
 

and elution with 50 jil TE prewarmed to 65°C. The remaining
 

0.5 ml of culture was saved as stock for future cultures by
 

adding 150 |il of 80% glycerol and storing at -20°C. The DNA
 

obtained was digested with Not-^l and Hind III and run on a 1%
 

14
 



agarose gel to confirm the presence of the desired 760 bp
 

fragment.
 

Maxiprep of pcDNAl-ainp/LT--p Mutant DNA. A culture was
 

prepared using 100 |a.l of the stored 0.5 ml Coli culture
 

which had tested positive for the mutant insert previously in
 

the miniprep and 200 ml of LB/amp 100. This culture was
 

grown overnight at 37°C. To obtain the desired plasmid DNA
 

the culture was Centrifuged at 12,O0Oxg for 15 minutes at 4°C
 

and the supernatant discarded. The pellet was dissolved in
 

10 ml of resuspension buffer containing 100 jig/ml RNase A,
 

0.1 mM Tris/Hei and 10 mM EDTA, pH 8.0. Once dissolved, 10
 

ml of lysis buffer containing 200 mM NaOH and 1% SDS was
 

added and then the tube was inverted 5 times and incubated at
 

room temperature for 5 minutes. After incubation, 10 ml of
 

lysis neutralization buffer containing 3.0 M potassium
 

acetate (KAc), pHT5.5 was then added, the tube inverted
 

several times and then put on ice for 20 minutes. The tube
 

was mixed again and centrifuged at 30,000xg for 30 minutes at
 

4°C. While the mixture was centrifuging, 10 ml of column
 

equilibration buffer containing 750 mM NaCl, 50 mM MOPS
 

(3-[N-Morpholino]propanesulfonic acid), 15% ethanol and 0.15%
 

Triton X-100 at a pH of 7.0 was added to a QIAGEN tip-500
 

column and allowed to enter by gravity flow. This was
 

followed by the supernatant obtained from the centrifuged
 

cell lysate. Once the lysate had flowed through the column.
 

15
 



 

2 washes were performed using 30 ml each of wash buffer
 

containing 1.0 M NaCl, 50 mM MOPS and 15% ethanol at a pH of
 

7.0. The column bound DNA was then eluted using 15 ml of
 

elution buffer containing 1.25 M NaCl, 50 mM Tris/HCl and 15%
 

ethanol at a pH of 8.5. To the eluate, 0.7 volumes of room
 

temperature isopropanol was added and the mixture centrifuged
 

for 30 minutes at 15,OO0xg at 4°C. The pellet was then washed
 

with 15 ml ice-cold 70% ethanol and centrifuged again. The
 

DNA pellet was allowed to dry for 10 minutes and was then
 

redissolved in 0,5 ml TE pH 8.0. The dNA obtained was 
■ 'v' ' ■ ^ ^ 

analyzed on a 1% agarose gel. 

COS-7 cell culture. GOS-7 mammalian (monkey kidney) cells
 

were maintained ip.Dulbecco's Modified Eagles Medium (DMEM)
 

supplemented with 10% fetal calf serum,, 2 mM glutamine,
 

penicillin and streptomycin (100 ug/ml each) in 10% CO2/90%
 

ambient atmosphere at 37°C. The cells were passaged every 3-4
 

days upon reaching approximately 80-90% confluence.
 

GOS-7 cell trahsfection. 2.5 x 10^ cells were plated into
 

60 mm Culture dishes the day prior to transfection and grown
 

in DMEM as above.: The cells were rinsed twice with 5 ml warm
 

phosphate buffered saline (PBS) and then with 5 ml of serum
 

free DMEM. A DNA/Liposome solution was prepared containing 1
 

|j,g DNA, 2 ml serum free DMEM and 10 |il LipofectACE (GIBCO) in
 

a 5 ml polystyrene tube. Tubes were prepared containing
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LT-a, LT-p, LT-p mutant and control vector (Cav.Not) DNA. The
 

solution from each tube was added to a plate and the plates
 

incubated at 37°C in 10% CO2/90% ambient atmosphere for 5
 

hours. 2 ml of DMEM supplemented with 20% fetal calf serum
 

was then added and the plates incubated at 37°C overnight.
 

The media was then replaced with 3 ml of DMEM containing 10%
 

fetal calf serum and incubated an additional 48 hours.
 

Biosyn'bhe'biG labeling of COS-7 calls. The monolayer of
 

transfected cells was washed twice with warm PBS. To each
 

dish, 1 ml of cys/met-free DMEM containing 10% dialyzed fetal
 

calf serum and glutamine was added and the dish incubated 5
 

minutes at room temperature. A 150 |a.Ci/ml ^^S^cys/met label
 

(ICN Trans label ~10 |j,Ci/ml) was then added and the plates
 

incubated at 37°C for 3 hours with occasional rocking. The
 

supernatant was then removed and transferred to a microfuge
 

tube. The monolayers were lysed with 1 ml/dish ice-cold
 

lysis buffer (20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 2% Nonidet
 

P-40 (NP-40), 1 mM EDTA, 40 mM iodoacetamide and 2mM
 

phenylmethylsulfonyl flouride) for 10 minutes at 4°C. The
 

lysates were then transferred to a microfuge tube and the
 

tubes centrifuges at 13,000 rpm for 10 minutes at 4°C. Each
 

sample was then ttansferred to a fresh microfuge tube for
 

immunoprecipitation. Each tube was precleared by adding 1 \ig
 

of mouse IgG and 40 (xl protein G-Sepharose (GammaBind G-


Sepharose, Pharmacia). The tubes were capped tightly and
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rocked 1 hour at 4°G, then centrifuged briefly to pellet the
 

protein Q beads and the supernatant was then removed and
 

placed in a new tube. A mixture of 1 m-S each of three
 

monoclonal anti-LT-p antibodies (B27, B9 and C37)(BIOGEN) was
 

added along with 40 |il/tube of protein G-Sepharose to the
 

tubes containing the Cav.Not control, LT-p and the LT—p
 

mutant. One microgram of an anti-LT-a monoclonal antibody
 

(NC2)(Biogen) along with the protein G beads was added to the
 

LT-a transfection control tube. The tubes were capped
 

tightly and rocked 1 hour at 4°C, then centrifuged briefly to
 

pellet the protein G beads. The samples were aspirated and
 

the beads washed three times with wash buffer containing 20
 

mM Tris (Ph 8,0), 0.5% NP-40, 150 mM NaCl, 0.5% deoxycholate
 

and 0.05% sodium dodecyl sulfate (SDS) and once with PBS­

azide (N3) then resuspended in 50 jil 2x SDS-PAGE sample buffer
 

containing 100 mM Tris-Cl (pH 6.8), 200 mM dithiothreitol, 4%
 

SDS, 0.2% bromophenol blue, 20% glycerol plus 4% 2-mercapto­

ethanol and heated for 5 minutes at 100°C.
 

SDS^Polyacrylimide gel electrophoresis (SDS-PAGE).
 

The samples were then loaded on a 12% SDS-polyacrylamide gel
 

and run overnight at 10 mA constant current to separate
 

proteins. The gel was then soaked for 30 minutes in 1 M
 

sodium salicylate (fluor) and transferred to Whatman 3MM
 

filter paper and dried at 75°C for 1 hour. The dried gel was
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exposed to X-Omat AR film (Eastman Kodak) and a Cronex
 

intensifying screen, (Du Pont) for 24 hours at -70°C and
 

developed.
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RESULTS
 

Prepara'tion of 5' and 3' PGR fragments containing the
 

mutation. Through the use of the two sets of primers
 

discussed previously, the expected fragments were obtained.
 

Agarose gel eletrophoresis of the PGR products showed bands
 

at approximately 710 bp and 107 bp respectively (Figure 9).
 

The optimization of reagent concentrations and cycling
 

parameters resulted in the amplification of only the desired
 

fragments while avoiding the generation of non-specific and
 

unwanted fragments.
 

joining of fragi^en'ts by PGR Overlap Extension yields
 

full-length mutant. Application of the overlap extension
 

technique using the two fragments generated above yielded a
 

760 bp fragment (Figure 9) which represents the full length
 

mutated LT-p cDNA. The PGR reaction yielded approximately 1
 

|ig of DNA. Optimization of reagent and cycling parameters
 

eliminated hon-specific fragments.
 

Sequence confirmation of mutation. The use of the
 

Sequenase PGR Product Sequencing kit allowed for rapid
 

sequence analysis of the PGR product. Both the 5' and 3' DNA
 

strands contained the desired mutation (figure 10) and no
 

Other random mutations were observed within 100 bp either
 

side of the site-directed mutation on either strand.
 

20
 



Cloning of mutant DNA in pcDNAl-amp plasmid.
 

Restriction digests of the vector and the PCR product
 

resulted in the creation of compatible cohesive ends that
 

allowed for specific ligation of the insert in the proper
 

orientation into the vector while avoiding religation of
 

vector alone. No transformants were noted in the vector only
 

control plate, while the 2:1 and 3:1 plates both contained 20
 

transformed colonies. Miniprep DNA from these colonies were
 

analyzed by restriction digests and all analyzed colonies
 

contained the expected 760 bp insert (figure 11).
 

Maxiprep of pcDNAl-amp/LT-p mutant DNA. A culture that
 

tested positive for the insert in the miniprep was used to
 

grow a large culture for the maxiprep. Approximately 250|j.g
 

of pcDNAl-amp/LT-p mutant DNA was obtained from a 200 ml
 

culture.
 

COS-7 cell transfection, biosynthetic labeling and
 

SDS-'PAGE. Immunoprecipitation of cell lysates using
 

monoclonal antibodies specific for LT-a or LT-p confirmed that
 

COS-7 cells were successfully transfected. The
 

autoradiograph of the labeled precipitates showed a band at
 

26 kDa representing the LT-a sample and indicates a
 

successful transfection. However, no bands were evident in
 

samples transfected with either LT-p or mutant LT-p.
 

Precipitation of these samples was attempted using three
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different monoclonal antibodies to ensure the epitope had not
 

been lost during the mutagenesis, however none of the
 

monoclonal antibodies precipitated confirming proteins in
 

either LT-p sample.
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Figure 1. Schematic diagram of the region of
 
chromosome 6 containing the LT/TNF locus. TNF, LT-a
 
and LT-p are linked within 10 kb in the MHC on human
 
chromosome 6. The exon^intron arrangements for each gene are
 
similar. LT-p is coded for in an opposite direction from TNF
 
and hT-tx. Restriction map shows sites for EcoRI (E), Xhol
 
(X), Hindlll (H), Bglll (B), Kpnl (k), PstI (P) and Ncol (N).
 
(From Browning et al., 1993)
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Figure 2. A working model for LT biosynthesis and
 
secretion. Newly formed LT-a and LT-p monomers can
 
associate within the lumen of the endoplasmic reticulum to
 
form trimers composed of a3, a2pi or alp3 subunits. These
 
subunits are then processed within the Golgi and transported
 
to the cell surface for expression as mLT (a2pi or aip2) or
 
secreted LT (a3). (Adapted from Androlewicz et ai., 1992)
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Figure 3. Members of the TNF ligand and receptor
 
family. For the ligands, an open box indicates the region
 
of homology in the extracellular domain where the receptor
 
binding sites are located, while the filled boxes indicate
 
the cytoplasmic, transmembrane and extracellular stalk
 
regions. The number of residues in each region are
 
indicated. The receptor cys-rich repeat homology regions are
 
shown as open boxes. Stripped boxes in the cytoplasmic
 
region indicate homology. N or O indicate likely sites of
 
glycosylation and P represents sites of phosphorylation
 
(Ware, unpublished data).
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Figure 4. Proposed model of LT-aP complexes. The four
 
potential trimers that are proposed for LT and the possible
 
receptor binding interfaces for each. The a3 trimer could
 
bind up to three TNFR which are specific for the a-a cleft.
 
The aZpi trimer could potentially bind only one TNFR and one
 
LT-pR, which are specific for the P-P cleft. The aip2 could
 
not bind a TNFR but could bind up to two LT-pR. The P3, which
 
has not been observed to occur in nature, could bind three
 
LT—PR. The cleft formed at a-p subunit interfaces is thought
 
to bind an as yet unidentified receptor (Ware, unpublished
 
data).
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LT-P LT-a. 

Figure 5. Molecular model of LT-a/LT-p interface. The 
LT-p subunit contains transmembrane and cytoplasmic domains 
not present on the LT-a subunit. LT-p also contains an N-
linked glycosylation site very near the proposed binding 
region for the TNFR in the interface cleft. It is possible 
that this N-linked glycosylation site positions a 
carbohydrate that stearically blocks TNFR binding to mLT. 
The dark blue and yellow areas indicate regions of homology 
and the green area is a conserved proline thought to function 
in subunit association (Ware, unpublished data) . 
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Ouliside Primers: 

5'pCDM8/LT-p 

5'CGACTCACTATAGGGAGACC3' Melting Temp. 54°C 

3'LT-p/Not-1 

5'CGCGGCCGCACTCGGACCACGC3' MeIting Temp. 80°C 

Inside Primers: 

5'LT-pN-SOl 

5'GTGACTGATGCTGACGTAGAC3' Melting Temp. 64°C 

3'LT-pN-SOl 

5'GTGTACGTCAGCATCAGTCAC3' Melting Temp. 64°C 

5'Sequencing Primer: 

5'LT-p/Seq 

5'GAGACGGTGACTCCAGTG3' Melting Temp. 58°C 

Figure 6. Primers utilized in PGR and sequencing
 
reactions. Primers used in the PGR reactions include the
 

outside primers, 5'pGDM8/LT-p and 3'LT-p/Not-1. These primers
 
allow for amplification of the entire LT-p gene and the 3'LT­
p/Not-1 also inserts a JSIot-l site in the 3' untranslated
 
region. Inside primers include 5'LT-pN-SOl and 3'LT-pN-S02.
 
These primers were used to insert the desired single base
 
substitution (underlined) into the two fragments generated
 
for use in the overlap extension procedure, changing the
 
sequence to code for serine instead of asparagine. 5'LT-p/Seq
 
was used to generate the 5' strand used in sequencing, this
 
primer annealed approximately 100 bp upstream from the
 
mutation site. A 3' strand was also generated for sequencing
 
using the 3'LT-p/Not^l primer.
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Figure 7. Exsunple of sife-dlrected mufagenesis using
 
overlap extension PGR. Specific base changes can be made
 
using the overlap extension technique. Two separate PGR
 
fragments are prepared, utilizing 5' and 3' non-mutated
 
outside primers and complimentary internal primers that
 
contain the desired base changes. These two fragments are
 
amplified in separate PGR procedures, then the purified
 
products combined, denatured and annealed and extended to
 
form a full length template containing the mutation. The 5'
 
and 3' outside primers are then added and another full PGR
 
cycle run to amplify a full length mutant sequence.
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Figure 8. Map of the pcDNAl-amp plasmid used as a
 
shuttle vector. The pcDNAl/Amp plasmid contains a strong
 
promoter for eukaryotic expression, a ColEl sequence for high
 
copy replication in E. Coll and ampicillin resistance in E,
 
Coli for positive selection (Map supplied by Invitrogen).
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Figure 9. Agarose gel showing fragments made during
 
PGR site directed mutagenesis procedure. Lane 1
 
contains molecular weight markers (BioMarker Low). Bands are
 
at 1000, 700^ 525, 500, 400, 300, 200, 100 and 50 bp. Lane 2
 
shows the 5' fragment at approximately 710 bp. Lane 3
 
contains the 3' fragment of approximately 107 bp. Lane 4
 
shows the overlap extension product obtained by combining the
 
fragments from lanes 2 and 3. This fragment represents the
 
full length mutated LT-p gene of 760 bp and contains
 
restriction enzyme sites for Hind III at the 5' end and Not-1
 
at the 3' end.
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A C G T
 

3' sequence
 

Mutated Sequence: 5' GGTGAfiCATC 3'
 
3' GGAGTfiGTAG 5'
 

10. Sequence confirmation of desired mutation.
 
The presence of the desired sequence was confirmed using
 
dideoxy-DNA sequencing as seen on the 3' sequence shown in
 
this autoradiograph. The site^specific mutation was the
 
single base substitution underlined and in bold. This
 
substitution results in an amino acid change from asparagine
 
to serine, leading to a loss of the N-linked glycosylation
 
site in the protein product.
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Figure 11. Restriction digest of clone from pcDNA-amp.
 
Following transfection, DNAminipreps were performed to
 
confirm insertion of the cloned DNA. Restriction digests of
 
the miniprep DNA with Not-1 and Hind III yielded a 760 bp
 
fragment, indicating the mutated gene has been successfully
 
inserted into the pcDNAl-amp plasmid. The left lane contains
 
known molecular weight markers of Lambda DNA cut with the
 
restriction enzyme Bst EII,
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Figure 12. Autoradiograph of protein
 
immunoprecipitation. Transfection of COS-7 cells with
 
LT-a, LT-p and LT-p mutant followed by immunoprecipitation
 
with monoclonal antibodies yielded a band at 26 kD for LT-a
 
indicating a successful transfection. Known weight markers
 
are at 200, 97, 69, 46, 30 and 14 kDa. No bands are present
 
for either LT-p sample. The lack of bands may indicate LT-p
 
is being rapidly degraded when no LT-a is present.
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Figure 13. Flow cytometry data showing surface 
expression of LT—a/p on COS-7 cells. The relative 
flourescence created by staining LTa/p cotransefected COS-7 
cells with anti'-LT-a is shown as a solid line and the 
background flourescence due to control IgG staining is shown 
as a dashed line. Note no relative change when LT-a is 
expressed alone, this is because the LT-a is not retained on 
the cell surface. LT-p when expressed alone is not stained 
with the anti-LT-a, but when expressed with LT-ain a 
cotransfection experiment it causes LT-a to be targeted to 
the cell surface and retained, where it is stained by the 
antibody. (From Browning et ai., 1993) 
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DISCUSSION
 

The preparation of a site-specific DNA mutant of LT-p
 

was shown to be possible using the PGR overlap extension
 

technique. Although this technique was first demonstrated to
 

be a practical and efficient method of site-specific
 

mutagenesis several years ago, when utilized with the LT-p
 

gene several modifications were required. The LT—p gene is
 

very C-G rich in its 5' end, resulting in excessively high
 

melting temperatures and rapid reannealing of the two DNA
 

strands. This made the generation of a 5' mutant DNA
 

fragment very difficult and impractical using standard PGR
 

protocols. After trying a wide variety of reaction
 

conditions without success, the reactions were attempted in a
 

vessel containing 10% DMSO. Although not normally used in
 

PGR protocols utilizing Taq polymerase, DMSO was used
 

previously in Klenow-mediated PGR reactions (Scharf at al.,
 

1986). Although DMSO is known to reduce the effectiveness of
 

Taq polymerase by approximately 50%, its use in these
 

reactions allowed for the generation of mutant 5' fragments
 

at relatively good levels, yielding approximately 1 ng of
 

mutant DNA per 100 |j.l reaction. It is uncertain which
 

parameters are affected by inclusion of 10% DMSO, but DMSO
 

may affect the melting temperature of the primers, the
 

thermal activity profile of the Taq polymerase and/or the
 

degree of product strand separation during denaturation.
 

Even at denaturation temperatures of 99°G, reactions involving
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the 5' end of this gene attempted without DMSO were not
 

successful/ while addition of 10% DMSO allowed reactions to
 

take place with denaturation temperatures of 95°C. Inclusion
 

of 10% DMSO was also required in the subsequent overlap
 

extension protocols to create full length mutant LT-p cDNA.
 

Once the full length cDNA was produced, it was sequenced
 

in the region surrounding the mutation site to confirm the
 

presence of the mutation and the absence of other random
 

mutations. Full length sequencing will be necessary
 

eventually since random mutations can be created while using
 

Taq polymerase at a rate approaching 1/4000 base pairs (Ho et
 

al., 1989). Since sequencing is time consuming and tedious,
 

full length sequericing will be performed only if changes in
 

binding characteristics, cytotoxicity or trimer formation
 

using the mutant DNA are observed in future assays. The use
 

of the Sequenase PGR sequencing kit with the 5'Seq and
 

3'LT-p7Not-l primers allowed for direct sequencing of both
 

strands of the PGR product a distance of 100 bp either side
 

of the desired mutation. No mutations other than the desired
 

mutation were observed and the sample was then digested with
 

Not 1 and Hind III arid cloned into the pcDNAl-amp plasmid.
 

E. Coli cells were subsequently transformed to generate high
 

yields of the desired mutant DNA (approximately 250 |j.g per
 

maxi-prep).
 

Following isolation of the amplified plasmid from E.
 

Coll, the mutant DNA was transfected into GOS-7 cells to
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obtain protein expression in a mammalian expression system
 

for immunoprecipitation analysis. A sampling of three
 

different monoclonal antibodies were used to ensure the
 

desired epitope had not been inadvertently removed by the
 

mutation. Results of the immunoprecipitation were
 

inconclusive. LT-p was not expressed at high enough levels to
 

observe any protein in the autoradiograph (Figure 12). If
 

the protein had precipitated as expected, a band would have
 

been seen at approximately 33 kDa in the wild type LT-p sample
 

and a band of slightly greater mobility would have been
 

expected for the LT-p lacking the N-linked glycosylation site
 

due to lack of the sugar residue. A control transfection of
 

LT-a precipitated with an anti-LT-a monoclonal antibody
 

yielded the expected band at 26 kDa. Several other attempts
 

to precipitate wild type LT-p from COS-7 cells have also
 

failed to detect protein. Flow cytometry analysis of cells
 

transfected with LT-p has shown that very small quantities of
 

the protein are present when expressed in conjunction with
 

LT-a (Figure 13). The promoter on the pcDNAl-amp plasmid is
 

a strong promoter, so fairly high levels of protein
 

expression should be expected. This would seem to indicate
 

that rapid protein degradation may be taking place.
 

Co-transfection of GOS-7 cells using both LT-a and LT-p has
 

been attempted with no LT-p evident on the autoradiograph (not
 

shown). It is not known whether a sufficient number of cells
 

are receiving both plasmids to yield distinguishable bands of
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a-Pco-expression on the autoradiograph. An interesting
 

feature of these qotransfections is that the relative level
 

of LT-a expression drops as the amount of LT-p transfected .
 

increases. This would seem to indicate that the presence of
 

LT-pis having some effect on LT-a expression, but the nature
 

of this effect is unclear.
 

In baculovirus—infected insect cells, LT-p is expressed
 

alone or with LT-a in cotransfected cells at very high levels
 

(Crowe, unpublished data). This data may indicate that LT-p
 

alone (which has never been observed naturally) contains a
 

signal sequence that directs the LT-p proteins down a
 

degradative pathway when expressed in mammalian cells. In
 

insect cells, this pathway may be overwhelmed, so the protein
 

is expressed. However, in these cells, the protein is seen
 

in forms not normally observed, from monomers to aggregates,
 

indicating that even though it is expressed, it is expressed
 

in states not normally seen. When LT-a is coexpressed with
 

LT-p, heterotrimers are seen similar to those found in normal
 

mammalian cells. Together, this may indicate a change in the
 

3-dimensidnal conformation is occurring upon subunit
 

interaction which signals a secretory pathway. Another
 

possibility is that the LT-a subunit contains a secretory
 

signal and this subunit blocks the degradative signal on LT-p
 

when the SubunitS are together. To examine if some signal in
 

the transmembrane or cytoplasmic domains are signaling for
 

protein degradation, a soluble chinieric LT-p/myc construct was
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prepared (Biogen) in which the transmembrane and cytoplasmic
 

regions of LT-p had been removed and replaced with the myc
 

protein start sequence. This chimeric protein was expressed
 

by COS-7 cells at levels similar to those seen for LT-a
 

(Growe et al., 1994). This would indicate that the signal
 

for the degradative pathway is located somewhere in the
 

transmembrane or cytoplasmic domains of LT-|3.
 

Further analysis pf liT through the use of the mutant DNA
 

created in this research will have to await the insertion of
 

the mutant gene into a baculovirus vector. Although the data
 

generated by transfection of COS-7 cells was interesting and
 

valuable/ it has not answered any questions concerning the
 

role of the N-linked glycosylation site in receptor binding
 

interactions or in trimer association. Further studies are
 

in progress to attempt expression of the mutant LT-p in the
 

baculovirus expression system. Cotransfections using LT-a
 

and LT-p in the baculovirus system should yield adequate
 

protein to address these questions.
 

The importance of working out the protocols required to
 

prepare LT-p mutants using the overlap extension technique
 

cannot be underestimated and will allow many important
 

questions about LT-p and the immune response to be answered in
 

the future. This; project has led to the preparation of one
 

LT-p mutant and has also worked out easy and rapid protocols
 

that should allow'for future research using LT-p mutants to be
 

done quickly and efficiently.
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